
1

Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725
with the U.S. Department of Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for the United States Government purposes. The Department of
Energy will provide public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

2

AtomAI: A Deep Learning Framework for Analysis of Image and Spectroscopy Data in
(Scanning) Transmission Electron Microscopy and Beyond

Maxim Ziatdinov,1,2,* Ayana Ghosh,1,2 Tommy Wong,1,3 and Sergei V. Kalinin1

1 The Center for Nanophase Materials Sciences and 2 Computational Sciences and Engineering
Division, Oak Ridge National Laboratory, Oak Ridge, TN 3783, United States

3The Bredesen Center, University of Tennessee, Knoxville, United States

AtomAI is an open-source software package bridging instrument-specific Python libraries, deep
learning, and simulation tools into a single ecosystem. AtomAI allows direct applications of the
deep convolutional neural networks for atomic and mesoscopic image segmentation converting
image and spectroscopy data into class-based local descriptors for downstream tasks such as
statistical and graph analysis. For atomically-resolved imaging data, the output is types and
positions of atomic species, with an option for subsequent refinement. AtomAI further allows the
implementation of a broad range of image and spectrum analysis functions, including invariant
variational autoencoders (VAEs). The latter consists of VAEs with rotational and (optionally)
translational invariance for unsupervised and class-conditioned disentanglement of categorical and
continuous data representations. In addition, AtomAI provides utilities for mapping structure-
property relationships via im2spec and spec2im type of encoder-decoder models. Finally, AtomAI
allows seamless connection to the first principles modeling with a Python interface, including
molecular dynamics and density functional theory calculations on the inferred atomic position.
While the majority of applications to date were based on atomically resolved electron microscopy,
the flexibility of AtomAI allows straightforward extension towards the analysis of mesoscopic
imaging data once the labels and feature identification workflows are established/available. The
source code and example notebooks are available at https://github.com/pycroscopy/atomai.

* ziatdinovma@ornl.gov

3

I. INTRODUCTION

Over the last decades, electron1-9 and scanning probe microscopies10-16 have emerged as keystone
tools for the exploration of matter on the atomic and mesoscale levels. Applications of these
techniques span the disciplines from fundamental condensed matter physics and materials science
to biology and medicine, with the corresponding length scales ranging from atomic to micron and
beyond. The recent exceptional progress in detectors and sensors, electron sources and computer-
based data storage and analysis systems on the other, has opened the floodgates of high veracity
structural and spectral data containing a wealth of information on materials structures and
functionalities.

In (Scanning) Transmission Electron Microscopy, (S)TEM, the development of the aberration
correction in the late 90’s have led to a broad spectrum of experimental observations of atomic
structures and functionalities.3, 17, 18 The early successes of aberration corrected STEM included
single-atom electron energy loss spectroscopy (EELS) imaging, allowing examination of the
chemical state of a single impurity atom,19 visualizations of the structures of a range of grain
boundaries in broad materials classes,20-22 that led to new fundamental insights into structural
properties and high-temperature superconductivity, visualization of the light elements, and many
others. Broad commercialization of aberration corrected STEMs has made these advances
accessible in multiple research groups and has further stimulated the development of new STEM
modalities enabled by further advances in electron sources and detectors. On the source side, these
advances have begun to include beams with orbital angular momentum,23-25 enabling probing of
magnetic and orbital phenomena. The development of monochromators has improved the energy
resolution in EELS to well below 10 meV, enabling direct probing of plasmons, phonons, and even
the anti-Stokes excitations in complex materials.26, 27 A combination of new detectors and
monochromators has enabled momentum-resolved EELS measurements, effectively probing
quasiparticle dispersion in k-space.28, 29 Finally, the development of pixelated detectors has led to
the broad introduction of 4D STEM, a method fundamentally based on detection of diffraction
patterns from with in-plane localization below unit cell levels.5, 30, 31 Advances in tomographic
imaging and reconstruction have enabled 3D structural models of nanoparticles containing tens of
thousands of atoms to be constructed with atomic resolution.32

The advances in STEM imaging and spectroscopy capabilities have naturally led the scientific
community to explore new opportunities in probing physics and chemistry on the atomic scale.
Until ~2010, the vast majority of (S)TEM applications were preponderantly qualitative in nature,
where the observed atomic patterns, presence of specific defect types, or EELS responses were
interpreted as indicators of certain a priori known physical behaviors or suggested emergence of
new defect classes or structural elements. However, it was realized that the quantitative
information on atomic positions can be used with EELS peak intensities to derive specific
materials functionalities. As the first harbinger of these developments, Jia et al.33, 34 and Chisholm
et al.35 demonstrated by TEM and STEM, respectively, that quantitative measurements of atomic
column positions can be used to map the polarization order parameter field (a comprehensive
account of polarisation measurements in ferroelectrics in the earlier days of atomic resolution
imaging can be found in Ref [36]). This approach was rapidly extended to other physical
functionalities strongly coupled to structure, including octahedra tilting in perovskites both in the
image plane37-39 and in the beam direction,40, 41 chemical and physical strain fields,42, 43 etc. These
recent advances in quantitative STEM methods offer new opportunities for sub ~pm information
mapping,44 further allowing for direct connection to the generative physical models of solids.45, 46

4

Similar advances were explored in the scanning probe microscopy (SPM) community. While
traditionally scanning tunnelling microscopy (STM) data is interpreted qualitatively, the structural
mapping of atomic positions can yield information on strains47 and crystal field splitting.48 The
spectroscopic measurements can be directly connected to the physical models49, 50 of solids or used
for recognition imaging.51

Despite the markedly different imaging mechanisms, the nature of the detected signal, and its
relationship to materials functionalities, STEM and SPM imaging exhibit commonalities both on
the data format and physics extraction sides. In all cases, a scan gives rise to a scalar, multimodal,
or hyperspectral data in the form of a structured N-dimensional array allowing for common
analysis tools in the spectral domain.52-55 Similarly, the objects of interest such as atomic positions
in STEM, STM, and non-contact atomic force microscopy (AFM) are universal across these
modalities. Most curiously, in many cases, the fundamentally different physics of imaging –
convolution of the electron beam profile with delta-function like nuclei in STEM and convolution
between the surface and probe density of states around the Fermi level in STM – gives rise to the
superficially similar shapes of the objects as seen in images. Consequently, many atom finding or
phase identification problems in STEM and STM can be performed with very similar analysis
tools with minimal cross-technique modification.56

The purpose of the AtomAI package is to provide an environment that bridges the instrument
specific libraries and general physical analysis (Fig. 1) by enabling the seamless deployment of
machine learning (ML) algorithms including deep convolutional neural networks, invariant
variational autoencoders, encoders-decoders, and decomposition/unmixing techniques for image
and hyperspectral data analysis. Ultimately, it aims to combine the power and flexibility of the
PyTorch deep learning framework57 and simplicity and intuitive nature of packages such as scikit-
learn,58 with a focus on scientific data. To date, the majority of AtomAI applications have been
for atomically resolved STEM.59-62 However, as discussed above, many of its modules can equally
be applied for atomically-resolved imaging in Scanning Tunneling Microscopy (STM)63 and
extended towards mesoscopic imaging in SPM64 and STEM.65

II. PYTHON BASED IMAGE ANALYSIS ECOSYSTEM

Recently, we have formulated a roadmap for the application of ML methods in imaging.66 On
the basic level, the questions we seek to answer are the following:

A. Can we get materials specific information (e.g., atomic coordinates from STEM, scattering
potentials from 4D STEM, etc.) from microscopy data, for which the level of confidence,
and how this knowledge is affected, can be improved from knowledge of the imaging
system (e.g., classical beam parameters, resolution function, all the way to full imaging
system modeling) and knowledge of a material’s phase, structure, and composition?

