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ABSTRACT

Molecular Machine Learning (ML) bears promise for efficient molecule property prediction and drug discovery. However,
labeled molecule data can be expensive and time-consuming to acquire. Due to the limited labeled data, it is a great challenge
for supervised-learning ML models to generalize to the giant chemical space. In this work, we present MolCLR: Molecular
Contrastive Learning of Representations via Graph Neural Networks (GNNs), a self-supervised learning framework that
leverages large unlabeled data (∼10M unique molecules). In MolCLR pre-training, we build molecule graphs and develop
GNN encoders to learn differentiable representations. Three molecule graph augmentations are proposed: atom masking,
bond deletion, and subgraph removal. A contrastive estimator maximizes the agreement of augmentations from the same
molecule while minimizing the agreement of different molecules. Experiments show that our contrastive learning framework
significantly improves the performance of GNNs on various molecular property benchmarks including both classification and
regression tasks. Benefiting from pre-training on the large unlabeled database, MolCLR even achieves state-of-the-art on
several challenging benchmarks after fine-tuning. Additionally, further investigations demonstrate that MolCLR learns to embed
molecules into representations that can distinguish chemically reasonable molecular similarities.

Introduction

Molecular representation is fundamental and essential in the design of functional and novel chemical compounds1–3. Due to
the enormous magnitude of possible stable chemical compounds, development of an informative representation to generalize
among the entire chemical space can be challenging4. Conventional molecular representations, like Extended-Connectivity
Fingerprints (ECFP)5, have became standard tools in computational chemistry. Recently, with the development of machine
learning methods, data-driven molecular representation learning and its applications, including chemical property prediction6–8,
chemical modeling9–11, and molecule design12–14, have gathered growing attentions.

However, learning such representations can be difficult due to three major challenges. Firstly, it is hard to represent the
molecular information thoroughly. For instance, string-based representations, like SMILES15 and SELFIES16, fail to encode the
important topology information directly. To preserve the rich structural information, many recent works exploit Graph Neural
Networks (GNNs)17, 18, and have shown promising results in molecular property prediction7, 19, 20. Secondly, the magnitude of
chemical space is enormous21, e.g., the size of potential pharmacologically active molecules is estimated to be in the order of
106022. This places a great difficulty for any molecular representations to generalize among the potential chemical compounds.
Thirdly, labeled data for molecular learning tasks are expensive and far from sufficient, especially when compared with the size
of potential chemical space. Obtaining labels of molecular property usually requires sophisticated and time-consuming lab
experiments23. The breadth of chemical research further complicates the challenges because the properties of interest range
from quantum mechanics to biophysics24. Consequently, the number of labels in most molecular learning benchmarks is far
from adequate. Machine learning models trained on such limited data can easily get over-fit and perform poorly on molecules
dissimilar to the training set.

Molecular representation learning has been growing rapidly over the last decade with the development and success of
machine learning, especially Deep Neural Networks (DNNs)6, 25, 26. In conventional cheminformatics, molecules are represented
in unique fingerprint (FP) vectors, such as ECFP. Given the FPs, DNNs are built to predict certain properties27–29. Besides
the FP, string-based representations (e.g., SMILES) are widely used for molecular learning30, 31. Language models built upon
RNNs are a direct fit for learning representation from SMILES32, 33. With the recent success of transformer-based architectures,
such language models have been also utilized in learning representations from SMILES34, 35. Recently, GNNs, which naturally
encode the structure information, have been introduced to molecular representation learning6, 36. MPNN7 and D-MPNN20
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Figure 1. Overview of MolCLR. (a) MolCLR pre-training: A SMILES sn from a mini-batch of N molecule data is converted
to a molecule graph Gn. Two stochastic molecule graph data augmentation operators are applied to each graph, resulting two
correlated masked graphs: G̃2n−1 and G̃2n. A base feature encoder built upon graph convolutions and the readout operation
extracts the representation h2n−1, h2n. Contrastive loss is utilized to maximize agreement between the latent vectors z2n−1, z2n
from the MLP projection head. (b) Molecule graph augmentation strategies: atom masking, bond deletion, and subgraph
removal. (c) The whole MolCLR framework: GNNs are first pre-trained via MolCLR to learn representative features.
Fine-tuning for downstream molecular property predictions shares the pre-trained parameters of the GNN encoder and
randomly initializes an MLP head. It then follows the supervised learning to train the model.

implement a message-passing architecture to aggregate the information from molecule graphs. Further, SchNet19 models
quantum interactions within molecules in the GNN. DimeNet37 integrates the directional information by transforming messages
based on the angle between atoms.

Benefiting from the growth of available molecule data24, 38–40, self-supervised/pre-trained molecular representation learning
has also been investigated. Self-supervised language models, like BERT41, have been implemented to learn molecular
representation with SMILES as input42, 43. On molecule graph, N-Gram Graph44 builds the representation for the graph by
assembling the vertex embedding in short walks, which needs no training. Hu et al.45 propose both node-level and graph-level
tasks for GNN pre-training. However, the graph-level pre-training is based on supervised-learning tasks, which is constraint by
limited labels. You et al.46 extends the contrastive learning to unstructured graph data, but the framework is not specifically
designed for molecule graph learning and is only trained on limited molecular data.

