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The binding of peptides with human leukocyte antigen (HLA) 
is essential for antigen presentation, which is a necessary pre-
requisite for effective T-cell recognition1. Only when the pep-

tide is presented to the HLA molecules on the outer cell surface to 
form a peptide–HLA (pHLA) complex and then recognized by the 
T cell can it trigger a robust immune response2. HLAs are generally 
divided into two categories: HLA class I (HLA-I) and HLA class II 
(HLA-II). HLA-I is encoded by three I loci and expressed on the 
surface of all nucleated cells, whereas HLA-II can only be expressed 
in professional antigen-presenting cells3. In this Article we focus 
on HLA-I molecules (hereafter referred to as HLA). HLA mainly 
binds short peptides with a length of 8–10 amino acids, because 
both ends of the binding groove are blocked by conserved tyrosine 
residues4,5, of which 9-mer peptides are the most common6. Then, 
some of these pHLAs are presented on the cell surface for recogni-
tion by CD8+ T cells7,8. Peptide binders with 11–14 amino acids have 
been identified9,10. Considering the comprehensive applicability of 
the method, peptides with lengths of 8–14 amino acids are included 
in this study.

Because HLA molecules are highly specific and polymorphic in 
the human population11, only a small proportion of peptides can be 
presented to the HLA molecules1. Determining which peptides are 
selected for display in an individual’s HLA type is crucial to epitope 
selection3,12. The first step towards this goal is to verify the affinity 
between peptides and HLA alleles. Given that the affinity between a 

peptide and its binding HLA allele is closely related to whether it can 
be presented, many in silico methods have been developed to pre-
dict the affinity between peptides and HLA alleles (Supplementary 
Section 1 summarizes the work related to this). Existing methods 
are mainly based on using machine learning models, especially neu-
ral networks, to predict the binding affinity between peptides and 
HLA alleles13. Although the accuracy is as high as 90% for peptides 
with nine amino acids14, the prediction capabilities for peptides of 
other lengths are still not satisfactory13. This can be explained by the 
fact that the 9-mer peptides bind more easily with HLA alleles, as 
they have more pHLA binding data for training15 than peptides of 
lengths 13 and 14. Moreover, both allele-specific and pan-specific 
models have been developed for pHLA binding prediction16. The 
former cannot be applied in HLA alleles or for peptide lengths that 
do not exist in the training data, whereas the latter are trained on 
multi-allele data, which can accurately predict pHLA binding, espe-
cially for rare HLAs and peptide lengths16.

It is attractive to synthesize short peptides to elicit highly tar-
geted immune responses. Understanding the interactions of pHLAs 
can facilitate peptide vaccine design17 and play an important role 
in the development of candidate vaccines for various diseases18,19. 
Several studies20,21 have demonstrated that neoantigens produced 
by non-synonymous mutations in cancer cells play a key role in 
the anti-tumour immune response. Moreover, vaccines for neo-
antigens have proven to be beneficial to clinical outcomes22,23.  
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Peptide vaccines have many advantages over traditional vac-
cines18,24. The principle of peptide vaccines design is that antigen 
peptides bind to a specific HLA to form peptide–HLA–TCR com-
plexes to elicit T-cell immune responses25. Theoretically, the antigen 
peptide should selectively bind to a specific HLA allele with high 
affinity. The process of identifying neoantigens is as follows13. First, 
high-throughput sequencing technologies and bioinformatics pipe-
lines are established to characterize the non-synonymous mutations 
of the primary tumour, then computational methods are developed 
to reliably predict the binding probability of the mutant peptide and 
the HLA allele26. With these two stages, the number of candidate 
mutant peptides can be reduced greatly, thus speeding up the pro-
cess of experimental validation27,28. However, the above-mentioned 
process is relatively complicated. Therefore, the development of an 
automatically optimized mutated peptides (AOMP) program would 
represent a huge breakthrough in the neoantigen design field.

In this Article we describe the design of a transformer-based 
model29 for pHLA binding prediction (TransPHLA) and the AOMP 
program for mutant peptide optimization (Fig. 1 shows the entire 
workflow). TransPHLA is a pan-specific method16 that achieves 
improved performance and can be applied to rare and unseen 
HLA alleles (Fig. 2). The core idea of the TransPHLA model is to 
apply self-attention29 to peptides, HLAs and pHLA pairs to obtain 

the binding score. Some techniques are used to construct and opti-
mize the model, which consists of four major sub-modules: (1) 
the embedding block (besides the encoding of amino acids in the 
sequence, we added positional embedding to describe the posi-
tion information of the sequence); (2) the encoder block (multiple 
self-attentions are applied to focus on different components of the 
sequences, and padding positions of the sequence are masked to 
prevent misleading the model); (3) the feature optimization block 
(the fully connected layers with the gyro channel that rise first and 
then fall are used to process the features obtained by the previous 
self-attention block to achieve better feature representation); (4) the 
projection block (multiple fully connected layers are used to predict 
the final pHLA binding score). The proposed TransPHLA model 
was compared to 14 previous pHLA binding prediction meth-
ods, including the state-of-the-art method30, the Immune Epitope 
Database (IEDB) recommended method14, nine IEDB baseline 
methods14,15,31–37 and three recent attention-based methods38–40. 
TransPHLA not only achieves better performance with higher effi-
ciency, but also solves the limitations of many methods with HLA 
alleles and peptides with variable lengths. We also conducted two 
types of case study to demonstrate the usability and validity of the 
TransPHLA method. TransPHLA shows better performance than 
14 previously published methods for neoantigen identification41,42 
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HLA Peptide Binding Prediction score