B. Can we use the materials-specific information with uncertainties determined by incomplete
knowledge of an imaging system or intrinsic physics limitations to infer physics and
chemistry, either via correlative models or recovery of generative physics (force fields,
exchange integrals, and other parameters)?

C. Can we use the inferred materials information, either correlative or causative, to reconstruct
materials behavior (phase diagrams, etc.) in a broader parameter space (e.g., for
temperatures and concentrations different for the specific sample studied) and determine
how the reliability of such predictions depend on the position in the parameter space?

5

D. Can we harness the data streams from microscopes to engender real-time feedback, e.g.,
for autonomous experimentation and atomic manipulation?

Advances in (S)TEM and SPM imaging have stimulated the development of software
ecosystems for data analytics allowing for the import (ingestion) of the data from instrumental
formats, instrumental corrections, and simple analytics including multivariate statistics, addressing
goal (A). Our goal for AtomAI is to interface A to C. Below, we briefly overview existing elements
of the Python infrastructure for imaging and physics.

Figure 1. AtomAI is a flexible and user-friendly package for deep learning-based image analytics.
It serves as a bridge between instrument specific libraries and general deep/machine learning
frameworks. AtomAI logo is courtesy of O. Dyck.

One of the core libraries for reading, visualizing, and basic analysis of microscopy data is
HyperSpy.67 HyperSpy incorporates syntax for storing large multi-dimensional datasets, which
facilitates the analysis of EELS, energy dispersive X-ray (EDX) spectra, and electron holography.
It also incorporates a GUI to streamline the user experience. HyperSpy is currently transitioning
from a single package to a multiplicity of specialized packages that rely on a single package
(‘hyperspy’) for common infrastructure. However, although there are several packages specialized
in image analysis, there is no deep learning capability. Another family of STEM analysis methods
is the Pycroscopy eco-system,68 which includes a STEMTools toolkit69 and PyTEMLib library70
for model-based quantification analysis. A comprehensive set of tools with a focus on electron
diffraction data is available from the pyxem71 library. In addition, there are 4D-STEM-specific
analysis codes currently under development including LiberTEM,72 and py4DSTEM.73 LiberTEM
is an open-source, GUI-based Python implementation that incorporates distributed computing to

6

analyze large, multidimensional data. The core of LiberTEM is a framework for MapReduce-like
operations on live data streams. All these packages are fully open source and can be freely
modified to match the specific needs of a given research project. More information about these
and some other (not open-sourced) packages can be found in the Supplementary Materials and Ref
[74].

Complementary to the data analysis are methods for modeling STEM/EELS, including
μSTEM,75 QSTEM,76 abTEM,77 MULTEM,78 STEMsalabim,79 Prismatic,80 Dr. Probe,81 and
others. These packages are used for simulating STEM images and EELS, as well as for convergent
beam electron diffraction (CBED) calculations. Many of these packages can run efficiently on
modern Graphics Processing Units (GPUs) allowing for a significant speed-up of the simulations
and a viable source of data for training of ML models.

Finally, this description will be incomplete without mentioning the Python-based general
physics simulation infrastructure. There exist ample resources/packages to perform simulations of
physical systems at different length scales and for evaluating their properties. Some of these are
open-source and various post-processing codes or scripts82-93 are freely available for users. These
include the atomic simulation environment (ASE), grid-based projector augmented wave (GPAW)
package, and others.94-103 With recent development in data analytics and machine learning
capabilities useful for materials research, several databases104-109 have also become popular
allowing to perform simulations alongside data-driven studies. A non-exhaustive list of such
contents along with their overall capabilities is listed in Supplementary Materials.

Figure 2. Schematic illustration of a typical AtomAI workflow. First, the microscopic images or
spectra are transformed into an N-dimensional array object in NumPy (a fundamental package for
scientific computing in Python). This can be achieved for example with a HyperSpy package.
Since it is wise to keep the metadata (e.g., image acquisition parameters), one can convert
experimental data into a Spectroscopic and Imaging (SID) data format using the SciFiReaders
package.110 AtomAI can work both with standard NumPy objects and SID objects. Once the data
is in one of these formats, it can be passed through one of the AtomAI’s pre-trained neural
networks (or a new neural network can be trained if necessary) to extract features associated with
atoms, defects, or other objects of interests (e.g., metallic nanoparticles or protein nanorods111, 112).
Typically, features represent the type and position of atoms. The extracted features can then be

7

used for more advanced analysis such as learning of disentangled factors of variation with deep
latent space models60 or they can serve as an input for first-principles calculations.113 (The photo
of a microscope is obtained from the ORNL photo gallery with permission for public release)

III. PACKAGE CONTENT

AtomAI is an open-source Python library based on the PyTorch deep learning engine. The goal
is to provide an environment bridging the instrument-specific libraries and general physical
analysis by enabling seamless deployment of the deep and machine learning algorithms for image
and hyperspectral data analytics. It aims to combine the power and flexibility of PyTorch deep
learning framework and simplicity and intuitive nature of packages such as scikit-learn, with a
focus on scientific image data. The Package content is briefly summarized in Table I.

Table I

1. Core modules (low-level API)

a. Trainers

b. Predictors

c. Nets

2. AtomAI models (high-level API)

a. Segmentor

b. ImSpec

c. Deep Ensembles

d. Variational Autoencoders

3. Other utilities

a. Multivariate Statistics

b. Graph Analysis

c. Atomic simulation environment

d. Training data preparation

III.A. Core modules and low-level API.

At the core of AtomAI’s package are custom-built trainers, predictors, and neural nets.

The trainers wrap training routines for semantic segmentation models, im2spec models,
variational autoencoder models, and deep ensembles. They incorporate some of the most recent
advances in the deep learning field for model training including stochastic weight averaging, time-
dependent weight perturbation, and on-the-fly data augmentation, which can be activated by
simple Boolean statements (e.g., swa=True turns stochastic weight averaging on). All the trainers
also enforce a determinism in deep learning training such that different training runs lead to the
same result (provided that models themselves do not contain sources of randomness). Note that
while users don’t have to interact with the trainers directly when using AtomAI models, they can
use them for training custom models written in PyTorch with minimal lines of code.

The predictors wrap inference routines with trained models by automatically taking care of
the proper dimensionality of the input data (e.g., adding a pseudo-dimension of 1 to the grayscale

8

data) and possible size mismatch issues (by automatically performing data padding), as well as by
allowing a batch-by-batch prediction on large datasets. Finally, both trainers and predictors
automatically take care of all the necessary CPU-to-GPU (and vice versa) transfer of models and
data.

The custom-built neural networks and associated building blocks are located in the nets. They
include fully convolutional neural networks (FCNNs) for semantic segmentation including a U-
Net114 and a number of custom FCNNs such as:

i) DilNet, which uses only a single max-pooling operation to preserve the maximum amount
of information while the utilization of cascades of the dilated convolutions instead of the regular
convolutional blocks allows for the significant reduction of computational costs;

ii) ResHedNet, which allows for more accurate identification of edge features (fibers, domain
walls, etc.) using a modified version of the holistically-nested edge detector115 augmented with
residual connections116; and

iii) SegResNet, which is a customized version of SegNet model117 with residual convolutional
blocks instead of the regular ones.

Another important subset of neural networks in the AtomAI’s nets is encoder and decoder
blocks used in models for predicting spectra from images (and vice versa) and for deep generative
models. This includes both fully-connected (“MLP”) and convolutional architectures of the
encoders and decoders as well as architectures specific to the realization of rotationally and
translationally invariant deep generative models. Several examples of the low-level API usage are
given in the Supplementary Materials.

