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Key Points:11

• A generative adversarial network improves both distributions and spatial struc-12

ture of the precipitation output of a numerical Earth system model.13
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• A gradient-based interpretability method shows that the network has learned to16

identify geographical regions with strong model biases.17
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Abstract18

Precipitation results from complex processes across many scales, making its accurate sim-19

ulation in Earth system models (ESMs) challenging. Existing post-processing methods20

can improve ESM simulations locally, but cannot correct errors in modelled spatial pat-21

terns. Here we propose a framework based on physically constrained generative adver-22

sarial networks (GANs) to improve local distributions and spatial structure simultane-23

ously. We apply our approach to the computationally efficient ESM CM2Mc-LPJmL.24

Our method outperforms existing ones in correcting local distributions, and leads to strongly25

improved spatial patterns especially regarding the intermittency of daily precipitation.26

Notably, a double-peaked Intertropical Convergence Zone, a common problem in ESMs,27

is removed. Enforcing a physical constraint to preserve global precipitation sums, the28

GAN can generalize to future climate scenarios unseen during training. Feature attri-29

bution shows that the GAN identifies regions where the ESM exhibits strong biases. Our30

method constitutes a general framework for correcting ESM variables and enables re-31

alistic simulations at a fraction of the computational costs.32

1 Introduction33

Numerical Earth system models (ESMs) simulate the dynamics of Earth system34

components such as the atmosphere, oceans, vegetation, and polar ice-sheets, as well as35

their interactions, by solving the relevant partial differential equations on discretized spa-36

tial grids. The grid resolution is limited by computational costs. For state-of-the-art com-37

prehensive ESMs, integrating the differential equations requires parallelized runs on thou-38

sands of CPU cores. The finite resolution requires processes on unresolved spatial scales39

to be parameterized, i.e., to be written as functions of the resolved variables. This in-40

troduces a source for potential errors in ESMs. It is generally expected that the accu-41

racy of ESM simulations increases with increasing resolution of the spatial grid on which42

the model is integrated (Palmer & Stevens, 2019).43

A higher grid resolution, however, comes at even higher computational cost, and44

trade-offs are therefore typically necessary. The time current state-of-the-art ESMs take45

to make projections for the decadal to centennial time scales relevant in the context of46

anthropogenic climate change render it challenging to simulate ensembles with sufficient47

size for a thorough uncertainty quantification. Similarly, the high computational cost even48

for simulating single trajectories prevent more systematic parameter calibration. Com-49

plementary to high-resolution but computationally demanding ESMs, efficient model se-50

tups that are still as accurate as possible are therefore also needed.51

The generation of precipitation involves a wide range of physical processes, from52

microscopic interactions of droplets in clouds over atmospheric convection to synoptic-53

scale weather systems. The resulting complex dynamics needs to be captured accurately54

to model the high variability and intermittency of precipitation in both space and time.55

A reduced resolution and limited number of explicitly resolved processes in ESMs there-56

fore leads to errors that can strongly affect the representation of sub-grid scale processes57

such as precipitation (Wilcox & Donner, 2007; Boyle & Klein, 2010; IPCC, 2021).58

These errors can be addressed in a local or point-wise manner by applying post-59

processing methods to the individual simulated time series. Traditionally, this is done60

by relating the statistics of a historical model simulation with observations. Quantile map-61

ping (QM), in particular, has become a popular method for improving the model out-62

put statistics of precipitation (Déqué, 2007; Tong et al., 2021; Gudmundsson et al., 2012;63

Cannon et al., 2015). It approximates a mapping from the estimated cumulative distri-64

bution function of the modelled to the observed quantity over a historical period. The65

inferred mapping can then be applied to correct new data. QM gives good results in cor-66

recting temporal distributions locally, i.e., errors in the distribution at a given grid cell.67

QM is, however, not able to improve the spatial structure of the modelled output, such68
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as its intermittency especially for the case of precipitation. For this task a spatial con-69

text larger than the single grid cells used to compute the distributions in QM is required.70

It should be emphasized that even a (almost) perfect reproduction of the distributions71

at each grid cell would by no means guarantee that also the spatial patterns are repro-72

duced accurately. In particular, the patterns may still be too smooth and lack the spa-73

tial intermittency that is typical for realistic precipitation fields.74

Machine learning (ML) methods from image-to-image translation in computer vi-75

sion offer a new approach to improve the structure of ESM output in the spatial dimen-76

sion. Recently, artificial neural networks have been applied successfully to post-processing77

tasks of numerical weather prediction and climate models (Rasp & Lerch, 2018; Grönquist78

et al., 2021; François et al., 2021). In weather forecasting, the trajectories of the observed79

state and the numerical weather model starting at an initial condition taken from ob-80

servations can be directly and quantitatively compared. This allows to train discrimi-81

native ML models such as deep neural networks (LeCun et al., 2015) to directly min-82

imize a pixel-wise distance measure as a regression task.83

For ESMs tasked with climate projections, such a pixel-wise ground truth is not84

available, rendering a direct comparison between observed and modelled trajectories im-85

possible. In particular, ML models cannot be trained via minimizing differences between86

simulations and corresponding observations in this case. The goal of ESMs is indeed to87

produce long-term summary statistics rather than to agree with observations on short88

time scales. In this context, generative adversarial networks (GANs) (Goodfellow et al.,89

