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Originally developed to accelerate three-dimensional graph-
ics, the benefits of GPUs for powerful parallel computing 
were quickly praised by the scientific community. The 

earliest attempts to use GPUs for scientific purposes employed 
the programmable shader language to run calculations. In 2007, 
NVIDIA released Compute Unified Device Architecture (CUDA) 
as an extension of the C programming language, together with 
compilers and debuggers, opening the floodgates for porting com-
putationally intensive workloads into GPU accelerators. Further 
advances came from the release of common maths libraries such as 
fast Fourier transforms and basic linear algebra subroutines, which 
were foundational to scientific computing. In the same year, the first 
computational chemistry programs were ported to GPUs, enabling 
efficient parallelization of molecular mechanics and quantum Monte  
Carlo1 calculations.

In September 2014, NVIDIA released cuDNN, a GPU-accelerated 
library of primitives for deep neural networks (DNNs) implement-
ing standard routines such as forward and backward convolution, 
pooling, normalization and activation layers. The architectural sup-
port for training and testing subprocesses enabled by GPUs seemed 
to be particularly effective for standard deep learning (DL) proce-
dures. As a result, an entire ecosystem of GPU-accelerated DL2 plat-
forms has emerged. While NVIDIA’s CUDA is a more established 
GPU programming framework, AMD’s ROCm3 represents a uni-
versal platform for GPU-accelerated computing. ROCm introduced 
new numerical formats to support common open-source machine 
learning libraries such as TensorFlow and PyTorch; it also provides 
the means for porting NVIDIA CUDA code into AMD hardware4. It 
is important to note that AMD not only is catching up to the ROCm 
platform in the GPU computing race, but also recently introduced 
the new flagship GPU architecture AMD Instinct MI200 Series5 to 
compete with the latest NVIDIA Ampere A100 GPU architecture6.

The fields of bioinformatics, cheminformatics and chemoge-
nomics in particular, including computer-aided drug discovery 

(CADD), have taken advantage of DL methods running on GPUs. 
Most challenges in CADD have routinely faced combinatorics and 
optimization problems, and machine learning has been effective at 
providing solutions for them7. Thus, major progress has been made 
in DL for CADD applications such as virtual screening, de novo 
drug design, absorption, distribution, metabolism, excretion and 
toxicity (ADMET) properties prediction and so on (Fig. 1).

Herein, we discuss the effects of GPU-supported parallelization 
and DL model development and application on the timescale and 
accuracy of simulations of proteins and protein–ligand complexes. 
We also provide examples of DL algorithms used for structure deter-
mination in cryo-electron microscopy (cryo-EM) and 3D structure 
prediction of proteins.

GPU computing and DL for molecular simulations
GPU acceleration comes from massive data parallelism, which 
arises from similar independent operations performed on many 
elements of the data. In graphics, an example of a common data 
parallel operation is the use of a rotation matrix across coordinates 
describing the positions of objects as a view is rotated. In a molecu-
lar simulation, data parallelism can be applied to independent cal-
culation of atomic potential energies. Similarly, DL model training 
involves forward and backward passes that are commonly expressed 
as matrix transformations that are readily parallelizable (Fig. 2).

Accelerating molecular dynamics simulations on GPUs. The 
development of GPU-centred molecular dynamics codes in the past 
decade led hundred-fold reductions in the computational costs of 
simulations compared with central processing unit (CPU)-based 
algorithms8. Consequently, most molecular dynamics engines (such 
as AMBER (assisted model building with energy refinement)9, 
GROMACS (Groningen machine for chemical simulations)10 
and NAMD (nanoscale molecular dynamics)11) now provide 
GPU-accelerated implementations. GPUs not only are well suited 

The transformational role of GPU computing and 
deep learning in drug discovery
Mohit Pandey   1,5, Michael Fernandez   1,5, Francesco Gentile   1, Olexandr Isayev   2, 
Alexander Tropsha3, Abraham C. Stern4 ✉ and Artem Cherkasov1 ✉

