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Many important challenges in science and technology can be cast as optimization problems. When
viewed in a statistical physics framework, these can be tackled by simulated annealing, where a
gradual cooling procedure helps search for groundstate solutions of a target Hamiltonian. While
powerful, simulated annealing is known to have prohibitively slow sampling dynamics when the
optimization landscape is rough or glassy. Here we show that by generalizing the target distribution
with a parameterized model, an analogous annealing framework based on the variational principle
can be used to search for groundstate solutions. Modern autoregressive models such as recurrent
neural networks provide ideal parameterizations since they can be exactly sampled without slow
dynamics even when the model encodes a rough landscape. We implement this procedure in the
classical and quantum settings on several prototypical spin glass Hamiltonians, and find that it
significantly outperforms traditional simulated annealing in the asymptotic limit, illustrating the
potential power of this yet unexplored route to optimization.

I. INTRODUCTION

A wide array of complex combinatorial optimization
problems can be reformulated as finding the lowest en-
ergy configuration of an Ising Hamiltonian of the form [1]:

Htarget = −
∑

i<j

Jijσiσj −
N∑

i=1

hiσi, (1)

where σi = ±1 are spin variables defined on the N nodes
of a graph. The topology of the graph together with
the couplings Jij and fields hi uniquely encode the op-
timization problem, and its solutions correspond to spin
configurations {σi} that minimizeHtarget. While the low-
est energy states of certain families of Ising Hamiltoni-
ans can be found with modest computational resources,
most of these problems are hard to solve and belong to
the non-deterministic polynomial time (NP)-hard com-
plexity class [2].

Various heuristics have been used over the years to
find approximate solutions to these NP-hard problems.
A notable example is simulated annealing (SA) [3], which
mirrors the analogous annealing process in materials sci-
ence and metallurgy where a crystalline solid is heated
and then slowly cooled down to its lowest energy and
most structurally stable crystal arrangement. In addi-
tion to providing a fundamental connection between the
thermodynamic behavior of real physical systems and
complex optimization problems, simulated annealing has
enabled scientific and technological advances with far-
reaching implications in areas as diverse as operations
research [4], artificial intelligence [5], biology [6], graph
theory [7], power systems [8], quantum control [9], cir-
cuit design [10] among many others [5]. The paradigm of
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Variational
<latexit sha1_base64="Bqmg4yPwC5oFpBO4TMHz7s2a0e4=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J2II9a948aCIV3+IN/+NmzQHbX0w8Hhvhpl5fiy4Bsf5tipr6xubW9Xt2s7u3v6BfXjU1VGiKOvQSESq7xPNBJesAxwE68eKkdAXrOfPbnK/98CU5pG8hzRmXkgmkgecEjDSyK4PgT1C1iWKFwoR89rIbjhNpwBeJW5JGqhEe2R/DccRTUImgQqi9cB1YvAyooBTwea1YaJZTOiMTNjAUElCpr2sOH6OT40yxkGkTEnAhfp7IiOh1mnom86QwFQve7n4nzdIILjyMi7jBJiki0VBIjBEOE8Cj7liFERqCKGKm1sxnRJFKJi88hDc5ZdXSfe86TpN9+6i0bou46iiY3SCzpCLLlEL3aI26iCKUvSMXtGb9WS9WO/Wx6K1YpUzdfQH1ucPFBGVBg==</latexit><latexit sha1_base64="Bqmg4yPwC5oFpBO4TMHz7s2a0e4=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J2II9a948aCIV3+IN/+NmzQHbX0w8Hhvhpl5fiy4Bsf5tipr6xubW9Xt2s7u3v6BfXjU1VGiKOvQSESq7xPNBJesAxwE68eKkdAXrOfPbnK/98CU5pG8hzRmXkgmkgecEjDSyK4PgT1C1iWKFwoR89rIbjhNpwBeJW5JGqhEe2R/DccRTUImgQqi9cB1YvAyooBTwea1YaJZTOiMTNjAUElCpr2sOH6OT40yxkGkTEnAhfp7IiOh1mnom86QwFQve7n4nzdIILjyMi7jBJiki0VBIjBEOE8Cj7liFERqCKGKm1sxnRJFKJi88hDc5ZdXSfe86TpN9+6i0bou46iiY3SCzpCLLlEL3aI26iCKUvSMXtGb9WS9WO/Wx6K1YpUzdfQH1ucPFBGVBg==</latexit><latexit sha1_base64="Bqmg4yPwC5oFpBO4TMHz7s2a0e4=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J2II9a948aCIV3+IN/+NmzQHbX0w8Hhvhpl5fiy4Bsf5tipr6xubW9Xt2s7u3v6BfXjU1VGiKOvQSESq7xPNBJesAxwE68eKkdAXrOfPbnK/98CU5pG8hzRmXkgmkgecEjDSyK4PgT1C1iWKFwoR89rIbjhNpwBeJW5JGqhEe2R/DccRTUImgQqi9cB1YvAyooBTwea1YaJZTOiMTNjAUElCpr2sOH6OT40yxkGkTEnAhfp7IiOh1mnom86QwFQve7n4nzdIILjyMi7jBJiki0VBIjBEOE8Cj7liFERqCKGKm1sxnRJFKJi88hDc5ZdXSfe86TpN9+6i0bou46iiY3SCzpCLLlEL3aI26iCKUvSMXtGb9WS9WO/Wx6K1YpUzdfQH1ucPFBGVBg==</latexit><latexit sha1_base64="Bqmg4yPwC5oFpBO4TMHz7s2a0e4=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J2II9a948aCIV3+IN/+NmzQHbX0w8Hhvhpl5fiy4Bsf5tipr6xubW9Xt2s7u3v6BfXjU1VGiKOvQSESq7xPNBJesAxwE68eKkdAXrOfPbnK/98CU5pG8hzRmXkgmkgecEjDSyK4PgT1C1iWKFwoR89rIbjhNpwBeJW5JGqhEe2R/DccRTUImgQqi9cB1YvAyooBTwea1YaJZTOiMTNjAUElCpr2sOH6OT40yxkGkTEnAhfp7IiOh1mnom86QwFQve7n4nzdIILjyMi7jBJiki0VBIjBEOE8Cj7liFERqCKGKm1sxnRJFKJi88hDc5ZdXSfe86TpN9+6i0bou46iiY3SCzpCLLlEL3aI26iCKUvSMXtGb9WS9WO/Wx6K1YpUzdfQH1ucPFBGVBg==</latexit>

Simulated annealing
<latexit sha1_base64="wTzXr1453Y4dG8tGIAcGvYSIDw0=">AAACBHicbVA9SwNBEN3z2/gVtUyzGASrcCeClkEbS0WjgeQIc5tJXNzbO3bnxHCksPGv2FgoYuuPsPPfuEmu0OiDgcd7M7szL0qVtOT7X97M7Nz8wuLScmlldW19o7y5dWWTzAhsiEQlphmBRSU1NkiSwmZqEOJI4XV0ezLyr+/QWJnoSxqkGMbQ17InBZCTOuVKm/Ce8gsZZwoIuxy0RnCv9YelTrnq1/wx+F8SFKTKCpx1yp/tbiKyGDUJBda2Aj+lMAdDUigcltqZxRTELfSx5aiGGG2Yj48Y8l2ndHkvMa408bH6cyKH2NpBHLnOGOjGTnsj8T+vlVHvKMylTjNCLSYf9TLFKeGjRHhXGhSkBo6AMNLtysUNGBDkchuFEEyf/Jdc7dcCvxacH1Trx0UcS6zCdtgeC9ghq7NTdsYaTLAH9sRe2Kv36D17b977pHXGK2a22S94H98J7phR</latexit><latexit sha1_base64="wTzXr1453Y4dG8tGIAcGvYSIDw0=">AAACBHicbVA9SwNBEN3z2/gVtUyzGASrcCeClkEbS0WjgeQIc5tJXNzbO3bnxHCksPGv2FgoYuuPsPPfuEmu0OiDgcd7M7szL0qVtOT7X97M7Nz8wuLScmlldW19o7y5dWWTzAhsiEQlphmBRSU1NkiSwmZqEOJI4XV0ezLyr+/QWJnoSxqkGMbQ17InBZCTOuVKm/Ce8gsZZwoIuxy0RnCv9YelTrnq1/wx+F8SFKTKCpx1yp/tbiKyGDUJBda2Aj+lMAdDUigcltqZxRTELfSx5aiGGG2Yj48Y8l2ndHkvMa408bH6cyKH2NpBHLnOGOjGTnsj8T+vlVHvKMylTjNCLSYf9TLFKeGjRHhXGhSkBo6AMNLtysUNGBDkchuFEEyf/Jdc7dcCvxacH1Trx0UcS6zCdtgeC9ghq7NTdsYaTLAH9sRe2Kv36D17b977pHXGK2a22S94H98J7phR</latexit><latexit sha1_base64="wTzXr1453Y4dG8tGIAcGvYSIDw0=">AAACBHicbVA9SwNBEN3z2/gVtUyzGASrcCeClkEbS0WjgeQIc5tJXNzbO3bnxHCksPGv2FgoYuuPsPPfuEmu0OiDgcd7M7szL0qVtOT7X97M7Nz8wuLScmlldW19o7y5dWWTzAhsiEQlphmBRSU1NkiSwmZqEOJI4XV0ezLyr+/QWJnoSxqkGMbQ17InBZCTOuVKm/Ce8gsZZwoIuxy0RnCv9YelTrnq1/wx+F8SFKTKCpx1yp/tbiKyGDUJBda2Aj+lMAdDUigcltqZxRTELfSx5aiGGG2Yj48Y8l2ndHkvMa408bH6cyKH2NpBHLnOGOjGTnsj8T+vlVHvKMylTjNCLSYf9TLFKeGjRHhXGhSkBo6AMNLtysUNGBDkchuFEEyf/Jdc7dcCvxacH1Trx0UcS6zCdtgeC9ghq7NTdsYaTLAH9sRe2Kv36D17b977pHXGK2a22S94H98J7phR</latexit><latexit sha1_base64="wTzXr1453Y4dG8tGIAcGvYSIDw0=">AAACBHicbVA9SwNBEN3z2/gVtUyzGASrcCeClkEbS0WjgeQIc5tJXNzbO3bnxHCksPGv2FgoYuuPsPPfuEmu0OiDgcd7M7szL0qVtOT7X97M7Nz8wuLScmlldW19o7y5dWWTzAhsiEQlphmBRSU1NkiSwmZqEOJI4XV0ezLyr+/QWJnoSxqkGMbQ17InBZCTOuVKm/Ce8gsZZwoIuxy0RnCv9YelTrnq1/wx+F8SFKTKCpx1yp/tbiKyGDUJBda2Aj+lMAdDUigcltqZxRTELfSx5aiGGG2Yj48Y8l2ndHkvMa408bH6cyKH2NpBHLnOGOjGTnsj8T+vlVHvKMylTjNCLSYf9TLFKeGjRHhXGhSkBo6AMNLtysUNGBDkchuFEEyf/Jdc7dcCvxacH1Trx0UcS6zCdtgeC9ghq7NTdsYaTLAH9sRe2Kv36D17b977pHXGK2a22S94H98J7phR</latexit>

