
1 
 

Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 
with the U.S. Department of Energy. The United States Government retains and the publisher, by 
accepting the article for publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this 
manuscript, or allow others to do so, for the United States Government purposes. The Department of 
Energy will provide public access to these results of federally sponsored research in accordance with the 
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). 

 
  



2 
 

AtomAI: A Deep Learning Framework for Analysis of Image and Spectroscopy Data in 
(Scanning) Transmission Electron Microscopy and Beyond 

 

Maxim Ziatdinov,1,2,*  Ayana Ghosh,1,2 Tommy Wong,1,3 and Sergei V. Kalinin1  

 
1 The Center for Nanophase Materials Sciences and 2 Computational Sciences and Engineering 
Division, Oak Ridge National Laboratory, Oak Ridge, TN 3783, United States 

 
3The Bredesen Center, University of Tennessee, Knoxville, United States 

 

AtomAI is an open-source software package bridging instrument-specific Python libraries, deep 
learning, and simulation tools into a single ecosystem. AtomAI allows direct applications of the 
deep convolutional neural networks for atomic and mesoscopic image segmentation converting 
image and spectroscopy data into class-based local descriptors for downstream tasks such as 
statistical and graph analysis. For atomically-resolved imaging data, the output is types and 
positions of atomic species, with an option for subsequent refinement. AtomAI further allows the 
implementation of a broad range of image and spectrum analysis functions, including invariant 
variational autoencoders (VAEs). The latter consists of VAEs with rotational and (optionally) 
translational invariance for unsupervised and class-conditioned disentanglement of categorical and 
continuous data representations. In addition, AtomAI provides utilities for mapping structure-
property relationships via im2spec and spec2im type of encoder-decoder models. Finally, AtomAI 
allows seamless connection to the first principles modeling with a Python interface, including 
molecular dynamics and density functional theory calculations on the inferred atomic position. 
While the majority of applications to date were based on atomically resolved electron microscopy, 
the flexibility of AtomAI allows straightforward extension towards the analysis of mesoscopic 
imaging data once the labels and feature identification workflows are established/available. The 
source code and example notebooks are available at https://github.com/pycroscopy/atomai. 

 

  

 
* ziatdinovma@ornl.gov  



3 
 

I. INTRODUCTION 

Over the last decades, electron1-9 and scanning probe microscopies10-16 have emerged as keystone 
tools for the exploration of matter on the atomic and mesoscale levels. Applications of these 
techniques span the disciplines from fundamental condensed matter physics and materials science 
to biology and medicine, with the corresponding length scales ranging from atomic to micron and 
beyond. The recent exceptional progress in detectors and sensors, electron sources and computer-
based data storage and analysis systems on the other, has opened the floodgates of high veracity 
structural and spectral data containing a wealth of information on materials structures and 
functionalities. 

In (Scanning) Transmission Electron Microscopy, (S)TEM, the development of the aberration 
correction in the late 90’s have led to a broad spectrum of experimental observations of atomic 
structures and functionalities.3, 17, 18 The early successes of aberration corrected STEM included 
single-atom electron energy loss spectroscopy (EELS) imaging, allowing examination of the 
chemical state of a single impurity atom,19 visualizations of the structures of a range of grain 
boundaries in broad materials classes,20-22 that led to new fundamental insights into structural 
properties and high-temperature superconductivity, visualization of the light elements, and many 
others. Broad commercialization of aberration corrected STEMs has made these advances 
accessible in multiple research groups and has further stimulated the development of new STEM 
modalities enabled by further advances in electron sources and detectors. On the source side, these 
advances have begun to include beams with orbital angular momentum,23-25 enabling probing of 
magnetic and orbital phenomena. The development of monochromators has improved the energy 
resolution in EELS to well below 10 meV, enabling direct probing of plasmons, phonons, and even 
the anti-Stokes excitations in complex materials.26, 27 A combination of new detectors and 
monochromators has enabled momentum-resolved EELS measurements, effectively probing 
quasiparticle dispersion in k-space.28, 29 Finally, the development of pixelated detectors has led to 
the broad introduction of 4D STEM, a method fundamentally based on detection of diffraction 
patterns from with in-plane localization below unit cell levels.5, 30, 31 Advances in tomographic 
imaging and reconstruction have enabled 3D structural models of nanoparticles containing tens of 
thousands of atoms to be constructed with atomic resolution.32  