III.B. AtomAI models and high-level API.

The models in AtomAI contain deep learning models for performing semantic segmentation
of image data (Segmentor models), predicting spectra from images and vice versa (ImSpec), and
a judicious collection of deep generative models based on variational autoencoders (VAE, rVAE,
jVAE, jrVAE) with translational and/or rotational invariances for learning continuous and discrete
latent representations of the data.

Segmentor. The semantic segmentation models categorize each pixel in the input image as
belonging to a particular object (e.g., atom type, defect structure, etc.) or to a background. As such,
it can be applied to problems such as atom finding in STM and STEM, identification of atomic
steps in STM data, identification of domain walls in piezo-response force microscopy (PFM) data,
and particle finding in atomic force microscopy (AFM) or optical microscope data. The semantic
segmentation model can be initialized and trained with just a few lines of code:

import atomai as aoi

Initialize model

model = aoi.models.Segmentor(nb_classes=3) # uses U-Net by default

Train

model.fit(images, labels, images_test, labels_test, # training data

 training_cycles=300, compute_accuracy=True, swa=True # training params

)

9

Here the swa=True argument turns on the stochastic weight averaging, which usually allows
improving the model's accuracy and leads to better generalization.118 The prediction with the
trained Segmentor model requires just a single line of code:

nn_output, coordinates = model.predict(expdata)

Here, the coordinates are a dictionary with NumPy arrays of N×3 dimension (keys correspond to
image numbers in a stack) where N is a number of detected objects (e.g., atoms), the first two
columns correspond to the predicted x and y coordinates of the objects (e.g., atomic centers), and
the third column corresponds to the predicted class (e.g., type of atom).

Note that there is also an option to refine the predicted position with a 2D Gaussian fit (by
passing a refine=True keyword argument to model’s predict() method) using the coordinates
predicted by Segmentor as an initial guess.

ImSpec. In the im2spec model, the images (or image patches) representing a local structure

are “compressed” via a convolutional neural network to a small number of latent variables, which
are then “deconvoluted” to yield the spectra. In the spec2im model, the process is reversed. The
im2spec models have been used for predicting hysteresis loops from topographic images in PFM
experiments119 and for predicting electron energy loss spectra from HAADF STEM images.120 The
initialization and training of the im2spec model are similar to that of the semantic segmentation
model, with the main difference being that one has to specify the dimensions of input and output
data:

in_dim = (16, 16) # Input dimensions (image height and width)

out_dim = (64,) # Output dimensions (spectra length)

Initialize and train model

model = aoi.models.ImSpec(in_dim, out_dim, latent_dim=10)

model.fit(imgs_train, spectra_train, imgs_test, spectra_test, # training data

 full_epoch=True, training_cycles=120, swa=True # training parameters

)

As with the semantic segmentation models, the prediction with the im2spec model takes a single
line of code:

predicted_spectra = model.predict(imgdata)

Deep Ensembles. AtomAI can also be used to train ensembles of models. The mean ensemble

prediction is usually more accurate and reliable than that of the single model.121 In addition, it also
yields information about the uncertainty in prediction for each pixel/point, which can further be
used for anomaly detection122 and implementation of automated experiment workflows.123

There are currently three strategies for training ensembles:

10

i) train_ensemble_from_scratch where each model in the ensemble starts with a different
random initialization of weights and the data is shuffled differently for each model in the ensemble;

ii) train_ensemble_from_baseline where first a single model is trained for N epochs and
then used as a baseline to train an ensemble of models, each with the reset optimizer and different
random shuffling of training data (guaranteeing a different training trajectory), for n << N epochs;

iii) train_swag which performs sampling from a Gaussian subspace along a single training
trajectory.

The ensemble training routines can be applied both to the built-in models and user-defined
models. A code example of ensemble training can be found in the Supplementary Materials.

Variational Autoencoders. AtomAI has a built-in variational autoencoder (VAE)124 and its
multiple extensions for unsupervised determination of the most effective reduced representation
of the system's local descriptors. Specifically, in addition to regular VAE, one can choose
rotationally and (optionally) translationally invariant VAE (rVAE), as well as joint VAEs for
disentangling continuous and discrete latent representations with (jrVAE) and without (jVAE)
invariance to rotations and translations.

The VAEs can be applied to both raw data and output of a neural network, but typically work
better with the latter (for example, passing raw data through a Segmentor prior to VAE analysis
will typically lead to better convergence and improved results). Below is an example of initializing
and training a rVAE which takes just a few lines of code:

Get a stack of image patches from the experimental data or Segmentor output

window_size=32

imstack, com, frames = aoi.utils.extract_subimages(nn_output, coords, window_size)

Initialize rVAE model

input_dim = (32, 32)

rvae = aoi.models.rVAE(input_dim)

Train

rvae.fit(imstack_train, latent_dim=2, rotation_prior=np.pi/3,

 training_cycles=100, batch_size=100)

To visualize the learned latent manifold, one simply needs to run:

Visualize the learned manifold

rvae.manifold2d();

III.C. Other utilities.

AtomAI is not limited to deep learning applications and includes classes and methods for
statistical and graph analysis, as well as utilities for training data preparation and conversion of
deep learning predictions into the inputs for ab-initio simulations.

11

Statistics. AtomAI allows users to perform a multivariate statistical analysis on their datasets
and/or on the predictions of the AtomAI’s models. The statistics toolbox is available from the
AtomAI’s stat and includes principal and independent component analysis (PCA and ICA), non-
negative matrix factorization (NMF), and Gaussian mixture model (GMM). In the example below,
we use the stat.imlocal class to generate a stack of image patches centered around a specific class
of objects predicted by the Segmentor (e.g., a specific type of atom or defect) in a larger image
and then perform one of the aforementioned types of statistical analysis:

Get local descriptors

imstack = aoi.stat.imlocal(nn_output, coords, window_size=32, coord_class=1)

Compute distortion "eigenvectors" with associated loading maps

pca_results = imstack.imblock_pca(n_components=4, plot_results=True)

The stat also has functions for the refinement of atomic classes predicted by the Segmentor

based on the statistical analysis of the intensities and local neighborhoods of the identified atomic
features.

Graph Analysis. The AtomAI’s graphx module can be used for the graph-based analysis of
the atomic coordinates, typically from a Segmentor output. One of the applications is the
identification of specific ring structures in coordinates data from carbon materials (e.g., graphene
or nanotubes) using a depth-first search method. Because it constructs graphs using the information
about actual atomic covalent radius, one has to specify a dictionary that will map classes from the
Segmentor output (0, 1, …) into chemical elements (e.g., ‘C’, ‘Si’, …). In addition, we do not
assume that the metadata about scan size is always available (or correct) and hence a user needs to
supply a coefficient for converting pixel coordinates to coordinates in angstroms.

Atomic simulation environment. AtomAI has two specific utility functions in the aseutils,
namely ase_obj_basic and ase_obj_adv to convert the Segmentor-predicted coordinates into
objects readable by the Python-based atomic simulations environment (ASE). These objects are
also well-suited to be directly used in commonly known electronic structure codes such as VASP
and can be visualized with packages such as VESTA.97 The utility function ase_obj_basic reads
in the dictionary containing the list of atomic positions and writes files assuming a cubic cell. Here,
by default, the lattice parameters are assumed based on the maximum value of the coordinates.
The ase_obj_adv gives a user an option to construct the cell. The user is asked to provide inputs
for all lattice vectors along three dimensions.