Exact Boltzmann dist.
<latexit sha1_base64="2XaTC3aQIuGNTTVlr0WTlG/Zn/g=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFchUQEXZaK4LKCfUAbymQ6aYdOJmHmRlpDV278FTcuFHHrN7jzb5y0XWjrgYHDOfdy55wgEVyD635bS8srq2vrhY3i5tb2zq69t1/Xcaooq9FYxKoZEM0El6wGHARrJoqRKBCsEQyucr9xz5TmsbyDUcL8iPQkDzklYKSOfdQGNoTsekgo4Eos4CEiUuKuueyMix275DruBHiReDNSQjNUO/ZXuxvTNGISqCBatzw3AT8jCjgVbFxsp5olhA5Ij7UMlSRi2s8mMcb4xChdHMbKPAl4ov7eyEik9SgKzGREoK/nvVz8z2ulEF76GZdJCkzS6aEwFRhinHdi0ipGQYwMIVRx81dM+0SZSkxzeQnefORFUj9zPNfxbs9L5cqsjgI6RMfoFHnoApXRDaqiGqLoET2jV/RmPVkv1rv1MR1dsmY7B+gPrM8f6XuYvA==</latexit><latexit sha1_base64="2XaTC3aQIuGNTTVlr0WTlG/Zn/g=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFchUQEXZaK4LKCfUAbymQ6aYdOJmHmRlpDV278FTcuFHHrN7jzb5y0XWjrgYHDOfdy55wgEVyD635bS8srq2vrhY3i5tb2zq69t1/Xcaooq9FYxKoZEM0El6wGHARrJoqRKBCsEQyucr9xz5TmsbyDUcL8iPQkDzklYKSOfdQGNoTsekgo4Eos4CEiUuKuueyMix275DruBHiReDNSQjNUO/ZXuxvTNGISqCBatzw3AT8jCjgVbFxsp5olhA5Ij7UMlSRi2s8mMcb4xChdHMbKPAl4ov7eyEik9SgKzGREoK/nvVz8z2ulEF76GZdJCkzS6aEwFRhinHdi0ipGQYwMIVRx81dM+0SZSkxzeQnefORFUj9zPNfxbs9L5cqsjgI6RMfoFHnoApXRDaqiGqLoET2jV/RmPVkv1rv1MR1dsmY7B+gPrM8f6XuYvA==</latexit><latexit sha1_base64="2XaTC3aQIuGNTTVlr0WTlG/Zn/g=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFchUQEXZaK4LKCfUAbymQ6aYdOJmHmRlpDV278FTcuFHHrN7jzb5y0XWjrgYHDOfdy55wgEVyD635bS8srq2vrhY3i5tb2zq69t1/Xcaooq9FYxKoZEM0El6wGHARrJoqRKBCsEQyucr9xz5TmsbyDUcL8iPQkDzklYKSOfdQGNoTsekgo4Eos4CEiUuKuueyMix275DruBHiReDNSQjNUO/ZXuxvTNGISqCBatzw3AT8jCjgVbFxsp5olhA5Ij7UMlSRi2s8mMcb4xChdHMbKPAl4ov7eyEik9SgKzGREoK/nvVz8z2ulEF76GZdJCkzS6aEwFRhinHdi0ipGQYwMIVRx81dM+0SZSkxzeQnefORFUj9zPNfxbs9L5cqsjgI6RMfoFHnoApXRDaqiGqLoET2jV/RmPVkv1rv1MR1dsmY7B+gPrM8f6XuYvA==</latexit><latexit sha1_base64="2XaTC3aQIuGNTTVlr0WTlG/Zn/g=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFchUQEXZaK4LKCfUAbymQ6aYdOJmHmRlpDV278FTcuFHHrN7jzb5y0XWjrgYHDOfdy55wgEVyD635bS8srq2vrhY3i5tb2zq69t1/Xcaooq9FYxKoZEM0El6wGHARrJoqRKBCsEQyucr9xz5TmsbyDUcL8iPQkDzklYKSOfdQGNoTsekgo4Eos4CEiUuKuueyMix275DruBHiReDNSQjNUO/ZXuxvTNGISqCBatzw3AT8jCjgVbFxsp5olhA5Ij7UMlSRi2s8mMcb4xChdHMbKPAl4ov7eyEik9SgKzGREoK/nvVz8z2ulEF76GZdJCkzS6aEwFRhinHdi0ipGQYwMIVRx81dM+0SZSkxzeQnefORFUj9zPNfxbs9L5cqsjgI6RMfoFHnoApXRDaqiGqLoET2jV/RmPVkv1rv1MR1dsmY7B+gPrM8f6XuYvA==</latexit>

Figure 1. Schematic illustration of the space of probability
distributions visited during simulated annealing. An arbitrar-
ily slow SA visits a series of Boltzmann distributions starting
at the high temperature (e.g. T =∞) and ending in the T = 0
Boltzmann distribution (continuous yellow line), where a per-
fect solution to an optimization problem is reached. These
solutions are found either at the edge or a corner (for non-
degenerate problems) of the standard probabilistic simplex
(colored triangle plane). A practical, finite-time SA trajectory
(red dotted line), as well as a variational classical annealing
trajectory (green dashed line), deviate from the trajectory of
exact Boltzmann distributions.

annealing has been so successful that it has inspired in-
tense research into its quantum extension, which requires
quantum hardware to anneal the tunneling amplitude,
and can be simulated in an analogous way to SA [11, 12].

The SA algorithm explores an optimization problem’s
energy landscape via a gradual decrease in thermal
fluctuations generated by the Metropolis-Hastings algo-
rithm. The procedure stops when all thermal kinetics
are removed from the system, at which point the solu-
tion to the optimization problem is expected to be found.
While an exact solution to the optimization problem is al-
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ways attained if the decrease in temperature is arbitrarily
slow, a practical implementation of the algorithm must
necessarily run on a finite time scale [13]. As a conse-
quence, the annealing algorithm samples a series of effec-
tive, quasi-equilibrium distributions close but not exactly
equal to the stationary Boltzmann distributions targeted
during the annealing [14] (see Fig. 1 for a schematic illus-
tration). This naturally leads to approximate solutions
to the optimization problem, whose quality generally de-
pends on the interplay between the problem complexity
and the rate at which the temperature is decreased.

In this paper, we offer an alternative route to solv-
ing optimization problems of the form of Eq. (1), called
variational neural annealing. Here, the conventional
simulated annealing formulation is substituted with the
annealing of a parameterized model. Namely, instead
of annealing and approximately sampling the exact
Boltzmann distribution, this approach anneals a quasi-
equilibrium model, which must be sufficiently expressive
and capable of tractable sampling. Fortunately, suitable
models have recently been provided by machine learning
technology [15–17]. In particular, neural autoregressive
models combined with variational principles have been
shown to accurately describe the equilibrium properties
of classical and quantum systems [18–21]. Here, we im-
plement variational neural annealing using autoregres-
sive recurrent neural networks, and show that they offer
a powerful alternative to conventional SA and its analo-
gous quantum extension, i.e., simulated quantum anneal-
ing (SQA) [11]. This powerful and unexplored route to
optimization is schematically illustrated in Fig. 1, where
a variational neural annealing trajectory (dashed green
arrow) is shown to provide a more accurate approxima-
tion to the ideal trajectory (continuous yellow line) than
a conventional SA run (dotted red line).

II. VARIATIONAL CLASSICAL AND
QUANTUM ANNEALING

We first consider the variational approach to statistical
mechanics [18, 22], where a distribution pλ(σ) defined by
a set of variational parameters λ is optimized to closely
reproduce the equilibrium properties of a system at tem-
perature T . Following the spirit of SA, we dub our first
variational neural annealing algorithm variational classi-
cal annealing (VCA).

The VCA algorithm searches for the ground state of an
optimization problem, encoded in a target Hamiltonian
Htarget, by slowly annealing the model’s variational free
energy

Fλ(t) = 〈Htarget〉λ − T (t)Sclassical(pλ), (2)

from a high temperature to a low temperature. The
quantity Fλ(t) provides an upper bound to the true in-
stantaneous free energy and can be used at each anneal-
ing stage to update λ through gradient-descent tech-
niques. The brackets 〈...〉λ denote ensemble averages

taken over the probability pλ(σ). The von Neumann
entropy is given by

Sclassical(pλ) = −
∑

σ

pλ(σ) log (pλ(σ)) , (3)

where the sum runs over all the elements of the state
space {σ}. In our setting, the temperature is decreased
from an initial value T0 to 0 using a linear schedule func-
tion T (t) = T0(1 − t), where t ∈ [0, 1], which follows
closely the traditional implementation of SA.

In order for VCA to succeed, we require parameterized
models that enable the estimation of entropy, Eq. (3),
without incurring expensive calculations of the partition
function. In addition, we anticipate that hard optimiza-
tion problems will induce a complex energy landscape
into the parameterized models and an ensuing slowdown
of their sampling via Markov chain Monte Carlo. These
issues preclude un-normalized models such as restricted
Boltzmann machines, where sampling relies on Markov
chains and whose partition function is intractable to eval-
uate [23]. Instead, we implement VCA using recurrent
neural networks (RNNs) [20, 21], whose autoregressive
nature enables statistical averages over exact samples σ
drawn from pλ(σ). Since RNNs are normalized by con-
struction, these samples naturally allow the estimation of
the entropy in Eq. (3). We provide a detailed description
of the RNN in Methods Sec. V A.

The VCA algorithm, summarized in Fig. 2(a), per-
forms a warm-up step which brings a randomly initialized
distribution pλ(σ) to an approximate equilibrium state
with free energy Fλ(t = 0) via Nwarmup gradient descent
steps. At each step t, we reduce the temperature of the
system from T (t) to T (t + δt) and apply Ntrain gradi-
ent descent steps to re-equilibrate the model. A critical
ingredient to the success of VCA is that the variational
parameters optimized at temperature T (t) are reused at
temperature T (t + δt) to ensure that the model’s distri-
bution is always near its instantaneous equilibrium state.
Repeating the last two steps Nannealing times, we reach
temperature T (1) = 0, which is the end of the anneal-
ing protocol. Here the distribution pλ(σ) is expected
to assign high probability to configurations σ that solve
the optimization problem. Likewise, the residual entropy
Eq. (3) at T (1) = 0 provides a heuristic approach to
count the number of solutions to the problem Hamilto-
nian [18]. Further algorithmic details are provided in
Methods Sec. V B.

Simulated annealing provides a powerful heuristic for
the solution of hard optimization problems by harnessing
thermal fluctuations. Inspired by the latter, the advent of
commercially available quantum devices [24] has enabled
the analogous concept of quantum annealing [25], where
the solution to an optimization problem is performed by
harnessing quantum fluctuations. In quantum annealing,
the search for the ground state of Eq. (1) is performed at
T = 0, by supplementing the target Hamiltonian with a
quantum mechanical kinetic (or “driving”) term,

Ĥ(t) = Ĥtarget + f(t)ĤD, (4)



3

Figure 2. Variational neural annealing protocols. (a) The variational classical annealing (VCA) algorithm steps. A warm-up
step brings the initialized variational state (green dot) close to the minimum of the free energy (cyan dot) at a given value of
the order parameter M . This step is followed by an annealing and a training step that brings the variational state back to the
new free energy minimum. Repeating the last two steps until T (t = 1) = 0 (red dots) produces approximate solutions to Htarget

if the protocol is conducted slowly enough. This schematic illustration corresponds to annealing through a continuous phase
transition with an order parameter M . (b) Variational quantum annealing (VQA). VQA includes a warm-up step, followed by
an annealing and a training step, which brings the variational energy (green dot) closer to the new a ground state energy (cyan

dot). We loop over the previous two steps until reaching the target ground state of Ĥtarget (red dot) if annealing is performed
slowly enough.

where Htarget in Eq. (1) is promoted to a quantum me-

chanical Hamiltonian Ĥtarget.

Quantum annealing algorithms typically start with a
dominant driving term ĤD � Ĥtarget chosen so that

the ground state of Ĥ(0) is easy to prepare. When the
strength of the driving term is subsequently reduced (typ-
ically adiabatically) using a schedule function f(t), the

system is annealed to the ground state of Ĥtarget. In anal-
ogy to its thermal counterpart, SQA emulates this pro-
cess on classical computers using quantum Monte Carlo
methods [11].

Here, we leverage the variational principle of quantum
mechanics and devise a strategy that emulates quan-
tum annealing variationally. We dub our second vari-
ational neural annealing algorithm variational quantum
annealing (VQA). The latter is based on the variational
Monte Carlo (VMC) algorithm, whose goal is to simu-
late the equilibrium properties of quantum systems at
zero temperature (see Methods Sec. V C). In VMC, the

ground state of a Hamiltonian Ĥ is modeled through an
ansatz |Ψλ〉 endowed with parameters λ. The varia-

tional principle guarantees that the energy 〈Ψλ|Ĥ|Ψλ〉
is an upper bound to the ground state energy of Ĥ,
which we use to define a time-dependent objective func-
tion E(λ, t) ≡ 〈Ĥ(t)〉λ = 〈Ψλ|Ĥ(t)|Ψλ〉 to optimize the
parameters λ.

The VQA setup, graphically summarized in Fig. 2(b),

applies Nwarmup gradient descent steps to minimize
E(λ, t = 0), which brings |Ψλ〉 close to the ground state

of Ĥ(0). Setting t = δt while keeping the parameters
λ0 fixed results in a variational energy E(λ0, t = δt).
A set of Ntrain gradient descent steps bring the ansatz
closer to the new instantaneous ground state, which re-
sults in a variational energy E(λ1, t = δt). The vari-
ational parameters optimized at time step t are reused
at time t + δt, which promotes the computational adi-
abaticity of the protocol (see Appendix. A). We repeat
the annealing and training steps Nannealing times on a
linear schedule (f(t) = 1 − t with t ∈ [0, 1]) until t = 1,
at which point the system should solve the optimization
problem (red dot in Fig. 2(b)). We note that in our sim-
ulations, no training steps are taken at t = 1. Finally,
similarly to VCA, we choose normalized RNN wave func-
tions [20, 21] as ansätze, giving the VQA algorithm access
to exact Monte Carlo samples.