The advances in STEM imaging and spectroscopy capabilities have naturally led the scientific 
community to explore new opportunities in probing physics and chemistry on the atomic scale. 
Until ~2010, the vast majority of (S)TEM applications were preponderantly qualitative in nature, 
where the observed atomic patterns, presence of specific defect types, or EELS responses were 
interpreted as indicators of certain a priori known physical behaviors or suggested emergence of 
new defect classes or structural elements. However, it was realized that the quantitative 
information on atomic positions can be used with EELS peak intensities to derive specific 
materials functionalities. As the first harbinger of these developments, Jia et al.33, 34 and Chisholm 
et al.35 demonstrated by TEM and STEM, respectively, that quantitative measurements of atomic 
column positions can be used to map the polarization order parameter field (a comprehensive 
account of polarisation measurements in ferroelectrics in the earlier days of atomic resolution 
imaging can be found in Ref [36]). This approach was rapidly extended to other physical 
functionalities strongly coupled to structure, including octahedra tilting in perovskites both in the 
image plane37-39 and in the beam direction,40, 41 chemical and physical strain fields,42, 43 etc. These 
recent advances in quantitative STEM methods offer new opportunities for sub ~pm information 
mapping,44 further allowing for direct connection to the generative physical models of solids.45, 46 
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Similar advances were explored in the scanning probe microscopy (SPM) community. While 
traditionally scanning tunnelling microscopy (STM) data is interpreted qualitatively, the structural 
mapping of atomic positions can yield information on strains47 and crystal field splitting.48 The 
spectroscopic measurements can be directly connected to the physical models49, 50 of solids or used 
for recognition imaging.51  

Despite the markedly different imaging mechanisms, the nature of the detected signal, and its 
relationship to materials functionalities, STEM and SPM imaging exhibit commonalities both on 
the data format and physics extraction sides. In all cases, a scan gives rise to a scalar, multimodal, 
or hyperspectral data in the form of a structured N-dimensional array allowing for common 
analysis tools in the spectral domain.52-55 Similarly, the objects of interest such as atomic positions 
in STEM, STM, and non-contact atomic force microscopy (AFM) are universal across these 
modalities. Most curiously, in many cases, the fundamentally different physics of imaging – 
convolution of the electron beam profile with delta-function like nuclei in STEM and convolution 
between the surface and probe density of states around the Fermi level in STM – gives rise to the 
superficially similar shapes of the objects as seen in images. Consequently, many atom finding or 
phase identification problems in STEM and STM can be performed with very similar analysis 
tools with minimal cross-technique modification.56 

The purpose of the AtomAI package is to provide an environment that bridges the instrument 
specific libraries and general physical analysis (Fig. 1) by enabling the seamless deployment of 
machine learning (ML) algorithms including deep convolutional neural networks, invariant 
variational autoencoders, encoders-decoders, and decomposition/unmixing techniques for image 
and hyperspectral data analysis. Ultimately, it aims to combine the power and flexibility of the 
PyTorch deep learning framework57 and simplicity and intuitive nature of packages such as scikit-
learn,58 with a focus on scientific data. To date, the majority of AtomAI applications  have been 
for  atomically resolved STEM.59-62 However, as discussed above, many of its modules can equally 
be applied for atomically-resolved imaging in Scanning Tunneling Microscopy (STM)63 and 
extended towards mesoscopic imaging in SPM64 and STEM.65  

 

II. PYTHON BASED IMAGE ANALYSIS ECOSYSTEM 

Recently, we have formulated a roadmap for the application of ML methods in imaging.66 On 
the basic level, the questions we seek to answer are the following: 

A. Can we get materials specific information (e.g., atomic coordinates from STEM, scattering 
potentials from 4D STEM, etc.) from microscopy data, for which the level of confidence, 
and how this knowledge is affected, can be improved from knowledge of the imaging 
system (e.g., classical beam parameters, resolution function, all the way to full imaging 
system modeling) and knowledge of a material’s phase, structure, and composition? 