In this work, we propose MolCLR: Molecular Contrastive Learning of Representations via Graph Neural Networks
shown in Figure 1 to address all the above challenges. MolCLR is a self-supervised learning framework trained on the large
unlabeled molecular dataset with∼10M unique molecules. Through contrastive loss47, 48, MolCLR learns the representations by
contrasting positive molecule graph pairs against negative ones. Three molecule graph augmentation strategies are introduced:
atom masking, bond deletion, and subgraph removal. Molecule graph pairs augmented from the same molecule are denoted
as positive, while others are denoted as negative. Widely-used GNN models, Graph Convolutional Network (GCN)17 and
Graph Isomorphism Network (GIN)18, are developed as GNN encoders in MolCLR to extract informative representation from
molecule graphs. The pre-trained model is then fine-tuned on the downstream molecular property prediction benchmarks
from MoleculeNet24. In comparison to GCN and GIN trained via supervised learning, our MolCLR significantly improves
the performance on both classification and regression tasks. Benefiting from pre-training on the large database, MolCLR
surpasses other self-supervised learning and pre-training strategies in multiple molecular benchmarks. Moreover, on several
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tasks, our MolCLR rivals or even exceeds supervised learning baselines which include sophisticated graph convolution
operations for molecules or domain-specific featurization. We also demonstrate that our molecule graph augmentation strategies
improve the performance of supervised learning on molecular benchmarks when utilized as a direct data augmentation plug-in.
Further comparison between MolCLR representations and conventional FPs indicates MolCLR learns to distinguish molecular
similarities from pre-training on the large unlabeled data.

To summarize, (1) We propose MolCLR, a self-supervised learning framework for molecular representation learning. (2)
Three molecule graph augmentation strategies are introduced to generate contrastive pairs, namely atom masking, bond deletion,
and subgraph removal. (3) Benefiting from pre-training on large unlabeled data, simple GNN models trained via MolCLR
demonstrate significant improvements on all molecular benchmarks in comparison to supervised learning. (4) MolCLR even
boosts simple GNN models to the state-of-the-art (SOTA) on several molecular benchmarks with fine-tuning, compared to
more sophisticated GNNs which cannot utilize unlabeled data.

Results

MolCLR Framework
Our MolCLR model is developed upon the contrastive learning framework48, 49. Latent representations from positive augmented
molecule graph pairs are contrasted with representations from negative pairs. The whole pipeline (Figure 1(a)) is composed
of four components: data processing and augmentation, GNN-based feature extractor, non-linear projection head, and the
normalized temperature-scaled cross-entropy (NT-Xent)48 contrastive loss.

Given a SMILES data sn from a mini-batch of size N, the corresponding molecule graph Gn is built, in which each node
represents an atom and each edge represents a chemical bond between atoms. Using molecule graph augmentation strategies,
Gn is transformed into two different but correlated molecule graphs: G̃i and G̃ j, where i = 2n− 1 and j = 2n. Molecule
graphs augmented from the same molecule are denoted as a positive pair, whereas those from different molecules are denoted
as negative pairs. The feature extractor f (·) is modeled by GNNs and maps the molecule graphs into the representations
hi,h j ∈ Rd . In our case, we implement GCN17 and GIN18 with an average pooling as the feature extractor. A non-linear
projection head g(·) is modeled by an MLP with one hidden layer, which maps the representations hi and h j into latent vectors zi
and z j, respectively. Normalized temperature cross-entropy (NT-Xent) loss48 is applied to the 2N latent vectors z’s to maximize
the agreement of positive pairs while minimizing the agreement of negative ones. The framework is pre-trained on the ∼10M
unlabeled data from PubChem40.

The MolCLR pre-trained GNN models are fine-tuned for molecular property prediction as shown in Figure 1(c). Similarly
to the pre-training model, the prediction model consists of a GNN backbone and an MLP head, in which the former shares
the same model as the pre-trained feature extractor, and the latter maps features into the predicted molecular property. The
GNN backbone in the fine-tuning model is initialized by parameter sharing from the pre-trained model while the MLP head
is initialized randomly. The whole fine-tuning model is then trained in a supervised learning manner on the target molecular
property database. More details can be found in the Methods section.

Molecule Graph Augmentation
We employ three molecule graph data augmentation strategies (Figure 1(b)) for input molecules in MolCLR: atom masking,
bond deletion, and subgraph removal.

Atom Masking Atoms in the molecule graph are randomly masked with a given ratio. When an atom is masked, its atom
feature xxxv is replaced by a mask token mmm, which is distinguished from any atom features in the molecule graph shown by the red
box in Figure 1(b). Through masking, the model is forced to learn the intrinsic chemical information (such as possible types of
atoms connected by certain covalent bonds) within molecules.

Bond Deletion Bond deletion randomly deletes chemical bonds between the atoms with a certain ratio as the yellow box in
Figure 1(b) illustrates. Unlike atom masking which substitutes the original feature with a mask token, bond deletion is a more
rigorous augmentation as it removes the edges completely from the molecule graph. Forming and breaking of chemical bonds
between atoms determines the attributes of molecules in chemical reactions50. Bond deletion mimics the breaking of chemical
bonds which prompts the model to learn correlations between the involvements of one molecule in various reactions.

Subgraph Removal Subgraph removal can be considered as a combination of atom masking and bond deletion. Subgraph
removal starts from a randomly picked origin atom. The removal process proceeds by masking the neighbors of the original
atom, and then the neighbors of the neighbors, until the number of masked atoms reaches a given ratio of the total number of
atoms. The bonds between the masked atoms are then deleted, such that the masked atoms and deleted bonds form an induced
subgraph of the original molecule graph. As the blue box in Figure 1(b) shows, the removed subgraph includes all the bonds
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between the masked atoms. By matching the molecule graphs with different substructures removed, the model learns to find the
remarkable motifs within the remaining subgraphs51 which greatly determines the molecular properties.