2014; Mirza & Osindero, 2014; Isola et al., 2017) have emerged as suitable ML models.90

GANs learn to approximate a target distribution from which realistic samples can be drawn.91

Crucially, recent developments have shown successful extensions of GANs to training tasks92

that do not require pairwise training samples (Zhu et al., 2017). By learning stochas-93

tic functions, GANs can also model the small-scale variability that cannot be predicted94

deterministically. This enables them to overcome the problem of blurring that is often95

found in neural network predictions (Ravuri et al., 2021). Based on these properties, GANs96

have been proposed for sub-grid scale parameterizations (Gagne et al., 2020). Employ-97

ing GANs in a post-processing task of a regional climate model, François et al. (2021)98

found a comparable bias correction skill of their GAN compared to quantile mapping.99

Training ML algorithms typically requires the training data and separate test sets100

for predictions to be independent and identically distributed. When applied to histor-101

ical observations and transient ESM time series with changing forcing, however, the un-102

derlying distributions are non-stationary, i.e., training and test distributions are differ-103

ent. In particular in the context of anthropogenic climate change, this has made the ap-104

plication of ML methods challenging. To generalize to such out-of-sample predictions,105

physics-informed or constrained neural networks have been proposed. These methods106

incorporate physical knowledge into the neural network through penalties in the loss func-107

tion (Raissi et al., 2019), or include additional layers (Beucler et al., 2021) in the archi-108

tecture.109

Here, we introduce a physically constrained GAN (see Fig. 1 and Methods for de-110

tails) to improve the precipitation output of ESMs, and demonstrate its performance by111

applying it to the CM2Mc-LPJmL model (Drüke, von Bloh, et al., 2021). We frame the112

post-processing as an image-to-image translation task with unpaired training samples.113

The first image domain corresponds to the ESM simulations, and the second to daily pre-114

cipitation fields from the ERA5 reanalysis “ground truth” (Hersbach et al., 2020), span-115

ning the period between 1950 and 2014. The translation is performed with a CycleGAN116

(Zhu et al., 2017), consisting of two generator-discriminator pairs, that learn bijective117

mappings between the ESM and reanalysis domains, with consistent translation cycles.118

We add a physical constraint as an additional layer to the generator network architec-119

ture after training in order to preserve the global precipitation sum (see Methods).120
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We compare our results to QM-based post-processing as well as the output of a con-121

siderably more complex and higher-resolution, state-of-the-art ESM from Phase 6 of the122

Coupled Model Intercomparison Project (CMIP6), namely the GFDL-ESM4 (Krasting123

et al., 2018) model. Further, the ability of the GAN to generalize to transient future cli-124

mate scenarios is evaluated for physically constrained and unconstrained GAN architec-125

tures. When applying neural network models to future projections that cannot (yet) be126

verified, transparency of the method becomes important. Therefore, we examine whether127

the GAN’s feature attribution is physically reasonable, using the SmoothGrad (Smilkov128

et al., 2017) interpretability method (Methods). Moreover, the quantitative interpreta-129

tion of the GAN results allows us to identify regions with particularly large biases of the130

underlying process-based ESM, which will in turn be helpful for improving its represen-131

tation of relevant physical mechanisms.132

   ESM
 dataset

Discriminator
 

Discriminator

  

Earth system model Reanalysis

  
   Sample

                  

Transformed
    sample

 

Generator
 

Generator 

Transformed
    sample 

   Sample

Loss Loss

real / fakereal / fake

  ERA5
 dataset

Figure 1. Schematic of the CycleGAN model, showing the two generator-discriminator

pairs that learn to translate samples from the ESM simulations to the ERA5 reanalysis

(grey) and vice versa (yellow). Training the two generators to learn inverse mappings of

each other allows to enforce cycle-consistency in the translation of the unpaired samples, i.e.

x → G(x) → F (G(x)) → x̃ ≈ x and vice versa for y. As described by Zhu et al. (2017), the

cycle-consistency loss (Eq. 5) is motivated from natural language translation, where one should

arrive at the same sentence after translating it into another language and back. In the training

context, this has been found to improve the stability and to prevent typical problems in adver-

sarial networks, such as mode collapse, where every input would be mapped to the same output

image (Zhu et al., 2017).
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2 Results133

In the following, we evaluate our method regarding the bias correction tasks over134

the historical period, for which observations to compare with are available. Henceforth,135

the improvement of the spatial structure in the precipitation fields is assessed. We then136

show results regarding the generalization to transient future climate scenarios and finally137

present our findings regarding the interpretation of our GAN model.138

2.1 Correcting temporal distributions139

When comparing the spatial precipitation fields from CM2Mc-LPJmL with the ERA5140

data, large biases are evident, especially in the tropics, where a pronounced double-peaked141

Intertropical Convergence Zone of CM2Mc-LPJmL can be seen (Fig. 2a). The more com-142

plex and higher-resolution – yet computationally much more expensive – GFDL-ESM4143

model exhibits a similar spatial pattern of bias, although with a reduced southern peak144