To gain theoretical insight on the principles behind a
successful VQA simulation, we derive a variational ver-
sion of the adiabatic theorem [26]. Starting from a set of
assumptions, such as the convexity of the energy land-
scape in the warm-up phase and close to convergence
during annealing, as well as the absence of noise in the
energy gradients, we provide a bound on the total number
of gradient descent steps Nsteps that guarantees the adia-
baticity of the VQA algorithm as well as a success proba-
bility of solving the optimization problem Psuccess > 1−ε.
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Here, ε is an upper bound on the overlap between the
variational wave function and the excited states of the
Hamiltonian Ĥ(t), i.e., |〈Ψ⊥(t)|Ψλ〉|2 < ε. We show that
Nsteps can be bounded as (see Appendix. B):

O


 poly(N)

εmin
{tn}

(g(tn))


 ≤ Nsteps ≤ O


 poly(N)

ε2 min
{tn}

(g(tn))2


 .

(5)
The function g(t) is the energy gap between the first
excited state and the ground state of the instantaneous
Hamiltonian Ĥ(t), N is the system size, and the set of
times {tn} is defined in Appendix. B. As expected for
hard optimization problems, the minimum gap typically
decreases exponentially with system size N , which dom-
inates the computational complexity of a VQA simula-
tion, but in cases where the minimum gap scales as the
inverse of a polynomial in N , then the number of steps
Nsteps is also polynomial in N .

III. RESULTS

A. Annealing on random Ising chains

We now proceed to evaluate the power of VCA and
VQA. As a first benchmark, we consider the task of solv-
ing for the ground state the one-dimensional (1D) Ising
Hamiltonian with random couplings Ji,i+1,

Htarget = −
N−1∑

i=1

Ji,i+1σiσi+1. (6)

First, we examine Ji,i+1 sampled from a uniform dis-
tribution in the interval [0, 1). Here, the ground state
configuration is given either by all spins up or down, and
the ground state energy is known exactly, i.e., EG =

−∑N−1
i=1 Ji,i+1 [27].

We use a tensorized RNN ansatz without weight shar-
ing for both VCA and VQA (see Methods Sec. V A).
We consider system sizes N = 32, 64, 128 and Ntrain = 5,
which suffices to achieve accurate solutions. For VQA, we

use a one-body driving term ĤD = −Γ0

∑N
i=1 σ̂

x
i , where

σ̂x,y,zi are Pauli matrices acting on site i. To quantify
the performance of the algorithms, we use the residual
energy [11],

εres =
[
〈Htarget〉av − EG

]
dis
, (7)

where EG is the exact ground state energy of Htarget. We
use the arithmetic mean for statistical averages 〈. . .〉av

over samples from the models. For VCA it means that
〈Htarget〉av ≈ 〈Htarget〉λ, while for VQA the target Hamil-

tonian is promoted to Ĥtarget = −∑N−1
i=1 Ji,i+1σ̂

z
i σ̂

z
i+1

and 〈Htarget〉av ≈ 〈Ĥtarget〉λ. We consider the typical
(geometric) mean for averaging over instances of the tar-
get Hamiltonian, i.e.,

[
...
]
dis

= exp(〈ln(...)〉av). The aver-
age in the argument of the exponential stands for arith-
metic mean over different realizations of the couplings.
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(b)

VQA (N = 32) / 1/t0.96±0.03

VQA (N = 64) / 1/t1.01±0.05

VQA (N = 128) / 1/t1.05±0.04

VCA (N = 32) / 1/t1.32±0.05
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VCA (N = 128) / 1/t1.51±0.06

Figure 3. Variational neural annealing on a random Ising
chain. Here we represent the residual energy per site εres/N
vs the number of annealing steps Nannealing for both VQA and
VCA. The system sizes are N = 32, 64, 128. We use random
positive couplings Ji,i+1 ∈ [0, 1) (see text for more details).
The error bars represent the one s.d. statistical uncertainty
calculated over different disorder realizations [28].

We take advantage of the autoregressive nature of the
RNN and sample 106 configurations at the end of the
annealing, which allows us to accurately estimate the
model’s arithmetic mean. The typical mean is taken over
25 instances of Htarget.

In Fig. 3 we report the residual energies per site against
the number of annealing steps Nannealing. As expected,
the residual energy is a decreasing function of Nannealing,
which underlines the importance of adiabaticity and an-
nealing in our setting. In our examples, we observe that
the decrease of the residual energy of VCA and VQA is
consistent with a power-law decay for a large number of
annealing steps. Whereas VCA’s decay exponent is in the
interval 1.5− 1.9, the VQA exponent is about 0.9− 1.1.
These exponents suggest an asymptotic speed-up com-
pared to SA and coherent quantum annealing, where the
residual energies follow a logarithmic law [29]. Contrary
to the observations in Ref. [29] where quantum annealing
was found superior to SA, VCA finds an average residual
energy an order of magnitude more accurate than VQA
for a large number of annealing steps.

Finally, we note that the exponents provided above are
not expected to be universal and are a priori sensitive
to the hyperparameters of the algorithms, e.g., learning
rate, model choice, number of training steps, optimizer,
etc. Appendix. C provides a summary of the hyperpa-
rameters used in our work. Additional illustrations of the
adiabaticity of VCA and VQA, as well as of the anneal-
ing results for a chain with Ji,i+1 uniformly sampled from
the discrete set {−1,+1}, are provided in Appendix. A.



5

B. Edwards-Anderson model

We now consider the two-dimensional (2D) Edwards-
Anderson (EA) model, which is a prototypical spin glass
arranged on a square lattice with nearest neighbor ran-
dom interactions. The problem of finding ground states
of the model has been studied experimentally [12] and
numerically [11] from the annealing perspective, as well
as theoretically [2] from the computational complexity
perspective. The EA model with open boundary condi-
tions is given by

Htarget = −
∑

〈i,j〉
Jijσiσj , (8)

where 〈i, j〉 denote nearest neighbors. The couplings Jij
are drawn from a uniform distribution in the interval
[−1, 1). In the absence of a longitudinal field, for which
solving the EA model is NP-hard, the ground state can be
found in polynomial time [2]. To find the exact ground
state of each random realization, we use the spin-glass
server [30].

We use a 2D tensorized RNN ansatz without weight
sharing for the variational protocols (see Methods
Sec. V A). For VQA, we use a one-body driving term

ĤD = −Γ0

∑N
i=1 σ̂

x
i . Fig. 4(a) shows the annealing re-

sults obtained on a system size N = 10× 10 spins. VCA
outperforms VQA and in the adiabatic, long-time anneal-
ing regime, it produces solutions three orders of magni-
tude more accurate on average than VQA. In addition, we
investigate the performance of VQA supplemented with
a fictitious Shannon information entropy [21] term that
mimics thermal relaxation effects observed in quantum
annealing hardware [31]. This form of regularized VQA,
here labelled (RVQA), is described by a pseudo free en-

ergy cost function F̃λ(t) = 〈Ĥ(t)〉λ−T (t)Sclassical(|Ψλ|2).
As in VCA, the pseudo entropy term Sclassical(|Ψλ|2) at
f(1) = 0 provides a heuristic approach to count the num-
ber of solutions to Htarget for VQA and RVQA. The re-
sults in Fig. 4(a) do show an amelioration of the VQA
performance, including changing a saturating dynamics
at large Nannealing to a power-law like behavior. How-
ever, it appears to be insufficient to compete with the
VCA scaling (see exponents in Fig. 4(a)). This observa-
tion suggests the superiority of a thermally driven varia-
tional emulation of annealing over a purely quantum one
for this example.

To further scrutinize the relevance of the annealing
effects in VCA, we also consider VCA with zero ther-
mal fluctuations, i.e., setting T0 = 0. Because of its
intimate relation to the classical-quantum optimization
(CQO) methods of Refs. [32–34], we refer to this setting
as CQO. Fig. 4(a) shows that CQO takes about 103 train-
ing steps to reach accuracies nearing 1%. The accuracy
does not further improve upon additional training up to
105 gradient steps, which indicates that CQO is prone
to getting stuck in local minima. In comparison, VCA
and VQA offer solutions orders of magnitude more ac-
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As a final note, the exponents provided above are not
expected to be universal and are a priori sensitive to the
hyperparameters of the algorithms (e.g., learning rate,
number of memory units dh, number of training steps
Ntrain, gradient descent optimizer, number of samples,
etc), which may open up avenues to boost the perfor-
mance of our algorithms. For reproducibility purposes,
Appendix. D provides a summary of the hyperparameters
used to produce the results shown here.

B. Edwards-Anderson model

We now consider the two-dimensional Edwards-
Anderson (EA) model, which is a prototypical spin-glass
model where a set of spins are arranged on a square
lattice with nearest neighbor random interactions. The
problem of finding ground states of the model has been
studied experimentally [76] and numerically [55, 56, 68]
from the annealing perspective, as well as theoretically [2]
from the computational complexity perspective. In this
section, we use the EA model as a benchmark to fur-
ther probe VCA and VQA, and compare them against
standard heuristics, namely, SA and SQA implemented
via discrete-time path-integral Monte Carlo [55, 68]. The
EA model is given by

ĤEA = �
X

hi,ji
Jij �̂

z
i �̂

z
j , (8)

where the sum runs over nearest neighbors, and the cou-
plings Jij are drawn independently from a uniform dis-
tribution in the range [�1, 1]. In the absence of a longi-
tudinal field for which solving the EA model is NP-hard,
the ground state can be found in polynomial time [2].
For each random realization of the couplings Jij , we use
the spin-glass server [77] to obtain the exact ground state
energy. This feature makes the EA model an ideal bench-
mark for our method, particularly for large system sizes.

To simulate our variational neural annealing protocols,
we use a 2D tensorized RNN (see Methods Sec. V B) as an
ansatz without weight sharing. We implement the meth-
ods described in Sec. II and ?? with VQA implemented
using a one-body driving term. Fig. 3 shows the anneal-
ing results obtained on a system size N = 10 ⇥ 10 spins.
As for the random Ising chains in Sec. III A, VCA out-
performs VQA and in the adiabatic, long-time annealing
regime, VCA produces solutions three orders of magni-
tude more accurate than VQA. In addition, we investi-
gate the performance of VQA supplemented with a ficti-
tious Shannon information entropy [47] term that mimics
thermal relaxation e↵ects observed in quantum anneal-
ing hardware [78] and induces a thermal-like exploration
of the energy landscape during the quantum annealing
emulation. This form of regularized variational quan-
tum annealing (RVQA) is described by a free energy cost
function:

F̃�(t) = hĤ(t)i� � T (t)Sclassical(| �(t)|2). (9)
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Figure 3. A comparison between VCA, VQA, RVQA, and
CQO for Edwards-Anderson (EA) on a 10 ⇥ 10 lattice. The
residual energy per site vs. Nannealing for VCA, VQA and
RVQA. For CQO, we report the residual energy per site vs.
the number of optimization steps Nsteps.

While the results in Fig. 3 do show an amelioration of
the VQA performance, including changing a saturating
dynamics at long annealing time to a power-law like be-
havior, it appears to be insu�cient to compete with the
VCA scaling. This suggests the superiority of a thermally
driven variational emulation of annealing over a quantum
one.

To further scrutinize the relevance of the annealing ef-
fects in VCA, we also consider VCA with zero thermal
fluctuations, i.e., setting T0 = 0. Because of its intimate
relation to the classical-quantum optimization methods
of Ref. 51, 79, and 80, we call this setting CQO. Fig. 3
shows that CQO takes about 103 training steps start-
ing from random parameters initialization to reach close
to 1% accuracy. The accuracy does not further improve
when trained up to 105 gradient steps, indicating that the
CQO limit of VCA is prone to getting stuck in local min-
ima. In comparison, VCA and VQA o↵er solutions orders
of magnitude more accurate at long annealing times, sug-
gesting the importance of the annealing e↵ect in tackling
optimization problems.