Deep learning has disrupted nearly every field of research, including those of direct importance to drug discovery, such as 
medicinal chemistry and pharmacology. This revolution has largely been attributed to the unprecedented advances in highly 
parallelizable graphics processing units (GPUs) and the development of GPU-enabled algorithms. In this Review, we present 
a comprehensive overview of historical trends and recent advances in GPU algorithms and discuss their immediate impact on 
the discovery of new drugs and drug targets. We also cover the state-of-the-art of deep learning architectures that have found 
practical applications in both early drug discovery and consequent hit-to-lead optimization stages, including the acceleration of 
molecular docking, the evaluation of off-target effects and the prediction of pharmacological properties. We conclude by dis-
cussing the impacts of GPU acceleration and deep learning models on the global democratization of the field of drug discovery 
that may lead to efficient exploration of the ever-expanding chemical universe to accelerate the discovery of novel medicines.

Nature Machine Intelligence | VOL 4 | March 2022 | 211–221 | www.nature.com/natmachintell 211

mailto:astern@nvidia.com
mailto:acherkasov@prostatecentre.com
http://orcid.org/0000-0002-2562-7155
http://orcid.org/0000-0003-2273-733X
http://orcid.org/0000-0001-8299-1976
http://orcid.org/0000-0001-7581-8497
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-022-00463-x&domain=pdf
http://www.nature.com/natmachintell


Review Article NaTURe MachIne InTellIGence

to accelerating molecular dynamics simulations but also scale well 
with system size using spatial domain decomposition12. As a result, 
molecular dynamics simulations extend to a broader range of bio-
molecular phenomena, approaching the viral and cell level and 
coming closer to experimental timescales. Recent methodological 
and algorithmic advances enabled molecular dynamics simulations 
of molecular assemblies of up to 2 × 109 atoms (Fig. 3)13, with overall 
simulation times of microseconds or even milliseconds.

Free-energy simulations represent another area that contin-
ues to benefit from progress in GPU development. Methods such 
as relative binding free-energy calculations, thermodynamic inte-
gration and free-energy perturbation14 now allow reliable bind-
ing affinities for a large number of protein–ligand complexes to 
be computed. In this regard, the recent development of neural 
network-based force fields such as ANI (accurate neural network 
engine for molecular energies)15 and AIMNet (atoms-in-molecules 
net)16 provides industry-standard accuracy of free-energy simula-
tions. The benchmarks with inhibitors for tyrosine-protein kinase 
2 from the Schrödinger Journal of the American Chemical Society 
benchmark set17 showed that the simulations with ANI machine 
learning potential reduced the absolute binding free-energy errors 
by 50%. Frameworks such as ANI provide a systematic approach for 
generating atomistic potentials and drastically reduce the human 
effort required to fit a force field, thus automating force field devel-
opment18. More recently, other DL frameworks have been proposed 
to further push the boundaries of molecular simulations in drug 
discovery19. Exemplifying these approaches, the reweighted auto-
encoder variational Bayes for enhanced sampling20 method was 

employed successfully to simulate ligand–protein dissociation. 
It processed notably faster than conventional molecular dynam-
ics, yet generated accurate estimates of binding free energies21 and 
loop conformation sampling22. Similarly, Drew Bennett et al.23 used 
DNNs to predict water-to-cyclohexane transfer energies of small 
molecules derived from molecular dynamics simulations. The use 
of hybrid DL and molecular mechanics potentials24 for ligand–pro-
tein simulations has also been proposed, supported by the devel-
opment of open-source frameworks25,26. These methods employ 
quantum mechanics-based DL potentials for the ligand and molec-
ular mechanics for the surrounding environment, and have shown 
superior performances in reproducing binding poses27 compared 
with conventional potentials.

Quantum mechanics and GPUs. The availability of CUDA28 and 
OpenCL29 application programming interfaces (APIs) has been 
key to the success of GPU applications, although programming 
GPUs to run chemistry codes efficiently is not trivial. To achieve 
high efficiency, computational threads that are grouped into 
blocks need to be executed simultaneously. TeraChem was the first 
quantum chemistry code to be written specifically for GPUs30. The 
mixed-precision arithmetic allowed very efficient computation of 
Coulomb and exchange matrices31. The latest algorithmic develop-
ments in TeraChem allowed entire proteins to be simulated with 
density functional theory (DFT)32. Hybrid quantum mechanics– 
molecular mechanics simulations of the nonadiabatic dynamics 
of Bacteriorhodopsin provided insight into the light-activation 
machinery and a molecular-level understanding of the conver-
sion of light energy into work33. DFT calculations are now rou-
tine for studying protein–ligand interactions. For instance, the 
best calculations resulted in mean absolute errors of ~2 kcal mol−1 
for protein–ligand interaction energies33. DFT calculations of ser-
ine protease factor X and tyrosine-protein kinase 2 showed that 
the obtained geometries are close to the co-crystallized protein–
ligand structures34.

