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Emergent functionalities of structural and topological defects in ferroelectric materials underpin 

an extremely broad spectrum of applications ranging from domain wall electronics to high 

dielectric and electromechanical responses. Many of these have been discovered and quantified 

via local scanning probe microscopy methods. However, the search for these functionalities has 

until now been based by either trial and error or using auxiliary information such as topography or 

domain wall structure to identify potential objects of interest based on the intuition of operator or 

preexisting hypotheses, with subsequent manual exploration. Here, we report the development and 

implementation of a machine learning framework that actively discovers relationships between 

local domain structure and polarization switching characteristics in ferroelectric materials encoded 

in the hysteresis loop. The hysteresis loops per se and their scalar descriptors such as nucleation 

bias, coercive bias, hysteresis loop area, or more complex functionals of hysteresis loop shape and 

corresponding uncertainties are used to guide the discovery via automated piezoresponse force 

microscopy (PFM) and spectroscopy experiments. As such, this approach combines the power of 

machine learning methods to learn the correlative relationships between high dimensional data, 

and human-based physics insights encoded in the acquisition function. For ferroelectric, this 

automated workflow demonstrates that the discovery path and sampling points of on-field and off-

field hysteresis loops are largely different, indicating the on-field and off-field hysteresis loops are 

dominated by different mechanisms. The proposed approach is universal and can be applied to a 

broad range of modern imaging and spectroscopy methods ranging from other scanning probe 

microscopy modalities to electron microscopy and chemical imaging.  
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The rapid evolution of scanning probe and electron microscopy techniques over the last three 

decades has revolutionized the areas of science ranging from materials and condensed matter 

physics to chemistry and biochemistry.1-5 As such, the various microscopy imaging modes have 

now become a mainstay across virtually all scientific fields. Similarly, the combination of imaging 

and spectroscopic modes in these techniques has provided a wealth of information on structure-

property relations in these dissimilar systems. Examples include scanning tunneling microscopy 

and spectroscopy,6-8 dark and bright field imaging in electron microscopy and electron energy loss 

spectroscopies,9-11 topographic imaging and force-distance curve measurements in atomic force 

microscopy,12-14 and electromechanical hysteresis loop measurements in piezoresponse force 

microscopy.15-17 These structure-property relationships in turn yield a wealth of information on the 

underpinning physical, chemical, and biological mechanisms. 

 Very often the locations for spectroscopic measurements are selected manually based on 

the perceived (by human operator) interest of specific locations, as identified via features in a 

structural image. This point-and-click selection can be based on field-specific intuition, curiosity, 

and in special cases on a specific hypothesis. Alternatively, the measurements can be performed 

in the spectroscopic grid modes, where the spectral data is collected over a uniform sampling 

grid.6,18-20 These in turn necessitated development of the linear and non-linear dimensionality 

reduction methods for analysis of such multidimensional data,20,21 ushering exploratory machine 

learning methods into imaging areas. However, these imaging modalities are characterized by 

significant disparities in acquisition times for the spectroscopic and structural measurements. 

Correspondingly, the spatial density of the information is limited. While post-acquisition pan-

sharpening methods based on compressed sensing, Gaussian process, etc. have been 

developed,22,23 these approaches do not change the fundamental limitation of the spectroscopic 

imaging methods. Similarly, correlative learning of structure property relationships implemented 

via im2spec approach requires the availability of the full data set,24 and implicitly assumes that the 

material properties did not change as the result of measurements.   

 The rapid progress in the computer vision methods enabled by the advent of the deep 

learning a decade ago25 as well as wave of interest towards autonomous driving systems have 

stimulated strong interest in autonomous microscopy, with several notable opinion pieces over the 

last 3 years.26-28 However, realization of this vision necessitates solution of three intertwined 

problems, including direct control of the microscope operation via external electronics, 

development of machine learning algorithms enabling the automated experiment (AE), and, 

perhaps less obviously, identifying the specific problems that AE seeks to resolve. Until now, this 

last problem has been largely overshadowed by the first two.  