Since VCA displays the best performance in the pre-
vious benchmarks, we use it to demonstrate its capabili-
ties on a relatively large system with 40 ⇥ 40 spins. For
comparison, we use SA as well as SQA with P = 20 trot-
ter slices, and take the average energy across all trotter
slices, for each realization of randomness (see Methods
Sec. VE). In addition, we average the energy obtained
after 25 annealing runs on every instance of randomness
for SA and SQA. To average over Hamiltonian instances,
we use the typical mean over 25 di↵erent realizations for
the three annealing methods. The results are shown in
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Figure 4. Comparison between Simulated Annealing (SA),
Path-Integral Quantum Monte Carlo (SQA) with P = 20
trotter slices, and VCA using a 2D tensorized pRNN state for
the EA model on a 40 ⇥ 40 lattice. We report the residual
energy per site as a function of the number of annealing steps
Nannealing for SA, VCA and SQA.

Fig. 4, where we present the residual energies per site
against the number of annealing steps Nannealing, which
is set so that the speed of annealing is the same for SA,
SQA and VCA. We first note that our results confirm
the qualitative behavior of SA and SQA in Refs. [55, 68].
While at short annealing times SA and SQA produce
lower residual energy solutions than VCA, we observe
that VCA achieves residual energies for large annealing
time about three orders of magnitude smaller than SQA
and SA. Notably, the rate at which the residual energy
improves with increasing the annealing time is signifi-
cantly higher in VCA than SQA and SA even at rela-
tively short annealing time. These observations highlight
the advantages of solving hard optimization problems in
a variational space compared to SA and SQA paradigms.

C. Fully-connected spin glasses

We now focus our attention on fully-connected spin
glasses [2, 81]. We first focus on the Sherrington-
Kirkpatrick (SK) model [82], which provides a concep-
tual framework for the understanding of the role of dis-
order and frustration in widely diverse systems ranging
from materials to combinatorial optimization and ma-
chine learning. The combined e↵ect of disorder and long-
range interactions in the SK model results in an energy
landscape characterized by a hierarchy of valleys with a
number of local minima growing exponentially in the sys-
tem size [81]. Together with the fact that many combina-
torial NP-hard problems can be thought of as the task of
finding a ground state of a densely connected spin glass,
the properties above make fully connected spin glasses
a suitable benchmark for heuristic optimization meth-

ods [5]. The SK Hamiltonian ĤSK is given by

ĤSK = �1

2

X

i 6=j

Jijp
N

�̂z
i �̂

z
j , (10)

where {Jij} is a symmetric matrix such that each matrix
element Jij is sampled from a gaussian distribution with
mean 0 and variance 1.

Since VCA performed best in our previous examples,
we use it to find ground states of the SK model for N =
100 spins. Here, exact ground states energies of the SK
model are calculated using the spin-glass server [77] on
a total of 25 instances of disorder. To account for long-
distance dependencies between spins in the SK model,
we use a dilated RNN that has dlog2(N)e = 7 layers
(see Methods Sec. V B) and we start the annealing at an
initial temperature T0 = 2. We compare our results with
SA and SQA. For SQA, we start with an initial magnetic
field �0 = 2, while for SA we use T0 = 2.

To e↵ectively compare the three methods (i.e., SA,
SQA, and VCA), we first plot the residual energy per
site as a function of Nannealing for VCA, SA and SQA
(with P = 100 trotter slices). Here, the SA and SQA
residual energies are obtained by averaging the outcome
of 50 independent annealing runs, while for VCA we av-
erage the outcome of 106 exact samples from the an-
nealed RNN. For all methods, we take the typical aver-
age over 25 disorder instances. The results are shown in
Fig. 5(a). As observed in the EA model in Fig. 4, we note
that for fast annealing runs SA and SQA produce lower
residual energy solutions than VCA, but we emphasize
that VCA delivers a lower residual energy compared to
SQA and SA as the total annealing time increases past
Nannealing ⇠ 103. Likewise, we observe that the rate at
which the residual energy improves with increasing the
total annealing time is significantly higher in VCA than
SQA and SA.

A more detailed look at the statistical behaviour of the
methods at long annealing times can be obtained from
the residual energy histograms separately produced by
each method, as shown in Fig. 5(e). For each instance
{Jij} after the end of annealing, we represent the ob-
tained residual energies in a histogram form. For the
three methods, we extract 103 residual energies for each
disorder realization. Here, we observe that VCA is supe-
rior to SA and SQA, as it produces a higher density of
low residual energies. This indicates that, even though
VCA typically takes more annealing steps, it ultimately
results in a higher chance of getting more accurate solu-
tions to optimization problems than their SA and SQA
counterparts.

We now focus on the Wishart planted ensemble
(WPE), which is a class of zero-field Ising models with a
first-order phase transition and tunable algorithmic hard-
ness [83]. These problems belong to a special class of hard
problem ensembles whose solutions are known to the con-
structor, which, together with the tunability of the hard-
ness, makes the WPE model an ideal tool to benchmark

a

b

Figure 4. Benchmarking the two-dimensional Edwards-
Anderson spin glass. (a) A comparison between VCA, VQA,
RVQA, and CQO on a 10 × 10 lattice by plotting the resid-
ual energy per site vs Nannealing. For CQO, we report the
residual energy per site vs the number of optimization steps
Nsteps. (b) Comparison between SA, SQA with P = 20 trot-
ter slices, and VCA using a 2D tensorized RNN ansatz on a
40×40 lattice. The annealing speed is the same for SA, SQA
and VCA.

curate on average for a large number of annealing steps,
highlighting the importance of annealing in tackling op-
timization problems.

Since VCA displays the best performance in the pre-
vious benchmarks, we use it to demonstrate its capa-
bilities on a 40 × 40 spin system. For comparison, we
use SA as well as SQA. The SQA simulation uses the
path-integral Monte Carlo method [11] with P = 20 trot-
ter slices, and we report averages over energies across
all trotter slices, for each realization of randomness (see
Methods Sec. V D). In addition, we average the energy
obtained after 25 annealing runs on every instance of ran-
domness for SA and SQA. To average over Hamiltonian
instances, we use the typical mean over 25 different re-
alizations for the three annealing methods. The results
are shown in Fig. 4(b), where we present the residual



6

energies per site against the number of annealing steps
Nannealing, which is set so that the speed of annealing is
the same for SA, SQA and VCA. We first note that our
results confirm the qualitative behavior of SA and SQA
in Refs. [11, 35]. While SA and SQA produce lower resid-
ual energy solutions than VCA for small Nannealing, we
observe that VCA achieves residual energies about three
orders of magnitude smaller than SQA and SA for a large
number of annealing steps. Notably, the rate at which the
residual energy improves with increasing Nannealing is sig-
nificantly higher for VCA compared to SQA and SA even
at relatively small number of annealing steps.

C. Fully-connected spin glasses

We now focus our attention on fully-connected spin
glasses [2, 36]. We first focus on the Sherrington-
Kirkpatrick (SK) model [37], which provides a concep-
tual framework for the understanding of the role of dis-
order and frustration in widely diverse systems ranging
from materials to combinatorial optimization and ma-
chine learning. The SK Hamiltonian is given by

Htarget = −1

2

∑

i 6=j

Jij√
N
σiσj , (9)

where {Jij} is a symmetric matrix such that each matrix
element Jij is sampled from a gaussian distribution with
mean 0 and variance 1.

Since VCA performed best in our previous examples,
we use it to find ground states of the SK model for N =
100 spins. Here, exact ground states energies of the SK
model are calculated using the spin-glass server [30] on
a total of 25 instances of disorder. To account for long-
distance dependencies between spins in the SK model, we
use a dilated RNN ansatz that has dlog2(N)e = 7 layers
(see Methods Sec. V A) and set the initial temperature
T0 = 2. We compare our results with SA and SQA. For
SQA, we start with an initial magnetic field Γ0 = 2, while
for SA we use T0 = 2.

For an effective comparison, we first plot the resid-
ual energy per site as a function of Nannealing for VCA,
SA and SQA (with P = 100 trotter slices). Here, the
SA and SQA residual energies are obtained by averag-
ing the outcome of 50 independent annealing runs, while
for VCA we average the outcome of 106 exact samples
from the annealed RNN. For all methods, we take the
typical average over 25 disorder instances. The results
are shown in Fig. 5(a). As observed in the EA model,
we note that SA and SQA produce lower residual energy
solutions than VCA for small Nannealing, but we empha-
size that VCA delivers a lower residual energy compared
to SQA and SA as the total number of annealing steps
increases past Nannealing ∼ 103. Likewise, we observe
that the rate at which the residual energy improves with
increasing Nannealing is significantly higher for VCA in
comparison to SQA and SA.

A more detailed look at the statistical behaviour of
the methods at large Nannealing can be obtained from the
residual energy histograms separately produced by each
method, as shown in Fig. 5(d). The histograms contain
1000 residual energies for each of the same 25 disorder
realizations. For each instance, we plot results for 1000
SA runs, 1000 samples obtained from the RNN at the
end of annealing for VCA, and 10 SQA runs including
contribution from each of the P = 100 Trotter slices.
We observe that VCA is superior to SA and SQA, as it
produces a higher density of low energy configurations.
This indicates that, even though VCA typically takes
more annealing steps, it ultimately results in a higher
chance of getting more accurate solutions to optimization
problems than SA and SQA. Note that for the SK model,
the SQA histogram remain quantitatively the same for
200 runs, and we report data of 10 runs only for fairness
purposes compared to both SA and VCA.

We now focus on the Wishart planted ensemble
(WPE), which is a class of zero-field Ising models with a
first-order phase transition and tunable algorithmic hard-
ness [38]. These problems belong to a special class of
hard problem ensembles whose solutions are known a pri-
ori, which, together with the tunability of the hardness,
makes the WPE model an ideal tool to benchmark heuris-
tic algorithms for optimization problems. The Hamilto-
nian of the WPE model is defined as

Htarget = −1

2

∑

i 6=j
Jαijσiσj . (10)

Here Jαij is a symmetric matrix satisfying

Jα = J̃α − diag(J̃)

and

J̃α = − 1

N
WαW

T
α .

The term Wα is an N × bαNc random matrix satisfy-
ing Wαtferro = 0 where tferro = (+1,+1, ...,+1) is the
ferromagnetic state (see Ref. [38] for details about the
generation of Wα). The ground state of the WPE model
is known (i.e., it is planted) and corresponds to the ferro-
magnetic states ±tferro. Interestingly, α is a tunable pa-
rameter of hardness, where for α < 1 this model displays
a first-order transition, such that near zero temperature
the paramagnetic states are meta-stable solutions [38].
This feature makes this model hard to solve with any an-
nealing method, as the paramagnetic states are numerous
compared to the two ferromagnetic states and hence act
as a trap for a typical annealing method. We benchmark
the three methods (SA, SQA and VCA) for N = 32 and
α ∈ {0.25, 0.5}.

We consider 25 instances of the couplings {Jαij} and
attempt to solve the model with VCA implemented using
a dilated RNN ansatz with dlog2(N)e = 5 layers and an
initial temperature T0 = 1. For SQA (P = 100 trotter
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Figure 5. Benchmarking SA, SQA (P = 100 trotter slices) and VCA on the Sherrington-Kirkpatrick (SK) model and the
Wishart planted ensemble (WPE). Panels (a),(b), and (c) display the residual energy per site as a function of Nannealing. (a)
The SK model with N = 100 spins. (b) WPE with N = 32 spins and α = 0.5. (c) WPE with N = 32 spins and α = 0.25.
Panels (d), (e) and (f) display the residual energy histogram for each of the different techniques and models in panels (a),(b),
and (c), respectively. The histograms use 25000 data points for each method. Note that we choose a minimum threshold of
10−10 for εres/N , which is within our numerical accuracy.

slices), we use an initial magnetic field Γ0 = 1, and for
SA we start with T0 = 1.