Training data preparation. Finally, AtomAI’s has utility functions for training data
preparation, including generation of single-class and multi-class ground truth “masks” from atomic
coordinates as well as data augmentation that can be performed before and/or during model
training with both built-in functions (including blurring, Gaussian and Poisson noises, rotation,
zooming, and resizing) and user-defined functions.

IV. CASE STUDIES

Here we illustrate several case studies using AtomAI. For more examples, please refer to the
GitHub page of the project.125

12

IV.A. Semantic segmentation of the atom-resolved images.

Semantic segmentation of atomically resolved microscopic images involves classifying every
pixel in the image as belonging to specific atom and/or defect classes. This is different compared
to classifying natural images where we categorize one image as a whole. Because this is a
supervised method, it requires training data where the atoms and/or defects are labelled. Once
trained, a Segmentor model can be used to predict the position of the atoms and/or defects in
previously unseen data. Below we show an example of how one can train a Segmentor model using
labeled experimental images and apply the trained model to data from a different experiment
alongside performing multivariate statistical analysis on the semantically segmented output.

To prepare the training data, we used a single labeled experimental STEM image from Sm-
doped BiFeO3 with the resolution of 3000 × 3000 pixels containing ~20,000 atomic unit cells.122
The image is part of a publicly available dataset.126 The corresponding mask (aka ground truth)
was generated using the atomic coordinates from a Gaussian fit. Here, there are three different
classes in the labelled data corresponding to atomic columns (hereafter referred to simply as
“atoms”) in A-lattice (center atom) and B-lattice (4 corner atoms). About 2000 patches of image-
masks pairs with the size of 256 × 256 pixels were cropped and further “augmented” by applying
different levels of noise, blurring, as well as changing scale (zooming-in) and 90-rotations. The
purpose of such augmentation is to account for variations in imaging conditions between different
experiments. Figure 3 shows five different augmented images and corresponding ground truths.

Figure 3. The top row represents the input to the Segmentor model and the bottom row represents
the ground truth to which the output generated by the model will be compared during the model
training.

The default Segmentor model is based on the U-Net neural network but one can also choose

a different model or define a custom fully convolutional neural network. The Segmentor’s raw
output represents a set of well-defined (semantically segmented) blobs corresponding to different
atomic types on a uniform background. For the trained model, the centers of the mass of the
predicted blobs correspond to the atomic centers.

13

Figure 4. (a) STEM image from a similar material obtained in a different experiment (i.e., the
Segmentor has not seen this image before). (b, c) Prediction of the trained Segmentor model: (b)
semantically segmented raw output and (c) refined atomic coordinate (see the supplemental
materials for a comparison between refined and non-refined prediction). Note that the model is
robust with respect to variations in sample thickness.

Figure 5. The results from the patch-based NMF analysis with the displacement components and
associated loading maps shown in (a) and (b), respectively. Similar analysis was reported earlier
in [59] using our AICrystallographer package (the AtomAI’s predecessor).

The prediction of the trained Segmentor for a different experimental image (La-doped

BiFeO3) obtained in a different experiment59 is shown in Figure 4 (b,c) where it was able to remove
the experimental noise and separate two sublattices into different classes (red and green in Fig. 4b,
c). We note that in this case the input image had a size of 1024 × 1024 pixels while our network
was trained only using images of 256 × 256 pixels. This underscores a very important aspect of
the fully convolutional neural networks, namely, that they are not sensitive to the size of input
image as long as it can be divided by 2௡, where n is a number of max-pooling layers in the network

14

(here it is equal to 3). However, there is always some optimal pixel-to-angstrom ratio (or, roughly,
number of pixels per atom/defect/particle) for which a network will generate the best results. We
note that although in this example the Segmentor was trained essentially on a single image, it is
generally better to use a large(r) and diverse set of images.

Once we have all atomic coordinates and semantically segmented images, we can perform
various forms of multivariate analysis on local image descriptors formed by extracting patches of
a fixed size centered around one type of the lattice sites. The results of applying NMF to the
Segmentor output are shown in Figure 5. The four NMF components provide clear pictures of
atomic displacements whereas the corresponding loading maps show characteristics of the domain
structure, all found in an unsupervised manner.

IV.B. Graph analysis: Localization of topological defects

 In addition to the multivariate analysis of the semantically segmented output, it is also
possible to analyze the predicted coordinates using graphs. For example, one can combine a deep
learning network for atomic-level semantic segmentation and a depth-first search for traversing a
graph formed from predicted coordinates and create a “defect sniffer” that identifies specific types
of topological defects (in this example, 5 and 7 member rings) from STEM data on graphene
(Figure 6). We note that the semantic segmentation model used in the analysis was trained using
the atomic coordinates produced by molecular dynamics simulations of a large variety of
structural/topological defects in graphene.

Figure 6. (a) Raw experimental STEM image of graphene. (b) Application of the “defect sniffer”
(Segmentor + graph analysis) for rapidly (~1 sec) locating specific topological structures (in this
case, 5 and 7 member rings) in the image.

15

IV.C. Variational Autoencoders (VAE): analysis of structural order parameters

An autoencoder generally refers to a special class
of neural networks where the original data set is
compressed to a small number of continuous latent
variables and is then expanded back to the original
data set. In the process, the network learns how to
optimally describe the data in terms of the latent
variables. This allows the autoencoder to discover
the optimal representation(s), while also rejecting
the noise present in the data. The variational
autoencoder (VAE) builds upon this concept by
making the reconstruction process probabilistic. In
this case, the latent variables are drawn from a
certain (typically standard Gaussian) distribution,
and the training process seeks to optimize both the
reconstruction loss and the Kullback-Leibler
divergence between the encoded distribution and
the chosen prior. The advantages of the VAE over
classical autoencoders include enforcement of
structure and smoothness in the latent space, the
ability to learn both continuous and discrete
distributions, and state-of-the-art performance for
the weakly- and semi-supervised learning (when
only a small part of data is labeled). In fact, VAEs
have been actively used for discovering trends in
various high-dimensional datasets.127-129 Examples
of such trends include emotional expressions in
facial databases and writing styles in hand-written
digits databases.

AtomAI expands the classical VAE
architecture to disentangle both discrete and
continuous representations of the data while accounting for translational and rotational
invariances. Recently, the VAE module in AtomAI has been used identify an order parameter in
disordered system from atom-resolved movies60 and to (re)discover molecular building blocks
and chemical reaction pathways directly from electron microscopy data in an unsupervised
fashion.130 It has also been used to probe atomic-scale symmetry breaking from CBED patterns.131

Here we briefly illustrate the application of the rotationally invariant VAE (rVAE) to an
atomic force microscopy movie of protein self-organization112 as shown schematically in Figure
7. We start by applying a pre-trained Segmentor to the AFM movie frames. The Segmentor was
trained on just a few labeled images from a “stable” phase of the process characterized by relatively
low noise and absence of large scars along the fast scan direction. The Segmentor output then
serves as the input (and output) for the rVAE which automatically separates the orientation of the
particles from other degrees of freedom thereby allowing to encode (and analyze) a rich spectrum
of local transitions into the latent space. Depicted in Fig. 7 is a slice of the learned latent manifold
associated with an ordering transition. Note that in classical VAE the rotational factor of variation

Figure 7. Schematics representing the
analysis of AFM movie on protein self-
organization via the AtomAI’s Segmentor
and rotationally-invariant variational
autoencoder (rVAE) for disentangling
latent mechanisms associated with local
transitions. Based on the results published
in Ref [112]

16

gets admixed into the factors associated with physical mechanisms preventing from learning a
proper disentangled representation for any physically meaningful number of latent dimensions.