1 HLA-A*68:01 PSDTRQMLFY 0 0.0017

2 HLA-A*68:01 PSDTRQMLF 0 0

3 HLA-A*68:01 SDTRQMLFY 0 0.0001

HLA Original peptide Mutated peptide Mutation amino-acid site
Mutation
number

Sequence
similarity Binding Prediction score

HLA-A*68:01 SDTRQMLFY SATRQMLFY 2∣D/A 1 0.888889 1 0.8336

HLA-A*68:01 SDTRQMLFY DATRQMLFY 1∣S/D, 2∣D/A 2 0.888889 1 0.9961

HLA-A*68:01 SDTRQMLFY SVSRQMLFR 2∣D/V, 3∣T/S, 9∣Y/R 3 0.666667 1 1

HLA-A*68:01 SDTRQMLFY ETIRQMLFR 1∣S/E, 2∣D/T, 3∣T/I, 9∣Y/R 4 0.666667 1 1
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Fig. 1 | TransPHLA and the AOMP program. a–c, The workflow of the proposed TransPHLA and AOMP program, including the user input (a) and the 
output results (b,c) of the freely available webserver.
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and achieves a positive screening rate of 96%. Although the positive 
screening rate is not very high for human papilloma virus (HPV) 
vaccine identification43 due to the inconsistent threshold, it is supe-
rior to the other 14 methods.

We also develop an AOMP program (Fig. 3) for peptide vaccine 
design based on the attention mechanism, obtained by TransPHLA. 
When the user provides a pair comprising a source peptide and a 
target HLA allele, the AOMP program can search for mutant pep-
tides with higher affinity for the target HLA allele and no more than 
four mutation positions. This program not only guarantees the affin-
ity between the mutant peptide and the target HLA allele, but also 
ensures the homology of the mutant peptide and the source peptide 
to trigger cross-immunization. We tested all 366 combinations of 
the different HLAs and peptide binder lengths using two strategies. 
The first strategy randomly selects ten negative pHLAs correctly 
predicted by TransPHLA for each combination, and a total of 3,660 
true negative pHLAs are selected. The other strategy only considers 
the negative pHLAs predicted by TransPHLA and does not consider 
the ground-truth label. With the two strategies, the 3,633 and 3,635 
source peptides successfully found the optimized mutant peptide 

binding to HLA alleles, and 93.4% and 93.7% of them were verified by 
the method recommended by IEDB14, confirming the usability of our 
program. Furthermore, 88.8% of 3,633 and 89.5% of 3,635 optimized 
mutant peptides have homology of more than 80% (1–2 mutated sites) 
with their source peptides, which is promising for vaccine design.

The TransPHLA and AOMP program jointly form the TransMut 
framework, which applies the transformer to the field of biomo-
lecular binding and mutations. This framework can be applied to 
any biomolecular mutation task, such as epitope optimization44 or 
drug design45, and is useful for vaccine development in particular. 
For example, the tumour-necrosis factor-α (TNF-α) targeted vac-
cine, because of the biological activity of TNF-α, will cause inflam-
mation in the body, and long-term medication holds the risk of 
causing autoimmune disease46. The core problem of TNF-α vaccine 
development is how to reduce the biological activity of TNF-α while 
maintaining sufficient immunogenicity47. The AOMP program is 
suited to this task. The transformer-derived model is first deployed 
to train the mutation direction data of the biomolecules, then the 
attention score in the mutation direction is obtained. Based on the 
attention score, the AOMP program will find a better mutant.
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Encoder block Projection block

The TransPHLA model

Parameters
seq_len: sequence length
max_seq_len: maximum sequence length after padding sequences
15: maximum sequence length of peptides
34: (maximum) sequence length of HLAs
64: embedding size for peptides, HLAs and peptide-HLA pairs
512: embedding size of auto-encoder in feature optimization block
256, 64, 2: number of neurons of linear layers in projection block
1,024: batch size
Number of heads of masked multi-head self-attention: 9
Number of layers of masked multi-head self-attention: 1
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Fig. 2 | Sub-modules of the proposed TransPHLA model. a–e, The proposed TransPHLA model (e) is composed of four major sub-modules (a–d).