We first plot the scaling of residual energies per site
εres/N as shown in Figs. 5(b) and (c). Here we note that
VCA is superior to SA and SQA for α = 0.5 as demon-
strated in Fig. 5(b). More specifically, VCA is about
three orders of magnitude more accurate than SQA and
SA for a large number of annealing steps. In the case
of α = 0.25 in Fig. 5(c), VCA is competitive where
it achieves a similar performance compared to SA and
SQA on average for a large number of annealing steps.
We also represent the residual energies in a histogram
form. We observe that for α = 0.5 in Fig. 5(e), VCA
achieves a higher density toward low residual energies
εres/N ∼ 10−9-10−10 compared to SA and SQA. For
α = 0.25 in Fig. 5(f), VCA leads to a non-negligible
density at very low residual energies as opposed to SA
and SQA, whose solutions display residual energies or-
ders of magnitude higher. Finally, our WPE simulations
support the observation that VCA tends to improve the
quality of solutions faster than SQA and SA for a large
number of annealing steps.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have introduced a strategy to com-
bat the slow sampling dynamics encountered by simu-
lated annealing when an optimization landscape is rough
or glassy. Based on annealing the variational parameters
of a generalized target distribution, our scheme — which
we dub variational neural annealing — takes advantage
of the power of modern autoregressive models, which can
be exactly sampled without slow dynamics even when
a rough landscape is encountered. We implement varia-
tional neural annealing parameterized by a recurrent neu-
ral network, and compare its performance to conventional
simulated annealing on prototypical spin glass Hamiltoni-
ans known to have landscapes of varying roughness. We
find that variational neural annealing produces accurate
solutions to all of the optimization problems considered,
including spin glass Hamiltonians where our techniques
typically reach solutions orders of magnitude more accu-
rate on average than conventional simulated annealing in
the limit of a large number of annealing steps.

We emphasize that several hyperparameters, model,
hardware, and variational objective function choices can
be explored and may improve our methodologies. We
have utilized a simple annealing schedule in our protocols
and highlight that reinforcement learning can be used to
improve it [39]. A critical insight gleaned from our exper-
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iments is that certain neural network architectures were
more efficient on specific Hamiltonians. Thus, a natu-
ral direction is to study the intimate relation between
the model architecture and the problem Hamiltonian,
where we envision that symmetries and domain knowl-
edge would guide the design of models and algorithms.

As we witness the unfolding of a new age for opti-
mization powered by deep learning [40], we anticipate
a rapid adoption of machine learning techniques in the
space of combinatorial optimization, as well as antici-
pate domain-specific applications of our ideas in diverse
technological and scientific areas related to physics, biol-
ogy, health care, economy, transportation, manufactur-
ing, supply chain, hardware design, computing and in-
formation technology, among others.

V. METHODS

A. Recurrent Neural Network Ansätze

Recurrent neural networks model complex probability
distributions p by taking advantage of the chain rule

p(σ) = p(σ1)p(σ2|σ1) · · · p(σN |σN−1, . . . , σ2, σ1), (11)

where specifying every conditional probability p(σi|σ<i)
provides a full characterization of the joint distribution
p(σ). Here, {σn} are N binary variables such that σn = 0
corresponds to a spin down while σn = 1 corresponds to
a spin up. RNNs consist of elementary cells that pa-
rameterize the conditional probabilities. In their original
form, “vanilla” RNN cells [41] compute a new “hidden
state” hn with dimension dh, for each site n, following
the relation

hn = F (W [hn−1;σn−1] + b), (12)

where [hn−1;σn−1] is vector concatenation of hn−1 and
a one-hot encoding σn−1 of the binary variable σn−1 [20].
The function F is a non-linear activation function. From
this recursion relation, it is clear that the hidden state
hn encodes information about the previous spins σn′<n.
Hence, the hidden state hn provides a simple strategy to
model the conditional probability pλ(σn|σ<n) as

pλ(σn|σ<n) = Softmax(Uhn + c) · σn, (13)

where · denotes the dot product operation (see Fig. 6(a)).
The set of all variational parameters of the model λ cor-
responds to U,W, b, c, and

Softmax(v)n =
exp(vn)∑
i exp(vi)

.

The joint probability distribution pλ(σ) is given by

pλ(σ) = pλ(σ1)pλ(σ2|σ1) · · · pλ(σN |σ<N ). (14)

Since the outputs of the Softmax activation function sum
to one, each conditional probability pλ(σi|σ<i) is normal-
ized, and hence pλ(σ) is also normalized.

For disordered systems, it is natural to forgo the com-
mon practice of weight sharing [41] of W,U, b and c in
Eqs. (12), (13) and use an extended set of site-dependent
variational parameters λ comprised of {Wn}Nn=1 and
{Un}Nn=1 and biases {bn}Nn=1, {cn}Nn=1. The recursion
relation and the Softmax layer are modified to

hn = F (Wn[hn−1;σn−1] + bn), (15)

and

pλ(σn|σ<n) = Softmax(Unhn + cn) · σn, (16)

respectively. Note that the advantage of not using weight
sharing for disordered systems is further demonstrated in
Appendix. D.

We also consider a tensorized version of vanilla RNNs
which replaces the concatenation operation in Eq. (15)
with the operation [42]

hn = F
(
σᵀ
n−1Tnhn−1 + bn

)
, (17)

where σᵀ is the transpose of σ, and the variational pa-
rameters λ are {Tn}Nn=1, {Un}Nn=1, {bn}Nn=1 and {cn}Nn=1.
This form of tensorized RNN increases the expressiveness
of our ansatz as illustrated in Appendix. D.

For two-dimensional systems, we make use of a 2D-
dimensional extension of the recursion relation in vanilla
RNNs [20]

hi,j = F
(
W

(h)
i,j [hi−1,j ;σi−1,j ] +W

(v)
i,j [hi,j−1;σi,j−1] + bi,j

)
.

(18)
To enhance the expressive power of the model, we pro-
mote the recursion relation to a tensorized form

hi,j = F ([σi−1,j ;σi,j−1]Ti,j [hi−1,j ;hi,j−1] + bi,j) . (19)

Here, Ti,j are site-dependent weight tensors that have
dimension 4×2dh×dh. We also note that the coordinates
(i− 1, j) and (i, j− 1) are path-dependent, and are given
by the zigzag path, illustrated by the black arrows in
Fig. 6(b). Moreover, to sample configurations from the
2D tensorized RNNs, we use the same zigzag path as
illustrated by the red dashed arrows in Fig. 6(b).

For models such as the Sherrington-Kirkpatrick model
and the Wishart planted ensemble, every spin interacts
with each other. To account for the long-distance na-
ture of the correlations induced by these interactions,
we use dilated RNNs [43], which are known to alleviate
the vanishing gradient problem [44]. Dilated RNNs are
multi-layered RNNs that use dilated connections between
spins to model long-term dependencies [45], as illustrated
in Fig. 6(c). At each layer 1 ≤ l ≤ L, the hidden state is
computed as

h(l)
n = F (W (l)

n [h
(l)

max(0,n−2l−1)
;h(l−1)

n ] + b(l)
n ).

Here h
(0)
n = σn−1 and the conditional probability is given

by

pλ(σn|σ<n) = Softmax(Unh
(L)
n + cn) · σn.
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Figure 6. (a) An illustration of a 1D RNN: at each site n, the
RNN cell denoted by the green box, receives a hidden state
hn−1 and the one-hot spin vector σn−1, to generate a new
hidden state hn that is fed into a Softmax layer (denoted by
a magenta circle). (b) A graphical illustration of a 2D RNN.
Each RNN cell receives two hidden states hi,j−1 and hi−1,j ,
as well as two input vectors σi,j−1 and σi−1,j (not shown) as
illustrated by the black arrows. The red arrows correspond to
the zigzag path we use for 2D autoregressive sampling. The
initial memory state h0 of the RNN and the initial inputs σ0

(not shown) are null vectors. (c) An illustration of a dilated
RNN, where the distance between each two RNN cells grows
exponentially with depth to account for long-term dependen-
cies. We choose depth L = dlog2(N)e where N is the number
of spins.

In our work, we choose the size of the hidden states h
(l)
n ,

where l > 0, as constant and equal to dh. We also use a
number of layers L = dlog2(N)e, where N is the number
of spins and d. . .e is the ceiling function. This means
that two spins are connected with a path whose length is
bounded by O(log2(N)), which follows the spirit of the
multi-scale renormalization ansatz [46]. For more details
on the advantage of dilated RNNs over tensorized RNNs
see Appendix. D.

We finally note that for all the RNN architectures in
our work, we found accurate results using the exponential
linear unit (ELU) activation function, defined as:

ELU(x) =

{
x, if x ≥ 0 ,

exp(x)− 1, if x < 0 .

B. Minimizing the variational free energy

To implement the variational classical annealing algo-
rithm, we use the variational free energy

Fλ(T ) = 〈Htarget〉λ − TSclassical(pλ), (20)

where the target Hamiltonian Htarget encodes the op-
timization problem and T is the temperature. More-
over, Sclassical is the entropy of the distribution pλ. To
estimate Fλ(T ) we take Ns exact samples σ(i) ∼ pλ
(i = 1, . . . , Ns) drawn from the RNN and evaluate

Fλ(T ) ≈ 1

Ns

Ns∑

i=1

Floc(σ(i)),

where the local free energy is Floc(σ) = Htarget(σ) +
T log (pλ(σ)) [18]. Similarly, the gradients are given by

∂λFλ(T ) ≈ 1

Ns

Ns∑

i=1

∂λ log
(
pλ

(
σ(i)

))

×
(
Floc(σ(i))− Fλ(T )

)
,

where we subtract Fλ(T ) in order to reduce noise in the
gradients [18, 20]. We note that this variational scheme
exhibits a zero-variance principle, namely that the local
free energy variance per spin

σ2
F ≡

var({Floc(σ)})
N

, (21)

becomes zero when pλ matches the Boltzmann distribu-
tion, provided that mode collapse is avoided [18].

The gradient updates are implemented using the Adam
optimizer [47]. Furthermore, the computational complex-
ity of VCA for one gradient descent step isO(Ns×N×d2

h)
for 1D RNNs and 2D RNNs (both vanilla and tensorized
versions) and O(Ns ×N log(N)× d2

h) for dilated RNNs.
Consequently, VCA has lower computational cost than
VQA, which is implemented using VMC (see Methods
Sec. V C).
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Finally, we note that in our implementations no train-
ing steps are performed at the end of annealing for both
VCA and VQA.

C. Variational Monte Carlo

The main goal of Variational Monte Carlo is to approx-
imate the ground state of a Hamiltonian Ĥ through the
iterative optimization of an ansatz wave function |Ψλ〉.
The VMC objective function is given by

E ≡ 〈Ψλ|Ĥ|Ψλ〉
〈Ψλ|Ψλ〉

.

We note that an important class of stoquastic many-
body Hamiltonians has ground states |Ψ〉 with strictly
real and positive amplitudes in the standard product spin
basis [48]. These ground states can be written down in
terms of probability distributions,

|Ψ〉 =
∑

σ

Ψ(σ) |σ〉 =
∑

σ

√
P (σ) |σ〉 . (22)

To approximate this family of states, we use an RNN
wave function, namely Ψλ(σ) =

√
pλ(σ). Extensions

to complex-valued RNN wave functions are defined in
Ref. [20], and results on their ability to simulate vari-
ational quantum annealing of non-stoquastic Hamilto-
nians [49] will be reported elsewhere [50]. These fami-
lies of RNN states are normalized by construction (i.e.,
〈Ψλ|Ψλ〉 = 1) and allow for accurate estimates of the
energy expectation value. By taking Ns exact samples
σ(i) ∼ pλ (i = 1, . . . , Ns), it follows that

E ≈ 1

Ns

Ns∑

i=1

Eloc(σ(i)).

The local energy is given by

Eloc(σ) =
∑

σ′

Hσσ′
Ψλ(σ′)

Ψλ(σ)
, (23)

where the sum over σ′ is tractable when the Hamiltonian
Ĥ is local. Similarly, we can also estimate the energy
gradients as

∂λE =
2

Ns

Ns∑

i=1

∂λ log
(

Ψλ

(
σ(i)

))(
Eloc

(
σ(i)

)
− E

)
.

Here, we can subtract the term E in order to reduce noise
in the stochastic estimation of our gradients without in-
troducing a bias [20, 51]. In fact, when the ansatz is close

to an eigenstate of Ĥ, then Eloc(σ) ≈ E, which means
that the variance of gradients Var(∂λj

E) ≈ 0 for each
variational parameter λj . We note that this is similar in
spirit to the control variate methods in Monte Carlo and
to the baseline methods in reinforcement learning [51].

Similarly to the minimization scheme of the variational
free energy in Methods Sec. V B, VMC also exhibits a
zero-variance principle, where the energy variance per
spin

σ2 ≡ var({Eloc(σ)})
N

, (24)

becomes zero when |Ψλ〉 matches an excited state of Ĥ,
which thanks to the minimization of the variational en-
ergy E is likely to be the ground state |ΨG〉.