IV.D. Predictability of localized functional responses

The AtomAI’s ImSpec models can be trained to predict localized functional responses in the
form of 1D spectra from structural 2D images. The method is based on the idea that local structures
and functional phenomena are (cor)related and the relationship is parsimonious, that is, it can be
explained by a relatively small number of (latent) mechanisms. The ImSpec consists of encoder in
the form of convolutional neural network that that maps the 2D images into the low-dimensional
latent vector and the decoder in the form of 1D convolutional neural network that reconstructs the
spectra from this latent representation. Note that this is different from the (variational) autoencoder
approach where inputs and outputs are the same. The correlative structure-property relationships
can be analyzed by projecting the learned latent vector representation (for a particular dataset) to
the spectral and image domains. As with all supervised ML methods, the caveat is that ImSpec
shows good/reliable predictive performance only on the data obtained under similar experimental
conditions (see however the next section on some ways of addressing this limitation). In Figure 8,
we summarized an example of applying ImSpec-type of models to arrays of plasmonic
nanoparticles. Here the inputs are HAADF-STEM structural images whereas the output/targets are
EEL spectra. Interestingly, the trained model outputs smoothed spectra closely resembling the
shapes of the original ones even though we did not explicitly train it to clean the data. In addition,
the analysis of the latent space distributions projected to the image and spectral domains provided
an insight into the generative mechanisms of plasmonic interactions in the nanoparticle arrays.120

Figure 8. Investigating a predictability of plasmonic spectra with an ImSpec model. (a, b)
Experimental data: (a) HAADF-STEM image of nanoparticle array and (b) EELS from 4 selected
locations in (a). (c) In the ImSpec model, the inputs (x) are images and the outputs/targets (y) are
spectra associated with these images. The correlative structure-property relationship is assumed to
be encoded into the latent vector z during the model training. (d, e, f) The trained model can be
used to predict spectra from new structural images obtained under similar conditions (d) as well

17

as to view/analyze the latent space representations (e, f) by projecting them image and spectral
domains. The images are adapted with changes from Ref [120] (reproduced with permissions from
John Wiley and Sons)

IV.E. Ensemble Learning-Iterative Training (ELIT)

In general, the performance of deep neural networks varies significantly based on the choice of
training data and experimental noise, bias, and data acquisition parameters. One way to (partially)
account for these issues is to utilize Ensemble Learning (EL) which combines the predictions of
multiple models. Here, multiple learners are trained to solve a given problem as compared to
commonly constructed ML models that depend on only a single learner. The utilization of a
combination of learners allows for a flexibility in the search processes of an algorithm (in this case,
a deep learning model), and selection of a broad hypothesis space. Hence, the generalization
capability of EL is superior compared to that of a single model, leading to higher prediction
accuracies on new data. This approach has already been widely used in various applications132, 133
ranging from character recognition, text categorization, face recognition to computer-aided
medical diagnosis and gene expression analysis.

One such application of interest is feature finding in image data. For image datasets where the
tens of thousands of samples with large variabilities are commonly available (such as MNIST and
CIFAR), the common deep learning classification strategies work very well. In such cases, the
training and validation data are drawn from the (more or less) i.i.d. data making the feature-based
classifications perform with reasonable accuracies.

18

Figure 9. An illustrative graphical representation of ELIT workflow62 demonstrating the main
steps of the framework (the photo of a microscope is obtained from the ORNL photo gallery with
permission for public release)

In contrast, for datasets consisting of atomically resolved STEM or STM images, the presence
of almost identical atoms or objects is common, even when the imaging or simulation conditions
are varied. The disparities in detected features for many experimental or atomistic simulation
conditions are often negligible which makes the task of feature finding much more challenging.
As a result, deep neural networks trained to account for a large variety of experimental conditions
are not always good enough to recognize subtle distinctions in atomic features present in a
particular experimental dataset. In addition, the applications of deep neural networks to such
problems must be able to deal with out-of-distribution effects by rapidly adapting to changes in
the imaging conditions.

Ensemble learning combined with iterative training (ELIT) offers a strategy to surpass the
above-mentioned challenges (Figure 9). The EL part of the workflow allows for selection of
artifact-free features and pixel-wise uncertainty maps by combining multiple networks. The IT
part retrains the ensemble networks with already detected features, focusing its attention on
features present in the (heavily degenerate) data and thus increasing the detection limit of the
network on the dataset(s) of interest.

We have recently successfully applied a ELIT framework to multiple datasets, including the
dynamic STEM data from graphene with impurities and static STEM data from NiO-LSMO.62 In

19

both cases, the learning begins with training the models on data generated by simulations and
consequently applying it to the experimental images followed by iterative reevaluations and
modifications to the training sets to obtain a model that can successfully identify all atoms and
impurities, or defects present in the system. The ELIT framework works reasonably well for
feature finding in new experimental data and allows a generation of meaningful uncertainty maps
on the level of individual pixels. This method also allows for rapid correction for out of distribution
effects during automated experiments where the imaging conditions change compared to the
training set.

V. CONNECTION TO AB-INITIO SIMULATIONS

As described in the previous sections, AtomAI allows using deep fully convolutional neural
networks (Segmentor models) for finding atoms and/or other relevant features (particles, defects,
etc.) from microscopic images. The output contains a list of coordinates with corresponding classes
for all detected atoms, which can easily be converted to Cartesian or fractional coordinates as
necessary. We note that one of the key steps before performing any atomistic simulation is to build
the system’s “cell”. It can be of different types such as bulk conventional unit cell, supercell or
surface depending on the type of simulations and material properties of interest. Hence, once we
obtain the coordinates corresponding to all atoms present in the system from the Segmentor model,
our next step is to construct one of these cells.

Figure 10. Schematic of (a) experimental STEM image of graphene, (b) atomic types and
coordinates predicted by AtomAI’s Segmentor and (c) a corresponding supercell to be used for
performing atomistic simulations.

Figure 10 shows an example of a STEM image of graphene, the AtomAI’s Segmentor-
predicted coordinates for C and Si atoms, and the corresponding supercell built using the AtomAI’s
ase_obj_basic function. Once these cells are constructed, the next task is to optimize the
geometry. One can obtain the relaxed geometry using quasi-Newton algorithms or first-principles
methods before proceeding to perform other advanced simulations such as computing the
electronic properties.

Within the quasi-Newton methods as implemented in ASE, the algorithms decide the
positions of atoms at every iteration based on the forces and second derivative of the total energy

20

of the atoms. This may not work well in all cases, where electronic interactions can play a major
role to acquire relaxed geometry. In such cases, we can employ the objects obtained using AtomAI
utility functions in electronic structure codes to first relax atom positions, cell shape, and volume
such that forces and stresses between all atoms are negligible. Consequently, atomistic simulations
with various classical potentials such Lennard-Jones using built-in ASE calculators or other ab-
initio DFT (using pseudopotentials) or MD codes can be employed to evaluate material properties.

VI. CONCLUSIONS

The AtomAI package is introduced as a high-level package bridging the instrument-specific
Python-based ecosystem and deep learning and simulation tools into a single workflow. AtomAI
allows direct applications of the deep convolutional neural networks for atomic and mesoscopic
image segmentation, converting the image and spectroscopy data into class-based descriptors. For
atomically-resolved data, these include the type and positions of atomic species. AtomAI further
allows the implementation of a broad range of image and spectrum analysis classes and methods,
including simple and rotationally/translationally invariant variational autoencoders for
unsupervised classification and disentanglement of continuous traits in datasets. These concepts
are further extended to im2spec/spec2im type of models for predicting functional spectra from
structural images and vice versa. Finally, AtomAI allows seamless connection to the Python-based
first-principles modeling including molecular dynamics and density-functional theory models
using the derived atomic position.