(Fig. 2b).145

We evaluate our method against quantile mapping, which a state-of-the-art method146

to correct temporal distributions (Fig. 2c). The GAN shows a strongly improved skill147

overall, and especially in correcting the double-peaked ITCZ (Fig. 2d), compared to quan-148

tile mapping, but also compared to GFDL-ESM4 model.149

This is also summarized in the averaged absolute value of the mean error (ME) shown150

in the spatial plots (Table 1). Here, the GAN shows the strongest error reduction com-151

pared to QM and GFDL-ESM4, reducing the error of CM2Mc-LPJmL by 75% for an-152

nual and between 72% to 64% for seasonal time series. We include the results of two ad-153

ditional ESMs from CMIP6, the MPI-ESM1-2-HR and the CESM2 model, for compar-154

ison with GFDL-ESM4 in the SI (Table S1). The ME of the MPI-ESM1-2-HR model is155

higher than for GFDL-ESM4 while the CESM2 shows lower bias. The average ME of156

CEMS2, however, remains higher than our GAN-based post-processed CMCMc-LPJmL157

model.158

Also from latitude profiles it can be quantitatively inferred that the GAN outper-159

forms quantile mapping espacially regarding the correction of the douple-peaked ITCZ,160

and also that the GAN-processed fields is closer to the ERA5 data than the GFDL-ESM4161

simulations, especially in the tropics (Fig. 2e).162

Regarding the globally averaged temporal distributions, we infer an under-representation163

of heavy precipitation values in CM2Mc-LPJmL and an over-representation in GFDL-164

ESM4. QM and our GAN-based method perform similarly well in correcting the distri-165

butions over the entire range of precipitation values (Fig. 2f).166

2.2 Correcting spatial patterns167

We continue with assessing the ability of our correction method to improve the spa-168

tial structure of the ESM precipitation output. Most importantly, we investigate to which169

degree the characteristic high-frequency spatial variability of precipitation which is not170

represented well in the CM2Mc-LPJmL model output, can be improved (see Fig. 3 for171

some example fields). To quantify this spatial intermittency in the precipitation fields,172

we compute the radially averaged power spectral density (PSD) following (Harris et al.,173

2001; Sinclair & Pegram, 2005; Ravuri et al., 2021). First, the PSD is computed for each174

daily spatial precipitation field and then the mean is taken over the resulting spectro-175

grams, shown in Fig. 3e. While the CM2Mc-LPJmL precipitation shows a reduced den-176

sity at high frequencies (i.e., low wavenumbers below 1024 km), the GFDL-ESM4 model177

exhibits an unrealistically high PSD in the same range. Quantile mapping shifts the CM2Mc-178

LPJmL spectrum towards ERA5, but results in an overshoot in the mid-range and low179

wavenumbers, while the higher frequencies remain underestimated. Only the GAN is able180
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Figure 2. Comparison of global mean error maps over the JJA season, long-term precipita-

tion statistics based on latitude-profiles and relative frequency histograms. Mean errors of (a)

CM2Mc-LPJmL, (b) GFDL-ESM4, (c) QM-based and (d) GAN-based post-processing methods

applied to the CM2Mc-LPJmL output. The mean error is computed with respect to the ERA5

reanalysis data. The largest errors are in the tropics, where also the largest mean precipitation

values are observed (see panel (e)). The GAN shows the largest error reduction, strongly reduc-

ing the double-peaked ITCZ in the tropics. Quantile mapping, on the other hand, is not able to

remove the ITCZ bias. See Figs. S1–S4 for corresponding figures for annual time series, as well

as the other three seasons. (e) Precipitation rates averaged over time and longitudes and relative

frequency histograms (f) are shown for ERA5 data (black), CM2Mc-LPJmL (red), GFDL-ESM4

(blue), quantile mapping (magenta) and the GAN (cyan). The GAN applied to the CM2Mc-

LPJmL output corrects the double-peaked ITCZ as well as the histogram over the entire range of

precipitation rates.
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Table 1. The averaged absolute value of the grid-cell-wise mean error (ME) for the raw

CM2Mc-LPJmL and GFDL-ESM4 models, as well as for the QM- and GAN-based post-

processing, using the CM2Mc-LPJmL output as input. The bias reduction relative to the raw

CMCMc-LPJmL model is given in percentage. Note that the GAN shows the largest reduction

of the absolute ME in all cases, with more than 75% improvement relative to the raw CM2Mc-

LPJmL for the annual fields.

Season CM2Mc-LPJmL GFDL-ESM4 % QM % GAN %

Annual 0.769 0.448 41.7 0.218 71.7 0.191 75.2

DJF 0.915 0.544 40.5 0.664 27.4 0.256 72

MAM 0.886 0.603 31.9 0.567 36.4 0.268 69.8

JJA 0.963 0.589 38.8 0.704 26.9 0.270 72

SON 0.823 0.508 38.3 0.552 32.9 0.294 64

to produce a power spectrum that is constistent with ERA5, especially for low wavenum-181

bers, i.e., the high-frequency range that is crucial for precipitation.182

2.3 Non-stationary climate scenario183

Climate projections under a changing radiative forcing induced by anthropogenic184

greenhouse gas release constitute an out-of-sample problem: The conditions for which185

predictions shall be made are different from the conditions for which historical data are186

available for training. Methods for post-processing or correcting the output of ESMs tasked187

with such projections hence need to be able to generalize to states that deviate from the188

historical period, where observations are available. Here, we test our GAN approach for189

the CMIP6 SSP5-8.5 scenario until the end of the 21st century. The SSP5-8.5 “business190

as usual” scenario represents an extreme climate scenario in CMIP6, with the strongest191

increase in CO2. This scenario has been chosen to test how well the GAN model can cap-192

ture the non-stationarity in this extreme case.193

The CM2Mc-LPJmL and GFDL-ESM4 models both show monotonically increas-194

ing global mean precipitation with similar trends over the current century (Fig. 4a), which195

is in agreement with other studies (IPCC, 2021). In contrast, the unconstrained GAN,196

trained on the historical period, does – as expected – not exhibit an increase in average197

global precipitation, since it is by itself not able to generalize to the changing boundary198

conditions given by higher greenhouse gas concentrations and temperatures.199

In the tropics (23◦ S to 23◦ N), GFDL-ESM4 remains overall lower in mean pre-200

cipitation than CM2Mc-LPJmL, while also exhibiting a much less pronounced increase201

over the entire period (Fig. 4b). For the temperate zones from 40◦ N/S to 60◦ N/S, the202

