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Abstract

In ophthalmologic practice, retinal images are routinely obtained to diagnose and monitor primary eye
diseases and systemic conditions affecting the eye, such as diabetic retinopathy. Recent studies have shown
that biomarkers on retinal images, e.g. retinal blood vessels density or tortuosity, are associated with cardiac
function and may identify patients at risk of coronary artery disease. In this work, we investigate the use
of retinal images alongside relevant patient metadata, to estimate left ventricular mass (LVM) and left
ventricular end-diastolic volume (LVEDV), and subsequently, predict incident myocardial infarction. We
trained a multi-channel variational autoencoder (mcVAE) and a deep regressor model to estimate LVM (4.4
(-32.30, 41.1) g) and LVEDV (3.02 (-53.45, 59.49) ml) and predict risk of myocardial infarction (AUC=0.80±
0.02, Sensitivity=0.74± 0.02, Specificity=0.71± 0.03) using just the retinal images and demographic data.
Our results indicate that one could identify patients at high risk of future myocardial infarction from retinal
imaging available in every optician and eye clinic.

Keywords: UK Biobank, AREDS, Retinal Images, Cardiac MRI, Multi-Channel VAE

Introduction

Cardiovascular diseases (CVD) represent a major
cause of death and socio-economic burden globally.
In 2015 alone, there were ∼18 million CVD-related
deaths worldwide [1]. Identification and timely
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treatment of CVD risk factors is a key strategy
for reducing CVD prevalence in populations and
for risk modulation in individuals. Conventionally,
CVD risk is estimated using demographic/clinical
parameters such as age, sex, ethnicity, smoking sta-
tus, family history, history of hyperlipidaemia, di-
abetes mellitus or hypertension [2]. Imaging tests
such as coronary computed tomography, echocar-
diography and cardiovascular magnetic resonance
(CMR) help further stratify patient risk, by assess-



ing coronary calcium burden, myocardial scar bur-
den, ischaemia, cardiac chamber size and function.
Cardiovascular imaging is usually performed in

secondary care and is relatively expensive, limiting
its availability in under-developed and developing
countries. An alternative approach to risk stratifi-
cation is to use the information available from non-
cardiac investigations. Retinal microvascular ab-
normalities, such as generalised arteriolar narrow-
ing, focal arteriolar narrowing, and arterio-venous
nicking have shown strong associations with sys-
temic, and cardiovascular disease, such as diabetes
mellitus, hypertension and coronary artery disease
[3, 4]. Retinal images (including details of principal
blood vessels) are now routinely acquired in opto-
metric and ophthalmologic practice and are rela-
tively inexpensive. Retinal images could, therefore,
be a potential cost-effective screening tool for car-
diovascular disease. Beyond risk prediction, retinal
images have also been associated with cardiovascu-
lar phenotypes such as left ventricular dimensions
and mass [3, 4]. Poplin et al. showed for the first
time that retinal images allowed prediction of car-
diovascular risk factors such as age, gender, smok-
ing status, systolic blood pressure and major ad-
verse cardiac events [5], driven by anatomical fea-
tures such as the optic disc or retinal blood vessels.
This highlighted the potential for using retinal im-
ages to assess risk of cardiovascular diseases.
We explore new ways to extend this line of

research, by learning a combined representation
of retinal images and cardiac magnetic resonance
(CMR) images, to assess cardiac function and pre-
dict myocardial infarction events. This is supported
by the work of Cheung et al. [6], who highlighted
the adverse effects of blood pressure and cardiac
dysfunction on retinal microvasculature. Similarly,
Tapp et al. [7] established associations between
retinal vessel morphology and cardiovascular dis-
ease risk factors and/or CVD outcomes using a
multilevel linear regressor. This study assessed the
relationships between retinal vessel morphometry,
blood pressure, and arterial stiffness index, further-
ing our understanding of preclinical disease pro-
cesses and the interplay between microvascular and
macrovascular diseases. Using retinal fundus im-
ages, Gargeya et al. [8] and Qummar et al. [9]
used deep learning to detect diabetes, and clas-
sify different grades of diabetic retinopathy, respec-
tively. These studies demonstrate the efficacy of
deep learning techniques to quantify and stratify
cardiovascular disease risk factors, given retinal im-

