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Abstract

Complex biomolecular circuits enable cells with intelligent behavior for survival before neural brains
evolved. Synthesized DNA circuits in liquid phase developed as computational hardware can perform
neural-network-like computation that harness the collective properties of complex biochemical systems,
however the scaling up in complexity remains challenging to support more powerful computation. we
present a systematic molecular implementation of the convolutional neural network (ConvNet) algorithm
with synthetic DNA regulatory circuits based on a simple DNA switching gate architecture. We
experimentally demonstrated that a DNA-based ConvNet based on shared-weight architecture of a 3x6
sized kernel can simultaneously implement parallel multiply-accumulate (MAC) operations for 144 bits
inputs and recognize patterns up to 8 categories autonomously. Furthermore, it can connect with another
DNA circuits to construct hierarchical networks, which can recognize patterns up to 32 categories with a
two-step classification approach of performing coarse classification on language (Arabic numerals,
Chinese oracles, English alphabets and Greek alphabets) and then classifying them into specific
handwritten symbols. With a simple cyclic freeze/thaw approach, we can decrease computation time
from hours to minutes. Our approach shows great promise in the realization of high computing power
molecular computer with ability to classify complex and noisy information.

Introduction

Categorization, a fundamental element of thinking, is an important mechanism for rapid information
processing with neural circuits in the brain’~2. DNA components based artificial neural circuits*~8
developed to mimic such categorization function can classify molecular inputs into discrete patterns,
however it remains challenging to scale up in complexity to support more powerful computational
systems. A pioneering study in this area from Qian and Winfree et. al. demonstrated a network of
interacting DNA strands that can act as artificial neurons and remembers 4 molecular patterns by
implementing Hopfield neural network strategy®. Then, Qian et. al. scaled up the molecular pattern
recognition of DNA neural networks that enable recognition of 9 molecular patterns by implementing
more powerful winner-take-all neural networks strategy with DNA strands’. These results indicate that the
sophistication and elegance of algorithms implemented experimentally with reactive orthogonal DNA
molecules play a key role on determining computation efficiency of DNA neural network circuitry, which is
analogous to electronic circuitry 10

Convolutional neural network (ConvNet) is a powerful computational model for categorization in deep
learning’ =78, in which the connection pattern between neurons resembles the organization of animal
visual cortex'’. They are known as translation-invariant artificial neural networks, which based on shared-
weight structure of the convolution kernels that slide along input features and subsequently provide
translation equivariant output as feature maps. Compared to fully-connected networks resulting in overly-
complex network structures, ConvNet is on the lower extreme on a scale of connectivity and complexity,

since it features a sparse topology to effectively reduce network connections and weight parameters'314,
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thus holding great promise in allowing simpler molecular implementation at vastly smaller scale.
Although ConvNet algorithms have been proposed enabling efficient hardware implementation in

12,18-23

electronic computing devices as well as in photonic and quantum computing devices , it has not

yet been demonstrated in molecular computing systems.

Here we present a systematic strategy for computationally designed networks of reactive orthogonal DNA
molecules that is capable of implementing the convolutional neural network (ConvNet) algorithm. We
show that the DNA-based ConvNet can simultaneously implement multiple parallel multiply-accumulate
(MAC) operations and recognize patterns up to 8 categories. Each pattern comprises of up to 43 distinct
DNA strands selected tracing individual handwritten symbols, which is chosen from the set of 144 that
represents the 144 bits in 12x12 patterns. By connecting the upstream logic circuits that activates a
specific set of weight molecules, the DNA-based ConvNet can recognize patterns up to 32 categories with
a two-step classification approach of performing coarse classification on language (Arabic numerals,
Chinese oracles, English alphabets and Greek alphabets) and then classifying into specific handwritten
symbols. Moreover, we show that a simple cyclic freeze/thaw approach can significantly accelerate large-
scale DNA neural network reactions, which decreases computation time from hours to minutes. Our
approach leads towards the realization of high computing power molecular computer with ability to
classify complex and noisy information.