While the majority of applications to date were based on the atomically resolved STEM, the
flexibility of AtomAI allows straightforward extension towards the analysis of mesoscopic
imaging data once the labels and feature identification workflows are available.

Acknowledgements: This effort was performed and partially supported (M.Z.) at the Oak Ridge
National Laboratory’s Center for Nanophase Materials Sciences (CNMS), a U.S. Department of
Energy, Office of Science User Facility, and by U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences Data, Artificial Intelligence and Machine Learning at DOE
Scientific User Facilities program under the Digital Twin Project (Award Number 34532) (A.G.)
and MLExchange Project (Award Number 107514) (T.W., S.V.K.) The authors gratefully
acknowledge multiple discussions with Matt Chisholm, Andy Lupini, Mark Oxley, Kevin
Roccapriore, Jordan Hachtel, Ondrej Dyck and multiple other colleagues at ORNL whose advice
and beta testing have been instrumental throughout the development of AtomAI from 2019 to 2021
and its predecessor AICrystallographer in 2016 -2019. The authors also express their deep
gratitude to Colin Ophus (LBNL), Steven Spurgeon (PNNL), Francisco de la Peña (University of
Lille), Dieter Weber (Juelich), and Ian Maclaren (Glasgow University) for critical reading of the
manuscript, suggesting several key references, and suggesting improvement of key figures.

21

Uncategorized References

1. S. J. Pennycook, Ultramicroscopy 123, 28-37 (2012).
2. S. J. Pennycook and P. D. Nellist, (Springer, New York, 2011).
3. N. Dellby, O. L. Krivanek, P. D. Nellist, P. E. Batson and A. R. Lupini, J. Electron Microsc. 50 (3),
177-185 (2001).
4. P. Y. Huang, S. Kurasch, J. S. Alden, A. Shekhawat, A. A. Alemi, P. L. McEuen, J. P. Sethna, U.
Kaiser and D. A. Muller, Science 342 (6155), 224-227 (2013).
5. C. Ophus, Microsc. microanal. 25 (3), 563-582 (2019).
6. M. v. Ardenne, Z. Tech. Phys 19, 407-416 (1938).
7. M. v. Ardenne, Zeit. Physik 109, 553-572 (1938).
8. M. Knoll and E. Ruska, Zeit. Physik 78 (5), 318-339 (1932).
9. E. Ruska, Rev. Mod. Phys. 59 (3), 627-638 (1987).
10. G. Binnig, H. Rohrer, C. Gerber and E. Weibel, Physical Review Letters 50 (2), 120-123 (1983).
11. G. Binnig, C. F. Quate and C. Gerber, Phys. Rev. Lett. 56 (9), 930-933 (1986).
12. R. Garcia and R. Perez, Surf. Sci. Rep. 47 (6-8), 197-301 (2002).
13. A. Gruverman, O. Auciello, R. Ramesh and H. Tokumoto, Nanotechnology 8, A38-A43 (1997).
14. Y. Martin and H. K. Wickramasinghe, Appl. Phys. Lett. 50 (20), 1455-1457 (1987).
15. O. Vatel and M. Tanimoto, J. Appl. Phys. 77 (6), 2358-2362 (1995).
16. M. Nonnenmacher, M. P. Oboyle and H. K. Wickramasinghe, Appl. Phys. Lett. 58 (25), 2921-2923
(1991).
17. O. L. Krivanek, N. Dellby, A. J. Spence, R. A. Camps and L. M. Brown, in Electron Microscopy and
Analysis 1997, edited by J. M. Rodenburg (Iop Publishing Ltd, Bristol, 1997), pp. 35-40.
18. P. E. Batson, N. Dellby and O. L. Krivanek, Nature 418 (6898), 617-620 (2002).
19. M. Varela, S. D. Findlay, A. R. Lupini, H. M. Christen, A. Y. Borisevich, N. Dellby, O. L. Krivanek, P.
D. Nellist, M. P. Oxley, L. J. Allen and S. J. Pennycook, Physical Review Letters 92 (9), 095502 (2004).
20. W. Zhou, X. L. Zou, S. Najmaei, Z. Liu, Y. M. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson and J.
C. Idrobo, Nano Lett. 13 (6), 2615-2622 (2013).
21. N. D. Browning, J. P. Buban, P. D. Nellist, D. P. Norton, M. F. Chisholm and S. J. Pennycook,
Physica C 294 (3-4), 183-193 (1998).
22. X. Guo and R. Waser, Progress in Materials Science 51 (2), 151-210 (2006).
23. B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland and J.
Unguris, Science 331 (6014), 192-195 (2011).
24. V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R. Dennis and R. W. Boyd, Phys. Rev. X 4 (1), 7
(2014).
25. J. Rusz and S. Bhowmick, Phys. Rev. Lett. 111 (10), 5 (2013).
26. J. C. Idrobo, A. R. Lupini, T. L. Feng, R. R. Unocic, F. S. Walden, D. S. Gardiner, T. C. Lovejoy, N.
Dellby, S. T. Pantelides and O. L. Krivanek, Phys. Rev. Lett. 120 (9) (2018).
27. S. H. Cho, K. M. Roccapriore, C. K. Dass, S. Ghosh, J. Choi, J. Noh, L. C. Reimnitz, S. Heo, K. Kim, K.
Xie, B. A. Korgel, X. Q. Li, J. R. Hendrickson, J. A. Hachtel and D. J. Milliron, J. Chem. Phys. 152 (1), 17
(2020).
28. R. Senga, K. Suenaga, P. Barone, S. Morishita, F. Mauri and T. Pichler, Nature 573 (7773), 247-+
(2019).
29. R. F. Egerton, Ultramicroscopy 107 (8), 575-586 (2007).
30. Y. Jiang, Z. Chen, Y. M. Hang, P. Deb, H. Gao, S. E. Xie, P. Purohit, M. W. Tate, J. Park, S. M.
Gruner, V. Elser and D. A. Muller, Nature 559 (7714), 343-+ (2018).
31. N. Shibata, T. Seki, G. Sanchez-Santolino, S. D. Findlay, Y. Kohno, T. Matsumoto, R. Ishikawa and
Y. Ikuhara, Nat. Commun. 8, 7 (2017).