 The direct control of microscopes has been available for decades, typically developed in 

the context of atomic and particle manipulation.29-33 For imaging, the adaptive non-rectangular 

scanning approach was demonstrated by Ovchinnikov et al in 2009.34 More recently, Huang et al35 

and Stores et al36 have demonstrated the combination of machine learning algorithm with Atomic 

Force Microscopy (AFM) enabling autonomous operation of AFM without the need of human 

intervention in imaging modes, with the AE playing the role of (pretrained) feature identifier. 
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 However, the second key component of the AE are the strongly coupled problem of 

machine learning algorithms and specific physical problem. Generally, the AE targeting the 

mechanisms of the ferroelectric domain wall pinning on structural defects will pursue a different 

strategy the experiment exploring the interaction of the ferroelectric and ferroelastic domain walls. 

Recently, we have reported the detailed analysis of the ML perspectives in automated/autonomous 

experiments in microscopy.37 In particular, we noted that the AE itself is defined only in the context 

of prior knowledge, and seeks to discover new information or minimize uncertainties in the known 

system behavior. This coupled machine learning and physics problem in the context of active 

learning makes the AE a highly domain specific problem.  

 To date, the AE’s have been implemented either using the human-based features 

engineering, or simple DCNN based image recognition.36 For example, in piezoresponse force 

microscopy (PFM), the AE was introduced based on a line-by-line feedback system employed 

during classical rectangular scanning by Kelley et al.38, termed “FerroBot”. The FerroBot has 

shown the feasibility of the AE in PFM by using simple operator-defined features of interest. 

Finally, a Gaussian Process/Bayesian Optimization framework has been recently developed to 

control the probe trajectory via leveraging the explored information and scanning sequence.39 At 

the same time, the classical Gaussian Process/Bayesian Optimization routines that underpin most 

AEs over the past years are based purely on the data available through the specific experiment and 

are further limited to low-dimensional signals. As such, they are ill-suited for the active learning 

of the structure-property relationships. 

 Here, we implement the deep kernel learning (DKL) based experimental workflow for 

active discovery of structure-property relationships in ferroelectric materials. This approach 

combines the power of machine learning to establish the correlative relationships between 

multidimensional data sets, and human based physical reasoning to establish targets for exploration 

based on observations and their uncertainties. Here, the relationship between the local domain 

structure and hysteresis loop is explored and future measurement locations are selected based on 

learnt relationships between local domain structure and polarization switching behavior.  

 To illustrate the principle of the DKL applications in experiment, we first implement DKL 

using a pre-acquired high density band excitation piezoresponse spectroscopy (BEPS) imaging 

data set, which hence provides the “known” ground truth image. Here, as a model system we have 

chosen a PbTiO3 (PTO) thin film grown on (001) KTaO3 substrates with a SrRuO3 conducting 

buffer layer by metalorganic chemical vapor deposition (MOCVD) method, as reported by H. 

Morioka et al.40 Shown in Figure 1a is the topography image of the PTO sample illustrating clear 

ferroelastic domain wall pattern. The clearly visible corrugations on the sample surface are 

associated with the ferroelastic domain walls between the domains with different polarization 

orientations. Here, the lattice mismatch across the single domain walls gives rise to strain and 

hence deformations. The superposition of deformations form multiple domain walls give rise to 

ripple-like structure.  

 Shown in Figure 1b-c are the corresponding band excitation (BE) PFM amplitude and 

phase images, which indicate the existence of both in-plane a domains and out-of-plane c domains. 

In the in-plane a domain, the polarization vector is parallel to the surface and hence associated 
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electromechanical response amplitude is close to zero. At the same time, in the out of plane c-

domains the response amplitude is high. Finally, the phase image indicates whether polarization 

vector is parallel or antiparallel to surface normal. 