Results

A DNA switching gate architecture design used for ConvNet circuit. A ConvNet basically consists of input
layer, convolutional layer, nonlinear layer, and output layer. In each layer, an intermediate array of pixels,
referred to as feature map, is produced from the previous layer. Fig. 1a illustrates the operation principle
of the ConvNet for recognition tasks, where a n x n input symbol is convolved with a k x k kernel function
(stride=1) to compute a feature map of dimensions (n-k+1) x (n-k+1). When operating ConvNet, the input
symbol is grouped into (n-k+1)? receptive regions (blue dashed line marked area of Fig. 1a) of
dimensions k x k. The elements of these receptive regions share the same weights, which could enable a
sparse topology to effectively reduce network connections. Mathematically, a convolution operation
requires multiple MAC operations (y= > w; x x;) with shared weights. To implement the weight-sharing

MAC operation using DNA molecules, we proposed a switching gate architecture?*. Each switching gate
is associated with a gate base strand (for example, domains T*Ssi*Si*T*in Fig. 1b) that has a
recognition domain (Si*in Fig. 1b) and a weight tuning domain (Ssi*in Fig. 1b) flanked with two toehold
domains (7*in Fig. 1b), and these domains are functionally independent. Varying the sequence of the
recognition domain at 3'end (or 5'end) would enable it to be connected to different downstream gates (or
upstream gates), leading to different signal transmission pathways. Varying the sequence of the weight
tuning domain would enable to determine the weights assigned to the input. The cascaded circuit could
thus allow independent control of signal transmission functions and weight assignment functions during
computation. In this way, we can implement weight-sharing MAC operations at the molecular level and
construct molecular convolutional neural networks with reactive orthogonal DNA molecules.
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DNA implementation of MAC and convolution operation. We started experimental demonstration with
weight multiplication function (y=w; x x;), in which x; is a binary input and w; is an analogue weight.
These weights are implemented by designing the switching gate with one weight tuning domain and two
recognition domains.Weight multiplication is implemented with cascaded reactions (Supplementary

Fig.3a) wherein input species X; convert an activated weight substrate molecule N;;;" to an intermediate

i

product P;;. N;;;* is implemented with reactions that N;;;undergoes a spontaneous intramolecular-

i i)
conformational-switch upon hybridization with weight tuning molecule W;. In the absence of X;, no P;; will

be generated; in the presence of X;, then the final concentration of Pij will be determined by the

*

concentration of N;;;", thus setting the value of the weighted multiplication y. Different weights can be
implemented by varying the concentration of W; (Supplementary Fig.3b, and Supplementary Figs.4-10).
Then, we can compute the sum of weighted inputs within the same neuron (y=> x;). This is implemented
with reactions wherein all intermediate species P;; stoichiometrically convert summation gate (Sdj)) to
common weighted-sum species Ss; (Supplementary Fig.3c,d). It should be noted that weights with
negative values are implemented by different DNA strands. To complete the summation, the positive
weighted-sum species Ss;, and negative weighted-sum speciesliSs;, need to be subtracted from one
another (Supplementary Fig.3e). Specifically, all positive weighted-sum species Ss;y can convert the
double-stranded complex Ddy ., to an intermediate species Dsy ,,. All negative weighted-sum speciesliSs; ,
generated from the previous step can bind to the toehold of inhibitory strand In; and branch-migrate to
form inert waste species, producing reactive annihilation species Sub; ,* through intramolecular-
conformational-switch.The subtraction can thus be realized wherein Sub; ,* and Dsy ,, annihilate each
other. Only remaining Dsy ,, will interact with the downstream reporting gate (Supplementary Fig.3f) to
read the output signal; otherwise reaction is terminated (Supplementary Fig.3g).

Subsequently, we demonstrated that simple MAC operations can be implemented by combining weight
multiplication and summation subfunctions (Supplementary Figs. 17 and 12). For example, a two-species
MAC operation (y=w4 x Xq + W, X X,) is implemented by adding one summation gate to two parallel
weight multiplications (Supplementary Fig. 11a, b). We can vary the concentration of respective weight
tuning molecules (W, and W,) to obtain different weights for corresponding multiplication reaction, then
we can compute the sum of all weighted inputs by using the same recognition domain connected to
summation gate. As expected, the circuit exhibits a stoichiometric behaviour with the output level and the
concentration of W; (Supplementary Fig. 17c¢, d).