ages. Other studies such as Pickhardt et al. [10]
utilised whole-body CT scans and deep learning to
predict future adverse cardiovascular events, fur-
ther supporting the hypothesis that alternate im-
age modalities, covering multiple organs, help as-
sess cardiovascular health and predict CVD risk.
As markers of cardiovascular diseases are often

manifested in the retina, images of this organ could
identify future cardiovascular events such as left
ventricular hypertrophy or myocardial infarction.
This work proposes a novel method that estimates
cardiac indices and predicts incident myocardial in-
farction based on retinal images and demographic
data from the UKB. For myocardial infarction, we
only considered incidents that occurred after the
retinal image was taken. Our approach uses a
multi-channel variational autoencoder trained on
two channels of information: retinal and CMR im-
ages from the same subject. This method combines
features extracted from both imaging modalities in
a common latent space, allowing us to use that la-
tent space to subsequently estimate relevant quan-
tities from just one channel of information (i.e. reti-
nal images) and demographic data. Applied to clin-
ical practice, estimation of cardiac indices from reti-
nal images could guide patients at risk of CVDs to
cardiologists following a routine ophthalmic check
or directly predicting myocardial infarction based
on the retinal and minimal demographic data.

Experiments and Results

In this study, we jointly trained a multi-channel
VAE (mcVAE) and a deep regressor network on
CMR, retinal images and demographic data from
participants in the UKB cohort. As the first exper-
iment, we used manual and automatic delineations
of the CMR images as ground truth to estimate
LVM and LVEDV from retinal images. These man-
ually delineated images were analysed by a team
of eight experts using the commercially available
cvi42 post-processing software (Circle Cardiovas-
cular Imaging Inc., Calgary, Canada) [30]. On the
other hand, the automatic delineations were ob-
tained from the method proposed by Attar et al.
[31]. The main motivation for this set of exper-
iments is to perform a fair comparison between
our system and the state-of-the-art methods. It is
worth mentioning that all methods published in the
literature that used the UKB cohort, are trained
using the aforementioned manual delineations. Re-
sults of this experiment are presented in Bland-
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Altman and Pearson’s correlation plots (See Figure
1(a)).
Figure 1(a) denotes the correlation between the

LVM (r = 0.65) and LVEDV (r = 0.45) values esti-
mated using our approach, and the ones manually
computed from the CMR images using cvi42 soft-
ware. The results obtained from this experiment
support the clinical findings published years ago by
clinical researchers in [32, 3, 4]. They found that
retinal images could be potentially used to quantify
parameters in the heart.
Besides the Bland-Altman and correlation plots,

we also compared our proposed method against the
state-of-the-art methods for cardiac quantification
using CMR images (Bai et al. [33]), including the
Siemens Inline VF system (See Extended Data Ta-
ble 4). The Siemens Inline VF system was the first
fully automatic left ventricular analysis tools com-
mercially available [34]. D13 and E11C versions
have been currently used as a baseline for compar-
ison against manual delineation [30].
Bland-Altman plots and Pearson’s correlation

were computed for the participants with automatic
annotations for LVM and LVEDV (see Figure 1(b)).
Figure 1(b) shows a significant correlation be-

tween the LVM and LVEDV estimated by the pro-
posed method and parameters computed from At-
tar’s algorithm. We also found that using more
images to train our method positively impacts the
obtained error (See Extended Data Table 4 Exp
2B).
As it was shown, our approach can estimate LVM

and LVEDV from the retinal images and demo-
graphic data. In addition to this, it can also be used
to improve the prediction of future MI events. To
demonstrate this, we compare MI prediction in two
settings: 1) using only demographic data, and 2)
using LVM/LVEDV (predicted using our approach)
plus demographic data. To do that, we performed
10-fold cross-validation on subjects not previously
used for training and a logistic regression model
(See Figure 2).
Figure 2 (right) shows a significant increase

in the area under the ROC curve when using
LVM/LVEDV plus demographics to predict MI.
Besides predicting myocardial infarction, we also

compared the estimated LVM/LVEDV values be-
tween the MI cases and no-MI cases using a t-test.
Here, the null hypothesis is that the LVM/LVEDV
values come from the same distribution, while the
alternative hypothesis is that these values come
from different distributions. We consider that the

obtained results are different if the p-value is less
than 0.05. According to experimental results, a p-
value of 1.43e−57 and 2.32e−52 were obtained for
LVM and LVEDV correspondingly, meaning we re-
jected the null hypothesis and LVM/LVEDV values
for MI no-MI cases come from different distribu-
tions.