Molecular Property Predictions

Dataset BBBP Tox21 ClinTox HIV BACE SIDER MUV
# Molecules 2039 7831 1478 41127 1513 1427 93087
# Tasks 1 12 2 1 1 27 17

RF 71.4±0.0 76.9±1.5 71.3±5.6 78.1±0.6 86.7±0.8 68.4±0.9 63.2±2.3
SVM 72.9±0.0 81.8±1.0 66.9±9.2 79.2±0.0 86.2±0.0 68.2±1.3 67.3±1.3
GCN17 71.8±0.9 70.9±2.6 62.5±2.8 74.0±3.0 71.6±2.0 53.6±3.2 71.6±4.0
GIN18 65.8±4.5 74.0±0.8 58.0±4.4 75.3±1.9 70.1±5.4 57.3±1.6 71.8±2.5
SchNet19 84.8±2.2 77.2±2.3 71.5±3.7 70.2±3.4 76.6±1.1 53.9±3.7 71.3±3.0
MGCN52 85.0±6.4 70.7±1.6 63.4±4.2 73.8±1.6 73.4±3.0 55.2±1.8 70.2±3.4
D-MPNN20 71.2±3.8 68.9±1.3 90.5±5.3 75.0±2.1 85.3±5.3 63.2±2.3 76.2±2.8

Hu et al.45 70.8±1.5 78.7±0.4 78.9±2.4 80.2±0.9 85.9±0.8 65.2±0.9 81.4±2.0
N-Gram44 91.2±3.0 76.9±2.7 85.5±3.7 83.0±1.3 87.6±3.5 63.2±0.5 81.6±1.9
MolCLRGCN 73.8±0.2 74.7±0.8 86.7±1.0 77.8±0.5 78.8±0.5 66.9±1.2 84.0±1.8
MolCLRGIN 73.6±0.5 79.8±0.7 93.2±1.7 80.6±1.1 89.0±0.3 68.0±1.1 88.6±2.2

Table 1. Test performance of different models on seven classification benchmarks. The first seven models are supervised
learning methods and the last four are self-supervised/pre-training methods. Mean and standard deviation of test ROC-AUC
(%) on each benchmark are reported.*
*Best performing supervised and self-supervised/pre-training methods for each benchmark are marked as bold.

Dataset FreeSolv ESOL Lipo QM7 QM8 QM9
# Molecules 642 1128 4200 6830 21786 130829
# Tasks 1 1 1 1 12 8

RF 2.03±0.22 1.07±0.19 0.88±0.04 122.7±4.2 0.0423±0.0021 16.061±0.019
SVM 3.14±0.00 1.50±0.00 0.82±0.00 156.9±0.0 0.0543±0.0010 24.613±0.144
GCN17 2.87±0.14 1.43±0.05 0.85±0.08 122.9±2.2 0.0366±0.0011 5.796±1.969
GIN18 2.76±0.18 1.45±0.02 0.85±0.07 124.8±0.7 0.0371±0.0009 4.741±0.912
SchNet19 3.22±0.76 1.05±0.06 0.91±0.10 74.2±6.0 0.0204±0.0021 0.081±0.001
MGCN52 3.35±0.01 1.27±0.15 1.11±0.04 77.6±4.7 0.0223±0.0021 0.050±0.002
D-MPNN20 2.18±0.91 0.98±0.26 0.65±0.05 105.8±13.2 0.0143±0.0022 3.241±0.119

Hu et al.45 2.83±0.12 1.22±0.02 0.74±0.00 110.2±6.4 0.0191±0.0003 4.349±0.061
N-Gram44 2.51±0.19 1.10±0.03 0.88±0.12 125.6±1.5 0.0320±0.0032 7.636±0.027
MolCLRGCN 2.39±0.14 1.16±0.00 0.78±0.01 83.1±4.0 0.0181±0.0002 3.552±0.041
MolCLRGIN 2.20±0.20 1.11±0.01 0.65±0.08 87.2±2.0 0.0174±0.0013 2.357±0.118

Table 2. Test performance of different models on six regression benchmarks. The first seven models are supervised learning
methods and the last four are self-supervised/pre-training methods. Mean and standard deviation of test RMSE (for FreeSolv,
ESOL, Lipo) or MAE (for QM7, QM8, QM9) are reported.*
*Best performing supervised and self-supervised/pre-training methods for each benchmark are marked as bold.

To demonstrate the effectiveness of MolCLR, we benchmark the performance on multiple challenging classification and
regression tasks from MoleculeNet24. Details of molecular datasets can be found in Supplementary Table 1 and Supplementary
Table 2. Table 1 shows the test ROC-AUC (%) of our MolCLR model on classification tasks in comparison to supervised and self-
supervised/pre-training baseline models. The average and standard deviation of three individual runs are reported. MolCLRGCN
and MolCLRGIN denotes MolCLR pre-training with GCN and GIN as feature extractors, respectively. Observations from
Table 1 are the followings. (1) In comparison with other self-supervised learning or pre-training strategies, our MolCLR
framework achieves the best performance on 5 out of 7 benchmarks, with an average improvement of 4.0%. Such improvement
illustrates that our MolCLR is a powerful self-supervised learning strategy, which is easy to implement and requires little
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domain-specific sophistication. (2) Compared with best-performing supervised learning baselines, MolCLR also shows rival
performance. In some benchmarks (e.g., ClinTox, BACE, MUV), our pre-training model even surpasses the SOTA supervised
learning methods, which include sophisticated aggregation operations or domain-specific featurization. For instance, on
ClinTox, MolCLR improves the ROC-AUC by 2.7% with respect to supervised D-MPNN. (3) Notably, MolCLR performs
remarkably well on datasets with a limited number of molecules, like ClinTox, BACE, and SIDER. The performance validates
that MolCLR learns informative representations that can be transferred among different datasets.