Then, we combined two MAC operations to demonstrate convolution of a 2x2 input pattern using a 2x1
kernel. Each receptive region of input patterns (x; and x; X, and x,) multiply with weights (w4 and w,) to
obtain weighted pixels (x; x w; and x5 x w,; X, x w; and x, x W), respectively. Feature maps (y; and y,)
are then exported by summing up the weighted pixels in the same receptive region (Fig. 2a). We built a
small-scale DNA regulatory circuit using three subfunctions: multiplication, summation, and reporting, to
perform the convolution operation (Fig. 2b). The 2x2 input pattern is encoded with four DNA input
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strands (X;, Xy, X3, and X,). The convolution kernel is encoded in the sequence of weight tuning domains
(see green domains Ss7 and SsZin Fig. 2b) of weight tuning molecules (W; and W,). To complete the
multiplication with shared weights, we designed four weight substrate molecules (N1 14 and N ,¢, Ny 34
and N, 4¢), and two of which (for example, N, 1 4 and Ny 5 ¢ in Fig. 2b) have the same weight tuning
domain corresponding to the pixels that interacts with the same kernel in different local receptive regions,
but have different recognition domain at 3’ end to connect to the downstream summation gates (Sd 5
and Sdg 7). Each input patterns were binary patterns, in which 1 or 0 represent the presence or absence of
input strands. The value of analogue weights determined from convolution kernel is implemented with

the concentrations of N;;;. To compute convolution, each DNA sub-circuit runs independently and
parallelly to compute MAC operation in each receptive region. For a specific pattern, the corresponding
jj- Thus the
assignment of shared weights by the convolution kernel is implemented with the activated weight

substrate molecule N;;* and X; through DNA strand displacement reaction, resulting in releasing of

weight tuning molecules W; would activate respective weight substrate molecules N;

i
intermediate species P;;. Two summation gates Sd, converts P;; in the same receptive regions to
weighted-sum species Ss;, leading to the trigger of downstream reporting gates. For experimental
demonstration, we chose 6 input patterns and all two outputs achieved their correct ‘on’ or ‘off’ states,
indicating that the DNA circuit correctly implemented the convolution computation (Fig. 2c). For example,
with inputs X; X, X3 X4 = 1001, the concentration of output strands and corresponding fluorescence

signal y; (ory,) is proportional to X; x W, (or X4 x W,) as designed.

A DNA-based ConvNet for molecular pattern recognition. Having shown that the DNA circuit is capable of
processing the convolutions, we next built a DNA-based ConvNet that can ‘remember’ two handwritten
symbols: Chinese oracles ‘fire’ and ‘earth’ (Fig. 3a). The training set consists of 48,000 patterns of
handwritten symbols from the Sinica oracle database. In silico, all original symbols were converted to
144-bit binary patterns for network training by rescaling them to 12x12 grids, and setting each pixel to 1
when exceeding the threshold (Supplementary Fig. 13). The convolution kernel (a 6x6 matrix) slides
along input patterns with a stride of 6 and subsequently generates a corresponding output feature map
(Fig. 3b and Methods ‘Neural-network training and testing). We evaluated the network performance on a
reference dataset after training, reaching a 97% accuracy (Fig. 3c). We implemented this ConvNet model
by encoding the convolution kernel in the sequence of weight tuning domain, and implementing the value
of weights with the concentration of weight substrate molecule N;;;. The test input binary patterns were
encoded with single strands, wherein each 1 or 0 represents the presence or absence of input strand

(Fig. 3d). ADNA-based ConvNet implements pattern recognition by comparing its local feature to all
memories and identifying the most similar memory (Supplementary Fig. 14). For example, each receptive
region of a ‘fire' can simultaneously interact with same kernel function to export feature maps through
DNA strand displacement cascades. As the network runs, a subset of weight tuning molecules W; could

activate corresponding weight substrate molecule N.;: in four receptive region at the same time to enable

i)

multiple weight-sharing MAC operations to perform parallelly (Supplementary Fig. 15a). This allows DNA
circuits to be able to activate a specific reaction pathway in the convolution layer when exposed to a

Page 5/20



specific pattern, which can enhance network robustness (Supplementary Fig. 16). Then, max-pooling
process is applied to reduce feature map size by annihilating the smaller one between two pixels through
cooperative hybridization’ (Supplementary Fig. 15b). As shown in the experimental data (Fig. 3e and
Supplementary Fig. 17), the input patterns of two handwritten symbols each triggered desired outputs,
indicating that two handwritten symbols are classifiable. When each oracle pattern was rotated with the
angle increment of 30° from 0° to 360°, the circuit still yielded the desired output for all 26 test input
patterns, indicating that the circuit correctly classified rotated patterns. In total, 177~250 distinct
molecules were used for all test patterns (Supplementary Fig. 17b). As expected, we showed that the
DNA-based ConvNet can also remember eight 144-bit molecular patterns simultaneously (Supplementary
Figs. 18-22).