B. Can we use the materials-specific information with uncertainties determined by incomplete 
knowledge of an imaging system or intrinsic physics limitations to infer physics and 
chemistry, either via correlative models or recovery of generative physics (force fields, 
exchange integrals, and other parameters)? 

C. Can we use the inferred materials information, either correlative or causative, to reconstruct 
materials behavior (phase diagrams, etc.) in a broader parameter space (e.g., for 
temperatures and concentrations different for the specific sample studied) and determine 
how the reliability of such predictions depend on the position in the parameter space? 
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D. Can we harness the data streams from microscopes to engender real-time feedback, e.g., 
for autonomous experimentation and atomic manipulation? 

Advances in (S)TEM and SPM imaging have stimulated the development of software 
ecosystems for data analytics allowing for the import (ingestion) of the data from instrumental 
formats, instrumental corrections, and simple analytics including multivariate statistics, addressing 
goal (A). Our goal for AtomAI is to interface A to C. Below, we briefly overview existing elements 
of the Python infrastructure for imaging and physics.  

 

 
Figure 1. AtomAI is a flexible and user-friendly package for deep learning-based image analytics. 
It serves as a bridge between instrument specific libraries and general deep/machine learning 
frameworks. AtomAI logo is courtesy of O. Dyck. 

 

One of the core libraries for reading, visualizing, and basic analysis of microscopy data is 
HyperSpy.67 HyperSpy incorporates syntax for storing large multi-dimensional datasets, which 
facilitates the analysis of EELS, energy dispersive X-ray (EDX) spectra, and electron holography. 
It also incorporates a GUI to streamline the user experience. HyperSpy is currently transitioning 
from a single package to a multiplicity of specialized packages that rely on a single package 
(‘hyperspy’) for common infrastructure.  However, although there are several packages specialized 
in image analysis, there is no deep learning capability. Another family of STEM analysis methods 
is the Pycroscopy eco-system,68 which includes a STEMTools toolkit69 and PyTEMLib library70 
for model-based quantification analysis. A comprehensive set of tools with a focus on electron 
diffraction data is available from the pyxem71 library. In addition, there are 4D-STEM-specific 
analysis codes currently under development including LiberTEM,72 and py4DSTEM.73 LiberTEM 
is an open-source, GUI-based Python implementation that incorporates distributed computing to 



6 
 

analyze large, multidimensional data. The core of LiberTEM is a framework for MapReduce-like 
operations on live data streams. All these packages are fully open source and can be freely 
modified to match the specific needs of a given research project. More information about these 
and some other (not open-sourced) packages can be found in the Supplementary Materials and Ref  
[74].  

Complementary to the data analysis are methods for modeling STEM/EELS, including  
μSTEM,75 QSTEM,76 abTEM,77 MULTEM,78 STEMsalabim,79 Prismatic,80 Dr. Probe,81 and 
others. These packages are used for simulating STEM images and EELS, as well as for convergent 
beam electron diffraction (CBED) calculations. Many of these packages can run efficiently on 
modern Graphics Processing Units (GPUs) allowing for a significant speed-up of the simulations 
and a viable source of data for training of ML models. 

Finally, this description will be incomplete without mentioning the Python-based general 
physics simulation infrastructure. There exist ample resources/packages to perform simulations of 
physical systems at different length scales and for evaluating their properties. Some of these are 
open-source and various post-processing codes or scripts82-93 are freely available for users. These 
include the atomic simulation environment (ASE), grid-based projector augmented wave (GPAW) 
package, and others.94-103 With recent development in data analytics and machine learning 
capabilities useful for materials research, several databases104-109 have also become popular 
allowing to perform simulations alongside data-driven studies. A non-exhaustive list of such 
contents along with their overall capabilities is listed in Supplementary Materials. 