GFDL-ESM4 model shows an overall higher mean precipitation with a slightly stronger203

positive trend than CM2Mc-LPJmL (Fig. 4c).204

By construction of the constraint introduced in Eq. 8, the GAN-processed precip-205

itation is identical to the increasing global average of the CM2Mc-LPJmL output (Fig. 4a).206

Without the constraining layer added to the GAN, however, the GAN-processed precip-207

itation stays relatively constant without a substantial trend. In both tropical and tem-208

perate zones, the constrained GAN corrects the precipitation towards the more complex209

and higher-resolution GFDL-ESM4, while following the trend of the CM2Mc-LPJmL model.210

Again, the unconstrained model remains relatively constant in both cases, with a small211

decrease over time in the temperate zone. Note that the GFDL-ESM4 does not repre-212
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Figure 3. Qualitative and quantitaive comparison of the intermittency in daily precipita-

tion above 1 mm/day, on the same date (25th December 2014), for the (a) ERA5 reanalysis, (b)

CM2Mc-LPJmL model, (c) GAN-based and (d) QM-based post-processing. The CM2Mc-LPJmL

precipitation field (b) corresponds to an input of the GAN-generator which transforms it into

the field shown in panel (c). The discriminator network then classifies whether the GAN output

(c) or the ERA5 field (a) was generated artificially. Visually, the GAN substantially improves

the spatial intermittency seen in ERA5, whereas applying QM does not lead to improved inter-

mittency. Note that the modelled fields are not expected to be point-wise similar to the ERA5

‘ground truth’ (a), since these are time slices from climate projection runs. (e) The spatial power

spectral density (PSD) of the different precipitation fields, averaged radially in space and over

time. For ERA5 reanalysis (black), CM2Mc-LPJmL (red), GFDL-ESM4 (blue), quantile mapping

(magenta) and the GAN (cyan). Note that only GAN-based post-processing of the CM2Mc-

LPJmL model yields an accurate PSD across all spatial scales.
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sent a ground truth, but only one realisation of a possible Earth system trajectory, for213

comparison. This can be seen by the differing trends of two other CMIP6 models in Fig. S7.214

It should, however, be expected that the precipitation output from the CMIP6 models215

is much more realistic than the raw precipitation from the comparably low-resolution216

CM2Mc-LPJmL model.217
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Figure 4. Large-scale trends as a three year rolling-mean of monthly and spatially average

precipitation for the CMIP6 SSP5-8.5 scenario. For (a) global data, (b) the tropics and (c) tem-

perate zone, of the CM2Mc-LPJmL (red crosses) and GFLD-ESM4 (blue) models, as well as the

constrained (cyan) and unconstrained (brown) GANs. Only by adding the physical constrained

to preserve the global precipitation amount per timestep enables the GAN (cyan) to follow the

transient dynamics of the non-stationary climate scenario.
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2.4 Interpretability of the GAN-based correction218

We investigate in the following whether the GAN has learned an ESM output cor-219

rection that is also physically reasonable. The attribution maps are computed with Smooth-220

Grad for each prediction of the discriminator DY , with daily CM2Mc-LPJmL precip-221

itation fields given as input. The discriminator has been trained to distinguish between222

reanalysis (ERA5) and GAN-processed precipitation fields and we are interested to see223

which spatial regions in the ESM output the discriminator regards as most important224

for the distinction. These regions then need to be corrected the most by the generator,225

implying where the most pronounced biases of CM2Mc-LPJmL are.226

The temporal average of the CM2Mc-LPJmL precipitation is shown in Fig. 5 to-227

gether with the absolute value of the attribution map as contour lines. The regions of228

highest importance are shown in red and coincide with the region in the western Pacific229

where the strongest biases and in particular the double-peaked ITCZ of CM2Mc-LPJmL230

are located (as shown in Fig. 2 and Fig. S1). Although the GAN is trained on daily pre-231

cipitation fields, it has thus learned to identify regions that show biases occurring on in-232

terseasonal to interannual scales. Note that especially the double-ITCZ bias is a com-233

mon and long-standing problem in the precipitation output of many general circulation234

models (Tian & Dong, 2020).

Figure 5. Annual average of daily precipitation fields from CM2Mc-LPJmL (color shading

with scale according to the colorbar on the left) together with attribution maps (contour lines

with color scale according to colorbar on the right). Note that we applied a Gaussian filter to

the attribution maps to further reduce the noise. A standard deviation σ = 1.5 for the filter was

found to give robust results. The pacific region in the tropics shows the highest annual mean

precipitation, and also the highest feature importance. The same region also exhibits the largest

bias of CM2Mc-LPJmL, see in Fig. 2.