Additional experiments evaluating the Frechet
Inception Distance (FID) [35] score for recon-
structed CMR images (Supplementary Figure 2)
and the impact of the retinal image size (Supple-
mentary Figure 4), training set size (Supplemen-
tary Figure 5), and different demographic variables
(Supplementary Figure 7) to the proposed algo-
rithm are presented in the Supplementary Material
Section 5

External Validation

Finally, external validation using the optimal
model identified from the preceding experiments
was carried out. This validation was conducted on
the AREDS dataset using retinal images and the
demographic data presented in Extended Data Ta-
ble 1. As previously mentioned, this dataset is com-
posed of 3,010 participants in total. From these par-
ticipants, there are 180 participants with MI events
and 2,830 with no-MI events.

We used the mcVAE trained on all the 5,663
retinal images available of size 128×128px. In the
AREDS dataset, the demographic data available
differed from that in the UKB. We trained our
method for the available metadata in the AREDS.
This means variables such as systolic blood pres-
sure, diastolic blood pressure, smoking status, al-
cohol consumption status, body mass index, age,
and gender were used for the external validation.
The demographic variable “alcohol consumption”
was converted to a continuous variable — in terms
of gm/day consumed. The remaining variables are
consistent between datasets in the way they are
coded.

As the AREDS dataset was initially used because
of the detailed information of AMD, we performed
three analyses discarding different levels of AMD to
show the impact AMD has on MI prediction. The
obtained results can be seen in Figure 3 and Table
1.

Discussion

The present study demonstrates that retinal im-
ages and demographic data could be of great value
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Figure 1: Estimation of LVM and LVEDV using manual and automatic annotations: (a) Bland-Altman and cor-
relation plots for estimated LVM and LVEDV using manual annotations on CMR images. (b) Bland-Altman and correlation
plots for estimated LVM and LVEDV using automatic annotations computed from Attar et al. [31] method. In Case A, we
used all the available subjects to train and test our method. The solid line represents the logistic regression, and the dotted
line represents the line of identity.

Figure 2: Cross-validation results for MI prediction: ROC curves obtained for MI prediction using only demographic
data. Accuracy: 0.66± 0.03, Sensitivity: 0.7± 0.04, Specificity: 0.64± 0.03, Precision: 0.64± 0.03, and F1 Score: 0.66± 0.03
(left). ROC curves obtained for MI prediction using LVM, LVEDV (derived from the proposed pipeline) and demographic
data. Accuracy: 0.74± 0.03, Sensitivity: 0.74± 0.02, Specificity: 0.71± 0.03, Precision: 0.73± 0.05, and F1 Score: 0.74± 0.03.
(right).
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(a)                                                                  (b)                                                                 (c)

Figure 3: ROC curves obtained from the external validation using AREDS dataset: (a) ROC curve obtained
considering all the AMD cases, (b) ROC curve obtained after discarding AMD cases with labels 2 and 3, and (c) ROC curve
obtained after excluding all AMD cases (labels 1, 2 and 3).

Table 1: Obtained results from the external validation using AREDS dataset: Accuracy, Sensitivity, Specificity,
Precision and F1 Score were computed to show the impact of AMD on the MI prediction.

Accuracy Sensitivity Specificity Precision F1 Score

Considering all AMD cases 0.59 0.70 0.49 0.49 0.57
Discarding AMD labels 2 & 3 0.62 0.70 0.54 0.54 0.61

Excluding all AMD cases 0.68 0.70 0.67 0.67 0.68

to estimate cardiac indices such as the LV mass
(LVM) and LV end-diastolic volume (LVEDV) by
jointly learning a latent space retinal and CMR im-
ages. To the best of our knowledge, no previous
works use a multi-modal approach with retinal and
CMR to learn a joint latent space and subsequently
estimate cardiac indices using just retinal and de-
mographic data. Our results follow previous re-
search demonstrating strong associations between
biomarkers in the retina and the heart [3, 4, 32],
similar to what has been shown in a recent study
where, cardiovascular risk factors such as age, gen-
der, blood pressure were quantified using only reti-
nal images [5].