Future exascale supercomputers will provide high levels of paral-
lelism in heterogeneous CPU and GPU environments. This scaling 
requires the development of new hybrid algorithms and, essentially, 
a complete rewrite of the scientific codes. These new developments 
are now being implemented as a part of the NWChemEx pack-
age35. NWChemEx will offer the possibility of performing quantum 
mechanics and molecular mechanics simulations for systems that 
are several orders of magnitude larger than those that are tractable 
by canonical formulations of theoretical methods35.

GPU acceleration of protein structure determination. 
High-throughput and automation of cryo-EM have become increas-
ingly important as the state-of-the-art experimental technique used 
for protein structure determination for use in structure-based drug 
design36. DL-based approaches, such as DEFMap37 and DeepPicker38, 
have been developed to accelerate processing of cryo-EM images. 
The DEFMap method directly extracts structure dynamics associ-
ated with hidden atomic fluctuations by combining DL and molecu-
lar dynamics simulations that learn the relationships between local 
density data. DeepPicker employs convolutional neural networks 
(CNNs) and cross-molecule training to capture common features 
of particles from previously analysed micrographs, which facili-
ties automatic particle picking in single-particle analysis. This tool 
serves to illustrate that DL integration can successfully address cur-
rent gaps towards fully automated cryo-EM pipelines, paving the 
way for a new multidisciplinary approach to protein science37,38.

In addition to accelerated experimental characterization of pro-
tein structures by cryo-EM, the recent ground-breaking success of 
DeepMind with the AlphaFold-2 method in the Critical Assessment 
of Protein Structure Prediction (CASP) challenge hints at the future 
impacts of DL algorithms in protein structural characterization and 
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Fig. 1 | CADD workflow. GPU accelerators find applications in each step of 
the drug discovery and development process (shaded in colour). FDA, US 
Food and Drug Administration.
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Fig. 2 | Parallelization of DL architectures in single- and multi-GPU environments. Neural network arithmetic operations are based on matrix 
multiplications that are parallelized by GPUs using block multiplication and aggregation131. a, Distribution of computational graph over one GPU for 
a two-layered multilayer perceptron (MLP). W, trainable parameters; SGD, stochastic gradient descent algorithm; η, learning rate of the stochastic 
gradient descent algorithm. b, Data parallelization. Each GPU stores a network copy. Data parallelization is the most commonly adopted GPU paradigm 
for accelerating DL132. A copy of the network resides in each GPU, and each GPU gets its own dedicated minibatch of data to train on. The computed 
gradients and losses are then transferred to a shared device (typically the CPU) for aggregation before being rebroadcast to GPUs for parameter updates. 
LayerNorm, Dropout, Fc, SoftMax and Bidirectional LSTM (long short-term memory) are modules of an arbitrary neural network topology used for 
demonstration. c, Forward and backpropagation for a gradient minibatch descent algorithm. M, total mini-batches for the data.
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the expansion of the druggable proteome39. AlphaFold-2 can regu-
larly predict protein geometry with atomic accuracy without being 
previously exposed to similar structures. The recently updated neu-
ral network-based model demonstrated an accuracy competitive 
with experiments in most cases, and greatly outperformed other 
methods at the 14th CASP competition. The DL model behind 
AlphaFold-2 incorporates physical and biological knowledge about 
protein structure, leveraging multi-sequence alignments to crack 
one of the oldest problems in biology. AlphaFold-2 was employed 
to predict the structures of nearly every known human protein and 
other organisms important to medical research, a total of 350,000 
proteins, which represents an impressive achievement for biomedi-
cal research39.