22

32. Y. S. Yang, C. C. Chen, M. C. Scott, C. Ophus, R. Xu, A. Pryor, L. Wu, F. Sun, W. Theis, J. H. Zhou,
M. Eisenbach, P. R. C. Kent, R. F. Sabirianov, H. Zeng, P. Ercius and J. W. Miao, Nature 542 (7639), 75-+
(2017).
33. C. L. Jia, V. Nagarajan, J. Q. He, L. Houben, T. Zhao, R. Ramesh, K. Urban and R. Waser, Nature
Materials 6 (1), 64-69 (2007).
34. C. L. Jia, S. B. Mi, K. Urban, I. Vrejoiu, M. Alexe and D. Hesse, Nature Materials 7 (1), 57-61
(2008).
35. M. F. Chisholm, W. D. Luo, M. P. Oxley, S. T. Pantelides and H. N. Lee, Physical Review Letters
105 (19) (2010).
36. I. MacLaren and Q. M. Ramasse, International Materials Reviews 59 (3), 115-131 (2014).
37. C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert and K. Urban, Physical Review B 79 (8) (2009).
38. A. Borisevich, O. S. Ovchinnikov, H. J. Chang, M. P. Oxley, P. Yu, J. Seidel, E. A. Eliseev, A. N.
Morozovska, R. Ramesh, S. J. Pennycook and S. V. Kalinin, ACS Nano 4 (10), 6071-6079 (2010).
39. Y. M. Kim, A. Kumar, A. Hatt, A. N. Morozovska, A. Tselev, M. D. Biegalski, I. Ivanov, E. A. Eliseev,
S. J. Pennycook, J. M. Rondinelli, S. V. Kalinin and A. Y. Borisevich, Adv. Mater. 25 (17), 2497-2504 (2013).
40. Q. He, R. Ishikawa, A. R. Lupini, L. Qiao, E. J. Moon, O. Ovchinnikov, S. J. May, M. D. Biegalski and
A. Y. Borisevich, ACS Nano 9 (8), 8412-8419 (2015).
41. M. Nord, A. Ross, D. McGrouther, J. Barthel, M. Moreau, I. Hallsteinsen, T. Tybell and I.
MacLaren, Physical Review Materials 3 (6), 063605 (2019).
42. Y. M. Kim, A. Morozovska, E. Eliseev, M. P. Oxley, R. Mishra, S. M. Selbach, T. Grande, S. T.
Pantelides, S. V. Kalinin and A. Y. Borisevich, Nat. Mater. 13 (11), 1019-1025 (2014).
43. A. Y. Borisevich, A. R. Lupini, J. He, E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, P. Yu, Y. H.
Chu, R. Ramesh, S. T. Pantelides, S. V. Kalinin and S. J. Pennycook, Phys. Rev. B 86 (14) (2012).
44. A. B. Yankovich, B. Berkels, W. Dahmen, P. Binev, S. I. Sanchez, S. A. Bradley, A. Li, I. Szlufarska
and P. M. Voyles, Nature Communications 5 (2014).
45. L. Vlcek, M. Ziatdinov, A. Maksov, A. Tselev, A. P. Baddorf, S. V. Kalinin and R. K. Vasudevan, ACS
Nano 13 (1), 718-727 (2019).
46. L. Vlcek, A. Maksov, M. H. Pan, R. K. Vasudevan and S. V. Kahnin, Acs Nano 11 (10), 10313-10320
(2017).
47. W. Z. Lin, Q. Li, A. Belianinov, B. C. Sales, A. Sefat, Z. Gai, A. P. Baddorf, M. H. Pan, S. Jesse and S.
V. Kalinin, Nanotechnology 24 (41) (2013).
48. Z. Gai, W. Z. Lin, J. D. Burton, K. Fuchigami, P. C. Snijders, T. Z. Ward, E. Y. Tsymbal, J. Shen, S.
Jesse, S. V. Kalinin and A. P. Baddorf, Nat. Commun. 5 (2014).
49. O. S. Ovchinnikov, S. Jesse, P. Bintacchit, S. Trolier-McKinstry and S. V. Kalinin, Physical Review
Letters 103 (15) (2009).
50. A. Kumar, O. Ovchinnikov, S. Guo, F. Griggio, S. Jesse, S. Trolier-McKinstry and S. V. Kalinin, Phys.
Rev. B 84 (2), 024203 (2011).
51. M. P. Nikiforov, V. V. Reukov, G. L. Thompson, A. A. Vertegel, S. Guo, S. V. Kalinin and S. Jesse,
Nanotechnology 20 (40), 405708 (2009).
52. S. Jesse and S. V. Kalinin, Nanotechnology 20 (8), 085714 (2009).
53. M. Bosman, M. Watanabe, D. T. L. Alexander and V. J. Keast, Ultramicroscopy 106 (11-12), 1024-
1032 (2006).
54. L. J. Allen, A. J. D'Alfonso, S. D. Findlay, M. P. Oxley, M. Bosman, V. J. Keast, E. C. Cosgriff, G.
Behan, P. D. Nellist and A. I. Kirkland, in Electron Microscopy and Multiscale Modeling, Proceedings,
edited by A. S. Avilov, S. L. Dudarev and L. D. Marks (Amer Inst Physics, Melville, 2008), Vol. 999, pp. 32-
46.
55. R. Kannan, A. V. Ievlev, N. Laanait, M. A. Ziatdinov, R. K. Vasudevan, S. Jesse and S. V. Kalinin,
Adv. Struct. Chem. Imag. 4, 20 (2018).

23

56. R. K. Vasudevan, M. Ziatdinov, S. Jesse and S. V. Kalinin, Nano Letters 16 (9), 5574-5581 (2016).
57. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein
and L. Antiga, Advances in neural information processing systems, 8026-8037 (2019).
58. L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P.
Prettenhofer, A. Gramfort and J. Grobler, arXiv preprint arXiv:1309.0238 (2013).
59. M. Ziatdinov, C. Nelson, R. K. Vasudevan, D. Y. Chen and S. V. Kalinin, Appl. Phys. Lett. 115 (5), 5
(2019).
60. S. V. Kalinin, O. Dyck, S. Jesse and M. Ziatdinov, Science Advances 7 (17), eabd5084 (2021).
61. M. Ziatdinov, S. Jesse, B. G. Sumpter, S. V. Kalinin and O. Dyck, Nanotechnology 32 (3), 035703
(2020).
62. A. Ghosh, B. G. Sumpter, O. Dyck, S. V. Kalinin and M. Ziatdinov, arXiv preprint arXiv:2101.08449
(2021).
63. M. Ziatdinov, U. Fuchs, J. H. Owen, J. N. Randall and S. V. Kalinin, arXiv preprint
arXiv:2002.04716 (2020).
64. S. V. Kalinin, J. J. Steffes, B. D. Huey and M. Ziatdinov, arXiv preprint arXiv:2007.06194 (2020).
65. R. Ignatans, M. Ziatdinov, R. Vasudevan, M. Valleti, V. Tileli and S. V. Kalinin, arXiv preprint
arXiv:2011.11869 (2020).
66. S. V. Kalinin, A. R. Lupini, O. Dyck, S. Jesse, M. Ziatdinov and R. K. Vasudevan, MRS Bull. 44 (7),
565-575 (2019).
67. F. de la Peña, T. Ostasevicius, V. T. Fauske, P. Burdet, P. Jokubauskas, M. Nord, M. Sarahan, E.
Prestat, D. N. Johnstone, J. Taillon and Microanalysis, Microscopy and Microanalysis 23 (S1), 214-215
(2017).
68. S. Somnath, C. R. Smith, N. Laanait, R. K. Vasudevan and S. Jesse, Microsc. microanal. 25 (S2),
220-221 (2019).
69. D. Mukherjee, GitHub repository, https://github.com/pycroscopy/stemtool (2020).
70. G. Duscher, GitHub repository, https://github.com/pycroscopy/pyTEMlib (2020).
71. D. Johnstone, GitHub Repository, https://pyxem.github.io/pyxem-website/.
72. A. Clausen, D. Weber, K. Ruzaeva, V. Migunov, A. Baburajan, A. Bahuleyan, J. Caron, R. Chandra,
S. Halder and M. Nord, Journal of Open Source Software 5 (50), 2006 (2020).
73. B. H. Savitzky, L. Hughes, K. C. Bustillo, H. D. Deng, N. L. Jin, E. G. Lomeli, W. C. Chueh, P. Herring,
A. Minor and C. Ophus, Microsc. microanal. 25 (S2), 124-125 (2019).
74. I. MacLaren, T. A. Macgregor, C. S. Allen and A. I. Kirkland, APL Materials 8 (11), 110901 (2020).
75. L. J. Allen, A. J. D׳Alfonso and S. D. Findlay, Ultramicroscopy 151, 11-22 (2015).
76. C. T. Koch, Ph. D. Thesis (2002).
77. J. Madsen and T. Susi, Microsc. microanal. 26 (S2), 448-450 (2020).
78. I. Lobato and D. Van Dyck, Ultramicroscopy 156, 9-17 (2015).
79. J. O. Oelerich, L. Duschek, J. Belz, A. Beyer, S. D. Baranovskii and K. Volz, Ultramicroscopy 177,
91-96 (2017).
80. A. Pryor, C. Ophus and J. Miao, Adv. Struct. Chem. Imag. 3 (1), 15 (2017).
81. J. Barthel, Ultramicroscopy 193, 1-11 (2018).
82. A. G. e. al., Journal of Chemical Physics 152, 204108.
83. P. G. e. al., Journal of Physics: Condensed Matter 21, 395502 (2009).
84. P. G. e. al., Journal of Physics: Condensed Matter 29(46), 465901 (2017).
85. P. G. e. al., J. Chem. Phys 152, 154105 (2020).
86. T. D. K. e. al., Journal of Chemical Physics 152, 194103 (2020).
87. D. R. G. C.J. Permann, D. Andrš, R. W. Carlsen, F. Kong, A. D. Lindsay, J. M. Miller, J. W. Peterson,
A. E. Slaughter, R. H. Stogner and R. C. Martineau, SoftwareX 11.