Nature Machine Intelligence | VOL 4 | March 2022 | 300–311 | www.nature.com/natmachintell302

http://www.nature.com/natmachintell


ArticlesNATurE MACHinE InTELLigEnCE

Target HLA
HLA-B*51:01

Source peptide
DLLPETPW

Weak affinity

TransPHLA

Input peptide-HLA (pHLA) pair

Prediction score 
of pHLA binding

Attention score of pHLA for
relative weak affinity

Maximum number of mutations: 4 (ensure homology between the mutant peptide and the source peptide)
Strategy 1: Give priority to (a2). (b) 1D<(a2)1, 1D→1LI; (b) 2L<(a2)2, 2L→2PA; (b) 5E<(a2)3, 3L→3YPF; (b) 5E<(a2)4, 4P→4LVS.

Strategy 2: Give priority to (a1). (b) 1D<(a1)2, 2L→2PA; (b) 1D<(a1)8, 8W→8IYL; (b) 1D<(a1)3, 3L→3YPF; (b)1D<(a1)1, 1D→1LI.

Strategy 3: Give priority to (b), then (a1). First replace 1D→1LI. Then, (b) 2L<(a1)2, 2L→2PA; (b) 5E<(a1)8, 8W→8IVL; (b) 5E<(a1)3, 3L→3YPF.

Strategy 4: Give priority to (a3), then (b). First replace the three sites of (a3), 2L→2PA, 8W→8IVL, 1D→1LI. Then 5E→5VLI.
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Fig. 3 | Workflow of the AOMP program. The workflow of the AOMP program for example peptide DLLPETPW and target HLA HLA-B*51:01. The number 
and letter—for example, 8I—indicate that the amino acid at the eighth position of the peptide obtained at the previous level is replaced with amino acid I.
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Results
Comparison of TransPHLA with existing methods. To verify 
the effectiveness of TransPHLA, we compared it with nine base-
line methods from IEDB, the recommended method from IEDB 
(NetMHCpan_EL14), the state-of-the-art method published in 2021 
(Anthem30) and three attention-based methods published recently 
(ACME38, DeepNetBim40 and DeepAttentionPan39). The baseline 
methods are ANN15, Consensus34, NetMHCcons35, NetMHCpan_
BA14, NetMHCstabpan37, PickPocket36, CombLib33, SMM31 and 
SMMPMBEC32, which can be obtained from http://tools.iedb.org/
main/tools-api/. The different methods use different scoring meth-
ods to determine whether pHLA can bind, such as the predicted 
half-maximum inhibitory concentration (IC50), predicted score and 
percentile rank. We used the predicted IC50 and predicted score 
as the criteria for the regression and classification tasks, respec-
tively (Consensus only provides percentile rank as the criterion). 
Supplementary Table 1 lists details of the criteria strategies for the 
different methods14,30,34,48.

It is worth noting that not every method is compatible with every 
HLA allele and peptide of every length. Except for NetMHCpan_
BA, NetMHCpan_EL and our method, the methods have different 
limitations. For example, SMM and SMMPMBEC only support 
peptides with lengths in the range of 8–11, and DeepNetBim and 
CombLib only support peptides with a fixed length of 9. In sum-
mary, with the same data, not every method can predict all the sam-
ples provided by the user.

The comparison was performed on a pHLA independent test, 
a pHLA external test, neoantigen identification and HPV vaccine 
identification (Fig. 4).

Figure 4 reveals two perspectives on the pHLA test set: (1) the 
methods can predict all the provided data (Fig. 4a,b, matchable) 
or (2) the methods can only predict part of the provided data as a 
result of their limitations (Fig. 4c,d, unmatchable). In Fig. 4a,b, the 
data used for the performance comparison of the different methods 
are all consistent, so the prediction performance can be compared 
fairly. In Fig. 4c,d, the HLA alleles and peptide lengths that can be 
predicted by the methods differ. Therefore, for each method in these 
subfigures, the data used for performance comparison are a subset 
of the provided data. To make the performance comparison fairer 
and more reasonable, the proposed TransPHLA performs a pair-
wise comparison with each method on the corresponding subset 
data. On both independent and external data, the proposed method 
is superior to the other methods, except Anthem. Anthem shows 
slightly inferior performance than TransPHLA on the independent 
data and competitive performance on the external data. However, 
it cannot be extended to some unknown HLA alleles or peptide 
lengths because of its limited published data, whereas TransPHLA 
does not have this limitation. A more detailed comparison between 
TransPHLA and Anthem is presented in Supplementary Section 2.3. 
Moreover, although NetMHCpan_EL achieves good performance 
on external data, its performance on independent data is greatly 
reduced. The independent data contain 112 types of HLA alleles, 
whereas the external data contain only five HLA alleles. As we men-
tioned before, those two types of test data are complementary in 
the performance comparison of the methods, so only a method that 
works well on both types of data can demonstrate its superiority.