The emergence of DL in CADD
Advances in DL, particularly in computer vision and language pro-
cessing, revived the recent interest of CADD researchers in neu-
ral networks. Merck is credited with popularizing DL for CADD 
through the Kaggle competition on Molecular Activity Challenge 
in 2012 (ref. 40). The winning solution by Dahl et al.41 leveraged a 
multitask learning approach to train a DNN. Thereafter, many 
researchers embraced such models for drug discovery problems. 
These include the evaluation of the predictors of the pharmacoki-
netic behaviour of therapeutics and their adverse effects42, the pre-
diction of small molecule–protein binding43, the determination of 
chemotherapeutic responses of carcinogenic cells44, the quantitative 
estimation of drug sensitivity45 and quantitative structure–activity 
relationship (QSAR) modelling46, among others.

The emergence of GPU-enabled DL architectures, along with 
the proliferation of chemical genomics data, has led to mean-
ingful CADD-enabled discoveries of clinical drug candidates. 
Furthermore, artificial intelligence (AI)-driven companies (such 
as BenevolentAI, Insilico Medicine and Exscientia, among oth-
ers) are reporting successes in augmented drug discovery. For 
example, Exscientia developed a drug candidate, DSP-1181, to be 
used against obsessive-compulsive disorder that entered phase 
1 clinical trials less than 12 months from its conception using AI 
approaches47. Insilico Medicine just began a clinical trial with its first 

AI-developed drug candidate to treat idiopathic pulmonary fibrosis 
and BenevolentAI identified baricitinib48 as a potential treatment 
for COVID-19 (ref. 49). These recent success cases indicate that fur-
ther promotion and application of AI-driven approaches supported 
by GPU computing could greatly accelerate the discovery of novel 
and improved medicines.

DL architectures for CADD. From discriminative neural networks 
that find applications in virtual screening of existing or syntheti-
cally feasible chemical libraries to the recent success of DL gen-
erative models that has inspired their use in de novo drug design,  
Fig. 4 depicts the general scheme of commonly used state-of-the-art 
DL architectures. Table 1 enumerates their adoption in CADD.

MLPs. Multilayer perceptrons (MLPs) are fully connected networks 
with input, hidden and output layer(s) and nonlinear activation 
functions (sigmoid, tanh, ReLU (rectified linear unit) and so on) 
that are the basis of DNNs50. Their large learning capacity and rela-
tively small numbers of parameters made MLPs the earliest success-
ful application of artificial neural networks in drug discovery for 
QSAR studies51. Modern GPU machines render MLPs inexpensive 
models that are suitable for the large cheminformatics datasets that 
are having a renewed impact on CADD52.

CNNs. Arguably the most utilized DNNs, CNNs are guided by hier-
archical principles and utilize small receptive fields to process local 
subsections of the input. CNNs have been the go-to architecture 
for image and video processing, while they also enable success in 
biomedical text classification53. A typical CNN operates on a 3D 
volume (height, width, channel), generates translation-invariant 
feature maps based on learnable kernels and pools these maps to 
produce scale- and rotation-invariant outputs.

The parallelizable nature of convolution operation makes CNNs 
suitable for implementation on GPUs. The Toxic Color54 method 
was first developed with the Tox21 benchmark data using simple 2D 
drawings of chemicals, demonstrating that GPU-enabled CNN pre-
dictions, without employing any chemical descriptors, were com-
parable to state-of-the-art machine learning methods. Goh et al.55 
subsequently introduced Chemception, a CNN trained on molecu-
lar drawings to predict chemical properties such as toxicity, activ-
ity and solvation, which showed comparable performance to MLPs 
trained with extended-connectivity fingerprints. Their model was 
further improved by encoding atom- and bond-specific chemical 
information into the CNN55.

RNNs. Historically, computational chemists have relied extensively 
on topological fingerprints such as extended-connectivity finger-
prints56 or other descriptors for molecular characterization57. One 
popular linear Goh representation is SMILES (simplified molecular 
input line entry system)58. String representations of fixed length are 
useful because they can be treated as sequences and efficiently mod-
elled within temporal networks such as recurrent neural networks 
(RNNs). RNNs may be viewed as an extension of Markov chains 
with memory that are capable of learning long-range dependencies 
through its internal states, and hence modelling autoregression in 
molecular sequences.