Table 2 includes the test performance of MolCLR and baseline models on regression benchmarks. FreeSolv, ESOL, and
Lipo use root-mean-square error (RMSE) as the evaluation metric while QM7, QM8, and QM9 are measured via mean-absolute
error (MAE), following the recommendation from MoleculeNet24. Regression tasks are more challenging in comparison with
classification since the latter only considers manually-defined discrete labels. Observations from Table 2 are the followings. (1)
MolCLR surpasses other pre-training baselines in 5 out of 6 benchmarks and achieves almost the same performance on the
remaining ESOL benchmark. Compared to Hu et al.45, which also implements GIN as the encoder, MolCLRGIN outperforms it
on all the 6 regression databases. On QM7 and QM9, for example, the improvement ratios over Hu et al. are 20.9% and 45.8%,
respectively. (2) In comparison with supervised learning models, MolCLR reaches competitive performance in most cases. For
example, MolCLR obtains similar results as the best performing supervised D-MPNN on Lipo database. Also, GCN and GIN
achieve better prediction performance via MolCLR pre-training on all regression benchmarks. Although, in QM9, MolCLR
does not rival with supervised SchNet19 and MGCN52. As the two models are specifically designed for quantum interaction
and make use of extra 3D positional information. Notably, though SchNet and MGCN demonstrate superior performance on
datasets concerning quantum mechanics properties (i.e., QM7, QM8, and QM9), while they do not show advantages over other
supervised learning baselines on remaining benchmarks. Moreover, MolCLR pre-training is still demonstrated to be effective
on the challenging QM9 benchmark. In comparison to GCN and GIN without pre-training, MolCLR still greatly boosts the
performance by 38.7% and 50.3%, respectively. Also, MolCLR performs better than other self-supervised learning baselines on
QM9, which validates the efficacy of MolCLR. Since properties in QM9 have of various units and magnitudes, detailed results
of QM9 are reported in Supplementary Table 3.

Both Table 1 and Table 2 show MolCLR pre-training greatly improves the performance on all the benchmarks compared to
supervised GCN and GIN, which demonstrates the effectiveness of MolCLR. On classification benchmarks, the average gains
via MolCLR are 12.4% for GCN and 16.8% for GIN. Similarly, on regressions, the averaged improvement ratios are 27.6%
for GCN and 33.5% for GCN. In general, GIN demonstrates more improvement than GCN through MolCLR pre-training.
This could be because GIN has more parameters and are capable of learning more representative molecular features. Also,
MolCLR shows better prediction accuracy in comparison to other pre-training/self-supervised learning baselines in most cases.
It should be emphasized that MolCLR benefits from pre-training on large unlabeled databases while the other supervised/self-
supervised learning baselines do not. Leverage of unlabeled data provides a great advantage for MolCLR over other baselines
in generalizing among the chemical space and various molecular properties. Influence of the pre-training database on MolCLR
is further investigated in Supplementary Table 4 and Supplementary Figure 1. Such capability of generalization bears promises
for predicting potential molecular properties in drug discovery and design.

Optimal Molecule Graph Augmentations
To systematically analyze the effect of molecule graph augmentation strategies, we compare different compositions of atom
masking, bond deletion, and subgraph removal. Shown in Figure 2(a) are the ROC-AUC (%) mean and standard deviation of
each data augmentation strategy on different benchmarks. Four augmentation strategies are considered. (1) Integration of atom
masking and bond deletion with both ratios p set to 25%. (2) Subgraph removal with a random ratio p from 0% to 25%. (3)
Subgraph removal with a fixed 25% ratio. (4) Composition of all the three augmentation methods. Specifically, a subgraph
removal with a random ratio 0% to 25% is applied at first. Then if the ratio of masked atoms is smaller than 25%, we continue
to randomly mask atoms until it reaches the ratio of 25%. Similarly, if the bond deletion ratio is smaller than 25%, more bonds
are deleted to reach the set ratio.

As Figure 2(a) illustrates, subgraph removal with a 25% ratio reaches the best performance on average among all the four
compositions. Its outstanding performance can be attributed to that subgraph removal is an intrinsic combination of atom
masking and bond deletion, and that subgraph removal further disentangles the local substructures compared with strategy
(1). However, subgraph removal with a fixed 25% ratio performs poorly in BBBP dataset because the molecule structures
in BBBP are sensitive, such that a slight topology change can cause great property difference. Besides, it is worth noticing
that the composition of all three augmentations (strategy (4)) hurts the ROC-AUC compared with single subgraph removal
augmentation in most benchmarks. A possible reason is that the composition of all the three augmentation strategies can
remove a wide range of substructures within the molecule graph, thus eliminate the important topology information. In general,
subgraph removal achieves superior performance in most benchmarks. However, it is also indicated that the optimal molecule
graph augmentation is task-independent.
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Figure 2. Investigation of molecule graph augmentations on classification benchmarks. (a) Test performance of MolCLR
models with different compositions of molecule graph augmentation strategies. (b) Test performance of GIN models trained via
supervised learning with and without molecular graph augmentations. The height of each bar represents the mean ROC-AUC
(%) on the benchmark, and the length of each error bar represents the standard deviation.

Molecule Graph Augmentation on Supervised Learning
The molecule graph augmentation strategies in our work, namely atom masking, bond deletion, and subgraph removal,
can be implemented as a generic data augmentation plug-in for any graph-based molecular learning methods. To validate
the effectiveness of molecule graph augmentations on supervised molecular tasks, we train GIN models with and without
augmentations from random initialization. Specifically, subgraph masking with a fixed ratio 25% is implemented as the
augmentation. Figure 2(b) documents the mean and standard deviation of test ROC-AUC (%) over the seven molecular
property classification benchmarks. On all the seven benchmarks, GINs trained with augmentations surpass the models without
augmentations. Molecule graph augmentations improve the averaged ROC-AUC score by 7.2%. Implementation of our
molecule graph augmentation strategies on supervised molecular property prediction tasks improves the performance greatly
even without pre-training. It is indicated that molecule graph augmentations are effective in helping GNNs learn robust and
representative features. For instance, subgraph removal matches partially observed molecule graphs. Therefore, the model
learns to find the remarkable motifs within the remaining subgraphs which greatly benefits molecular property learning.