We also discuss the performance of each method for each pep-
tide length on the independent and external data. Supplementary 
Figs. 1–8 present violin plots for the distributions of the area 
under the curve (AUC), accuracy, Matthews correlation coeffi-
cient (MCC) and F1 for the 15 methods when used on the inde-
pendent and external data. These results indicate the superiority of 
TransPHLA over the other 14 methods, as follows: (1) TransPHLA 
is not restricted by HLA allotype or peptide length; (2) for any pep-
tide length, TransPHLA shows superior performance on all met-
rics; (3) TransPHLA shows a tight distribution on four metrics,  

especially for peptide length 9, reflecting the potential of TransPHLA 
to increase the performance as the amount of training data increases, 
and, if pHLA data of other peptide lengths or HLAs increase, 
TransPHLA also achieves better results; (4) the MCC results show 
that TransPHLA is effective for any HLAs of any length; (5) when 
performing predictions on ~170,000 pHLAs, TransPHLA requires 
28 s on a GeForce RTX 3080 GPU and 2 min on the CPU (the other 
methods are not as fast). Supplementary Sections 2.1 and 2.2 pro-
vided a detailed analysis of the results.

The primary determinant of neoantigen screening is the bind-
ing of a peptide and an autologous specific HLA molecule49. For 
neoantigen identification, we collected neoantigen data from 
non-small-cell lung cancer, melanoma, ovarian cancer and pan-
creatic cancer from recent works41,42, including 221 experimentally 
verified pHLA binders. The comparison results for the differ-
ent methods on these data are shown in Fig. 4e. These show that 
TransPHLA was able to screen out 96.4% of neoantigens. Although 
CombLib achieved 100% accuracy, it only supports 9-mer peptides, 
which limits its application. The remaining ten methods have lower 
performance than TransPHLA and may be limited by predictable 
HLAs or peptide lengths.

The 221 neoantigen samples consist of 62 combinations of HLA 
alleles and peptide lengths. Among these, ten samples of eight com-
binations are not included in the training data. In these ten samples, 
TransPHLA only mispredicts three samples, indicating the general-
ization ability of TransPHLA.

HPV is the most common sexually transmitted disease50 and 
there are some preventive HPV vaccines. However, the therapeutic 
effect of these vaccines is limited and the use rate very low51. It is 
thus critical to develop therapeutic vaccines to treat HPV infections 
and diseases. A previous study43 presented 278 experimentally veri-
fied pHLA binders from HPV16 proteins E6 and E7, consisting of 
8–11-mer peptides. The comparison results for use of the different 
methods on these data are shown in Fig. 4f. Although TransPHLA 
only shows a screening rate of 68%, it still achieves higher perfor-
mance than the other methods.

According to the source reference43 for the HPV vaccine data, the 
data are identified as ‘binder’ according to IC50 < 100 µM, which is 
200 times the common threshold of 500 nM. The value of 500 nM is 
the threshold for the data used for the 15 prediction methods. Thus, 
peptides with IC50 values over 500 nM are negative samples in these 
prediction methods. This is the reason why the HPV vaccine data 
show poorer performance than other datasets.

We also evaluated the performances of the methods on samples 
with IC50 ≤ 500 nM. The results are shown in Extended Data Fig. 1 
and Supplementary Section 10. Based on the results, TransPHLA 
only mispredicts three samples (that is, a total of 18 samples), and 
achieves performance superior to those of the other 14 methods.

TransPHLA uncovers the underlying patterns of pHLA binding. 
The attention mechanism of TransPHLA provides biological inter-
pretability for the model. In this section, we explore the binding 
rules of pHLA by means of the attention scores. The evidence shows 
that the C-terminal, N-terminal and anchor sites52 of the peptide are 
critical for binding to HLA and are always located at the first, last 
and second positions of the peptide sequence. The attention scores 
of these positions were confirmed, as shown in Fig. 5a.

We next analysed the contributions of the amino-acid types on 
the positive and negative samples to binding and non-binding at 
different peptide positions (Fig. 5b). It was found that the binding 
and non-binding of pHLAs are affected by different components 
of the peptides. In addition, we analysed the influence of 20 amino 
acids at different peptide positions for binding or non-binding for 
all 366 HLA–peptide length combinations. The attention scores and 
corresponding heatmaps can be downloaded from our webserver. 
These results will not only help us understand the mechanism of 
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pHLA binding, but can also be used for vaccine design, as shown 
in the sections AOMP program in the Results and AOMP program 
in the Methods.

In addition, because the attention score represents the pattern of 
pHLA binding, it implies that the key amino-acid sites on the pep-
tide sequence are important for binding or non-binding to the tar-
get HLA. We thus visualized the binding pattern of five HLA alleles 
according to ACME38 (Fig. 5c). As expected, TransPHLA found a 
similar pattern for amino-acid types at different peptide positions 
to the previous studies38,53. For HLA-A*11:01, TransPHLA recog-
nizes the anchor residue for the peptides with K (Lys) at position 9 
(ninth K). For HLA-B*40:01, the key residues—the second E (Glu) 
and ninth L (Leu)—were successfully identified by TransPHLA. 