A hierarchical neural network for 32 patterns recognition. Our ConvNet has the feature that inputting of
weight tuning molecules can selectively activate specific set of weights to allow the same set of DNA
molecules to be used for different tasks. The use of weight tuning molecules as outputs of the upstream
circuit shows up possibilities for building hierarchical networks for more sophisticated categorization
tasks. To validate this approach, we proposed a two-step classification approach that first uses a logic
gate to perform coarse classification and then uses a ConvNet to perform finer classification. To
demonstrate this approach experimentally, we choose a task of recognizing 32 handwritten symbols that
can be divided into 4 groups: including 8 Chinese oracles (Sinica oracle database), 8 Arabic numerals
(MNIST database), 8 English alphabets and 8 Greek alphabets (Kaggle website). In silico, we converted
all original handwritten symbols to binary patterns with two layers (Fig. 4a). Layer 1 is on a 1x4 grid and
acts as an input for logic circuits to perform coarse classification on languages (for example, oracle is
1000), yielding the outputs to selectively activate the downstream ConvNet subnetwork to perform fine
classification into specific handwritten symbols using Layer 2 on a 12-12 grid as inputs. 4 groups in
Layer 2 can be separately trained in silico with respective datasets to obtain the optimal model (Fig. 4b),
thus yielding values of four convolution kernel with dimension of 3x6 (stride = 3x6) (Supplementary

Fig. 23, Methods ‘Neural-network training and testing). This network performed well in the reference
dataset, reaching >84.0% accuracy in each group (Fig. 4c). We implemented two-step classification
approach experimentally by designing different switching gates to encode four convolution kernels. Both
the tags in Layer 1 and the inputs in Layer 2 are binary patterns, in which each 1 or 0 indicates the
presence or absence of a tag strand (or an input strand), respectively (Supplementary Fig. 24a). The
pattern classification can be completed with following steps (Fig. 4d): (i) The tag strand in Layer 1 will
react with the reporter gate to generate fluorescence signal y', which can be recognized as corresponding
coarse category (Supplementary Fig. 24b, c). Meanwhile, the tag strand will react with the fan-out gate to
release a set of weight tuning molecules W;, which can then activate the downstream DNA neural
networks (Supplementary Fig. 24b, d). (ii) The W; generated from upstream logic circuits (Supplementary
Fig. 25) then activates corresponding neural network to implement the recognition (Fig. 4e), in which each
output y; is uniquely correlated to specific handwritten symbols to enable the fine classification. Two
fluorescence signals are collected from Layer 1 and Layer 2 respectively to determine the recognition
results. For example, a ‘fire is recognized if and only if y'=1 and y,=1 (where y' is the output identifying
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the coarse category of ‘oracle’ and y, is the output identifying the fine category of ‘fir€). In total,
constructing the DNA-based ConvNet that can remember 32 molecular patterns requires 368~512 distinct
molecules for all test patterns. As expected, the circuit yielded the desired pair of outputs for 32
representative example patterns with group identities (Fig. 4f, Supplementary Figs. 26 and 27). In general,
with this hierarchical approach, constructing a DNA-based ConvNet that can recognize bxm distinct n-bit
patterns (b is number of groups and m is number of patterns in each group) with e-bit kernel size requires
n+5m+(m+1)xbxe molecules (Supplementary Fig. 28).

A cyclic freeze/thaw approach accelerate DNA circuits. The speed of execution of DNA computing
remains a challenge in large-scale DNA neural network reactions. For example, our computation of 2
categories took longer than 20 h (Supplementary Fig. 17c), and computation increased to over 36 h for 32
categories (Supplementary Fig. 27). To accelerate DNA circuits, we developed a simple cyclic freeze/thaw
approach (Fig. 5a). The cyclic freeze/thaw approach iteratively drives the strand displacement reaction
towards thermodynamic equilibrium, which can accelerate the basic strand displacement reaction by
~75-fold (Supplementary Figs. 29 and 30). For a larger-scale circuit, 160 test patterns of 144 bits can be
recognized with less than 30 min through 5 freeze/thaw cycles, which would otherwise require hours.
(Fig. 5b, c).