Using the proposed method to estimate LVM and
LVEDV, we can assess patients at risk of future MI
or risk of similar adverse cardiovascular events at
routine ophthalmic visits. This would enable pa-
tient referral for further examination. Besides this,
estimated LVM/LVEDV could also be used to pro-
vide insights into pathological cardiac remodelling
or hypertension at no extra cost. This means, if
an ophthalmologist keeps a record of those indices
for their patient over time, they can refer patients
for further assessment to cardiologists, if a signif-
icant increase in the LVM or LVEDV is detected.
The ophthalmologist could be bypassed with auto-

mated risk detection if patients consented to share
their data on the cloud.

Figure 1 shows that our trained model is less pow-
erful at estimating higher LVM and LVEDV. Two
main factors are involved here: (1) The proportion
of subjects with elevated LVM/LVEDV available
for training (with retinal images) is limited, and (2)
Retinal images do not contain “all” the information
to assess cardiac function.

We chose to predict LVM and LVEDV as an in-
termediate step rather than directly predicting fu-
ture MI events because: (1) this ensures that the
developed approach is flexible in its clinical appli-
cation, as it could be used not just to predict MI,
but to assess LV function in general; (2) using LVM
and LVEDV enhances the explainability of predic-
tions, as evidenced by the analysis of the logistic
regression coefficients presented in the supplemen-
tary material.

In the external validation analyses, we presented
detailed data on the relative performance of the al-
gorithm to predict incident MI, according to the
presence and severity of AMD in the retinal im-
ages. The performance was highest in the absence
of AMD and appeared to decrease with the in-
clusion of individuals with AMD of gradually in-
creasing severity. In its most severe form, neovas-
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cular AMD, the disease can cause extensive fibro-
sis, haemorrhage, and exudation across much of the
macula; this is likely to obliterate the relevant sig-
nals employed by the algorithm for predicting inci-
dent MI. Even in less severe forms, such as early and
intermediate AMD, substantial alterations to mac-
ular anatomy are observed, including drusen and
pigmentary abnormalities [36], which may partially
degrade or interfere with the relevant signals. We
might assume that the most important signals from
the retinal images, for MI prediction, are encoded
in the retinal vessels [5]. In this case, even early
and intermediate AMD are accompanied by sub-
stantial changes in the retinal vasculature’s quanti-
tative and morphological features [37]. Overall, the
presence of retinal disease such as AMD, particu-
larly in its more severe forms, presumably interferes
with the ability of the algorithm to infer character-
istics of the systemic circulation from the retinal
circulation.
The AUC scores obtained using our approach

for UKBB and AREDS populations has to be con-
sidered in the context of a second referral setting
at an optician/eye clinic and not a primary cardi-
ology clinic. The sensitivity, specificity and pre-
cision/positive predictive value (PPV) of our ap-
proach at predicting future MI events from retinal
images in - (a) the UKBB population were 0.74,
0.72 and 0.68, respectively, when just Age and Gen-
der were considered as additional demographic vari-
ables (representative of the information available
in an optician/eye clinic), as highlighted in Sup-
plementary Figure 7; and (b) the AREDS popula-
tion, after excluding all AMD cases, was 0.70, 0.67,
and 0.67 respectively. Established cardiovascular
disease risk assessment models (e.g. Framingham
Risk Score (FRS), Systemic Coronary Risk Eval-
uation (SCORE), Pooled Cohort Equation (PCE)
etc.) [38, 39, 40, 41] used previously to screen
populations for atherosclerotic cardiovascular dis-
ease are comparable to our approach in discrimina-
tory capacity, while requiring several additional de-
mographic variables and clinical measurements not
readily available at an optician/eye clinic. For in-
stance, in [39] the authors compare FRS, PCE and
SCORE in the multi-ethnic study of atherosclero-
sis, each achieving an AUC of 0.717, 0.737 and
0.721, respectively, and corresponding sensitivity
and specificity of 0.7-0.8 and 0.5-0.6, respectively.
Similarly, in [38] multiple cardiovascular risk as-
sessment models were compared in their sensitivity,
specificity and PPV on the Diabetes and Cardiovas-

cular Risk Evaluation: Targets and Essential Data
for Commitment of Treatment study. This study
revealed that FRS and PCE’s sensitivity, speci-
ficity, and PPV ranged from 0.56-0.78, 0.60-0.78
and 0.12-0.24, respectively, when considering a 10%
risk threshold. While the performance of our ap-
proach in this study cannot be directly compared
to the risk assessment models evaluated in either of
the studies above, they provide context to the re-
sults obtained on both UKBB and AREDS popula-
tions, highlighting its potential for use as a second
referral tool at an eye clinic/optician. However, it
is important to note that this is a proof of concept
study with limitations in study design (detailed in
the supplementary material for brevity), predom-
inantly the limited availability of the multi-modal
data required for such analyses.