For HLA-B*57:03, hydrophobic residues usually form the binding 
pocket, and we identified this preference through the ninth L, ninth 
F (Phe) and ninth W (Trp), which is consistent with the structures 
in PDB 2BVP54. For HLA-A*68:01, 4HWZ55 demonstrates that the 
ninth K and ninth R (Arg) residues of the peptide greatly contribute 
to the binding. For HLA-B*44:02, the key role of the second E has 
been proved by 1M6O56. All these results have been supported by 
previous studies and demonstrate the effectiveness of our methods.

AOMP program. It is proposed to search for mutant peptides 
with higher affinity if the source peptide under consideration has 
weak binding affinity with its specific HLA allele. Figure 3 visual-
izes the process of AOMP and the automatic mutation of the sec-
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ond strategy for the example of source peptide DLLPETPW and  
target HLA-B*51:01.

To demonstrate the effectiveness of the AOMP program we pro-
posed two strategies for testing all 366 HLA–peptide length com-
binations in this study. The first strategy selects the non-binding 
pHLAs correctly predicted by TransPHLA; that is, both the 
ground-truth-labelled and prediction results are non-binding. For 
the second strategy, only the prediction results of TransPHLA are 
considered, and the ground-truth label is not considered. In short, 
the evaluation samples are selected from the non-binding pHLAs 
predicted by TransPHLA. After random selection, the proportion 
of true negative samples is 92.57% in the second strategy (Fig. 6e). 
The AOMP program was then used to search for mutant peptides 
for 3,660 negative pHLAs with the two strategies.

To verify the authenticity and usability of the mutation results, 
we used the NetMHCpan_BA14 recommended by IEDB to validate 
the mutation results for 3,660 pHLAs under the two strategies. The 
results are shown in Fig. 6d,h, showing success rates of 93.42% and 
93.74% with the two strategies, respectively.

The second strategy shows slightly better performance than the 
first, because the evaluation samples of the second strategy con-
tain binding pHLAs, and AOMP can more easily generate binding 
mutation pHLAs for them. The first strategy can more accurately 
evaluate the probability of successful mutation of AOMP for the 
non-binding pHLAs, whereas the second strategy can better reveal 
the successful mutation rate of AOMP in actual situations, because 
the ground-truth label is unknown in practice.

We also used molecular dynamics (MD) simulations to verify 
the effectiveness of AOMP. We used HLA-A*02:01 as the target 
HLA and YKLVVVGAG as the source peptide. Eight mutated 
peptides were chosen for the simulations and compared with the 
source peptide. According to the results, (1) the attention mecha-
nism obtained by the proposed TransPHLA is consistent with the 
structure of the pHLA complex and (2) the prediction results of 
TransPHLA are consistent with the results of the MD simulation 
and NetMHCpan_BA. On the other hand, some mutated peptides 
produced by AOMP have been experimentally verified that can 
bind to the corresponding HLA allele. More details are provided in 
Supplementary Section 11.

Discussion
pHLA binding and interaction are critical to epitope presenta-
tion and a prerequisite for the T-cell recognition that initiates an 
effective immune response. As a first step, epitope screening and 
identification depend on the affinity of pHLA, especially in the 
neoepitope-based immunotherapy that is recognized as the most 
promising cancer treatment. The primary determinant of neoanti-
gen screening is the affinity of peptides and specific autologous HLA 
molecules. Accurate pHLA binding prediction is thus essential for 
the identification of immunotherapy targets, epitope screening and 
vaccine design. Peptide vaccine design is another important field 
for the treatment of diseases. However, the current vaccine design 
method is in its infancy and cannot yet be automated.

First, we have proposed a TransPHLA method for pHLA bind-
ing prediction based on the transformer model, which is a gener-
alized pan-specific model that is not restricted by HLA alleles or 
peptide length. We conducted two types of independent test and 
two types of case study (neoantigen and HPV vaccine identifica-
tion). Compared with the state-of-the-art method (Anthem), the 
IEDB recommended method (NetMHCpan_EL), nine IEDB base-
line methods and three attention-based methods published recently, 
TransPHLA achieves superior performance for all four experiments.

Based on TransPHLA, we have also developed an AOMP pro-
gram by using the attention scores generated by TransPHLA 
to search for mutant peptides with higher affinity to the target 
HLA allele and high homology with the source peptide. For two  

evaluation strategies for the AOMP program, among 7,320 pHLAs 
for different HLA alleles and peptide lengths, 7,268 samples were 
successfully found for the binding mutant peptide–HLA; 94% were 
verified by the method recommended by IEDB, and 89% with a 
homology of more than 80%, which is useful for vaccine design.

This is the first attempt to propose a transformer-based TransMut 
framework in the field of automatic mutation of biomolecules that 
has the potential to be applied to other binding prediction and 
mutation tasks for biomolecules.