The gradients ∂λ log (Ψλ (σ)) are numerically com-
puted using automatic differentiation [52]. We use the
Adam optimizer to perform gradient descent updates,
with a learning rate η, to optimize the variational param-
eters λ of the RNN wave function. We note that in the
presence of O(N) non-diagonal elements in a Hamilto-

nian Ĥ, the local energies Eloc(σ) have O(N) terms (see
Eq. (23)). Thus, the computational complexity of one
gradient descent step is O(Ns ×N2 × d2

h) for 1D RNNs
and 2D RNNs (both vanilla and tensorized versions).

D. Simulated Quantum Annealing and Simulated
Annealing

Simulated Quantum Annealing is a standard quantum-
inspired classical technique that has traditionally been
used to benchmark the behavior of quantum anneal-
ers [24]. It is usually implemented via the path-integral
Monte Carlo method [11], a QMC method that simu-
lates equilibrium properties of quantum systems at finite
temperature. To illustrate this method, consider a D-
dimensional time-dependent quantum Hamiltonian

Ĥ(t) = −
∑

i,j

Jij σ̂
z
i σ̂

z
j − Γ(t)

N∑

i=1

σ̂xi ,

where Γ(t) = Γ0(1− t) controls the strength of the quan-
tum annealing dynamics at a time t ∈ [0, 1]. By applying
the Suzuki-Trotter formula to the partition function of
the quantum system,

Z = Tr exp{−βĤ(t)}, (25)

with the inverse temperature β = 1
T , we can map the D-

dimensional quantum Hamiltonian onto a (D + 1) clas-
sical system consisting of P coupled replicas (Trotter
slices) of the original system

HD+1(t) = −
P∑

k=1


∑

i,j

Jijσ
k
i σ

k
j + J⊥(t)

N∑

i=1

σki σ
k+1
i


 ,

(26)
where σki is the classical spin at site i and replica k. The
term J⊥(t) corresponds to uniform coupling between σki
and σk+1

i for each site i, such that

J⊥(t) = −PT
2

ln

(
tanh

(
Γ(t)

PT

))
.
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We note that periodic boundary conditions σP+1 ≡ σ1

arise because of the trace in Eq. (25).

Interestingly, we can approximate Z with an effective
partition function Zp at temperature PT given by [35]:

Zp ∝ Tr exp

{
−HD+1(t)

PT

}
,

which can now be simulated with a standard Metropolis-
Hastings Monte Carlo algorithm. A key element to this
algorithm is the energy difference induced by a single spin
flip at site σki , which is equal to

∆iElocal = 2
∑

j

Jijσ
k
i σ

k
j + 2J⊥(t)

(
σk−1
i σki + σki σ

k+1
i

)
.

Here, the second term encodes the quantum dynamics. In
our simulations we consider single spin flip (local) moves
applied to all sites in all slices. We can also perform a
global move [35], which means flipping a spin at location
i in every slice k. Clearly this has no impact on the
term dependent on J⊥, because it contains only terms
quadratic in the flipped spin, so that

∆iEglobal = 2

P∑

k=1

∑

j

Jijσ
k
i σ

k
j .

In summary, a single Monte Carlo step (MCS) consists
of first performing a single local move on all sites in each
k-th slice and on all slices, followed by a global move for
all sites. For the SK model and the WPE model studied
in this paper, we use P = 100, whereas for the EA model
we use P = 20 similarly to Ref. [11]. Before starting
the quantum annealing schedule, we first thermalize the
system by performing SA [35] from a temperature T0 = 3
to a final temperature 1/P (so that PT = 1). This is
done in 60 steps, where at each temperature we perform
100 Metropolis moves on each site. We then perform
SQA using a linear schedule that decreases the field from
Γ0 to a final value close to zero Γ(t = 1) = 10−8, where
five local and global moves are performed for each value
of the magnetic field Γ(t), so that it is consistent with the
choice of Ntrain = 5 for VCA (see Sec. II and III A). Thus,
the number of MCS is equal to five times the number of
annealing steps.

For the standalone SA, we decrease the temperature
from T0 to T (t = 1) = 10−8. Here, a single MCS consists
of a Monte Carlo sweep, i.e., attempting a spin-flip for all
sites. For each thermal annealing step, we perform five
MCS, and hence similar to SQA, the number of MCS is
equal to fives times the number of annealing steps. Fur-
thermore, we do a warm-up step for SA, by performing
Nwarmup MCS to equilibrate the Markov Chain at the
initial temperature T0 and to provide a consistent choice
with VCA (see Sec. II).

ACKNOWLEDGMENTS

We acknowledge Jack Raymond for suggesting to use
the Wishart Planted Ensemble as a benchmark for our
variational annealing setup. We also thank Christopher
Roth, Cunlu Zhou, Martin Ganahl and Giuseppe Santoro
for fruitful discussions. We are also grateful to Lauren
Hayward for providing her plotting code to produce our
figures using Matplotlib library. Our RNN implementa-
tion is based on Tensorflow and NumPy. We acknowledge
support from the Natural Sciences and Engineering Re-
search Council (NSERC), a Canada Research Chair, the
Shared Hierarchical Academic Research Computing Net-
work (SHARCNET), Compute Canada, Google Quan-
tum Research Award, and the Canadian Institute for
Advanced Research (CIFAR) AI chair program. Re-
sources used in preparing this research were provided,
in part, by the Province of Ontario, the Government of
Canada through CIFAR, and companies sponsoring the
Vector Institute www.vectorinstitute.ai/#partners.
Research at Perimeter Institute is supported in part by
the Government of Canada through the Department of
Innovation, Science and Economic Development Canada
and by the Province of Ontario through the Ministry of
Economic Development, Job Creation and Trade.

Appendix A: Numerical proof of principle of
adiabaticity

As demonstrated in Sec. III, we have shown that both
VQA and VCA are effective at finding the classical
ground state of disordered spin chains. Here, we fur-
ther illustrate the adiabaticity of both VQA and VCA.
First, we perform VQA on the uniform ferromagnetic
Ising chain (i.e., Ji,i+1 = 1) with N = 20 spins and
open boundary conditions with an initial transverse field
Γ0 = 2. Here, we use a tensorized RNN wave func-
tion with weight sharing across sites of the chain. We
also choose Nannealing = 1024. In Fig. 7(a), we show
that the variational energy tracks the exact ground en-
ergy throughout the annealing process with high accu-
racy. We also observe that optimizing an RNN wave
function from scratch, i.e., randomly reinitializing the
parameters of the model at each new value of the trans-
verse magnetic field is not optimal. This observation un-
derlines the importance of transferring the parameters of
our wave function ansatz after each annealing step. Fur-
thermore, in Fig. 7(b) we illustrate that the RNN wave
function’s residual energy is much lower compared to the
gap throughout the annealing process, which shows that
VQA remains adiabatic for a large number of annealing
steps.

Similarly, in Fig. 7(c) we perform VCA with an initial
temperature T0 = 2 on the same model, the same system
size, the same ansatz, and the same number of annealing
steps. We see an excellent agreement between the RNN
wave function free energy and the exact free energy, high-

www.vectorinstitute.ai/#partners
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Figure 7. Numerical evidence of adiabaticity on the uniform
Ising chain with N = 20 spins for VQA in panels (a) and
(b) and VCA in panel (c). (a) Variational energy of RNN
wave function against the transverse magnetic field Γ, with λ
initialized using the parameters optimized in the previous an-
nealing step (transferred parameters, green curve) and with
random parameter reinitialization (random parameters, pur-
ple curve). These strategies are compared with the exact en-
ergy obtained from exact diagonalization (dashed black line).
(b) Residual energy of the RNN wave function vs the trans-
verse field Γ. Throughout annealing with VQA, the resid-
ual energy is always much smaller than the gap within error
bars. (c) Variational free energy vs temperature T for a VCA
run with λ initialized using the parameters optimized in the
previous annealing step (transferred parameters, purple line)
and with random reinitialization (random parameters, orange
curve).
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Figure 8. Variational annealing on random Ising chains,
where we represent the residual energy per site εres/N vs
Nannealing for both VQA and VCA. The system sizes are
N = 32, 64, 128 and we use random discrete couplings Ji,i+1 ∈
{−1, 1}.

lighting once again the adiabaticity of our emulation of
classical annealing, as well as the importance of trans-
ferring the parameters of our ansatz after each annealing
step. Taken all together, the results in Fig. 7 support the
notion that VQA and VCA evolutions can be adiabatic.

In Fig. 8 we report the residual energies per site against
the number of annealing steps Nannealing. Here, we
consider Ji,i+1 uniformly sampled from the discrete set
{−1,+1}, where the ground state configuration is dis-
ordered and the ground state energy is given by EG =

−∑N−1
i=1 |Ji,i+1| = −(N − 1). The decay exponents for

VCA are in the interval 1.3 − 1.6 and the VQA expo-
nent are approximately 1. These exponents also suggest
an asymptotic speed-up compared to SA and coherent
quantum annealing, where the residual energies follow
a logarithmic law [29, 53–55]. The latter confirms the
robustness of the observations in Fig. 3.

Appendix B: The variational adiabatic theorem

In this section, we derive a sufficient condition for the
number of gradient descent steps needed to maintain the
variational ansatz close to the instantaneous ground state
throughout the VQA simulation. First, consider a vari-
ational wave function |Ψλ〉 and the following the time-
dependent Hamiltonian:

Ĥ(t) = Ĥtarget + f(t)ĤD,

The goal is to find the ground state of the target
Hamiltonian Ĥtarget by introducing quantum fluctuations

through a driving Hamiltonian ĤD, where ĤD � Ĥtarget.
Here f(t) is a decreasing schedule function such that
f(0) = 1, f(1) = 0 and t ∈ [0, 1].
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Let E(λ, t) = 〈Ψλ| Ĥ(t) |Ψλ〉, and EG(t), EE(t) the
instantaneous ground/excited state energy of the Hamil-

tonian Ĥ(t), respectively. The instantaneous energy gap
is defined as g(t) ≡ EE(t)− EG(t).

To simplify our discussion, we consider the case of a
target Hamiltonian that has a non-degenerate ground
state. Here, we decompose the variational wave function
as:

|Ψλ〉 = (1− a(t))
1
2 |ΨG(t)〉+ a(t)

1
2 |Ψ⊥(t)〉 , (B1)

where |ΨG(t)〉 is the instantaneous ground state and
|Ψ⊥(t)〉 is a superposition of all the instantaneous excited
states. From this decomposition, one can show that [56]:

a(t) ≤ E(λ, t)− EG(t)

g(t)
. (B2)

As a consequence, in order to satisfy adiabaticity, i.e.,
| 〈Ψ⊥(t)|Ψλ〉 |2 � 1 for all times t, then one should have
a(t) < ε � 1 where ε is a small upper bound on the
overlap between the variational wave function and the
excited states. This means that the success probability
Psuccess of obtaining the ground state at t = 1 is bounded
from below by 1− ε. From Eq. (B2), to satisfy a(t) < ε,
it is sufficient to have:

εres(λ, t) ≡ E(λ, t)− EG(t) < εg(t). (B3)

To satisfy the latter condition, we require a slightly
stronger condition as follows:

εres(λ, t) <
εg(t)

2
. (B4)

In our derivation of a sufficient condition on the number
of gradient descent steps to satisfy the previous require-
ment, we use the following set of assumptions:

• (A1) |∂kt EG(t)|, |∂kt g(t)|, |∂kt f(t)| ≤ O(poly(N)),
for all 0 ≤ t ≤ 1 and for k ∈ {1, 2}.

• (A2) |〈Ψλ|ĤD|Ψλ〉| ≤ O(poly(N)) for all possible
parameters λ of the variational wave function.

• (A3) No anti-crossing during annealing, i.e., g(t) 6=
0, for all 0 ≤ t ≤ 1.

• (A4) The gradients ∂λE(λ, t) can be calculated
exactly, are L(t)-Lipschitz with respect to λ and
L(t) ≤ O(poly(N)) for all 0 ≤ t ≤ 1.

• (A5) Local convexity, i.e., close to convergence
when εres(λ, t) < εg(t), the energy landscape of
E(λ, t) is convex with respect to λ, for all 0 <
t ≤ 1.

Note that this assumption is ε-dependent.

• (A6) The parameters vector λ is bounded by a
polynomial in N . i.e., ||λ|| ≤ O(poly(N)), where
we define “||.||” as the euclidean L2 norm.