Conclusion

This study presents a system that estimates car-
diac indices such as LVM and LVEDV and pre-
dicts future MI events using inexpensive and easy to
obtain retinal photographs and demographic data.
We used 5,663 subjects from the UKB imaging
study with end-diastolic cardiac MR, retinal images
and demographic data to train and test our method.
We used this system to predict MI in subjects that
have retinal images and were not used during the
training process. We found that using cardiac in-
dices and demographic data together, yields signif-
icant improvements in predicting MI events com-
pared with using only demographic data. Finally,
we performed an independent replication study of
our method on the AREDS dataset. Although a
drop in performance was observed, the discrimina-
tion capacity of our approach remained compara-
ble to established CVD risk assessment models re-
ported previously. This highlights the potential for
our approach to be employed as a second referral
tool in eye clinics/opticians, to identify patients at
risk of future MI events. Future work will explore
genetic data to improve the discriminatory capac-
ity of the proposed approach and explainable arti-
ficial intelligence techniques to identify the domi-
nant retinal phenotypes that help assess CVD risk.
This will help facilitate fine-grained stratification of
CVD risk in patients, which will be a crucial step
towards delivering personalised medicine.
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Image datasets and demographic data

This study used CMR images (end-diastolic
short-axis view), retinal images, and demographic
data from the UKB cohort (under access applica-
tion #11350) were used to train and validate the
proposed method. When this method was devel-
oped, 39,705 participants underwent CMR imag-
ing using a clinical wide bore 1.5 Tesla MRI sys-
tem (MAGNETOM Aera, Syngo Platform VD13A,
Siemens Healthcare, Erlangen, Germany) [11], and
84,760 participants underwent retinal imaging us-
ing a Topcon 3D OCT 1000 Mark 2 (45◦ field-of-
view, centred to include both optic disc and mac-
ula) [12]. Only those participants with CMR, reti-
nal images, and demographic data were selected to
train our proposed method, totalling 11,383 partic-
ipants.
From 11,383 participants, 676 participants were

excluded due to a history of conditions known to af-
fect LV mass such as diabetes (336 subjects), previ-
ous myocardial infarction (293 subjects), cardiomy-
opathy (14 subjects) or frequent strenuous exercise
routines (33 subjects).
After excluding participants with the conditions

above, a deep learning method for quality assess-
ment (QA) [13] was used to obtain the retinal im-
ages of sufficient quality, as per certain pre-specified
criteria. This QA method utilises the public dataset
called EyePACS [14], a well-known dataset pre-
sented in the Kaggle platform for automatic dia-
betic retinopathy detection, to train and validate
its performance. Following QA, 5,663 participants
were identified to have good quality retinal images.
We followed the RECORD statement for reporting
observational data, and a STROBE flow diagram
showing the exclusion criteria is presented in Fig-
ure 4. Subsequent preprocessing steps for retinal
and CMR images (i.e. ROI detection [15]) are pre-
sented in Supplementary Material Section 1.
Regarding the demographic data, a combination

of variables derived from the patient’s history and
blood samples such as sex, age, gender, HbA1c, sys-
tolic and diastolic blood pressure, smoking habit,
alcohol consumption, glucose and body mass index
were also used as input to train and test the pro-
posed method. Although we excluded participants
with diabetes, we retain HbA1c as multiple stud-
ies have shown positive correlation of HbA1c with
cardiovascular mortality even in subjects without a
history of diabetes [16, 17, 18]. Additionally, in [19]
the authors showed a strong association between

HbA1c and LV mass. They found that a 1% rise in
HbA1c level was associated with a 3.0 g increase in
LV mass in elderly subjects. All these variables are
summarised in Extended Data Table 3.
Besides demographic data, we also utilised

LVEDV and LVM extracted directly from the CMR
images. These cardiac indices were computed from
the manual delineations [20] generated using cvi42

post-processing software, and segmentations gener-
ated automatically using the method proposed by
Attar et al. [21]. More details about how these val-
ues were used are outlined in the Experiments and
Results sections.