Investigation of MolCLR Representation
We examine the representations learned by pre-trained MolCLR using t-SNE embedding53. The t-SNE algorithm maps
similar molecular representations to adjacent points in two-dimension (2D). Shown in Figure 3 are 100K molecules from the
validation set of the PubChem database embedded to 2D via t-SNE, colored based on the molecular weights. We also include
some randomly selected molecules in the figure to illustrate what are the similar/dissimilar molecules learned by MolCLR
pre-training. As shown in Figure 3, MolCLR learns close representations for molecules with similar topology structures and
functional groups. For instance, the three molecules shown on the top possess carbonyl groups connected with aryls. The
two molecules shown on the bottom left have similar structures, where a halogen atom (Fluorine or Chlorine) is connected to
benzene. This illustrates that even without labels, the model learns intrinsic connections between molecules as molecules with
similar properties have close features. More visualizations of MolCLR representations can be found in Supplementary Figure 2.

To further evaluate MolCLR, we compare the MolCLR-learned representations with conventional molecular fingerprints
(FPs), e.g., ECFP5 and RDKFP. In particular, given a query molecule, we extract its representation via MolCLR and calculate
its cosine distances with all reference molecules in our pre-training database. Cosine distance between two representations
(uuu,vvv) are defines as 1− uuu·vvv

‖uuu‖‖vvv‖ . All reference molecules are then ranked by the representation distances and uniformly divided
into 20 bins based on the ranking percentage. The lower the percentage threshold is, the more similar molecules are expected
with respect to the query, as the MolCLR representations are closer. Within each bin, 5000 molecules are randomly selected
and their dice FP similarities with the query are calculated. Figure 4 shows an example of a query molecule (PubChem ID
42953211). Shown in Figure 4(a) are the mean and standard deviation of FP similarities within each bin. The distribution of
similarities using both ECFP and RDKFP are shown in Figure 4(b). ECFP tends to obtain lower similarities than RDKFP since
the former covers a wider range of features relevant to molecular activity. It is shown, though, as the MolCLR representation
distance increases, both the ECFP and RDKFP similarities decrease. The averaged RDKFP similarities at the top 5% is ∼0.9
and drops to ∼0.67 at the last 5%. Similarly, the averaged ECFP similarity drops from ∼0.49 at the top 5% to ∼0.21 at the
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Figure 3. Visualization of molecular representations learned by MolCLR via t-SNE. Representations are extracted from the
validation set of the pre-training dataset, which contains 100k unique molecules. Each point is colored by its corresponding
molecular weight. Some molecules close in the representation domain are also shown.

last 5%. Though there are fluctuations as the percentage threshold increases, the overall tendencies are consistent among the
MolCLR learned representations and chemical FPs. Namely, the distance between MolCLR representations effectively reflects
the molecular similarity. Besides, 9 molecules that are closest to the query molecule in the MolCLR representation domain are
illustrated in Figure 4(c) with both FPs similarities labeled. These molecules share high RDKFP similarities from 0.833 to
0.985, which further demonstrate MolCLR learns chemically meaningful representations. It is observed that these selected
molecules share the same functional groups, including alkyl halides (chlorine), tertiary amines, ketones, and aromatics. A
thiophene structure can also be found in all the molecules. Notably, the second molecule in the first row in Figure 4(c) is
exactly the same as the query molecule except for the position of the chlorine, hence the highest similarities. It is indicated
that through contrastive learning on large unlabeled data, MolCLR automatically embeds molecules to representative features
and distinguishes the compounds in a chemically reasonable manner. More examples of query molecules can be found in
Supplementary Figure 3.

Conclusion
In this work, we investigate self-supervised learning for molecular representation. Specifically, we propose Molecular
Contrastive Learning of Representations (MolCLR) via GNNs and three molecular graph augmentations strategies: atom
masking, bond deletion, and subgraph removal. Through contrasting positive pairs against negative pairs from augmentations,
MolCLR learns informative representation with general GNN backbones. Experiments show that MolCLR pre-trained GNN
models achieve great improvement on various molecular benchmarks, and show better generalizations compared with models
trained in the supervised learning manner.

Molecular representations learned by MolCLR demonstrate the transferability to molecular tasks with limited data and the
power of generalization on the large chemical space. There are many promising directions to investigate as future works. For
instance, improvement of the GNN backbones (e.g. transformer-based GNN architectures54) can help extract better molecular
representations. Besides, visualization and interpretation of self-supervised learned representations are of great interest55. Such
investigations can help researchers better understand chemical compounds and benefit drug discovery.
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Figure 4. Comparison of MolCLR-learned representations and conventional FPs using the query molecule (PubChem ID
42953211). (a) Change of ECFP and RDKFP similarities with respect to the distance between MolCLR representations. (b)
Distribution of ECFP and EDKFP similarities with the query molecule. (c) The query molecule and 9 closest molecules in
MolCLR representation domain with RDKFP and ECFP similarities labeled.

Methods
Graph Neural Networks
In our work, a molecule graph G is defined as G = (V,E), where V and E are nodes (atoms) and edges (chemical bonds),
respectively56. Modern Graph Neural Networks (GNNs) utilize a neighborhood aggregation operation, which updates the node
representation iteratively17. The aggregation update rule for a node feature on the k-th layer of a GNN is given in Equation 1:

aaa(k)v = AGGREGATE(k)({hhh(k−1)
u : u ∈N (v)}), hhh(k)v = COMBINE(k)(hhh(k−1)

v ,aaa(k)v ), (1)

where hhh(k)v is the feature of node v at the k-th layer and hhh(0)v is initialized by node feature xxxv. N (v) denotes the set of all the
neighbors of node v. To further extract a graph-level feature hhhG, readout operation integrates all the node features among the
graph G as given in Equation 2:

hhhG = READOUT({hhh(k)u : v ∈ G}). (2)

In our work, we build GNN encoders based on GCN17 and GIN18. GCN integrates the aggregation and combination operations
by introducing a mean-pooling over the node itself and its adjacencies before the linear transformation. While GIN utilizes an
MLP and weighted summation of node features in the aggregation. Both are simple yet generic graph convolutional operations.
Additionally, we implement widely-used mean pooling as the readout.
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Contrastive Learning
Contrastive learning57 aims at learning representation through contrasting positive data pairs against negative pairs. SimCLR48

demonstrates that contrastive learning for images can greatly benefits from the composition of data augmentations and large
batch sizes. Based on InfoNCE loss47, SimCLR proposes the NT-Xent loss as given in Equation 3:

Li, j =− log
exp(sim(zzzi,zzz j)/τ)

∑
2N
k=11{k 6= i}exp(sim(zzzi,zzzk)/τ)

, (3)

where zzzi and zzz j are latent vectors extracted from a positive data pair, N is the batch size, sim(·) measures the similarity between
the two vectors, and τ is the temperature parameter. In our MolCLR, we follow the NT-Xent loss to conduct pre-training on

GNN encoders and implement cosine similarity as sim(zi,z j) =
zT
i z j

‖zi‖2‖z j‖2
. Further investigation of τ on MolCLR pre-training

is included in Supplementary Table 5. Though contrastive learning frameworks have been implemented to various domains,
including unstructured graphs46, sentence embeddings58, and robotics planning59. Contrastive learning has not yet been
investigated comprehensively and elaborately for molecule graphs.

Datasets
Pre-training Dataset. For MolCLR pre-training, we use ∼10 million unique unlabeled molecule SMILES collected by
ChemBERTa42 from PubChem40. RDKit60 is then utilized to build the molecule graphs and extract chemical features from the
SMILES strings. Within the molecule graph, each node represents an atom and each edge represents a chemical bond. We
randomly split the pre-training dataset into training and validation set with a ratio of 95/5.

Downstream Datasets. To benchmark the performance of our MolCLR framework, we use 13 datasets from MoleculeNet24,
containing 44 binary classification tasks and 24 regression tasks in total. These tasks cover molecule properties of multiple
domains. For all datasets except QM9, we use the scaffold split to create an 80/10/10 train/valid/test split as suggested in45.
Unlike the common random split, the scaffold split, which is based on molecular substructures, makes the prediction task
more challenging yet realistic. QM9 follows the random splitting setting as implementations of most related works19, 44, 52 for
comparison.

Training Details
Each atom on the molecule graph is embedded by its atomic number and chirality type, while each bond is embedded by its
type and direction. We implement a 5-layer graph convolutions17, 18 with ReLU activation as the GNN backbone, and follow
the modification in Hu et al.45 to make aggregations compatible with edge features. An average pooling is applied on each
graph as the readout operation to extract the 512-dimension molecular representation. An MLP with one hidden layer maps the
representation into a 256-dimension latent space. Adam61 optimizer with weight decay 10−5 is used to optimize the NT-Xent
loss. After the initial 10 epochs with a learning rate, 5×10−4, a cosine learning decay is implemented. The model is trained
with batch size 512 for the total 50 epochs.

For the downstream task fine-tuning, we add a randomly initialized MLP on top of the base GNN feature extractor. Softmax
cross-entropy loss and `1 loss are implemented for classification and regression tasks, respectively. On each task, we conduct
100-epoch fine-tuning of the pre-trained model three times to get the average and standard deviation of performance on the test
set. We train the model on training set only and perform search of hyper-parameters on the validation set for the best results.
The whole framework is implemented based on Pytorch Geometric62. More fine-tuning details are included in Supplementary
Table 6.

Baselines
Supervised learning models. We comprehensively evaluate the performance of our MolCLR model in comparison with
supervised learning methods. For shallow machine learning models, Random Forest (RF)63 and Support Vector Machine
(SVM)64 are implemented, which take molecular FPs as the input. Multiple GNNs are also included. GCN17 and GIN18, 45 with
edge feature involved in aggregation are considered. Besides, several GNN models which achieve SOTA on several molecular
benchmarks are implemented as baselines, i.e., SchNet19, MGCN52, and D-MPNN20. These GNNs are designed specifically
for molecular. For example, SchNet and MGCN explicitly model quantum interactions within molecules.

Self-supervised learning models. To better demonstrate the effectiveness of MolCLR framework, we further include other
pre-training or self-supervised learning models as baselines. Hu et al.45 proposes both node-level and graph-level pre-training
for molecule graphs. It should be pointed out that though node-level pre-training is based on self-supervision, while the
graph-level pre-training is supervised on some molecule property labels45. N-Gram graph44 is also implemented, which
computes a compact representation directly through the molecule graph.
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Data availability
The pre-training data and molecular prooerty prediction benchmarks used in this work are available in the both the CodeOcean
capsule: https://doi.org/10.24433/CO.8582800.v165 and the Github repository: https://github.com/yuyangw/MolCLR.

Code availability

The code accompanying this work are available in both the CodeOcean capsule: https://doi.org/10.24433/CO.8582800.v165 and
the Github repository: https://github.com/yuyangw/MolCLR.
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Supplementary Information

1 Details of Molecular Datasets

Table 1 summarizes all the benchmarks used in our work. These benchmarks from MoleculeNet24 cover a wide variety
of molecular properties, including physiology (i.e., BBBP, Tox21, SIDER, ClinTox), biophysics (i.e., BACE, MUV, HIV),
physical chemistry (i.e., FreeSolv, Lipo, ESOL), and quantum mechanics (i.e., QM7, QM8, QM9). Also, numbers of data vary
significantly among the benchmarks, ranging from less than 1K to more than 130K. All benchmarks except QM9 are scaffold
split to train/validation/test sets by the ratio of 8/1/1, which provides a more challenging yet realistic setting. Random splitting
is implemented on QM9 following the settings in most related works19, 44, 52 for comparison. ROC-AUC is used as the metric
for classification tasks while RMSE and MAE are used for regression tasks.