 To explore polarization dynamics in this system, we analyze the high density polarization 

loop measurements.41 In these measurements, the dc component of the tip bias is following the 

triangular waveform, inducing domain nucleation and growth below the tip. The resultant changes 

of the PFM signal are recorded as the local hysteresis loop. The shape of the hysteresis loop this 

reflects the mechanism of local polarization switching as affected by the ferroelastic walls, 

structural defects, etc. The resultant 3D data array can be analyzed to extract the descriptors of the 

hysteresis loop such as area under the loop, coercive and nucleation biases, etc. that can further be 

plotted as 2D maps. A high grid density (100x100) polarization image is show in Figure 1d, where 

the similar domain structure is visible. Shown in Figure 1e is a ferroelectric polarization hysteresis 

loop from the orange point marked on Figure 1d.  

 

 

Figure 1. PFM results from PTO film. (a), topography and corresponding band excitation (b) 

amplitude and (c) phase maps show c/c and a/c domains. (d), BEPS polarization map when Vdc = 

0 V. (e)-(f), BEPS polarization hysteresis loops from the locations labeled on (d); inserts in (e) and 

(f) show the domain structures around the locations where hysteresis loops are from, the 

correspondence between insert images and hysteresis loops is indicated by colors; these illustrate 

that different elements of hysteresis loops are correlated with different elements of domain 

structures. Note that ground truth BEPS image contains 10,000 hysteresis loops measured over 

uniform spatial grid.  

 

 As acquired, the combination of the PFM domain structure image and hysteresis loop 

mapping allows to reconstruct structure property relationships, defined here as a correlative link 
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between the local ferroelastic domain structure and hysteresis loop shape. Previously, we have 

demonstrated the use of machine learning methods, specifically an encoder-decoder type of neural 

networks, to build such relationships for ferroelectric42,43 and plasmonic44 structures. These 

correlative relationships allow answering questions such as, what responses are possible in a given 

system, what structures are necessary to maximize certain aspects of the response, etc. However, 

as with any correlative method, these answers are valid only for the in-distribution data (meaning 

for the same material under the same microscope settings), and do not allow answering 

counterfactual and interventional questions.45-47 Some of these can be answered via transition from 

correlative to generative physical models,48-50 but these raise further questions of theory-

experiment matching.  

 Furthermore, these analyses are limited to the case when the full data set is available a 

priori, i.e., they allow analyzing the data after the experiment. However, it is not guaranteed that 

the pre-acquired data sets sampled most interesting locations, and the number of possible 

measurements are limited by acquisition time and probe stability. Contrarily, in an active machine 

learning setting, only the full topographic and PFM images are available, and information 

contained in these images is used to select the locations for spectroscopic measurements. Based 

on the examination of spectroscopic data, further locations are identified. For example, the 

operator can learn that the in-plane a-domain regions do not have measurable hysteresis loop, that 

all a-c domain structures have similar switching behaviors, and that irregular domain edges or 

junctions may possess interesting dynamics. The subsequent selection of the target locations can 

then be based on these observations and curiosity (exploration) or perceived usefulness 

(exploitation). Importantly, this approach is the basis of DKL. 

 The DKL is based on the Gaussian Process (GP) regression, and can be represented as a 

combination of GP with deep neural networks. In general, GP generally refers to an indexed 

collection of random variables, any finite subcollection of which have a joint multivariate Gaussian 

distribution.51 A GP is completely determined by its mean and covariance functions, with the latter 

determining the functional form and strength of interaction between the points in the input space.  