The capacity of DL algorithms to learn latent internal represen-
tations for the input molecules without the need for hand-crafted 
descriptors allows syntactically and semantically meaningful repre-
sentations specific to the dataset and problem at hand. SMILES2vec59 
was trained to learn continuous embeddings from SMILES representa-
tions to make predictions for several datasets and tasks (toxicity, activ-
ity, solvation and solubility). The lower dimensionality of these vectors 
speeds training and reduces memory requirements—both of which 
are critical aspects of training neural networks. Inspired by the suc-
cess of popular word-embedding algorithm word2vec, Jaeger et al.60 
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developed mol2vec. Based on unsupervised pretraining of word2vec 
on ZINC and ChEMBL datasets, the learned representations achieved 
state-of-the-art performance and were better suited to regression tasks 
than Morgan fingerprints.

VAEs. Variational autoencoders (VAEs)61 are deep generative mod-
els that are revolutionizing cheminformatics owing to their capacity 
to probabilistically learn latent space from observed data that can 
later be sampled to generate new molecules with fine-tuned func-
tional properties. VAEs support direct sampling, and hence genera-
tion, of molecules from a learned distribution over the latent space 
without the need for expensive Monte Carlo sampling. Blaschke 
et al.62 generated new molecules targeting dopamine receptor 2 
using a VAE model. These molecules were further validated using 
a support vector machine model trained for activity prediction. 
Sattarov et al.63 explored Seq2Seq VAEs to selectively design com-
pounds with desired properties. A generative topographic mapping 
was used to sample from the latent representation learned by the 

VAE. Other studies investigated VAEs in conjunction with molecu-
lar graphs to generate new molecules64.

GANs. Recently, generative adversarial networks (GANs) have estab-
lished themselves as powerful and diverse deep generative models. 
GANs are based on an adversarial game between a generator and a 
discriminator module. The objective of the discriminator network is 
to differentiate between real and fake datapoints generated by the gen-
erator network. A concurrently trained generator network attempts 
to create novel datapoints such that the discriminator is manipulated 
into believing the generated results to be real. Following the empiri-
cal success of GANs, several improvements and modifications were 
proposed65. These methods were promptly utilized by researchers in 
drug discovery to artificially synthesize data across subproblems66. 
Méndez-Lucio et al.67 investigated a GAN-based generative model-
ling approach at the intersection of systems biology and molecular 
drug design. Their attempt to bring biology and chemistry together 
was demonstrated in the generation of active-like molecules given 
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the gene expression signature of the target. To this end, they used 
a combination of conditional GANs and a Wasserstein GAN with a 
gradient penalty. GANs have also been explored in conjunction with 
genetic algorithms to combat mode collapse and hence incremen-
tally explore a larger chemical space68.

Transformer networks. Inspired by tremendous success of the 
use of transformer networks69 in natural language processing, 
DL researchers in drug discovery were motivated to explore its 
power for training long-term dependencies for sequences. Using 
self-attention, Shin et al.70 performed end-to-end neural regressions 
to predict affinity scores between drug molecules and target pro-
teins. In doing so, they learned molecular representations for the 
drug molecules by aggregating molecular token embedding with 
position embedding, as well as learning new representations for 
proteins using a CNN. In the same vein, Huang et al.71 introduced 
MolTrans to predict drug–target interactions. Grechishnikova for-
mulated target-specific molecular generation as a translation task 

between amino acid chains and their SMILES representations using 
a transformer encoder and decoder72.

GNNs. A recent innovation in the use of DL on non-Euclidean data 
such as graphs, point clouds and manifolds promoted graph neural 
networks (GNNs)71. The central form taken by the majority of GNN 
variants is neural message parsing in which messages from each 
node in the graph are exchanged and updated iteratively using neu-
ral networks, thereby generating robust representations. PyTorch 
Geometric73 provides CUDA kernels for message parsing APIs by 
leveraging sparse GPU acceleration. Deep Graph Library-LifeSci74 
unifies several seminal works to introduce a platform-agnostic 
API for the easy integration of GNNs in life sciences with a par-
ticular focus on drug discovery. The mathematical representation 
for graphs succinctly captures the graphical structure of molecules, 
meaning that GNNs are potentially of great use in CADD.