Methods
Dataset. In this study, the pHLA binding data (positive data) were obtained from 
Anthem30, which can be downloaded from https://github.com/17shutao/Anthem/
tree/master/Dataset. The negative data were generated in a similar way to previous 
studies13,14,57. For each binder length and each HLA allele, peptides of negative data 
are sequence segments that are randomly chosen from the source proteins of IEDB 
HLA immunopeptidomes. Although false negative peptides may be generated, the 
possibility and proportion of such peptides are very low1,58 and can be ignored. This 
strategy of constructing negative samples guarantees that the dataset is balanced 
(Supplementary Table 2).

To fairly compare our method with previous methods, we followed the training 
and evaluation strategy of Anthem30, which is the state-of-the-art pHLA binding 
prediction method. There were three types of dataset with different purposes: 
the training set for model training and model selection, the independent test set 
and the external test set for model evaluation and methods comparison. The data 
sources for the training and independent test set are the same: (1) four public 
HLA binders databases (IEDB59, EPIMHC60, MHCBN61 and SYFPEITHI62), (2) 
allotype-specific HLA ligands identified by mass spectrometry in previously 
published studies63–78 and (3) peptide binders from training datasets of other pHLA 
binding prediction tools38,48,59,79–89. The external test set was experimentally verified 
by Anthem30.

We also checked and deleted some error or duplicate samples; for example, 
‘HLA-B*07:01’-related samples are ignored because its sequence contains errors. 
The statistics of the three types of dataset are listed in Supplementary Table 2. The 
number of pHLA binders for each peptide length of each HLA allele spans a large 
range, from 101 to 105 (for details see Supplementary Fig. 12). On the other hand, 
the common peptide binder lengths are 8–14. For different peptide binder lengths, 
there are big gaps in the number of pHLA binders. In Extended Data Fig. 2 the 
number of 9-mer peptides is very large, whereas there are very few 13- and 14-mer 
peptides. This leads to differences in the performance of the method for different 
peptide binder lengths (Extended Data Fig. 2).

Experiment settings. To follow previous studies13,30 for pHLA binding prediction, 
we conducted fivefold cross-validation (CV) and independent testing. Because 
the source of the independent test set and the training set are the same, the 
data distributions for the training set and independent test set are very similar 
(Supplementary Figs. 11 and 12). When the model is tested on data with a similar 
distribution to the training data, it is easier to obtain a better test performance 
than on a model that is trained with a different distribution to the test data. In 
other words, our proposed method and Anthem30 may have an advantage over the 
other methods on the independent test set. We therefore set up an external test to 
perform a fairer comparison of the different methods.

The fivefold CV was used in this study for model evaluation to optimize the 
model at the training stage. It divides the training set into five equal parts, four of 
which are used for model training, and the remaining part is used for evaluation 
of the model with the same parameters. The training and evaluation process is 
repeated five times to ensure that each part of the data participates four times for 
model training and once for model evaluation. Finally, the average result of the five 
model evaluations is used as the final evaluation result. Usually, the use of CV can 
avoid, to a certain extent, overfitting of the model.

The independent test is a popular strategy to evaluate the generalization ability 
of the considered method for unseen data. Independent test data does not have any 
overlap with training data, but follows the same distribution as the training dataset. 
It also provides common data independent from the training data so as to fairly 
evaluate the performance of different methods.

To enable a fair comparison, we used experimental data as the external test 
data to eliminate possible deviations as a result of there being the same data 
distribution. According to Supplementary Figs. 11 and 12, the data distribution of 
the external test is a little bit different from that of the training and independent 
test data. Like the independent test, it can also more objectively evaluate the 
performance and generalization ability of the method.

Performance evaluation metrics. For each predictive model, the following metrics 
were calculated:

Accuracy =
TP + TN

TP + TN + FP + FN (1)
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MCC =
(TP × TN) − (FN × FP)

√

(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)
(2)

F1 score =

2×Precision×Recall
Precision+Recall , where Precision =

TP
TP+FP and Recall = TP

TP+FN

(3)

where TP is true positive, FP is false positive, FN is false negative and TN is true 
negative. In addition, we adopt AUC, that is, the area under the receiver operating 
characteristic curve, as the other performance evaluation metric.

Other than MCC, which ranges from −1 to 1, the other metrics range from 
0 to 1. The higher the value of the metric, the better the model or method. It is 
worthwhile noting that MCC cannot be calculated when two of TN, TP, FN, FP are 
0, because the denominator is 0. This phenomenon is not caused by both FN and 
FP being 0. Thus, if the MCC cannot be calculated for a specific peptide length of a 
specific HLA allele, this implies that the method is invalid for this HLA allele with 
this peptide length.