 A common application of GP is in a regression setting where it can be used for 

reconstructing data from sparse observations with quantified uncertainty.52 Note that the 

uncertainty per se is important when gaining quantitative insights into physical behaviors, and 

locations with high uncertainty can indicate the presence of new physical mechanisms.53 

Specifically, given the dataset 𝐷 = [𝑥𝑖 , 𝑦𝑖]𝑖=1,…,𝑁, where 𝑥 and 𝑦 represent inputs/features and 

outputs/targets, respectively, the GP probabilistic regression model with a standard squared 

exponential kernel of the form 𝑘(𝐱, 𝐱′) = 𝜎2exp(
1

2
(𝐱 − 𝐱′)2 𝑙2⁄ )  is defined as  

𝑦 ~ 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝐾(𝐱, 𝐱′, 𝜎, 𝑙))    (1a) 

𝜎 ~ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑠1
const)      (1b) 

𝑙 ~ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑠2
const)      (1c) 
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where K denotes a function that computes a kernel matrix such that 𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) for the sampled 

kernel hyperparameters. The GP model can be trained either using a Markov Chain Monte Carlo 

algorithm on the model to get posterior samples for the GP parameters or via a variational 

inference. It is commonly assumed that there is an observation noise such that 𝐲noisy = 𝐲 + 𝛆 

where 𝛆 is a normally distributed noise with zero mean and variance 𝑠noise
2 . Practically, this noise 

gets absorbed into a computation of the covariance function. 

 Once the GP model parameters are learned, it can be used to make predictions on new 

“test” points. This is done by sampling from the multivariate normal posterior over the model 

outputs at the provided test points 𝑥∗: 

𝑓∗ ~ 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛉
post

, Σ𝛉
post

)    (2a) 

where 𝜽 = [𝜎, 𝑙] and 

𝜇𝛉
post

= 𝐾(𝑥∗, 𝑥|𝜽)𝐾(𝑥, 𝑥|𝜽)−1𝐲     (2b) 

Σ𝛉
post

= 𝐾(𝑥∗, 𝑥∗|𝜽) − 𝐾(𝑥∗, 𝑥|𝜽)𝐾(𝑥, 𝑥|𝜽)−1𝐾(𝑥, 𝑥∗|𝜽)  (2c) 

The GP predictive mean (𝑓∗̅) and variance (𝕍[𝑓∗]) can be used to select the next 

measurement point(s) via a so-called acquisition function,54 𝑎𝑐𝑞(𝑓∗̅, 𝕍[𝑓∗]), so that 𝑥next =

argmax(𝑎𝑐𝑞). The acquisition function reflects the measure of interest to specific region based on 

expected function value and uncertainty, balancing exploration and exploitation. Implementation-

wise, one generally starts with a few sparse observations and trains a GP model. Then, a prediction 

on the “test” points – which usually represent all the unmeasured points in a selected parameter 

space – is made and used to derive an acquisition function for sampling the next query point. This 

approach is referred to as Bayesian optimization (BO) or ‘active learning’. For structural imaging 

in microscopy, the parameter space corresponds to a 2D grid over a chosen scan area; for 

spectroscopic measurement, a third dimension corresponding to the energy axis can be added.  

A significant limitation of the standard GP-based active learning is that it does not scale 

well with dimensionality of the parameter space. As a result, for many common hyperspectral 

measurements in 3D-5D space, the GP training and inference may take so long (even on modern 

Graphics Processing Units) that it is faster to perform the measurement by simply sampling all the 

points (i.e., the standard way of doing measurements). Another limitation is that the standard GP 

does not, strictly speaking, learn representations of data which precludes from using prior 

knowledge from different experimental modalities to assist in the experiment (something that a 

(good) experimentalist does all the time). In the context of the ferroelectric domain studies detailed 

here, the simple GP/BO does not use the information on the preexisting domain structure to build 

the relationship between these and switching behaviors. 