• (A7) The variational wave function |Ψλ〉 is expres-
sive enough, i.e.,

min
λ
εres(λ, t) <

εg(t)

4
, ∀t ∈ [0, 1].

Note that this assumption is also ε-dependent.

• (A8) At t = 0, the energy landscape of E(λ, t = 0)
is globally convex with respect to λ.

Theorem Given the assumptions (A1) to (A8), a
sufficient (but not necessary) number of gradient descent
steps Nsteps to satisfy the condition (B4) during the VQA
protocol, is bounded as:

O


 poly(N)

εmin
{tn}

(g(tn))


 ≤ Nsteps ≤ O


 poly(N)

ε2 min
{tn}

(g(tn))2


 ,

where (t1, t2, t3, . . .) is an increasing finite sequence of
time steps, satisfying t1 = 0 and tn+1 = tn + δtn, where

δtn = O
(

εg(tn)

poly(N)

)
.

Proof: In order to satisfy the condition Eq. (B4) dur-
ing the VQA protocol, we follow these steps:

• Step 1 (warm-up step): we prepare our variational
wave function at the ground state at t = 0 such
that Eq. (B4) is verified at time t = 0.

• Step 2 (annealing step): we change time t by an
infinitesimal amount δt, so that the condition (B3)
is verified at time t+ δt.

• Step 3 (training step): we tune the parameters of
the variational wave function, using gradient de-
scent, so that the condition (B4) is satisfied at time
t+ δt.

• Step 4: we loop over steps 2 and 3 until we arrive at
t = 1, where we expect to obtain the ground state
energy of the target Hamiltonian.

Let us first start with step 2 assuming that step 1 is
verified. In order to satisfy the requirement of this step
at time t, then δt has to be chosen small enough so that

εres(λt, t+ δt) < εg(t+ δt) (B5)

is verified given that the condition (B4) is satisfied at
time t. Here, λt are the parameters of the variational
wave function that satisfies the condition (B4) at time t.
To get a sense of how small δt should be, we do a Taylor
expansion, while fixing the parameters λt, to get:

εres(λt, t+ δt)

= εres(λt, t) + ∂tεres(λt, t)δt+O((δt)2),

<
εg(t)

2
+ ∂tεres(λt, t)δt+O((δt)2),
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where we used the condition (B4) to go from the second

line to the third line. Here, ∂tεres(λt, t) = ∂tf(t)〈ĤD〉 −
∂tEG(t). To satisfy the condition (B3) at time t + δt,
it is enough to have the right hand side of the previous
inequality to be much smaller than the gap at t+ δt, i.e.,

εg(t)

2
+ ∂tεres(λt, t)δt+O((δt)2) < εg(t+ δt).

By Taylor expanding the gap, we get:

∂tεres(λt, t)δt+O((δt)2) <
εg(t)

2
+ ε∂tg(t)δt+O((δt)2),

hence, it is enough to satisfy the following condition:

(∂tεres(λt, t)− ε∂tg(t))δt+O((δt)2) <
εg(t)

2
. (B6)

Using the Taylor-Laplace formula, one can express the
Taylor remainder term O((δt)2) as follows:

O((δt)2) =

∫ t+δt

t

(τ − t)A(τ)dτ,

where A(τ) = ∂2
τ εres(λt, τ) − ε∂2

τg(τ) = ∂2
τf(τ)〈ĤD〉 −

∂2
τEG(τ) − ε∂2

τg(τ) and τ is between t and t + δt. The
last expression can be bounded as follows:

O((δt)2) ≤
∫ t+δt

t

(τ − t)|A(τ)|dτ ≤ (δt)2

2
sup(|A|).

where “sup(|A|)” is the supremum of |A| over the interval
[0, 1]. Given assumptions (A1) and (A2), then sup(|A|)
is bounded from above by a polynomial in N , hence:

O((δt)2) ≤ O(poly(N))(δt)2 ≤ O(poly(N))δt,

where the last inequality holds since δt ≤ 1 as t ∈ [0, 1],
while we note that it is not necessarily tight. Further-
more, since (∂tεres(λt, t)− ε∂tg(t)) is also bounded from
above by a polynomial in N (according to assumptions
(A1) and (A2)), then in order to satisfy Eq. (B6), it is
sufficient to require the following condition:

O(poly(N))δt <
εg(t)

2
.

Thus, it is sufficient to take:

δt = O
(

εg(t)

poly(N)

)
. (B7)

By taking account of assumption (A3), δt can be taken
non-zero for all time steps t. As a consequence, assuming
the condition (B7) is verified for a non-zero δt and a
suitable O(1) prefactor, then the condition (B5) is also
verified.

We can now move to step 3. Here, we apply a number
of gradient descent steps Ntrain(t) to find a new set of
parameters λt+δt such that:

εres(λt+δt, t+δt) = E(λt+δt, t+δt)−EG(t+δt) <
εg(t+ δt)

2
,

(B8)

To estimate the scaling of the number of gradient descent
steps Ntrain(t) needed to satisfy (B8), we make use of
assumptions (A4) and (A5). The assumption (A5) is
reasonable providing that the variational energy E(λt, t+
δt) is very close to the ground state energy EG(t + δt),
as given by Eq. (B5). Using the above assumptions and
assuming that the learning rate η(t) = 1/L(t), we can
use a well-known result in convex optimization [57](see
Sec. 2.1.5), which states the following inequality:

E(λ̃t, t+ δt)−min
λ
E(λ, t+ δt) ≤ 2L(t)||λt − λ∗t+δt||2

Ntrain(t) + 4
.

Here, λ̃t are the new variational parameters obtained af-
ter applying Ntrain(t+δt) gradient descent steps starting
from λt. Furthermore, λ∗t+δt are the optimal parameters
such that:

E(λ∗t+δt, t+ δt) = min
λ
E(λ, t+ δt).

Since the Lipschitz constant L(t) ≤ O(poly(N)) (as-
sumption (A4)) and ||λt − λ∗t+δt||2 ≤ O(poly(N)) (as-
sumption (A6)), one can take

Ntrain(t+ δt) = O
(

poly(N)

εg(t+ δt)

)
, (B9)

with a suitable O(1) prefactor, so that:

E(λ̃t, t+ δt)−min
λ
E(λ, t+ δt) <

εg(t+ δt)

4
.

Moreover, by assuming that the variational wave function
is expressive enough (assumption (A7)), i.e.,

min
λ
E(λ, t+ δt)− EG(t+ δt) <

εg(t+ δt)

4
,

we can then deduce, by taking λt+δt ≡ λ̃t and summing
the two previous inequalities, that:

E(λt+δt, t+ δt)− EG(t+ δt) <
εg(t+ δt)

2
.

Let us recall that in step 1, we have to initially pre-
pare the variational ansatz to satisfy condition (B4) at
t = 0. In fact, we can take advantage of the assump-
tion (A4), where the gradients are L(0)-Lipschitz with
L(0) ≤ O(poly(N)). We can also use the convexity as-
sumption (A8), and we can show that a sufficient num-
ber of gradient descent steps to satisfy condition (B4) at
t = 0 is estimated as:

Nwarmup ≡ Ntrain(0) = O
(

poly(N)

εg(0)

)
.

The latter can be obtained in a similar way as in Eq. (B9).
In conclusion, the total number of gradient steps Nsteps

to evolve the Hamiltonian Ĥ(0) to the target Hamilto-

nian Ĥ(1), while verifying the condition (B4) is given
by:

Nsteps =

Nannealing+1∑

n=1

Ntrain(tn),
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where each Ntrain(tn) satisfies the requirement (B9). The

annealing times {tn}Nannealing+1
n=1 are defined such that

t1 ≡ 0 and tn+1 ≡ tn + δtn. Here, δtn satisfies

δtn = O
(

εg(tn)

poly(N)

)
. (B10)

We also consider Nannealing the smallest integer such
that tNannealing

+ δtNannealing
≥ 1, in this case, we define

tNannealing+1 ≡ 1, indicating the end of annealing. Thus,
Nannealing is the total number of annealing steps. Taking
this definition into account, then one can show that

Nannealing ≤
1

min
{tn}

(δtn)
+ 1.

Using Eqs. (B7) and (B9) and the previous inequality,
Nsteps can be bounded from above as:

Nsteps ≤ (Nannealing + 1) max
{tn}

(Ntrain(tn))

≤


 1

min
{tn}

(δtn)
+ 2


max
{tn}

(Ntrain(tn))

≤ O


 poly(N)

ε2 min
{tn}

(g(tn))2


 ,

where the transition from line 2 to line 3 is valid for
a sufficiently small ε and min{tn}(g(tn)). Furthermore,
Nsteps can also be bounded from below as:

Nsteps ≥ max
{tn}

(Ntrain(tn)) = O


 poly(N)

εmin
{tn}

(g(tn))


 . (B11)

Note that the minimum in the previous two bounds are
taken over all the annealing times tn where 1 ≤ n ≤
Nannealing + 1.

In this derivation of the bound on Nsteps, we have as-

sumed that the ground state of Ĥtarget is non-degenerate,
so that the gap does not vanish at the end of annealing
(i.e., t = 1). In the case of degeneracy of the target
ground state, we can define the gap g(t) by considering
the lowest energy level that does not lead to the degen-
erate ground state.

It is also worth noting that the assumptions of this
derivation can be further expanded and improved. In
particular, the gradients of E(λ, t) are computed stochas-
tically (see Methods Sec. V C), as opposed to our as-
sumption (A4) where the gradients are assumed to be
known exactly. To account for noisy gradients, it is
possible to use convergence bounds of stochastic gradi-
ent descent [47, 58] to estimate a bound on the num-
ber of gradient descent steps. Second-order optimization
methods such as stochastic reconfiguration/natural gra-
dient [59, 60] can potentially show a significant advantage
over first-order optimization methods, in terms of scaling
with the minimum gap of the time-dependent Hamilto-
nian Ĥ(t).

Appendix C: Default Hyperparameters

In this Appendix, we summarize the architectures and
the hyperparameters of the simulations performed in this
paper, as shown in Tab. I. The latter has shown to yield
good performance, while we believe that a more advanced
study of the hyperparameters can result in optimal re-
sults. We also note that in this paper, VQA and VCA
were run using a single GPU workstation for each simula-
tion, while SQA and SA were performed on a multi-core
CPU.

Appendix D: Benchmarking Recurrent neural
network cells

To show the advantage of tensorized RNNs over vanilla
RNNs, we benchmark these architectures on the task of
finding the ground state of the uniform ferromagnetic
Ising chain (i.e., Ji,i+1 = 1) with N = 100 spins at the
critical point (i.e., no annealing is employed). Since the
couplings in this model are site-independent, we choose
the parameters of the model to be also site-independent.
In Fig. 9(a), we plot the energy variance per site σ2 (see
Eq. (24)) against the number of gradient descent steps.
Here σ2 is a good indicator of the quality of the optimized
wave function [59, 61, 62]. The results show that the
tensorized RNN wave function can achieve both a lower
estimate of the energy variance and a faster convergence.

For the disordered systems studied in this paper, we
set the weights Tn, Un and the biases bn, cn (in Eqs. (16)
and (17)) to be site-dependent. To demonstrate the ben-
efit of using site-dependent over site-independent param-
eters when dealing with disordered systems, we bench-
mark both architectures on the task of finding the ground
state of the disordered Ising chain with random discrete
couplings Ji,i+1 = ±1 at the critical point, i.e., with a
transverse field Γ = 1. We show the results in Fig. 9(b)
and find that site-dependent parameters lead to a better
performance in terms of the energy variance per spin.