Conclusion

We have experimentally demonstrated a DNA-based ConvNet that can robustly accomplish information
categorization function, holding great promise for further scaling up molecular computation. With a DNA
switching gate architecture that allows independent control of signal transmission functions and weight
assignment functions during computation, we can implement weight-sharing MAC operations at the
molecular level and construct molecular convolutional neural networks with reactive orthogonal DNA
molecules. The massive parallelism feature inherent to DNA molecules could enable parallelizing
convolution operations autonomously, which are particularly well suited for more scalable information
processing. With a hierarchical network that first uses a logic gate to perform coarse classification and
then uses a ConvNet to perform finer classification, we have demonstrated that the circuits can be scaled
up to classify patterns into 32 categories. This could also provide the possibility of integrating multiple
circuit architecture’2° to enhance computational power. Importantly, we have extended the key feature of
ConvNet-sparse topology-to a DNA neural network, effectively reducing complexity of network
architecture through sparsely connected neurons, which could allow more complex information
processing and potentially provide the molecular circuits with ‘intelligent’ behavior that resembles a
biological neural network. Furthermore, by interfacing non-nucleic-acid sensory inputs2633, the DNA-
based ConvNet can be adapted for a wide variety of molecular pattern classification tasks3438, which
have potential applications including disease diagnostics, profiling expression patterns, and precision
medicine.

Methods
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Sequence design. Five types of molecular structures (Supplementary Fig. 7) were used in this work: (1)
Weight substrate molecules N;;; and annihilation species Sub;, consist of three single strands; (2)
Summation gates Sd;, and complexes Dd, ,, consist of two single strands; (3) Reporters Rep,,, consist of
single strands modified with Duorophore and quench groups. All DNA single strands used in this work
were composed of long recognition domains and short toehold domains, except for the weight tuning
domains used for weight multiplication, subtraction and reporting, which were composed of short stem
domains and long loop domains. Note that these domains are functionally independent. On this basis,

the sequence design was conducted at the domain level.

We have generated several pools of domain sequences with different lengths according to a series of
design heuristics®%4%. To reduce secondary structures and undesired interactions, all domain sequences
were produced by using a three-letter code (A, C, and T). To reduce synthesis errors, no more than 4 As or
T’s, and no more than 3 C's were used in a row; 30—70% C-content was kept to ensure comparable melting
temperatures. For any two sequences in the pool, the longest length of matching sequence was no more
than 35% of the domain length, and all sequences were formed by at least 30% different nucleotides.
Sequences of single strands were generated by directly concatenating these domains together.

Finally, a 15-nucleotide sequence pool used for recognition domains and a 27-nucleotide sequence pool
used for weight tuning domains were generated. We have checked the two sequence pools to ensure the
same pairwise criteria. To reduce the gate-gate leak*®, we have used two-nucleotide clamps in all bottom
strands, which are complementary to the first two-nucleotide in the tail of the molecular species. We have
used three universal toeholds for all DNA strands expect for the DNA circuits used for 32 patterns
recognition, in which the branch migration cannot be initiated by toehold domains without matching
recognition domains. A;; had 6-nucleotide toeholds, which was composed of the 5-nucleotide universal
toehold and 1-nucleotide extension G, and was used in the weight multiplication layers to ensure the
effective strand displacement reaction rate. Sub; , had 7-nucleotide toeholds, which was composed of a
5-nucleotide universal toehold and a 2-nucleotide extension that is complementary to the 2-nucleotide
next to the toehold of the upstream complexes. All weight tuning molecule W; shared a 7-nucleotide
universal toehold domain. All the other molecular complexes shared a 5-nucleotide universal toehold
domain. To reduce the side reaction caused by the universal toehold binding in the DNA circuits used for
32 patterns recognition, the toehold of W; was different for switching different convolution kernels. Two
nucleotides “TT” were inserted between the toehold domains and recognition domains in input strands X;
and single strand Dsy ,, to ensure the effective strand displacement reaction rate.

Designed DNA strands were verified by NUPACK*! to ensure the binding energy and specilcity. Note that
bottom strands of complexes in the network are complementary to corresponding domains and thus
contain A, G and T. We also validated the correct formation of the hairpin loop structures in the presence
of W; by NUPACK.

All DNA sequences used in this experiment are listed in Supplementary Table.
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Neural network training and testing. The convolutional neural networks (ConvNets) were trained to
recognize four categories of symbols: handwritten Chinese oracles (‘i(fire)’, H(earth)’, ‘N(tree)’, ‘U(water)’, N
(gas)’, f(sky)’, N(human)’, and ‘A(life)’), handwritten English alphabets (‘A" to ‘H’), handwritten Greek
alphabets (‘a’ to ‘9"), and handwritten Arabic numerals (‘1" to ‘8"). 112 images of Chinese oracles were
obtained from the Sinica oracle database (http://xiaoxue.iis.sinica.edu.tw/jiaguwen). 11,164 images of
handwritten English alphabets and 112 images of handwritten Greek alphabets were obtained from the
Kaggle website (https://www.kaggle.com/). 16,000 images of handwritten Arabic numerals were
obtained from the MNIST dataset (http://yann.lecun.com/exdb/mnist/).