To address these issues, here we have adapted a deep kernel learning55 approach where a 

neural network is used to convert high-dimensional input data into a set of low-dimensional 

descriptors on which a standard (‘base’) GP kernel operates (Figure 2a). Formally, we define our 

‘deep kernel’ as 
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 𝑘𝐷𝐾𝐿(𝑥, 𝑥′|𝒘, 𝜽) = 𝑘𝑏𝑎𝑠𝑒(𝑔(𝑥|𝒘), 𝑔(𝑥′|𝒘)|𝜽)    (3) 

 
where 𝒘 are the weights of the neural network. Hence, the deep kernel operates in the latent 

(embedding) space learned by a neural network from the (potentially high-dimensional) data and 

can be referred to as the data-informed kernel. The parameters of neural network and GP base 

kernel are learned simultaneously by maximizing the model evidence via a stochastic variational 

inference.56 The trained DKL GP model is then used for obtaining predictive mean and variances 

following the Eq. (2), that is, using the same procedure as for the standard GP. Then, the acquisition 

function for the expected improvement54 is used to predict the next measurement point. The DKL 

can operate both on scalar (single output) and vector (multiple outputs) targets. In the latter case, 

different function outputs (such as response function values at different energies) can be 

independent or correlated. Implementation-wise, the correlation between different function 

outputs is achieved by forcing them to share the same latent space, i.e. having a single neural 

network (feature extractor) connected to multiple GPs whose number is equal to the number of 

function outputs. Alternatively, one may assume independence between outputs, which would 

require training an independent neural network for each GP (i.e., for each output). For a single-

objective active learning, the vector-valued prediction of the DKL model must be scalarized in 

order to select the next measurement point. 
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Figure 2. Schematic illustration of active learning with deep kernel learning (DKL). Here, the 

algorithm has access to the full topographic data and uses Bayesian optimization to learn the 

relationship between the domain structure within the patch and hysteresis loop. (a) The inner 

structure of the DKL model. A feedforward neural network parametrized by weights 𝒘 projects 

the potentially high-dimensional input data X into the low-dimensional latent space,  𝑔(𝑥|𝒘) in 

which a standard GP kernel 𝑘(𝑧, 𝑧′|𝜽) operates (where z are the embedded/latent features). (b) The 

Bayesian optimization loop. (c) At training step, the DKL-based Gaussian process (GP) regression 

model (for brevity, referred to as DKL model) is trained using a small number of observations 

where inputs are topographic image patches and outputs are corresponding spectra or scalar values 

of a specific property derived from the spectra. (d) At prediction step, a trained DKL model is used 

to predict spectra at every coordinate in the topographic image for which there is no measured 
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spectra. Importantly, this method outputs both expected mean value, 𝑓∗̅, of the property of interest 

and the associated uncertainty, 𝕍[𝑓∗], which are used to derive an acquisition function 

𝑎𝑐𝑞(𝑓∗̅, 𝕍[𝑓∗]) for selecting the next measurement point (see b). Note that if the output is a vector-

valued function (such as spectra) it needs to be scalarized before passing to the acquisition function 

such that the exploration process is controlled by a single descriptor that is a function of the 

predicted functionality and its uncertainty. In this manner, the human operator defines what 

physical functionality is targeted during the experiment. Note that exploration can be based both 

on physical and on information-theoretical criteria, i.e. targeting variability of observed behaviors 

(curiosity learning). 

 

 To illustrate DKL approach, we first implement it on the pre-acquired data set. Here, we 

use the random sampling with the 15% of measured points for training the DKL model that 

subsequently makes predictions on the full dataset. Shown in Figure 3 are results of DKL analyses 

on the pre-acquired BEPS data (as shown in Figure 1d-e), where we show the ground truth, 

embedded variables, DKL prediction, and the associated uncertainty. Both analyses on hysteresis 

loop area and hysteresis loop width indicate good reconstructions of loop area and loop width maps 

(Figure 3d and 3i) when comparing with the ground truth maps (Figure 3a and 3f). The embedded 

variables highlight the tiny domains (Figure 3b and 3g) and the large domains (Figure 3c and 3h), 

respectively. Shown in Figure 3k-m are several examples demonstrating the reconstruction of 

hysteresis loops comparing with the ground truth hysteresis loops.  
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Figure 3. Deep kernel learning on the pre-acquired data set for 15% of measured locations. (a-h) 