Age-Related Eye Disease Study (AREDS) database

The Age-Related Eye Disease Study (AREDS)
was a multicenter prospective study of the clinical
course of age-related macular degeneration (AMD)
and age-related cataract, as well as a phase III
randomised controlled trial designed to assess the
effects of nutritional supplements on AMD and
cataract progression [22, 23]. Institutional review
board approval was obtained at each clinical site
and written informed consent for the research was
obtained from all study participants. The research
was conducted under the Declaration of Helsinki.
Additional information on AREDS and associated
demographic data is included in the Supplementary
Material Section 2

Code Availability Statement

All algorithms used in this study were developed
using libraries and scripts in PyTorch. Source code
is publicly available at [42].

Data Availability

UKB images are reproduced with the kind
permission of UK Biobank ©. All UKB images
and demographic data are available, with re-
strictions, from UK Biobank. Researchers who
use the UKB dataset must first complete the
UK Biobank online Access Management Sys-
tem (AMS) application form. More information
for accessing the UKB dataset can be found
in this link: https://www.ukbiobank.ac.uk/

enable-your-research/apply-for-access

The AREDS data set (NCT00000145)
is available in the dbGAP repository,
https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs000001.v3.p1

7



Participants with retinal images 
in the UK Biobank (n=84,760)

Excluded (n=13,245)
- Participants with CMR images 

utilised to train mcVAE (n=11,383)
- Myocardial infarction occurred before 

image was taken (n=1,862)

Excluded (n=79,097)
- Participants without CMR images (n=73,377)
- Quality control on retinal images. Poor and very 

poor images (n=5,044)
- Diabetes cases (n=336)
- Previous myocardial infarction (n=293)
- Cardiomyopathy (n=14)
- Frequent strenuous exercise (n=33)

Analysed (n=71,515) Analysed (n=5,663)

Participants to train 
Myocardial infarction model (n=84,760)

Participants to train 
multi-channel VAE (n=84,760)

Figure 4: STROBE flow diagram for excluded participants: Criteria for excluding participants in this study.

Methods

Our method is based on the multi-channel
variational autoencoder (mcVAE) [24] and a
deep regression network (github.com/cistib/MI_
prediction_retina_mcVAE) (ResNet50). For the
mcVAE, we designed two pairs of encoder/decoders
to train the network, in which each pair is trained
on one of the two data channels (retinal and CMR
images), with a shared latent space. The full dia-
gram of the proposed method is presented in Figure
5. Details of the encoders and the decoders are de-
scribed in Extended Data Table 3.
Antelmi et al. [24] highlighted that using a sparse

version of the mcVAE ensures the evidence lower
bound generally reaches the maximum value at con-
vergence when the number of latent dimensions co-
incides with the true one used to generate the data.
Consequently, we used the sparse version of the mc-
VAE. We trained a sparse latent space z for both
channels of information. A detailed explanation of
how mcVAE works and the difference between this
and a vanilla VAE [25, 26, 27, 28] is provided in
Supplementary Material Section 3
Once the mcVAE was trained, we used the

learned latent space to train the deep regressor
(ResNet50). To do that, we used CMR images re-
constructed from the retinal images plus the demo-
graphic data (Stage II in Figure 5).

Prediction of Incident Myocardial Infarction
We evaluate the ability of the proposed approach

to estimate LVM and LVEDV from the retinal im-
ages and demographic data. As an additional ex-
periment, we predict myocardial infarction (MI)

utilising logistic regression in two settings: 1) us-
ing the demographic data alone; and 2) using
LVM/LVEDV estimated from the retinal images
and the demographic data, and subsequently, com-
bined with the latter for predicting MI. Logistic re-
gression eased interpretability, allowing us to com-
pare the weights/coefficients of the variables to-
wards the final prediction (See Figure 3). We ex-
tract the cases with MI events from the participants
not used to train the system to make this compar-
ison. This means, 73,477 participants out of a to-
tal 84,760 participants with retinal images. Of the
73,477, 2,954 subjects have previous MI. However,
we only consider the cases where MI occurred after
the retinal images were taken, which results in 992
MI cases and 70,523 no-MI cases.
We are dealing with imbalanced data. Hence,

we randomly resampled the normal cases to the
same number of MI cases (992). Previous stud-
ies [29] have highlighted that resampling the ma-
jority class is a robust solution when having hun-
dreds of cases in the minority class. Once the ma-
jority class was resampled, we performed 10-fold
cross-validation using logistic regression to predict
MI in the scenarios described previously (i.e. us-
ing only demographic and using demographic plus
LVM/LVEDV).
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