TransPHLA. The core idea of TransPHLA is the application of the self-attention 
mechanism29. TransPHLA is composed of the following four blocks (Fig. 2). The 
embedding block adds positional embedding to the amino-acid embedding to 
generate the sequence embedding, and then applies a dropout technology to 
enhance the robustness. Through the embedding block, TransPHLA generates the 
embeddings for peptides and HLA alleles, respectively. Next, these embeddings 
are taken as input into the encoder block, which contains the masked multi-head 
self-attention mechanism and the feature optimization block. The feature 
optimization block is a combination of fully connected layers in which the channel 
of the gyro first rises and then falls. This module improves the feature representation 
obtained by the attention mechanism, mainly because more layers are added. The 
output feature representations of the peptide and HLA allele are then concatenated 
as the embedding of a pHLA pair. After pHLA pair embedding passes through the 
encoder block, the projection block is used to predict the pHLA binding score.

Model training is conducted on the CentOS Linux release 7.7.1908 (Core) 
system. The CPU is an Intel(R) Xeon(R) Gold 6230 CPU @ 2.10 GHz, with 80 
logical CPUs. The GPU is a GeForce RTX 3080. The memory is 92G. The model is 
trained on the GPU, the code language is Python 3.7.8, and the model is built using 
PyTorch 1.7.0. The training consists of 50 epochs, with each epoch lasting 72 s. 
Among the 50 epochs, the model with the best performance on the fivefold CV is 
the final model. In the code environment (for example, random, numpy and torch), 
the random seed is set to 19,961,231.

Sequence embedding in TransPHLA. First, the peptide and HLA allele sequences 
are padded to the maximum length of 15 and 34, respectively, to handle the 
variable input length. The character embedding model is then used to create a 
unique embedding for each amino acid, with the dimension of the embedding 
defined as dX. Taking the peptide SDKYGLGY as an example, it has a length of 
8. From Supplementary Fig. 13a, embeddings of six different amino acids are 
different, and embeddings of padding rows are all the same.

On the other hand, the order of amino acids is critical to the structure and 
function of the peptide and HLA allele sequence, but the above embedding method 
does not consider it. We thus apply positional embedding to encode the position 
of the amino acid in the sequence. Given the position p in the sequence, the 
positional embedding encoded as a dX-dimensional vector, and the value of the ith 
element of this vector being PE(p)i, then

PE(p)2i = sin
(

p/10, 0002i/dX
)

(4)

PE(p)2i+1 = cos
(

p/10, 0002i/dX
)

(5)

where 2i represents the even dimensions and 2i + 1 the odd ones. This position 
embedding method can reflect not only the absolute position information of the 
amino acid but also the relative position information. We visualize positional 
embedding in Supplementary Fig. 13b. It is worth noting that, for any peptide or 
HLA allele, positional embedding is the same. We also conducted the ablation 
experiment for positional embedding and demonstrated its validity for TransPHLA 
(more details are provided in Supplementary Section 5).

Finally, the amino-acid embedding and positional embedding are summed to 
obtain the sequence embedding (shown in Supplementary Fig. 13c).

Masked multi-head self-attention mechanism in TransPHLA. The attention 
mechanism is the core of the transformer. It can focus on the important 
information and reduce the impact of unimportant information from a large 
amount of information. Its essence is mapping the query Q to a set of key-value 
(K-V) pairs then obtaining an output, where K-V pairs are the form of storing 
sequence elements in memory. This reflects the attention score (that is, the weight) 
according to the correlation or similarity of Q and K. The attention score represents 

the importance of information (that is, V). The larger the attention score, the more 
focused the corresponding information.

Compared with recurrent neural networks (RNNs), transformer realizes 
parallelization and solves the long-term dependencies problem, so it can process 
the data faster than RNNs. Compared with convolutional neural networks (CNNs), 
which extract local information commendably, transformer extracts more global 
information, which is suitable for the information exploration of the whole sequence 
of peptides and HLA alleles. In experiments (Supplementary Section 9), transformer 
has better performance than RNNs and CNNs as the encoder block in TransPHLA.

The self-attention mechanism belongs to a variant of the attention mechanism 
that captures the internal correlation of a sequence and reduces the dependence 
on external information. It is worth noting that this study introduced the mask 
operation when calculating the attention. For peptide or HLA allele equences with 
lengths less than the corresponding maximum length, non-amino-acid characters 
should not be considered for the model training. We thus use 10−9, which is very 
close to zero, as their attention scores, so that non-amino-acid characters do not 
play a role in calculating the attention. The calculation process for the self-attention 
mechanism is shown in Extended Data Fig. 3 and Supplementary Section 6.

Model selection is carried out on the layer and head of the multi-head attention 
mechanism, and the final parameters are the attention of one layer and nine heads. 
The results indicate that our model is not overfitting (as shown in Supplementary 
Fig. 16 and Supplementary Section 7).

AOMP program. In this study we have developed an AOMP program that aims 
to search for higher-affinity mutant peptides based on the specific source peptide 
with weak affinity for a specific HLA allele. For example, the specific key peptides 
can be E6 and E7 peptides from HPV, a neoantigen and the TNF epitope.