DKL analysis of loop area: (a) 15 % randomly sampled loop area data for training session, (b) 

ground truth loop area map, (c) DKL predicted loop area, (d) DKL uncertainty map, (e, f) absolute 

error map of DKL prediction and the histogram distribution of errors, (g, h) the embedded latent 

maps of the trained DKL (the embedding dimensions were set to 2). (i-p) DKL analysis of loop 

width: (i) 15 % randomly sampled loop width data for training session, (j) ground truth loop width 

map, (k) DKL predicted loop width, (l) DKL uncertainty map, (m-n) absolute error map of DKL 

prediction and the histogram distribution of error, (o-p) the embedded latent maps of the trained 

DKL. (i, j) DKL predicted loop width and DKL uncertainty maps. (q-s) examples of DKL 

prediction on hysteresis loops, showing DKL predicted loops and ground truth loops. 
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 We further explore the effect of the number of sampling points for random sampling. Here, 

we show the DKL reconstruction of coercive field, hysteresis loop area, and loop width based on 

1%, 3%, 5 %, and 10% of random sample data in Figure 4a-c. Note that in this approach DKL 

aims to reconstruct the relationship between the local domain structure and the hysteresis loop 

properties based on fully known collection of image patches, and patch-spectrum pairs available 

for only (very small) fraction of the data. With this relationship established, it aims to reconstruct 

the spectra properties and their uncertainties for the full data set. Figure 4d-e show the quality of 

reconstruction as the mean squared error (MSE) between the reconstruction and the ground truth 

as a function of the number of sampled data points. Note that in Figure 4a, the coercive field is the 

average of positive and negative coercive field; in Figure 4b and 4c, the loop area and width are 

from off field hysteresis loops. More results about separated positive and negative coercive fields, 

and on field loop area are shown in Supplementary Information Figure S1. More details about how 

the random sampling of data affects the DKL reconstruction are shows in Supplementary 

Information as videos Supplementary Videos S1-S5. 

 

 
Figure 4. DKL reconstruction from randomly sampled data. (a) ground truth coercive field map 

and DKL reconstructed coercive field maps based on 1%, 5%, 10%, and 50% of randomly sampled 

data. (b) ground truth hysteresis loop area map and DKL reconstructed loop area maps based on 

1%, 5%, 10 %, and 50% of randomly sampled data. (c) ground truth hysteresis loop width map 
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and DKL reconstructed loop width maps based on 1%, 5%, 10 %, and 50% of randomly sampled 

data. (d-f) DKL reconstruction error and structure similarity between ground truth and 

reconstruction of coercive field map, loop area map, and loop width map, respectively. Note that 

reconstructed images preserve features at all length scales, which very difficult to achieve with 

classical BO.39 

 

 

 We further illustrate the transition from the reconstruction based on predefined (e.g. 

random or low-density grid) sampling towards science-driven discovery, and experimental 

implementation of this approach. Here, the critical new element is the definition of the scalar 

descriptor that reflects the physical behaviors we are interested in and use to guide the exploration 

process. For hysteresis loops a shown in Figure 5a, these can be parameters such as loop area or 

width, coercive field, and nucleation bias, or more complex descriptors such as quality of 

functional fit by predefined function, fit parameters, etc. Alternatively, the exploration can be 

based on information-theoretical criteria such as growth of entropy of the data set, i.e. curiosity 

learning. The key element here is that the acquisition function summarizing the degree of interest 

to specific behavior allows human-level decision making searching for specific physical 

signatures, and allows to incorporate associated uncertainties. 