To ensure the reliability of the ConvNet model and avoid overfitting, one must ensure that sufficient data
is available in the training/test dataset. However, the number of images for the Chinese oracles and
handwritten Greek alphabets is far from sufficient. Thus, the Augmentor software*? was used to augment
the dataset. The expanded four datasets had 1,000 different images for each character. A separate
dataset was constructed for Chinese oracle ‘fire’ and ‘earth’. Initially, there were 1,000 images for each
oracle. Then, each image was rotated 24 times with 15 degrees per time. Finally, the dataset contains
48,000 images. For each recognition task, 80.0% of datasets were put in the training set while the rest
were put in the validation set.

Each original handwritten symbol was rescaled as a grayscale image with 60-60 pixels by the Pillow
software with DOI [10.5281/zenodo0.5394534]. The pixel values in each image that exceeded the
threshold were set to 1, and the rest were set to 0. The value of threshold can be adjusted in specific
circumstances. In 32 handwritten symbols recognition experiments, each input symbol was replaced by a
pair of input symbols (Layer 1 and Layer 2 in Fig. 4a). Binary tags were attached to Layer 1 to mark
coarse categories (1000 corresponds to Chinese oracles, 0100 corresponds to Arabic numerals, 0010
corresponds to English alphabets, and 0001 corresponds to Greek alphabets). Layer 2 was kept as 12-12
binary pattern to be classified at the finer level.

Identifying rotated handwritten symbols is more demanding on the ConvNet model. Here we tested the
ability of the ConvNet to recognize rotated symbols of two Chinese oracles. First, the kernel size and the
stride were set as 6-6 and 6. After the convolution operation, we could obtain an output feature map with
shape 2-2. The following step was the operation of the ReLU (Rectified Linear Unit) activation function.
The max-pooling process reduced the 2-2 matrix to 1-2 through setting the pooling size and pool stride as
2-1 and 1. Eventually, this model’s accuracy can reach 96.8%, and the recognition accuracy can reach
97.0%.

For eight handwritten symbols classification, the inputs of symbols were convolved by a 3-6 sized kernel.
The stride was set to 3-6, then the size of the first feature map should be 4-2. The ReLU activation
function was then used to zero out any value less than zero in the feature map. After that, the 4-2 sized
feature map was flattened to a 1-8 sized matrices, which was finally activated by a softmax activation
function. After sufficient epochs, all four models have achieved or exceeded an accuracy of 0.9 on both
raining and validation sets. In addition, the performance of models on training and validation sets was
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very similar, indicating no overfitting. The recognition accuracy of the model for each image all exceeded
85.0%.

The training process was performed on the Keras platform (https://keras.io). During the model
compilation process, the Adam*? optimizer was used to compute the gradient. The learning rate was set
to 0.001 and the exponential decay rate 1 and 32 were set to 0.9 and 0.999, respectively. The constant
epsilon was set to 1078 and the decay value of the learning rate was set to 0 after iteration. The sparse
categorical cross-entropy was chosen as the loss function and sparse categorical accuracy function was
chosen as metrics. The batch size was set to 150 and the number of training epochs was set to 1000. All
of parameters were selected after a series of comparisons and tests and the final values were chosen
because they can balance the network size and predictive power.

DNA oligonucleotide synthesis. With design, ULTRAPAGE purified oligonucleotides and HPLC purified
oligonucleotides modified with fluorophores were provided by Sangon Biotech and were used without
further purification. All strands were shipped lyophilized and resuspended at 200 uM in 1x TAE buffer
with 12.5 mM Mg?*, pH 8.0, and stored at 4°C for further use.

Annealing protocol and buffer condition. All triplexes were prepared for annealing at 50 pM with top and
bottom strands in a 1:1:1 ratio, and all duplexes were prepared for annealing at 50 uM with top and
bottom strands in a 1:1 ratio, while reporters were prepared at 50 uM with top quencher strands in 20%
excess of bottom strands. The buffer for all experiments and annealed complexes was 1x TAE with 12.5
mM Mg?* (pH 8.0). Complexes were annealed in a thermal cycler (Life Technologies) by heating to 95°C
for 5 min and then cooling to 20°C at a rate of 0.1°C per 8 s, then were kept at 4 °C. The hybridized
molecules were purified by 12% polyacrylamide gel electrophoresis (PAGE).