The program designed four directed mutation strategies based on the 
attention score obtained by TransPHLA (Fig. 3). The attention score not only 
represents the pattern of pHLA binding, but also reveals the key amino-acid 
sites on the peptide sequence that are important for binding or non-binding 
to the target HLA allele. For effective vaccine design, we also considered the 
homology of the mutant peptide and the source peptide. The homology between 
the mutant peptide and the source peptide is calculated by sequence similarity, 
and experiments show that the similarity calculated with the difflib module in 
Python is very close to the blast result. The homologies of one, two, three and 
four amino-acid positions were mutated on average 90%, 80%, 70% and 61%, 
respectively. Therefore, we limited the number of mutations in the amino-acid site 
of the source peptide to no more than four.

For each of the 366 HLA–peptide length combinations, we established a 
binding contribution matrix of 20 amino acids at each peptide position. To 
adapt to a new or unknown HLA–peptide length combination, a general binding 
contribution matrix is established. We provide these 367 contribution matrices 
and their visual heatmaps on the webserver. On the other hand, when predicting a 
relatively weak affinity pHLA, the attention score obtained by TransPHLA is used 
to calculate the contribution matrix of each amino-acid site on the peptide. We also 
provide an attention score heatmap of the pHLA if the user needs it.

Subsequently, four optimization strategies are designed, with details as follows. 
We calculate two contribution rate matrices based on the above two contribution 
matrices. The larger the element value in the contribution matrix, the more critical 
the corresponding amino-acid site for binding or non-binding. Intuitively, because 
the amino-acid site contributes more to non-binding prediction, if we replace them 
with other amino acids that contribute more to binding prediction, the mutated 
peptide is more likely to have a higher affinity with the target HLA allele. Based on 
the above four matrices, we designed four strategies to generate mutant peptides. 
The main idea is to compare the amino-acid sites on the source peptide that have a 
large impact on weak affinity and the amino-acid sites on the target HLA–peptide 
length that contribute greatly to the high affinity. The corresponding amino-acid 
substitutions are then made according to the comparison results. The process is 
as follows: (1) predict the binding score for the source peptide and target HLA; 
(2) find some of the most important amino-acid sites based on the self-attention 
mechanism; (3) replace these important sites of a weak-affinity pHLA with some 
amino acids that may contribute more to binding prediction; (4) select some of the 
best mutation candidates for evaluation.

For the source peptide and the target HLA allele (the specific pHLA), the 
mutant peptides generated by the four strategies are merged and the duplicates 
removed. TransPHLA then screens and retains mutant peptides that can bind 
to the target HLA allele. Excitingly, the original target of this program was 
non-binding pHLA, but we found that it can also find mutant peptides with 
stronger affinity for binding pHLA.

Figure 3 visualizes the process of the AOMP program and shows the 
automatic mutation of the second strategy for the source peptide DLLPETPW 
and target HLA-B*51:01 as an example. Supplementary Section 8 describes, in 
detail, the implementation process for the four AOMP strategies in this example. 
Supplementary Section 11 describes some AOMP instances according to 
experimentally verified literature and MD simulations.

Webserver availability. The webserver is freely available at https://issubmission.
sjtu.edu.cn/TransPHLA-AOMP/index.html.
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Data availability
The datasets are available at https://github.com/a96123155/TransPHLA-AOMP/
tree/master/Dataset, which contains the training data, independent test data, 
external test data, neoantigen data and HPV vaccine data. The statistics of these 
data are provided in Supplementary Section 3. In addition, the attention scores and 
heatmaps of amino-acid types and position of peptides for specific HLA alleles and 
peptide binder lengths can be downloaded from https://issubmission.sjtu.edu.cn/
TransPHLA-AOMP/download.html. Source data are provided with this paper.

Code availability
The code is freely available at https://github.com/a96123155/TransPHLA-AOMP 
with GNU General Public Licence Version 3. This web page contains the code 
dependencies, operating environment, instructions and some interaction between 
code and results (file with ipynb suffix). The DOI is https://doi.org/10.5281/
zenodo.5715479.
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Extended Data Fig. 1 | Comparison of the proposed TransPHLA method with 14 existing methods on HPV vaccine data with threshold 500 nM. 
The number of true positive and false negative are described, and the sum of true positive and false negative represents the number of predictable 
peptide-HLA-I binders.
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Extended Data Fig. 2 | Correlation between the prediction performance and peptide length on various datasets. The correlation between the performance 
and peptide length on the (a) training set, (b) validation set, (c) independent test set, and (d) external test set. The performance is displayed in bar based 
on the left ordinate, and the distribution of the ratio of peptides with different lengths is displayed in dots and lines based on the right ordinate.
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Extended Data Fig. 3 | Workflow to calculate masked multi-head self-attention. The workflow to implement masked multi-head self-attention by three 
steps: (a) Generation of matrics, (b) Calculation of attention scores, (c) Calculation of output, where i represents the i-th head attention, h is the number 
of heads, lenX is the length of sequence S, dX and dK are the dimensions of X and Ki, and 

√

dK  is the scaled factor to prevent the large dot products.
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