Furthermore, we equally show the advantage of a di-
lated RNN ansatz compared to a tensorized RNN ansatz.
We train both of them for the task of finding the min-
imum of the free energy of the Sherrington-Kirkpatrick
model with N = 20 spins and at temperature T = 1,
as explained in Methods Sec. V B. Both RNNs have a
comparable number of parameters (66400 parameters for
the tensorized RNN and 59240 parameters for the dilated
RNN). Interestingly, in Fig. 9(c), we find that the dilated
RNN supersedes the tensorized RNN with almost an or-
der of magnitude difference in term of the free energy
variance per spin defined in Eq. (21). Indeed, this result
suggests that the mechanism of skip connections allows
dilated RNNs to capture long-term dependencies more
efficiently compared to tensorized RNNs.
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Figures Parameter Value

Figs. 3 and 8

Architecture Tensorized RNN wave function with no-weight sharing
Number of memory units dh = 40

Number of samples Ns = 50
Initial magnetic field for VQA Γ0 = 2
Initial temperature for VCA T0 = 1

Learning rate η = 5× 10−4

Warmup steps Nwarmup = 1000
Number of random instances Ninstances = 25

Fig. 4

Architecture 2D tensorized RNN wave function with no weight-sharing
Number of memory units dh = 40

Number of samples Ns = 25
Initial magnetic field Γ0 = 1 (for SQA, VQA and RVQA)
Initial temperature T0 = 1 (for SA, VCA and RVQA)

Learning rate η = 10−4

Number of warmup steps Nwarmup = 1000 for 10× 10 and Nwarmup = 2000 for 40× 40
Number of random instances Ninstances = 25

Figs. 5(a) and (d)

Architecture Dilated RNN wave function with no weight-sharing
Number of memory units dh = 40

Number of samples Ns = 50
Initial temperature T0 = 2 (for SA and VCA)

Initial magnetic field Γ0 = 2 (for SQA)

Learning rate η = 10−4

Number of warmup steps Nwarmup = 2000
Number of random instances Ninstances = 25

Figs. 5(b), (c), (e) and (f)

Architecture Dilated RNN wave function with no weight-sharing
Number of memory units dh = 20

Number of samples Ns = 50
Initial temperature T0 = 1 (for SA and VCA)

Initial magnetic field Γ0 = 1 (for SQA)

Learning rate η = 10−4

Number of warmup steps Nwarmup = 1000
Number of random instances Ninstances = 25

Fig. 7

Architecture Tensorized RNN wave function with weight sharing
Number of memory units dh = 20

Number of samples Ns = 50
Initial temperature T0 = 2

Initial magnetic field Γ0 = 2

Learning rate η = 10−3

Number of warmup steps Nwarmup = 1000

Figs. 9(a) and (b)

Architecture RNN wave function
Number of memory units dh = 50

Number of samples Ns = 50

Learning rate η = 10−3 for Fig. 9(a) and η = 5× 10−4 for Fig. 9(b)

Fig. 9(c)

Architecture RNN wave function with no-weight sharing
Number of memory units of dilated RNN dh = 20

Number of memory units of tensorized RNN dh = 40
Number of samples Ns = 100

Learning rate η = 10−4

Table I. Hyperparameters used to obtain the results reported in this paper. Note that the number of samples stands for the
batch size used to train the RNN.
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Figure 9. Energy (or Free energy) variance per spin σ2 vs
the number of training steps. (a) We compare tensorized and
vanilla RNN ansatzes both with weight sharing across sites
on the uniform ferromagnetic Ising chain at the critical point
with N = 100 spins. (b) Comparison between a tensorized
RNN with and without weight sharing, trained to find the
ground state of the random Ising chain with discrete disorder
(Ji,i+1 = ±1) at criticality with N = 20 spins. (c) Compar-
ison between a tensorized RNN and dilated RNN ansatzes,
both with no weight sharing, trained to find the Sherrington-
Kirkpatrick model’s equilibrium distribution with N = 20
spins at temperature T = 1.
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[35] Roman Martoňák, Giuseppe E. Santoro, and Erio
Tosatti, “Quantum annealing by the path-integral monte
carlo method: The two-dimensional random ising
model,” Phys. Rev. B 66, 094203 (2002).

[36] M Mezard, G Parisi, and M Virasoro, Spin Glass
Theory and Beyond (WORLD SCIENTIFIC, 1986)
https://www.worldscientific.com/doi/pdf/10.1142/0271.

[37] David Sherrington and Scott Kirkpatrick, “Solvable
model of a spin-glass,” Phys. Rev. Lett. 35, 1792–1796
(1975).

[38] Firas Hamze, Jack Raymond, Christopher A. Pattison,
Katja Biswas, and Helmut G. Katzgraber, “Wishart
planted ensemble: A tunably rugged pairwise ising model
with a first-order phase transition,” Physical Review E
101 (2020), 10.1103/physreve.101.052102.

[39] Kyle Mills, Pooya Ronagh, and Isaac Tamblyn, “Con-
trolled online optimization learning (cool): Finding the
ground state of spin hamiltonians with reinforcement
learning,” (2020), arXiv:2003.00011 [physics.comp-ph].

[40] Yoshua Bengio, Andrea Lodi, and Antoine Prou-
vost, “Machine learning for combinatorial opti-
mization: A methodological tour d’horizon,” Eu-
ropean Journal of Operational Research (2020),
https://doi.org/10.1016/j.ejor.2020.07.063.

[41] Ian Goodfellow, Yoshua Bengio, and Aaron
Courville, Deep Learning (MIT Press, 2016)
http://www.deeplearningbook.org.

[42] Richard Kelley, “Sequence modeling with recurrent ten-
sor networks,” (2016).

[43] Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao
Guo, Wei Tan, Xiaodong Cui, Michael Witbrock, Mark
Hasegawa-Johnson, and Thomas S. Huang, “Dilated
recurrent neural networks,” (2017), arXiv:1710.02224
[cs.AI].

[44] Y. Bengio, P. Simard, and P. Frasconi, “Learning
long-term dependencies with gradient descent is diffi-
cult,” IEEE Transactions on Neural Networks 5, 157–166
(1994).

[45] Salah El Hihi and Yoshua Bengio, “Hierarchical recur-
rent neural networks for long-term dependencies,” in
Advances in Neural Information Processing Systems 8 ,
edited by D. S. Touretzky, M. C. Mozer, and M. E. Has-
selmo (MIT Press, 1996) pp. 493–499.

[46] G. Vidal, “Class of quantum many-body states that can
be efficiently simulated,” Physical Review Letters 101
(2008), 10.1103/physrevlett.101.110501.

[47] Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” (2014), arXiv:1412.6980
[cs.LG].

[48] Sergey Bravyi, David P. Divincenzo, Roberto Oliveira,

and Barbara M. Terhal, “The complexity of stoquastic
local hamiltonian problems,” Quantum Info. Comput. 8,
361–385 (2008).

[49] I. Ozfidan, C. Deng, A.Y. Smirnov, T. Lanting, R. Har-
ris, L. Swenson, J. Whittaker, F. Altomare, M. Bab-
cock, C. Baron, A.J. Berkley, K. Boothby, H. Chris-
tiani, P. Bunyk, C. Enderud, B. Evert, M. Hager, A. Ha-
jda, J. Hilton, S. Huang, E. Hoskinson, M.W. Johnson,
K. Jooya, E. Ladizinsky, N. Ladizinsky, R. Li, A. Mac-
Donald, D. Marsden, G. Marsden, T. Medina, R. Molavi,
R. Neufeld, M. Nissen, M. Norouzpour, T. Oh, I. Pavlov,
I. Perminov, G. Poulin-Lamarre, M. Reis, T. Prescott,
C. Rich, Y. Sato, G. Sterling, N. Tsai, M. Volkmann,
W. Wilkinson, J. Yao, and M.H. Amin, “Demonstration
of a nonstoquastic hamiltonian in coupled superconduct-
ing flux qubits,” Phys. Rev. Applied 13, 034037 (2020).

[50] Mohamed Hibat-Allah, Estelle M. Inack, Roger G.
Melko, and Juan Carrasquilla, (Manuscript in prepa-
ration).

[51] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and
Andriy Mnih, “Monte carlo gradient estimation in ma-
chine learning,” (2019), arXiv:1906.10652 [stat.ML].

[52] Shi-Xin Zhang, Zhou-Quan Wan, and Hong Yao, “Au-
tomatic differentiable monte carlo: Theory and applica-
tion,” (2019), arXiv:1911.09117 [physics.comp-ph].

[53] Sei Suzuki, “Cooling dynamics of pure and random ising
chains,” Journal of Statistical Mechanics: Theory and
Experiment 2009, P03032 (2009).

[54] Jacek Dziarmaga, “Dynamics of a quantum phase transi-
tion in the random ising model: Logarithmic dependence
of the defect density on the transition rate,” Phys. Rev.
B 74, 064416 (2006).

[55] Tommaso Caneva, Rosario Fazio, and Giuseppe E. San-
toro, “Adiabatic quantum dynamics of a random ising
chain across its quantum critical point,” Phys. Rev. B
76, 144427 (2007).

[56] Sandro Sorella and Federico Becca, SISSA Lecture notes
on Numerical methods for strongly correlated electrons
(Sec. 1.3) (2016).

[57] Yurii Nesterov, “Smooth convex optimization,” in Lec-
tures on Convex Optimization (Springer International
Publishing, Cham, 2018) pp. 59–137.

[58] Mark Schmidt, Nicolas Le Roux, and Francis Bach,
“Minimizing finite sums with the stochastic average gra-
dient,” (2013), arXiv:1309.2388 [math.OC].

[59] F. Becca and S. Sorella, Quantum Monte Carlo Ap-
proaches for Correlated Systems (Cambridge University
Press, 2017).

[60] Shun-ichi Amari, “Natural gradient works efficiently
in learning,” Neural Computation 10, 251–276 (1998),
https://doi.org/10.1162/089976698300017746.

[61] Claudius Gros, “Criterion for a good variational wave
function,” Phys. Rev. B 42, 6835–6838 (1990).

[62] Roland Assaraf and Michel Caffarel, “Zero-variance zero-
bias principle for observables in quantum monte carlo:
Application to forces,” The Journal of Chemical Physics
119, 10536–10552 (2003).

http://arxiv.org/abs/1911.10680
http://arxiv.org/abs/2005.04447
http://dx.doi.org/ 10.1103/PhysRevB.66.094203
http://dx.doi.org/10.1142/0271
http://dx.doi.org/10.1142/0271
http://arxiv.org/abs/https://www.worldscientific.com/doi/pdf/10.1142/0271
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/PhysRevLett.35.1792
http://dx.doi.org/10.1103/physreve.101.052102
http://dx.doi.org/10.1103/physreve.101.052102
http://arxiv.org/abs/2003.00011
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2020.07.063
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2020.07.063
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2020.07.063
http://www.deeplearningbook.org
https://openreview.net/forum?id=ROVmGqlgmhvnM0J1IpNq
https://openreview.net/forum?id=ROVmGqlgmhvnM0J1IpNq
http://arxiv.org/abs/1710.02224
http://arxiv.org/abs/1710.02224
http://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-for-long-term-dependencies.pdf
http://dx.doi.org/ 10.1103/physrevlett.101.110501
http://dx.doi.org/ 10.1103/physrevlett.101.110501
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=2011772.2011773
http://dl.acm.org/citation.cfm?id=2011772.2011773
http://dx.doi.org/ 10.1103/PhysRevApplied.13.034037
http://arxiv.org/abs/1906.10652
http://arxiv.org/abs/1911.09117
http://dx.doi.org/ 10.1088/1742-5468/2009/03/p03032
http://dx.doi.org/ 10.1088/1742-5468/2009/03/p03032
http://dx.doi.org/ 10.1103/PhysRevB.74.064416
http://dx.doi.org/ 10.1103/PhysRevB.74.064416
http://dx.doi.org/10.1103/PhysRevB.76.144427
http://dx.doi.org/10.1103/PhysRevB.76.144427
https://people.sissa.it/~sorella/Simulazioni.pdf
https://people.sissa.it/~sorella/Simulazioni.pdf
https://people.sissa.it/~sorella/Simulazioni.pdf
http://dx.doi.org/10.1007/978-3-319-91578-4_2
http://dx.doi.org/10.1007/978-3-319-91578-4_2
http://arxiv.org/abs/1309.2388
http://dx.doi.org/10.1017/9781316417041
http://dx.doi.org/10.1017/9781316417041
http://dx.doi.org/ 10.1162/089976698300017746
http://arxiv.org/abs/https://doi.org/10.1162/089976698300017746
http://dx.doi.org/ 10.1103/PhysRevB.42.6835
http://dx.doi.org/10.1063/1.1621615
http://dx.doi.org/10.1063/1.1621615

	Variational Neural Annealing
	Abstract
	I Introduction
	II Variational classical and quantum annealing
	III Results
	A Annealing on random Ising chains
	B Edwards-Anderson model
	C Fully-connected spin glasses

	IV Conclusions and outlook
	V Methods
	A Recurrent Neural Network Ansätze
	B Minimizing the variational free energy
	C Variational Monte Carlo
	D Simulated Quantum Annealing and Simulated Annealing

	 Acknowledgments
	A Numerical proof of principle of adiabaticity
	B The variational adiabatic theorem
	C Default Hyperparameters
	D Benchmarking Recurrent neural network cells
	 References