Fluorescence spectroscopy. Kinetics experiments were performed with a spectrofluorometer (Fluorolog-
max, Horiba) at 25 °C. The instrument allows running four experiments in parallel. Fluorescence kinetics
data were collected every 30 s, 60 s, or 10 min, depending on the overall experimental time length. A
maximum four excitation / emission pairs in one experiment can be measured in parallel. Excitation
(emission) wavelengths were 495 nm (520 nm) for dye FAM, 530 nm (563 nm) for dye HEX, 585 nm (605
nm) for dye ROX, and 685 nm (705 nm) for dye Cy5.5 (Supplementary Fig. 2). For circuits using only one
reporter, FAM was used; for circuits using two reporters, FAM and ROX were used. Before experiment, all
cuvettes were successively washed with distilled water for 6 times, 70% ethanol for 1 time, and distilled
water for 5 times. In the 8 patterns recognition and 32 patterns recognition, 8 output trajectories were
recorded using four distinct fluorophores. Every experiment was conducted twice, each containing half of
outputs correlated to fluorophore-labelled reporters and the other half correlated to non-fluorophore-
labelled reporters. We can observe all 8 outputs simultaneously by combining all output trajectories in
one plot.

Fluorescence data normalization. All raw fluorescence data were normalized to standard concentration of
output signals, and the difference in fluorescence readout caused by the instrument is neglectable. We
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conducted each set of parallel experiments for the same circuit with different inputs, and these
experiments were normalized together for data analysis. For a given fluorophore, in the sets of parallel
experiments where at least one of output signals that increased high and reached plateau at the end of
the experiment, the maximum level (output=1) was determined by the highest completion signal. In the
sets of parallel experiments where none of output signals increased all the way to completion, the
standard concentration (1x) of output fluorescence level was obtained from the highest signal produced
from the reporter Rep,,, at the same time.
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multiplies with the kernel to perform MAC operation. By this way, the inputs can be convolved with the
same kernel by mapping convolution computation into a series of MAC operations. b, Implementation of
ConvNet with DNA regulatory circuit systems. The inputs can be encoded by a set of single strands,
wherein 1 or 0 represent the presence or absence of input strands. The weight matrix can be stored by
programming a set of weight molecules with a simple switching gate architecture.
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Figure 2

Convolution computation via multiple parallel MAC operations. a, Detailed calculation process of
convolution with an input matrix of 2x2, a kernel size of 1x2, and a stride of 1. The feature map is
generated from interactions between kernel function and different receptive regions. b, Abstract
schematic diagram of convolution (top). The weight substrate molecule Ni,i,j can be activated by
corresponding weight tuning molecule Wi, then activated weight substrate molecule Ni,i,j* can interact
with local receptive region and export the computation results. The value of weights determined from
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convolution kernel is 0.8x (blue dot) and 0.2x (gray dot), respectively. DNA implementation of convolution
(bottom). The 2x2 input pattern is encoded with four DNA single strands (X1, X2, X3, and X4). The circuit
consists of four Ni,i,j, two Sdi,j, two Repi and two Wi. The relative concentrations of Xi, Ni,i,j, Repi and Sdi,j
are 2x. The relative concentrations of Wi are 0.8x and 0.2x, receptively. The standard concentration is 1x
= 50 nM. ¢, Characterization of convolution with six different input patterns after 3 h. The blue and red
histograms correspond to the fluorescence kinetic outputs of y1 and y2, respectively. Blue dots indicate
that the weight W1 that is multiply with corresponding input (X1 or X2), while gray dots indicate that the
weight W2 that is multiply with corresponding input (X3 or X4).
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Figure 3

A DNA-based ConvNet for one of two rotated molecular patterns recognition. The training examples fire
and ‘earth’ are obtained by rescaling and adjusting to 144-bit binary patterns from the Sinica oracle
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database. The weights are determined from the convolution kernel with dimensions of 6x6. Each pixel of
kernel function is encoded in the sequence of weight tuning domains of weight tuning molecules and
weight substrate molecules. The value of each pixel (for example, 0.32 for the 9th pixel) in convolution
kernel is used to determine the concentration of each weight substrate molecule Ni,i,j, relative to a
standard concentration of 100 nM (for example, [N9,15,1] = 32 nM). The concentration of weight tuning
molecule Wi that activates the weight multiplication reactions is 2x (for example, [W9] = 200 nM).
Detailed process of neural-network training and testing can be seen in Methods ‘Neural-network training
and testing’. b, Circuit diagram of a DNA-based ConvNet. ¢, Performance of the ConvNet in silico for
dataset with 48,000 oracles, where 97.1% and 97.3% of fire' and ‘earth’ were recognized correctly in
theory. d, Four example binary input patterns with 1 (blue dots) and 0 (grey dots), corresponding to inputs
with or without DNA strand, respectively. The concentration of each input strand is 2x. e, Characterization
of the recognition behavior of 26 representative example ‘fire’ and ‘earth’ after 20 h, with rotation angle
incremented from 0° to 360° by steps of 30°. Red and blue histograms correspond to the fluorescence
kinetic outputs of ‘fire' and ‘earth’, respectively. The gray dotted line marks the threshold value of 0.6.
Corresponding fluorescence kinetics data are shown in Supplementary Fig. 17c.