235

3 Discussion236

We have introduced a physically constrained generative adversarial network that,237

combined with the computationally lightweight and efficient CM2Mc-LPJmL Earth sys-238

tem model, is able to produce highly realistic precipitation simulations at low compu-239

tational costs.240
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Our method improves the ESM output in two ways: (i) the temporal distributions241

of the CM2Mc-LPJmL model precipitation, as well as (ii) the spatial patterns and in par-242

ticular the spatial intermittency of the CM2Mc-LPJmL model precipitation. Our ap-243

proach is evaluated against quantile mapping (Cannon et al., 2015) and the much more244

advanced CMIP6 GFDL-ESM4 model, (Krasting et al., 2018) taking ERA5 reanalysis245

data as ground truth. Note that any other, and especially purely observational, precip-246

itation dataset with sufficient temporal resolution could readily be used instead.247

When evaluating the skill to improve temporal distributions, we find that our pro-248

posed method outperforms both baselines, showing the lowest mean errors. The improve-249

ment over quantile mapping is especially pronounced for seasonal time series, where only250

our method successfully removes the double-peaked ITCZ of the CM2Mc-LPJmL model.251

This is in contrast to the results by (François et al., 2021), who report a comparable skill252

of their CycleGAN implementation with quantile mapping for regional climate simula-253

tions. Our method corrects relative frequency histograms over the entire range of pre-254

cipitation values, similarly well to QM, which is designed for this task.255

Crucially, our GAN-based approach also improves the spatial structure of the ESM256

precipitation fields, which is not possible with traditional approaches. The GAN yields257

realistically intermittent spatial patterns that are characteristic for precipitation on all258

resolved scales, and in this regard outperforms both the quantile-mapping-based post-259

processing and the comprehensive, high-resolution GFDL-ESM4 model. These results260

show that our method, combined with the computationally lightweight and efficient CM2Mc-261

LPJmL ESM, can produce precipitation fields that are at least comparable to state-of-262

the-art, and much more computationally expensive CMIP6 models.263

We applied our method to the strongly non-stationary SSP5-8.5 CMIP6 climate264

scenario until 2100 to test the GAN’s ability to capture these non-stationarity and the265

transient dynamics. The unconstrained GAN trained on observations does not gener-266

alize to the unseen climate state. It does not show an increase in global mean precip-267

itation, as one would expect from the thermodynamic Clausius-Clapeyron relation and268

as seen in the numerical ESMs (Allan & Soden, 2008; Donat et al., 2013; Guerreiro et269

al., 2018; Traxl et al., 2021). This can be explained by the fact that the precipitation270

of the future scenario lies well outside the training distribution. To solve this and help271

the GAN to generalize to this kind of out-of-sample prediction, a physical constraint to272

preserve the global precipitation amount of the ESM in each time step was introduced273

as additional network layer in the GAN. The global mean can be expected to be repre-274

sented comparably well in the numerical ESM. Adding this constraint enables the GAN275

to follow the non-stationary, transient dynamics of the SSP5-8.5 scenario. We believe276

that the development of suitable constraints will be crucial for deep-learning methods277

for successful applications to the highly non-stationary climate system. Especially for278

future projections, where a ground truth for evaluation is not available, such constraints279

can help to ensure physical consistency.280

We demonstrate how feature attribution from interpretable Artifical Intelligence281

can be applied for a GAN, enabling a physical interpretation of this deep learning model.282

We find that the discriminator part of the GAN has learned to identify those regions for283

its decisions that are critical also from a physical perspective. These regions highlighted284

by our GAN interpretation are the ones with the highest absolute errors of the raw CM2Mc-285

LPJmL, and are known to be the most problematic for ESM precipitation in general.286

Namely, the tropical Pacific Ocean was found to be of highest importance for the dis-287

criminator. In this region, the particularly heavy precipitation is often caused by deep288

convection-driven clouds, which are difficult to model numerically (Tian & Dong, 2020).289

The sensitivity of the discriminator in the Pacific region also explains the effectiveness290

of our generator network to reduce the double-peaked ITCZ bias. This is the region where291

the generator needs to modify the CM2Mc-LPJmL precipitation field most in order to292

avoid rejection by the discriminator. The results indicate that the GAN has successfully293
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learned the long-term statistics while being trained on samples of much shorter time scales.294

This makes GANs particularly suitable for climate applications, where training samples295

and the statistics of interest are often on very different time scales.296

The main contribution of our approach is the efficient simulations of highly real-297

istic precipitation fields, by combining a physically constrained GAN with an ESM of298

reduced complexity. Producing similarly realistic fields purely numerically would require299

much more computational resources. For comparison, our post-processed CM2Mc-LPJmL300

ESM takes about 0.5 hours to compute a model year using 28 CPUs, whereas the much301

more complex GFDL-ESM4 requires 2 hours computational time on 1000 CPUs for a302

model year (Krasting et al., 2018). This corresponds to an increased computational ef-303

ficiency by roughly two orders of magnitude, keeping in mind that GFDL-ESM4 produces304

higher resolution output.305

Based on our findings, there are several directions for extending our method. Since306

observational and reanalysis datasets are available at higher resolutions than considered307

in this study, a possible extension to down-scaling applications that increases the res-308

olution of the ESM could be a direction for future research. Conditioning the genera-309

tor by adding variables that are physically linked to precipitation, such as humidity, tem-310

perature, or wind, could further improve our method. The precipitation data, improved311

by our method, may be used as input to other stand-alone Earth system components such312

as vegetation, that require realistic climate input.313
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The ERA5 reanalysis data is available for download at the Copernicus Climate Change322