24

88. D. Guido, The Finite Element Method for Three-Dimensional Thermomechanical Applications.
(John Wiley & Sons, 2004).
89. https://lammps.sandia.gov/.
90. https://www.3ds.com/products-services/biovia/products/molecular-modeling-
simulation/biovia-materials-studio/.
91. E. A. J.M. Soler, J. D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal, Journal of
Physics: Condensed Matter 14, 2745 (2002).
92. A. S. G. K. C. Koppenhoefer, C. Ruggieri, R. H. Dodds, Robert H. Jr and B. E. Healey, Report No.
Civil Engineering Studies SRS-596, 1994.
93. P. M. Malinen and P. Råback, Appl. Mater. Sci. 19, 101-113 (2013).
94. C. G. C. Kloss, A. Hager, S. Amberger, S. Pirker, Progress in Computational Fluid Dynamics 12,
140-152 (2012).
95. W. L. DeLano, CCP4 Newsletter on protein crystallography 40, 82-92 (2002).
96. P. Hirel, Comput. Phys, Comm. 197, 212-219 (2015).
97. K. M. a. F. Izumi, Journal of applied crystallography 44(6), 1272-1276 (2011).
98. B. G. J. Ahrens, C. Law, (Elsevier, 2015).
99. R. A. L. Martínez, E. G. Birgin, J. M. Martínez. , Journal of Computational Chemistry 30(13), 2157-
2164 (2009).
100. D. E. C. M.D. Hanwell, D.C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison Journal of
Cheminformatics 4(1), 1-17 (2012).
101. A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).
102. A. Utkarsh, (Kitware, 2015).
103. A. D. W. Humphrey, and K. Schulten, J. Molec. Graphics 14, 33-38 (1996).
104. S. P. O. A. Jain, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G.
Ceder, K.A. Persson, APL Materials 1 (1) (2013).
105. M. J. M. D. Hicks, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo,
Comp. Mat. Sci. 161, S1-S1011 (2019).
106. S. K. J. E. Saal, M. Aykol, B. Meredig, and C. Wolverton, JOM 65, 1501-1509 (2013).
107. D. H. M. J. Mehl, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, Comp. Mat. Sci.
136, S1-S828 (2017).
108. S. J. E. S. S. Kirklin, B. Meredig, B, A. Thompson, J.W. Doak, M. Aykol, S. Rühl and C. Wolverton. ,
npj Computational Materials 1 (2015).
109. C. D. a. M. Scheffler, J. Phys. Mater 2, 036001 (2019).
110. S. Somnath, G. Duscher, M. Ziatdinov, R. Vasudevan and M. Valleti, GitHub repository,
10.5281/zenodo.4679761 (2021).
111. M. Ziatdinov, S. Zhang, O. Dollar, J. Pfaendtner, C. J. Mundy, X. Li, H. Pyles, D. Baker, J. J. De
Yoreo and S. V. Kalinin, Nano Letters 21 (1), 158-165 (2021).
112. S. V. Kalinin, S. Zhang, M. Valleti, H. Pyles, D. Baker, J. J. De Yoreo and M. Ziatdinov, ACS Nano 15
(4), 6471-6480 (2021).
113. M. Ziatdinov, O. Dyck, X. Li, B. G. Sumpter, S. Jesse, R. K. Vasudevan and S. V. Kalinin, Science
advances 5 (9), eaaw8989 (2019).
114. O. Ronneberger, P. Fischer and T. Brox, in International Conference on Medical image computing
and computer-assisted intervention (Springer, Cham, 2015), pp. 234-241.
115. S. Xie and Z. Tu, Proceedings of the IEEE international conference on computer vision, 1395-
1403 (2015).
116. K. He, X. Zhang, S. Ren and J. Sun, Proceedings of the IEEE conference on computer vision and
pattern recognition, 770-778 (2016).

25

117. V. Badrinarayanan, A. Kendall and R. Cipolla, IEEE transactions on pattern analysis 39 (12), 2481-
2495 (2017).
118. A. G. Wilson and P. Izmailov, arXiv preprint arXiv:2002.08791 (2020).
119. S. V. Kalinin, K. Kelley, R. K. Vasudevan and M. Ziatdinov, ACS Appl. Mater. Interfaces 13 (1),
1693-1703 (2021).
120. K. M. Roccapriore, M. Ziatdinov, S. H. Cho, J. A. Hachtel and S. V. Kalinin, Small n/a (n/a),
2100181 (2021).
121. B. Lakshminarayanan, A. Pritzel and C. Blundell, in Proceedings of the 31st International
Conference on Neural Information Processing Systems (Curran Associates Inc., Long Beach, California,
USA, 2017), pp. 6405–6416.
122. M. Ziatdinov, N. Creange, X. Zhang, A. Morozovska, E. Eliseev, R. K. Vasudevan, I. Takeuchi, C.
Nelson and S. V. Kalinin, Appl. Phys. Rev. 8 (1), 011403 (2021).
123. R. K. Vasudevan, K. Kelley, H. Funakubo, S. Jesse, S. V. Kalinin and M. Ziatdinov, arXiv preprint
arXiv:2011.13050 (2020).
124. D. P. Kingma and M. Welling, Foundations and Trends® in Machine Learning 12 (4), 307-392
(2019).
125. M. Ziatdinov, GitHub repository, https://github.com/pycroscopy/atomai (2020).
126. C. Nelson, A. Ghosh, M. Ziatdinov and S. Kalinin V, (Zenodo, 2021).
127. D. Celis and M. Rao, in Proceedings of the 1st International Workshop on Fairness,
Accountability, and Transparency in MultiMedia (Association for Computing Machinery, Nice, France,
2019), pp. 26–32.
128. T. Yamada, M. Hosoe, K. Kato and K. Yamamoto, presented at the 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), 2017 (unpublished).
129. C. Doersch, 2021, arXiv:1606.05908. arXiv.org e-Print archive. https://arxiv.org/abs/1606.05908.
130. S. V. Kalinin, O. Dyck, A. Ghosh, B. G. Sumpter and M. Ziatdinov, arXiv preprint arXiv:2010.09196
(2020).
131. M. P. Oxley, M. Ziatdinov, O. Dyck, A. R. Lupini, R. Vasudevan and S. V. Kalinin, npj
Computational Materials 7 (1), 65 (2021).
132. G. S. a. J. Elder, Ensemble Methods in Data Mining: Improving Accuracy Through Combining
Predictions. (Morgan and Claypool Publishers, 2010).
133. C. Z. a. Y. Ma, Ensemble machine learning: methods and applications. (Springer Science &
Business Media, 2012).