Page 17/20



a : ; :
Input symbol Layer2 Layer1 9 Layerl R ; . | - Classification
s g E.- s ol R F : ‘ : i.

l I =:oaco:o= :
L \ ’; ‘e Fry Switching  Fan-out
. ayer [
il ) SEEO ’
g 0 ®1 *1 %0 .28 .2 Recognilthon
Sedassass resu
FRREE NER N ODRWER WWER Unknown Sesssesis ? o
1000 i0100f {0010 i000.1 Input pattern B DNA circuits
Oracle Numeral English Greek )
e Convolution layer
O Xl W, o 3B
: - ’:,-.. 1 ‘I
N | e— t*+t‘ % | W 5
vi_ ¢/ 'switching | © S
\.ﬂ:_; X, W] = st 5
\nl yeabees -:
Nii':T_ﬁm'z/ “:4 g ’ 'i
\—-—/. Switching E7EB
3 6 | —
y y E \ a_.X, w, s p——
c Classifier performance Accuracy distribution \ni. 7| 31 z iv
ot - béé z

e mo N“.]J.._..I.l;m; — b —-.=.p
o A :: oNumerail | | mim =/ | Switching HIGFIE
isB 88
: g ::;. . : English ? : o
i*E » Greek z i
§ o F . - . S L__._.EIS
isG * Oracle : Mz E

Do e e we i * W R

\J]
:,:;'
— |
—3)
i

‘j\
T ‘
| ———— .
3 P
g
—m

Figure 4

The two-step classification approach based on hierarchical network architecture for 32 molecular
patterns recognition. a, Each input pattern is replaced by a pair of input patterns (layer1 and layer2).
Layer 1 was attached with tags to classify four groups, in which 1000 corresponds to Chinese oracles,
0100 corresponds to Arabic numerals, 0010 corresponds to English alphabets, and 0001 corresponds to
Greek alphabets. Both the tags in Layer 1 and the inputs in Layer 2 are binary patterns, in which each 1 or
0 indicates the presence or absence of a tag strand (or an input strand), respectively. b, Circuit diagram
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for recognizing 8 distinct patterns of each group. ¢, Performance of the ConvNet in silico for dataset with
8 English alphabets. d, Example pattern recognition process of ‘fire’ with a pair of input patterns. Layer1 is
the input of logic circuit, which is composed of reporter gates R and fan-out gates F. The outputs of the
fan-out gates can activate downstream ConvNet circuit to complete the pattern recognition, while the
outputs of the reporter gates can be readout to complete the coarse classification. e, Circuit diagram.
Specific weight tuning molecules Wi can switch on corresponding circuit components for specific

molecular pattern groups. f, Characterization of the recognition behavior of 32 representative input

patterns after 36 h. The tag highlighted above the bar graph marks the group of each input pattern. The
light gray dotted line marks the threshold value of 0.6 (ON: red histogram; OFF: gray histograms).
Corresponding fluorescence kinetics data are shown in Supplementary Figs. 26 and 27.
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A cyclic freeze/thaw approach accelerate DNA circuits for molecular patterns recognition. a, Operation of
cyclic freeze/thaw approach. The circuits were kept in cryopreservation tube (1.5 mL) during repeated
freeze/thaw cycling: thawing at 37 °C, followed by cooling to -196 °C. b, Fluorescence levels of DNA
circuits for recognizing ‘G’ after different freeze/thaw cycles (inset: the same circuit with continuous
incubation at 25 °C). Only reporter Rep7 was readout. ¢, Fluorescence levels for characterizing the
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recognition behavior with 160 representative input patterns after 5 freeze/thaw cycles. The light gray
dotted line marks the threshold value of 0.6 (ON: colored dots; OFF: gray dots).
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