Dataset # Molecules # Tasks Task type Metric Split

BBBP 2039 1 Classification ROC-AUC Scaffold
Tox21 7831 12 Classification ROC-AUC Scaffold
ClinTox 1478 2 Classification ROC-AUC Scaffold
HIV 41127 1 Classification ROC-AUC Scaffold
BACE 1513 1 Classification ROC-AUC Scaffold
SIDER 1427 27 Classification ROC-AUC Scaffold
MUV 93087 17 Classification ROC-AUC Scaffold

FreeSolv 642 1 Regression RMSE Scaffold
ESOL 1128 1 Regression RMSE Scaffold
Lipo 4200 1 Regression RMSE Scaffold
QM7 6830 1 Regression MAE Scaffold
QM8 21786 12 Regression MAE Scaffold
QM9 130829 8 Regression MAE Random

Table 1. Summary of all the benchmarks for molecular property predictions used in this work.

We follow Hu et al.45 to build a simple yet unambiguous set of node and bond features to embed the two-dimensional
(2D) molecular graph. RDKit is used to convert SMILES to a 2D graph and extract the features. The details of node and edge
features can be found in Table 1. When a node is masked, the atomic number is set to 119 and chirality to unspecified.

Feature type Feature name Range

Node feature Atomic number [1, 119]
Chirality {unspecified, tetrahedral CW, tetrahedral CCW, other}

Edge feature Bond type {single, double, triple, aromatic}
Bond direction {none, end-upright, end-downright}

Table 1. Node and edge features used in MolCLR.
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2 Detailed Results of QM9
Table 2 reports detailed results on QM9 database. The property name, unit, mean and std of test MAE for all the models
are included. Not surprisingly, SchNet19 and MGCN52 outperform the other models greatly. These two models successfully
develop interaction layers, which elaborately take quantum interactions into consideration as titles of both works indicate.
Besides, both models include 3D positional information as the input, which benefits quantum mechanics property predictions.
However, MolCLR pre-training is still demonstrated to be effective on this challenging benchmark. MolCLR shows better
prediction accuracy in 7 out 8 tasks among all the pre-training/self-supervised models. MolCLRGIN surpasses Hu et al.45 in all
the tasks, which also utilizes GIN as the encoder. Besides, in comparison to GCN and GIN trained via supervised learning,
MolCLRGCN and MolCLRGIN improve the performance on all the tasks within QM9. MolCLR also obtains lower test MAE
when set side-by-side with another supervised baseline, D-MPNN20.

Property εHOMO εLUMO ∆ε ZPVE µ α 〈R2〉 Cv
Unit eV eV eV eV D bohr3 bohr2 cal/mol K

RF 0.186±0.001 0.276±0.002 0.269±0.001 0.276±0.000 0.658±0.004 3.245±0.015 121.837±0.124 1.738±0.003
SVM 0.148±0.000 0.234±0.002 0.248±0.004 0.157±0.000 0.750±0.004 4.065±0.057 189.510±1.078 1.795±0.010
GCN17 0.115±0.010 0.133±0.007 0.174±0.013 0.075±0.018 0.532±0.015 1.495±0.338 43.325±15.140 0.514±0.209
GIN18 0.097±0.005 0.103±0.010 0.138±0.004 0.055±0.021 0.483±0.004 1.315±0.405 35.278±6.779 0.457±0.073
SchNet19 0.041±0.001 0.034±0.003 0.063±0.002 0.002±0.000 0.033±0.001 0.235±0.061 0.073±0.002 0.033±0.000
MGCN52 0.042±0.001 0.057±0.002 0.064±0.001 0.001±0.000 0.056±0.002 0.030±0.007 0.113±0.001 0.038±0.001
D-MPNN20 0.093±0.005 0.106±0.002 0.148±0.003 0.037±0.004 0.450±0.006 0.493±0.008 24.371±0.922 0.244±0.005

HU. et.al45 0.116±0.000 0.118±0.000 0.161±0.001 0.083±0.001 0.543±0.001 1.725±0.008 55.418±0.291 0.705±0.012
N-Gram44 0.142±0.001 0.138±0.001 0.193±0.001 0.009±0.000 0.540±0.002 0.611±0.022 59.137±0.178 0.334±0.007
MolCLRGCN 0.104±0.000 0.110±0.001 0.149±0.001 0.045±0.004 0.507±0.002 0.644±0.053 26.600±0.257 0.259±0.011
MolCLRGIN 0.087±0.000 0.092±0.000 0.127±0.000 0.033±0.004 0.464±0.001 0.463±0.017 17.425±0.919 0.164±0.002

Table 2. Test MAE of different models for each property in QM9.
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3 Investigation of Pre-training Datasets for MolCLR
MolCLR pre-training makes use of the large unlabeled molecular data. We also investigate whether pre-training on certain
dataset benefits molecular property predictions of its own. To this end, we conduct MolCLR pre-training on MUV and QM9
as shown in Table 3, since these are the two largest datasets in MoleculeNet24. Within the table, MolCLRPubChem denotes
MolCLR framework pre-trained on the ∼10M unlabeled molecules from PubChem40. MolCLRMUV and MolCLRQM9 indicates
pre-training on MUV and QM9, respectively. The training and fine-tuning follow the same setting reported in the main
manuscript. To avoid data leakage, we split the MUV and QM9 into train/validation/test by the ratio of 8:1:1 and only pre-train
the models on the training splits. When conducting fine-tuning on MUV, MolCLR pre-training on MUV improves the test
ROC-AUC by 15.4% and MolCLR pre-trained on QM9 also obtains a great improvement by 14.9% in comparison with no
pre-training. Not surprisingly, MolCLR pre-trained on the 10M dataset performs the best better as it benefits from larger
unlabeled molecular data. Similarly, on QM9, pre-training on MUV and QM9 decreases the test MAE by 1.553 and 2.010,
respectively. As expected, MolCLRPubChem achieves the larges improvement by 2.384 on QM9. Therefore, pre-training on the
dataset itself via MolCLR boosts the performance significantly. Also, the pre-trained model on one dataset can be directly
transferred to another and outperforms training from scratch.