Duvenaud et al.75 showed that learned graph representations 
for drugs outperform circular fingerprints on several benchmark 

Table 1 | State-of-the-art DL categories and their applications in drug discovery

Learning category Architecture/algorithm Application

Generative models Graph neural network (GNN) Molecular representation111

ADMET prediction111

Energy prediction112

Drug–target interaction78

Molecular property prediction113

Generative adversarial networks (GANs) De novo drug design114

Variational autoencoder (VAE) De novo drug design115

Transformer Drug–target interaction70

Molecular representation71

De novo drug design72

Representation learning SMILES2vec Continuous molecular embedding59

ProtVec Continuous molecular embedding116

Transfer learning DenseNet (CNN) virtual screening117

Multitask learning Toxicity prediction118

Multiple pharmacokinetic parameter 
prediction119

Binding mode, affinity and activity 
prediction120

ADMET prediction111

Federated learning Horizontal federated learning QSAR analysis121

Solubility prediction122

Deep reinforcement learning Stack-RNN + {reward-based RL} De novo drug design123

Long short-term memory (LSTM) + {policy gradient,
regularized policy
gradient, advantage
actor–critic network,
proximal policy optimization}

De novo drug design124

LSTM + {actor-critic network} De novo drug design125

RNN + {policy-based RL} De novo drug design82

Interpretable artificial 
intelligence

Uncertainty estimation Activity prediction126

Reaction prediction127

Molecular property prediction128

GNN ADMET129

Chemical reactivity prediction130

{ } indicates the policy iteration algorithm used for reinforcement learning (RL).
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datasets. Inspired by gated GNNs, PotentialNet76 showed improved 
performance at ligand-based multitasks (electronic property, solu-
bility and toxicity prediction). Several other studies demonstrated 
improved predictive performance when geometric features such as 
atomic distances were also considered77. Torng et al.78 used graph 
autoencoders to learn protein representations from their amino 
acid residues, along with graph representations of protein pockets. 
These vectors were then concatenated with graph representations 
for drug molecules and fed into an MLP to predict drug–protein 
associations. Gao et al.79 learned protein and drug embeddings 
using RNNs and GNNs on protein sequences and atomic graphs 
of drugs, respectively. One popular approach to the repurposing 
of drugs involves the completion of knowledge graphs; these large 
knowledge graphs are built from the known similarities between 
diseases, drugs and indications80. Gaudelet et al. presented an exten-
sive review of GNNs for CADD applications81.

Reinforcement learning. Reinforcement learning is a branch of 
AI that simulates decision-making through the optimization of 
reward- and penalty-based policies. With the penetration of DL, 
deep reinforcement learning has found applications in CADD, 
particularly in de novo drug design, by enabling molecules to 
have desired chemical properties82,83. Deep reinforcement learning 
trained on GNNs was further shown to improve the validity of the 
molecular structures generated84. Enforcing chemically meaningful 
actions simultaneously with optimizing rewards around chemical 
properties generates useful leads while imparting chemistry domain 
knowledge to otherwise largely black-box DL solutions85.

Scaling up virtual screening with GPUs and DL. Structure-based 
virtual screening and ligand-based virtual screening aim to rank 
chemical compounds on the basis of their computed binding affin-
ity to a target, and to extrapolate structural similarities between 
small molecules to functional equivalence, respectively. With the 
exponential growth of purchasable ligand libraries, already com-
prising tens of billions of synthesizable molecules86, there is increas-
ing interest in expanding the scale at which conventional virtual 
screening operates with the parallelization of docking calculations 
or DL-based acceleration.

A number of structure-based virtual screening methods have 
been developed recently to efficiently screen billion-entry chemi-
cal libraries. VirtualFlow87 represents the first example of such plat-
forms, allowing a billion molecules to be screened on large CPU 
clusters (~10,000 cores) in a couple of weeks while displaying a 
linear scaling behaviour. Differently from VirtualFlow and other 
CPU-based methods88, GPU acceleration of docking algorithms 
using OpenCL and CUDA libraries has partially addressed the 
high-throughput bottleneck by dividing the whole protein surface 
into arbitrary independent regions (or spots)89 or by combining 
both multicore CPU architectures and GPU accelerators in hetero-
geneous computing systems90. A recent example of such strategies 
is Autodock-GPU, which allows a billion molecules to be screened 
in a day on large GPU clusters such as the Summit supercomputer 
(~27,000 GPUs) by parallelizing the pose search process91. These 
approaches that leverage GPU computing on high-performance 
computing will therefore probably become instrumental in iden-
tifying novel lead compounds from large, diverse chemical librar-
ies, or accelerating other structure-based methods such as inverse 
docking92. Still, the costs of computing remain high and can be 
prohibitive for drug discovery organizations that cannot access elite 
supercomputing clusters.