Service (C3S) (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis323

-era5-single-levels?tab=overview and https://cds.climate.copernicus.eu/cdsapp#324

!/dataset/reanalysis-era5-single-levels-preliminary-back-extension?tab=overview).325

Output data from the CM2Mc-LPJmL model is available at https://doi.org/10.5281/326

zenodo.4683086 (Drüke, 2021). The CMIP6 data can be downloaded at https://esgf327

-node.llnl.gov/projects/cmip6/.328

Code availability329

For the CM2Mc-LPJmL model code see https://doi.org/10.5281/zenodo.4700270330

(Drüke, Petri, et al., 2021). The Python code for processing and analysing the data, to-331

gether with the PyTorch Lightning (Falcon et al., 2019a, 2019b) code for training is avail-332

able at [repository link to be added after acceptance for publication].333

Materials and Methods334

The Earth system model CM2Mc-LPJmL335

The coupled Earth system model CM2Mc-LPJmL v1.0 (Drüke, von Bloh, et al.,336

2021) combines the coarse-grained but relatively fast atmosphere and ocean model CM2Mc337
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(Galbraith et al., 2011) with the state-of-the-art dynamic global vegetation model (DGVM)338

LPJmL5 (Schaphoff et al., 2018a, 2018b; Von Bloh et al., 2018).339

CM2Mc is a coarser (3°x3.75° latitude-longitude) configuration of the Climate Model340

CM2 (Milly & Shmakin, 2002), which has been developed at the Geophysical Fluid Dy-341

namics Laboratory (GFDL). The original configuration of CM2Mc includes the Mod-342

ular Ocean Model 5 (MOM5) and the global atmosphere and land models AM2-LM2 or343

AM2-LM (Anderson et al., 2004) with static vegetation. In CM2Mc-LPJmL, the land344

component LM/LM2 is replaced by the dynamic global vegetation model LPJmL5, while345

AM2 and MOM5 remain dynamically coupled to the model framework. The Flexible Mod-346

eling System (FMS) developed by GFDL connects all different model compartments and347

calculates the fluxes between them.348

The state-of-the-art and thoroughly validated DGVM LPJmL (Lund-Potsdam-Jena349

managed Land) simulates global surface energy balance, water fluxes and carbon stocks350

and fluxes for natural and managed land. Being forced by climate and soil data, LPJmL351

simulates the impact of bioclimatic limits and effects of heat, productivity and fire on352

plant mortality to determine the establishment, growth, competition and mortality for353

different plant functional types (PFTs) in natural vegetation and crop functional types354

(CFTs) on managed land. Since its original implementation (Sitch et al., 2003) the model355

now incorporates a water balance (Gerten et al., 2004), agriculture (Bondeau et al., 2007),356

wildfire in natural vegetation (Thonicke et al., 2010; Drüke et al., 2019), and the impact357

of multiple climate drivers on phenology (Forkel et al., 2014, 2019).358

In CM2Mc-LPJmL, the fluxes simulated by LPJmL depend, of course, on the pre-359

cipitation modelled by AM2. As a stand-alone model LPJmL has been mainly calibrated360

with respect to reanalysis, and a similarly accurate precipitation output within CM2Mc-361

LPJmL would hence be favorable to maintain consistency and to obtain realistic surface362

fluxes from LPJmL. For the overall performance of CM2Mc-LPJmL, realistically sim-363

ulated precipitation fields are therefore crucial. This motivates the work presented be-364

low, where we use a specific kind of GAN to transform the AM2 precipitation fields to-365

ward fields that are indistinguishable from ERA5 precipitation fields (see below).366

The model experiments of this paper are consistent with (Drüke, von Bloh, et al.,367

2021). After a 5000-year stand-alone LPJmL spin-up, a second fully coupled spin-up un-368

der pre-industrial conditions without land use was performed for 1250 model years. In369

this way we ensure that the model starts from a consistent equilibrium between the long-370

term soil carbon pool, vegetation, ocean, and climate.371

The subsequent transient historic phase of the model is performed from 1700-2018,372

using historic land use data from 1700 (Fader et al., 2010) and historic concentrations373

of greenhouse gases, solar radiation, ozone concentrations and aerosols from 1860, which374

were kept at pre-industrial conditions beforehand.375

From 2019 until 2100 the model is forced by constant land use from the year 2018376

and CO2 equivalents of the atmospheric forcing prescribed in the CMIP6 SSP5-8.5 (“busi-377

ness as usual”) climate scenario that assumes a continued increase in CO2 emissions.378

Cycle-consistent generative adversarial networks379

Generative adversarial networks (GANs) are designed to learn a target distribu-380

tion py(y) through a two-player “minimax” game between a generator G and a discrim-381

inator D (Goodfellow et al., 2014). The generator network is trained to transform an in-382

put x ∈ X to values that approximate samples from a target domain y ∈ Y , i.e. the383

generator is trained to learn the mapping G : X → Y . Samples from the generator384

and the target dataset are then shown to the discriminator, which classifies their origin.385