Metric Supervised MolCLRMUV MolCLRQM9 MolCLRPubChem

MUV ROC-AUC (%) 71.8±2.5 87.2±2.1 86.7±2.8 88.6±2.2

QM9 MAE 4.741±0.912 3.188±0.441 2.731±0.019 2.357±0.118

Table 3. Comparison of MolCLR pre-training on different datasets. Test ROC-AUC (%) are reported for MUV and MAE for
QM9. Supervised indicates supervised learning with no pre-training. MolCLRMUV MolCLRQM9, and MolCLRPubChem denote
MolCLR pre-training on the MUV, QM9, and ∼10M PubChem, respectively.

We further probe the influence of the magnitude of pre-training datasets on MolCLR. Subsets of size 10K, 100K, and 1M
are randomly sampled from the whole ∼10M PubChem pre-training dataset. Figure 3(a) and Figure 3(b) report the test results
of different pre-training data size on HIV and ESOL databases. Pre-training dataset size 0 indicates supervised learning is
directly conducted without pre-training. As the number of data increases, the averaged test HIV ROC-AUC increases from 75.3
to 80.6. Similarly, the larger the dataset, the lower test RMSE on ESOL is observed. Also, even pre-training on a small dataset,
i.e., 10K molecules, GNN models gain obvious improvements in comparison to supervised learning. For example, pre-training
on 10K data improves ROC-AUC by 2.5% on HIV and decreases RMSE by 0.12 on ESOL. It is demonstrated that MolCLR
benefits from the large dataset, and therefore can be widely used for the huge unlabeled molecule data. On the other hand,
MolCLR pre-training on a small dataset still boosts the performance compared to supervised learning, which demonstrates the
effectiveness of the contrastive learning framework on molecule graphs.

(a) (b)

Figure 3. Results of MolCLR pre-training on different dataset sizes. (a) Test ROC-AUC (%) on HIV. (b) Test RMSE on
ESOL.
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4 Visualization of MolCLR Representations
Besides, to illustrate the representations from the pre-trained MolCLR, we visualize the molecule features via t-SNE, where
molecules are from various databases and colored by corresponding property labels (Figure 4). Notice that all the features are
extracted directly from pre-trained MolCLR without fine-tuning. Namely, the model has no access to the molecular property
labels during training. Figure 4 shows molecules from SIDER66, FreeSolv67, QM868, 69, QM970. Features from pre-trained
MolCLR show clustering based on the labels, even without accessing labels during training. For instance, in Figure 4(d),
molecules are colored by the dipole moment µ . Molecules with relatively high µ (green and blue) are clustered on the bottom
right, whereas molecules with low µ (dark red) are clustered in the center of the plot. Similar clustering trends can also be
observed in other t-SNE visualizations in Figure 4.
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Figure 4. Two-dimensional t-SNE embedding of the molecular representations learned by our MolCLR pre-training. (a)
Molecules from SIDER database and color indicates whether the molecule causes hepatobiliary disorder side effect. (b)
Molecules from FreeSolv database and color indicates hydration free energy of each molecule. (c) Molecules from QM8
database and color indicates the electronic spectrum calculated from CC2 of each molecule. (d) Molecules from QM9 database
and color indicates the averaged electronic spectrum µ of each molecule.
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5 More Results of Molecule Retrieval via MolCLR
In this section, more examples of molecule retrieval based on MolCLR-learned representations are shown in Figure 5. Nine
molecules that are closest to the query molecule in the MolCLR representation domain are listed with RDKFP and ECFP
similarities labeled. Notably, molecules with close MolCLR representations also have high FP similarities. Also, the selected
molecules share similar structures and functional groups. For instance, in Figure 5(a), all listed molecules share functional
groups like sulfonyl groups and nitrogen heterocycles. Also, in Figure 5(b), the first molecule at the second row is exactly the
same as the query molecule except for few carbon-carbon bonds. These examples further demonstrate that through contrastive
learning, MolCLR automatically learns chemically meaningful representations.
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Figure 5. Three Query molecules (PubChem ID (a) 130187714 (b) 132175476 (c) 4862714) and 9 closest molecules for each
query molecule in MolCLR representation domain with RDKFP and ECFP similarities labeled.
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6 Temperature in Contrastive Loss

The choice of the temperature parameter τ in NT-Xent loss48 impacts the performance of contrastive learning48. An appropriate
τ benefits the model to learn from hard negative samples. To investigate τ for molecule representation learning, we train
MolCLR with three different temperatures: 0.05, 0.1, and 0.5 as shown in Table 6. We report the averaged ROC-AUC (%)
over all the seven classification benchmarks using 25% subgraph removal as the augmentation strategy. It is demonstrated that
τ = 0.1 performs the best in the downstream molecular tasks. Therefore, we use τ = 0.1 as the temperature in the following
experiments.

Temperature (τ) 0.05 0.1 0.5

ROC-AUC (%) 76.8±1.2 80.2±1.3 78.4±1.7

Table 6. Influence of temperature τ in NT-Xent loss for MolCLR. Mean and standard deviation of all the seven classification
benchmarks are reported.
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7 Fine-tuning Details
During fine-tuning for each downstream task, we randomly search the hyper-parameters to find the best performing setting on
the validation set and report the results on the test set. Table 7 lists the combinations of different hyper-parameters. Besides, we
also consider if cosine annealing learning rate decay71 improves the fine-tuning performance. In addition, we randomly pick
MolCLR-trained GNNs at different epoch as the initialization for fine-tuning.

Name Description Range

batch_size Input batch size {32, 128, 256}
lr Initial learning rate for MLP head {5×10−4, 10−3}
lr_base Initial learning rate for the pre-trained GNN base {5×10−5, 10−4, 2×10−4, 5×10−4}
dropout Dropout ratio for the GNN {0, 0.1, 0.3, 0.5}
n_layer Number of hidden layers in MLP {1, 2}
hidden_size Size of hidden layers in MLP {256}
activation Nonlinear activation function in MLP {ReLU72, Softplus73}

Table 7. Fine-tuning hyper-parameters for pre-trained MolCLR model.
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