On the other hand, alternative structure-based virtual screen-
ing platforms have recently emerged, leveraging DL predictions 
and molecular docking to boost the selection of active compounds 
from large libraries with limited computational resources. The com-
mon strategy among these methods is the implementation of DL 

emulators of classical computational screening scores that rely on 
an order-of-magnitude higher inference speed than conventional 
docking. Predictive DL models are built using a variety of chemi-
cal structure representations, from molecular fingerprints to more 
sophisticated embeddings, to filter out large portions of a chemi-
cal library. One of the earliest developed methods, Deep Docking93, 
relies on a fully connected MLP model that is trained with chemical 
fingerprints and scores of a small portion of a library, then used 
to predict the docking score classes of the remaining molecules, 
allowing low-ranked entries to be removed without docking them. 
Deep Docking was initially deployed by Ton et al.94 to screen 1.3 
billion molecules from ZINC15 using Glide against SARS-CoV-2 
main protease. More recently, it was also applied sequentially on 
different docking programs to screen 40 billion commercially avail-
able molecules against SARS-CoV-2 main protease by Gentile et al., 
leading to the identification of novel experimentally confirmed 
inhibitor scaffolds95. Other similar methods have been proposed 
that rely on DL models that predict docking outcomes, such as 
MolPAL (molecular pool-based active learning)96 and AutoQSAR/
DeepChem97. Hofmarcher et al.98 also performed ligand-based vir-
tual screening on the ZINC database with over 1 billion compounds 
to rank potential SARS-CoV-2 inhibitors using an RNN. Compared 
with brute-force methods, these DL-based approaches may play an 
important role in making the chemical space accessible to academic 
research groups and small/medium industry alike.

GPU-enabled DL promotes open science and the 
democratization of drug discovery
The integration of DL in CADD as presented here has contributed 
greatly to the global democratization of drug discovery and open sci-
ence efforts. The open-source DL packages DeepChem99, ATOM100, 
Deep Docking93, MolPAL96, OpenChem101, GraphInvent102 and 
MOSES103, among others, have simplified the integration of DL 
strategies into drug discovery pipelines using popular machine 
learning libraries including (but not limited to) scikit-learn, 
Tensorflow and Pytorch. The growing demand for large datasets for 
DL models is naturally encouraging data-sharing practices and calls 
for broader open data policies. Furthermore, GPU acceleration in 
cloud-native computing and micro-service-oriented architectures 
could make CADD methods free and widely available, contribut-
ing to standardizing computational modules and tools, as well as 
architectures, platforms and user interfaces. DL solutions can take 
advantage of public cloud services such as Amazon Web Services, 
Google Cloud Platform and Microsoft Azure to boost drug discov-
ery by reducing the cost.

As exciting as these new DL-enabled modelling opportunities 
are, CADD scientists need to be cautious about the expected impact 
of DL technologies. Realistic expectations need to be derived from 
the lessons learned and best practices developed during more than 
20 years of data-driven molecular modelling104. For example, the 
quality, quantity and diversity of data can hamper not only the accu-
racy but also the overall generality of CADD models. Thus, data 
cleaning and curation will continue to play a major role that can 
alone determine the success or failure of such DL applications104. On 
the other hand, the use of of dynamic datasets derived from guided 
experiments or high-level computer simulations can facilitate the 
utilization of active learning strategies. Interactive training and vali-
dation can substantially improve model quality, as implemented by 
the AutoQSAR tool105. Beyond predictive models, DL solutions are 
particularly useful when combining generative models and RL-based 
decision-making approaches. An optimization of reward- and 
penalty-based rules could enable unprecedented ‘à la carte’ design 
of chemical structures with desired chemical and functional prop-
erties82,83. This method of simultaneously enforcing chemically and 
biologically meaningful actions into de novo drug design represents 
a drastic departure from the more traditional black-box DL solutions.
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Open science efforts are benefiting from recent end-to-end DL 
models that can be implemented at all stages of drug discovery using 
GPUs106. One such recently developed platform is IMPECABLE107, 
which integrates multiple CADD methods. Al Saadi et al.107 com-
bined the strength of molecular dynamics in predicting binding free 
energies with the strength of docking in pose prediction. Their solu-
tion automates not just virtual screening, but also lead refinement 
and optimization.