In this way, the generator and discriminator compete against each other, thereby improv-386

ing the quality of the generated samples. The training can be formulated as387
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G∗ = min
G

max
D

LGAN (D,G), (1)

where G∗ is the optimal generator and LGAN(D,G) is the loss function defined as388

LGAN(D,G) = Ey∼py(y)[log(D(y))] + Ex∼px(x)[log(1−D(G(x)))]. (2)

In our situation, X and Y correspond to the sets containing precipitation fields from the389

CM2Mc-LPJmL Earth system model and ERA5 reanalysis, respectively (samples are shown390

in Fig. 3). In the above formulation, GANs have often been found to suffer from insta-391

bilities and difficulties to generalize to distributions of higher dimensionality, such as in392

image-to-image translation without pairwise matching samples. One reason for the in-393

stabilities is the highly under-constrained mapping to be learned by the generator. To394

alleviate this problem, cycle-consistent GANs have been proposed recently (Zhu et al.,395

2017). They aim to constrain the space of mappings by training a second pair of gen-396

erator and discriminator networks, which learns the inverse mapping F : Y → X. A397

schematic of the cycle-consistent GAN model is shown in Fig. 1. Both generators should398

perform bijective (i.e., one-to-one) mappings (Zhu et al., 2017) and are therefore trained399

at the same time, together with a regularization term that enforces consistency of trans-400

lation cycles, i.e. x → G(x) → F (G(x)) ≈ x and vice versa for y. The corresponding401

loss functions are then402

LX→Y (G,DY ) = Ey∼py(y)[log(DY (y))] (3)

+ Ex∼px(x)[log(1−DY (G(x)))],

and similarly,403

LY→X(F,DX) = Ex∼px(x)[log(DX(x))] (4)

+ Ey∼py(y)[log(1−DX(F (y)))].

The cycle-consistency loss is given by404

Lcycle(G,F ) = Ex∼px(x)[||F (G(x))− x||1] (5)

+ Ey∼py(y)[||G(F (y))− y||1].

The full loss function then reads405

L(G,F,DX , DY ) =LX→Y (G,DY )

+LY→X(F,DX) (6)

+λLcycle(G,F ),

which is solved as406

G∗, F ∗ = min
G,F

max
DX ,DY

L(G,F,DX , DY ). (7)

We adopt the architecture from Zhu et al. (2017) and optimize the networks with Adam407

(Kingma & Ba, 2014), using a learning rate of 2e−4 for both the generator and the dis-408

criminator networks. Following Zhu et al. (2017) we set the batch size to 1 and train the409

models for 250 epochs, logging the 50 best performing generators every 10 epochs. The410

training takes about 5.25 days on a NVIDIA V100 GPU with 32GB memory. After train-411

ing the final generator is determined by evaluation on the test set.412
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Neural network architectures413

The generator architecture is based on a variant of convolutional residual networks414

(He et al., 2016). Convolutional neural networks (CNNs) are commonly employed to pro-415

cess image data. CNNs transform the input data through stacked layers of trainable con-416

volutional filters that are followed by a non-linear activation functions thereby learning417

to extract spatial patterns. For a more detailed introduction see, e.g., (Goodfellow et al.,418

2016). Adopting the naming convention from (Johnson et al., 2016; Zhu et al., 2017).419

c7s10-k denotes a layer with a 7×7 convolution followed by instance normalization and420

ReLU activation with k filters, a stride 1 and reflection padding. dk represents a layer421

with 3 × 3 convolutions, instance normalization, ReLU activation, k filters and stride422

2. Rk are residual blocks with a 3×3 convolutional layer and k filters. uk denots a layer423

with 3×3 fractional-strided convolutions, instance normalization, ReLU activation, k424

filters and stride 1/2. The generator architecture with 6 residual blocks is then425

xin → c7s1-64 → d128 → d256 → [R256 →]
︸ ︷︷ ︸

×6

u128 → u64 → c7s1-3 → yout,

where xin is the input of the generator and yout the output. The discriminator architec-426

ture is based on the PatchGAN (Isola et al., 2017). Denoting a 4×4 convolutional layer427

with k filters, instance normalization (except for the first layer), leaky ReLU with slope428

0.2 and a stride of 2 with Ck. The full architecture of the discriminator is429

xin → C64 → C128 → C256 → C512 → yout.

Generator constraint430

To enable a better generalization of the GAN to climate states not seen during train-431

ing, and hence in particular to address the out-of-sample problem imposed by the chang-432

ing radiative forcing due to anthropogenic greenhouse gas emissions, we introduce the433

physical constraint of preserving the total global precipitation amount of the CM2Mc-434

LPJmL model input. That is, we add an additional layer to the generator network af-435

ter training, which re-scales each output yi at each grid point i as436

ỹi = yi

∑Ngrid

i xi
∑Ngrid

i yi
, (8)

where Ngrid is the total number of grid-points, xi the CM2Mc-LPJmL precipitation in-437

put and ỹi the constrained output. The motivation of the constraint is that it gives the438

GAN freedom to change the precipitation locally and to redistribute it in space, while439

forcing it to follow the global trend prescribed by the ESM. The global trend has been440

found to be well represented in the ESM, where noise and and biases found on small time441

and spatial scales are averaged out (Drüke, von Bloh, et al., 2021). Also in observations,442

it has recently been shown that the physically based Clausius-Clapeyron relation, sug-443

gesting a 7% increase in precipitation per degree of warming, holds very well in terms444

of global averages, despite pronounced regional deviations (Traxl et al., 2021).445