 

 

Figure 5. Physics-based descriptors for DKL BO. (a) example of hysteresis loop and definition of 

possible physical descriptors, Aloop: loop area; Wloop: loop width; -Ec: negative coercive field; +Ec: 
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positive coercive field; -Vn: negative nucleation bias; +Vn: positive nucleation bias. (b) exploration 

path for loop area discovery. (c) exploration path for loop width discovery. (d) ground truth loop 

area map and DKL BO reconstructed loop area maps based on loop area discovery for 0.5 %, 1 %, 

5 %, and 10 % sampling points. (e) ground truth loop width map and DKL BO reconstructed loop 

area maps based on loop width discovery for 0.5 %, 1 %, 5 %, and 10 % points predicted by DKL 

BO. The associated videos and the behavior of uncertainty are available in the supplementary 

materials. 

 

 Shown in Figure 5b-c are the DKL BO navigation sequence with the acquisition function 

based on hysteresis loop area and loop width, respectively. Shown in Figure 4d-e are the DKL 

reconstruction of loop area and width with 0.5 %, 1 %, 5 %, and 10 % of the points where the DKL 

BO suggested to perform measurements. The reconstruction quality can be evaluated by 

comparison with the random sampling points in Figure 4. We show the videos of acquisition 

function image with labels of discovered points in Supplementary Information for both loop area 

and loop width cases. The reconstruction videos with the DKL-BO sampled points, DKL 

prediction, and DKL uncertainty are also shown in Supplementary Information.  

 Finally, we deploy the DKL discovery workflow on the operational microscope. Here, we 

combined the DKL discovery workflow in Jupyter notebook with an in-house LabView-based 

script for National Instruments hardware (LabView-NI) to control the tip position for BEPS 

waveform generation and data acquisition. First, we performed a BEPFM measurement to acquire 

the domain structure image, which will be used to generated domain structure image patches for 

DKL. At the beginning of BEPS hysteresis loop measurement, the sampling point is initialized by 

the LabView-NI at a random location to obtain hysteresis loop. Then, the Jupyter notebook 

analyzes the hysteresis loop and the corresponding pre-acquired domain structure image patch to 

train the DKL model. The DKL was trained for 200 iterations after which a prediction on all the 

image patches was made and the pre-selected acquisition function was used to derive the next 

location for hysteresis measurement to LabView-NI. Then the process is repeated. A schematic of 

this specific workflow used is shown in Figure 6a. Figure 6b-c shows BEPFM amplitude and phase 

images with 256*256 grid size which will be used to generate image patches for DKL. It can be 

seen that the PTO film contains both in-plane a domains and out-of-plane c domains as 

demonstrated previously. The size of the generated image patches for DKL-BO is 20*20 grid and 

the BEPS measurement was performed at 237*237 grid size.  The DKL-BO process was continued 

for 200 steps, i.e., until 200 pixels worth of data were captured. 

We used the image patches generated from the BEPFM results in Figure 6b and 6c for 

guide the discovery workflow using on-field hysteresis loop area and off-field hysteresis loop area, 

respectively. The discovered points are labeled in Figure 6b-c. The detailed discovery processes 

are shown in Supplementary Information as videos of acquisition function images with labeled 

exploration point. Interestingly, the DKL BO sampled points for on-field hysteresis loop area are 

concentrated around c-/c+ ferroelectric domain walls (Figure 6b), while the DKL-BO sampled 

points for off-field hysteresis loop area are concentrated around a/c ferroelastic domain walls, 

demonstrating the potential of this approach to discover different behaviors based on predefined 

exploration targets. This is an indicative of the different properties included in the on-field and off-
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field hysteresis loops. With the obtained 200 hysteresis loops and the BEPFM domain structure 

images, we are able to make predictions on the hysteresis loop area maps. Shown in Figure 6d-e 

are the DKL prediction of on-field and off-field hysteresis loop area maps, respectively, along with 

the DKL uncertainty. The domain structures are visible in the predicted loop area maps, indicating 

the hysteresis loop is associated with the domain structure. 