NVIDIA Clara Discovery is a collection of GPU-accelerated 
frameworks, tools and applications for computational drug dis-
covery spanning molecular simulation, virtual screening, quantum 
chemistry, genomics, microscopy and natural language processing108. 
These platforms are intended to be open and cross-compatible, and 
are expected to accelerate the integration of different data sources 
across the biopharmaceutical spectrum from research papers, 
patient records, symptoms and biomedical images to genes, proteins 
and drug candidates.

Many major hardware producers now use their computing 
expertise to enter the realm of supercomputing by employing multi-
ple GPU clusters to train large-capacity DL models for reaction pre-
diction, molecular optimization and de novo molecular generation. 
The adoption of DL emulation of pharmaceutical endpoints93 by 
CADD platforms can make drug discovery on libraries containing 
tens of billions of compounds affordable, even for small companies 
and academic labs without access to elite computational facilities.

Owing to the legal complexities, sharing of proprietary data 
between institutions continues to act as a bottleneck in streamlined 
drug discovery research. Federated learning allows participating 
institutions to perform localized training on their respective unshared 
data. Trained local models are then aggregated in a central server for 
broader accessibility. Federated learning thus supports democratiza-
tion by alleviating data-exchange challenges to some degree, although 
effective model aggregation remains an active area of research.

Conclusions and outlook
Modern drug discovery has benefited from the recent explosion 
of DL models and GPU parallel computing. Driven by hardware 
advances, DL has demonstrated excellence in drug discovery prob-
lems ranging from virtual screening and QSAR analysis to genera-
tive drug design. De novo drug design in particular has been one 
of the major beneficiaries of advancements in GPU computation 
as it leverages large capacity and highly parameterized models 
such as VAE and GANs that cannot be reasonably deployed with-
out using hardware accelerators such as GPUs. The ever-improving 
price-to-performance ratio of GPU hardware, reliance of DL on 
GPU and wide adoption of DL in CADD in recent years are all evi-
dent from the fact that over 50% of all ‘AI in chemistry’ documents 
in CAS Content Collection have been published in the past 4 years 
(ref. 109). Furthermore, hybrid AI methods have been adopted that 
combine conventional molecular simulations with DL for fast and 
accurate screening of ultra-large chemical libraries approaching 
hundreds of billions of molecules. We expect that the growing avail-
ability of increasingly powerful GPU architectures, together with 
the development of advanced DL strategies and GPU-accelerated 
algorithms, will help to make drug discovery affordable and acces-
sible to the broader scientific community worldwide.

Another key driver of DL algorithms is the availability of ‘big data’. 
With the growing ease of genetic sequencing and high-throughput 
screening, large volumes of pristine data are now readily available 
to researchers in data-driven computational chemistry. However, 
the high-quality labelled data that are essential for supervised learn-
ing methods are still expensive to curate. Methods that build on 
learning from auxiliary datasets, knowledge transfer using transfer 
learning and label-conservative methods such as zero-shot learning 
have thus become a central piece of DL for drug discovery. The reli-
ability and generalizability of any DL method developed for drug  

discovery critically depends on the quality of the sourced data. 
Thus, data cleaning and curation play a major role that can solely 
define the success or failure of such DL applications110 and, conse-
quently, in-depth exploration of the putative benefits of centralized, 
processed and well-labelled data repositories remains an open field 
of research.

Overall, researchers in drug discovery and machine learning 
have efficiently collaborated to identify CADD subproblems and 
corresponding DL tools. We believe that the next few years will see 
these applications be fine-tuned and mature, and this collaboration 
will further evolve to other underexplored areas of the life sciences. 
As such, federated learning and collaborative machine learning are 
gaining traction, and we believe they will be the forebears of the 
democratized drug discovery revolution.
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