Training446

We use daily precipitation from the European Center for Medium-Range Weather447

Forecasts (ECMWF) Reanalysis v5 (ERA5) product (Hersbach et al., 2020) as a train-448

ing target and ground truth for evaluation. This reanalysis is produced by the Coper-449

nicus Climate Change Service (C3S) at ECMWF, combining a large range of satellite-450

and land-based observations with high-resolution simulations through state-of-the-art451
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data assimilation techniques (Courtier et al., 1994; Hersbach et al., 2020). The original452

resolution is 30km horizontally in space and hourly in time, spanning the period from453

1950 to present. For this study the data is aggregated to daily precipitation sums and454

re-gridded, following (Rasp et al., 2020; Beck et al., 2019), by bilinear interpolation us-455

ing the xESMF package (Zhuang et al., 2020), in order to match the resolution of CM2Mc-456

LPJmL. We split the ESM and ERA5 datasets into the training period 1950-2000 and457

the test period 2001-2014 (for which also the GFDL-ESM4 data is available), with 18615458

and 5110 daily samples, respectively. Model simulations from 2019-2100 are used to test459

the generalization of the network with a CO2 forcing according the CMIP6 SSP5-8.5 (“busi-460

ness as usual”) climate scenario, which assumes a continued increase in CO2 emissions.461

Following Zhu et al. (2017), we replace the log likelihood by a least-squares loss, which462

has been found to improve the training. The GAN loss in Eq. 2 is then minimized by463

both G and D, with a loss Ex∼px(x)[(D(G(x))−1)2] for G and Ey∼py(y)[(D(y)−1)2]+464

Ex∼px(x)[(D(G(x)))2] for the discriminator D. We apply a log-transform to the input465

data and further normalize it to the interval [−1, 1], which was found to improve the train-466

ing performance. Once trained, the generator takes only about ten seconds on a NVIDIA467

V100 GPU to process the test set ESM precipitation.468

Baselines469

We compare our method to quantile mapping, implemented with the xClim pack-470

age (Logan et al., 2021), and also carry out comparisons to the raw output of the more471

advanced CMIP6 climate model GFDL-ESM4 (Krasting et al., 2018). The latter uses472

AM4 (Zhao et al., 2018a, 2018b), a more recent and substantially more complex version473

of the atmosphere model AM2 used in CM2Mc-LPJmL (GFDL Global Atmospheric Model474

Development Team et al., 2004), with a substantially higher spatial resolution and strongly475

improved parameterizations of subgrid-scale processes. These improvements of course476

come at the expense of substantially increased computational costs. The motivation here477

is to see whether a comparably simple atmospheric general circulation model (GCM) such478

as AM2 can be combined with the proposed GAN model in order to yield similar results479

as a comprehensive state-of-the-art atmospheric GCM such as AM4, at a fraction of the480

computational costs.481

Quantile mapping uses the empirical cumulative distribution functions of simulated482

and observed precipitation to transform the simulated values into the corresponding quan-483

tiles derived from observations. Before computing the cumulative distribution function,484

following (Cannon et al., 2015), we detrend the historical time series, assuming a linear485

trend.486

As an error metric to compare our methods we apply the mean error (ME), which
is defined as

ME =
1

N

Ntime∑

t=1

xt − yt, (9)

where xt and yt are the simulated and observed precipitation at time t and Ntime the487

number of time steps in the test set.488

Model transparency489

Neural network models are often regarded as black boxes. Since it is important for490

many applications to be able to explain the neural network’s prediction, the emergent491

fields of interpretable (Murdoch et al., 2019; Toms et al., 2020) and explainable Artifi-492

cial Intelligence (Sundararajan et al., 2017; Montavon et al., 2019) aim to improve the493

transparency.494

Many methods for interpreting neural networks are specifically designed for clas-495

sification problems (Goodfellow et al., 2016). In the GAN framework, the discrimina-496

tor network performs such a classification task in distinguishing between generated and497
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real images. Hence, suitable interpretability methods can be applied, even though en-498

tire GAN is build for the much more complex generative task. Being able to interpret499

the GAN increases the transparency and trust, since it ensures that the model has learned500

to identify physically reasonable input features. To our knowledge, we are the first to501

apply an interpretability method in such a way, i.e., to test the physical consistency of502

the GAN training.503

Here, we use the gradient-based method SmoothGrad (Smilkov et al., 2017) to in-
terpret the discriminator network DY that has learned to classify ERA5 and generated
precipitation fields. An attribution map ϕ is computed by taking the gradient of the neu-
ral network DY with respect to its input y,

ϕ(DY , y) =
∂DY (y)

∂y
, (10)

showing for each input grid cell how much the prediction will change with respect to its504

input, i.e. how sensitive it is to perturbations of the input. It has been observed that us-505

ing only the gradient of the input, however, tends to give rather noisy attribution maps.506

Therefore, Smilkov et al. (2017) proposed a technique to reduce the noise, by adding it507

to the network’s input and averaging the gradient over a sample size, e.g. here N = 10,508

as509

ϕ̂(DY , y) =
1

N

N∑

i=1

ϕ (y + ϵi) , (11)

where the noise is sampled from a Gaussian distribution ϵi ∼ N
(
0, σ2

)
.510
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