Here, these observations can be readily rationalized (but not predicted!) based on the 

known physics of ferroelectric domain walls. Here, the larger polarization mobility in the vicinity 

of the 180 walls results in more significant hysteresis loop opening in the on-field measurements. 

At the same time, the off-field measurements detect only the slowly relaxing (on the measurement 

time scale) components, indicative of the stronger pinning at the ferroelastic walls. These 

behaviors generally agree with some of the prior observations of similar systems.57,58 

 

 

Figure 6. DKL-BO based automated PFM experiment. (a). schematic of the DKL-BO PFM 

workflow. (b)-(c) BEPFM amplitude and phase images used for generation of domain structure 

image patches for DKL-BO BEPS measurements; the BEPFM results in (b) and (c) are used for 

DKL-BO discovery of on-field loop area and off-field area, respectively; the discovered points are 

labeled in the image in (b) and (c). (d)-(e), DKL prediction of on-field and off-field loop area maps 

based on the obtained 200 hysteresis loops.  

 

To summarize, we have developed the DKL approach that allows the physical discovery 

in automated experiment. Compared to the classical Bayesian Optimization based strategies that 

use a single (or small number) of scalar descriptors to guide the navigation process and do not 

incorporate the prior knowledge, this approach uses the data contained in structural images to 
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identify the locations of the spectroscopic measurements, and identifies new locations and builds 

the structure property relationships simultaneously. This discovery process is guided by the 

acquisition function that is constructed from predicted behavior and its uncertainty, and reflects 

the target of the experiment. This target can be optimization of specific property, similarity to a 

given model, or novelty discovery. In this manner, we combine the power of correlative machine 

learning methods to establish relationships between multidimensional data set and derive 

corresponding uncertainties, and human physics-based decision making encoded in the choice of 

the acquisition function. 

 Here, we implemented this approach for PFM measurement to investigate the relationship 

between polarization hysteresis and ferroelectric/ferroelastic domain structures. The obtained 

results show different exploration path and sampled points when the DKL is guided by on-field 

and off-field hysteresis loops, indicating structure-hysteresis relationship varies under different 

circumstances, i.e. on-field or off-field. We also note that in principle the DCNN part of the DKL 

can be pre-trained on previous experimental data from the same or similar systems, somewhat 

equivalent to the transfer learning approach. However, this will necessitate the stringent analysis 

of the out of distribution drift effects (e.g. due to different microscope settings).  

 Similarly, this workflow can be readily extended to other SPM modalities, including 

current-voltage curve measurements or relaxation measurement. We expect that most significant 

benefit will be achieved for measurements with the readily identifiable connection to materials 

physics (e.g. signature of Majorana fermions in STM), large acquisition times, and especially 

destructive measurements such as nanoindentation and irreversible electrochemical 

measurements. Beyond SPM, similar approaches can be used to techniques such electron 

microscopy, chemical and mas-spectroscopic imaging, and nanoindentation and micromechanical 

testing. Finally, the DKL approach can be implemented over more complex parameter spaces, e.g. 

for material discovery in combinatorial spread libraries or molecular systems. 
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Methods 

Data analysis 

The detailed methodologies of DKL analysis on pre-acquired data are established in Jupyter 

notebooks and are available from https://git.io/JRspC. A standard MLP with three hidden layers 

containing 1000, 500, and 50 “neurons” was used as a ‘feature extractor’ in the DKL model. 

PTO sample  

The PTO film was grown by chemical vapor deposition on a SrRuO3 bottom electrode on a KTaO3 

substrate. 

BEPFM and BEPS measurements 

The PFM was performed using an Oxford Instrument Asylum Research Cypher microscope with 

Budget Sensor Multi75E-G Cr/Pt coated AFM probes (∼3 N/m). Band excitation data are acquired 

with a National Instruments DAQ card and chassis operated with a LabView framework.  

DKL-PFM implementation 

The DKL deployment notebook for BEPS measurement is available from https://git.io/JRspC, 

which can be adapted for other modalities.  
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