 

 
Figure 2. Schematic illustration of a typical AtomAI workflow. First, the microscopic images or 
spectra are transformed into an N-dimensional array object in NumPy (a fundamental package for 
scientific computing in Python). This can be achieved for example with a HyperSpy package. 
Since it is wise to keep the metadata (e.g., image acquisition parameters), one can convert 
experimental data into a Spectroscopic and Imaging (SID) data format using the SciFiReaders 
package.110 AtomAI can work both with standard NumPy objects and SID objects. Once the data 
is in one of these formats, it can be passed through one of the AtomAI’s pre-trained neural 
networks (or a new neural network can be trained if necessary) to extract features associated with 
atoms, defects, or other objects of interests (e.g., metallic nanoparticles or protein nanorods111, 112). 
Typically, features represent the type and position of atoms. The extracted features can then be 



7 
 

used for more advanced analysis such as learning of disentangled factors of variation with deep 
latent space models60 or they can serve as an input for first-principles calculations.113 (The photo 
of a microscope is obtained from the ORNL photo gallery with permission for public release) 

 

III. PACKAGE CONTENT 

AtomAI is an open-source Python library based on the PyTorch deep learning engine. The goal 
is to provide an environment bridging the instrument-specific libraries and general physical 
analysis by enabling seamless deployment of the deep and machine learning algorithms for image 
and hyperspectral data analytics.  It aims to combine the power and flexibility of PyTorch deep 
learning framework and simplicity and intuitive nature of packages such as scikit-learn, with a 
focus on scientific image data. The Package content is briefly summarized in Table I. 

 

Table I 
 

1. Core modules (low-level API) 

a. Trainers  

b. Predictors 

c. Nets 

2. AtomAI models (high-level API) 

a. Segmentor 

b. ImSpec 

c. Deep Ensembles 

d. Variational Autoencoders 

3. Other utilities 

a. Multivariate Statistics 

b. Graph Analysis 

c. Atomic simulation environment 

d. Training data preparation 

 

III.A. Core modules and low-level API. 

At the core of AtomAI’s package are custom-built trainers, predictors, and neural nets.  

The trainers wrap training routines for semantic segmentation models, im2spec models, 
variational autoencoder models, and deep ensembles. They incorporate some of the most recent 
advances in the deep learning field for model training including stochastic weight averaging, time-
dependent weight perturbation, and on-the-fly data augmentation, which can be activated by 
simple Boolean statements (e.g., swa=True turns stochastic weight averaging on). All the trainers 
also enforce a determinism in deep learning training such that different training runs lead to the 
same result (provided that models themselves do not contain sources of randomness). Note that 
while users don’t have to interact with the trainers directly when using AtomAI models, they can 
use them for training custom models written in PyTorch with minimal lines of code.  

The predictors wrap inference routines with trained models by automatically taking care of 
the proper dimensionality of the input data (e.g., adding a pseudo-dimension of 1 to the grayscale 
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data) and possible size mismatch issues (by automatically performing data padding), as well as by 
allowing a batch-by-batch prediction on large datasets. Finally, both trainers and predictors 
automatically take care of all the necessary CPU-to-GPU (and vice versa) transfer of models and 
data. 

The custom-built neural networks and associated building blocks are located in the nets. They 
include fully convolutional neural networks (FCNNs) for semantic segmentation including a U-
Net114 and a number of custom FCNNs such as: 

i) DilNet, which uses only a single max-pooling operation to preserve the maximum amount 
of information while the utilization of cascades of the dilated convolutions instead of the regular 
convolutional blocks allows for the significant reduction of computational costs;  

ii) ResHedNet, which allows for more accurate identification of edge features (fibers, domain 
walls, etc.) using a modified version of the holistically-nested edge detector115 augmented with 
residual connections116; and  

iii) SegResNet, which is a customized version of SegNet model117 with residual convolutional 
blocks instead of the regular ones.  

Another important subset of neural networks in the AtomAI’s nets is encoder and decoder 
blocks used in models for predicting spectra from images (and vice versa) and for deep generative 
models. This includes both fully-connected (“MLP”) and convolutional architectures of the 
encoders and decoders as well as architectures specific to the realization of rotationally and 
translationally invariant deep generative models. Several examples of the low-level API usage are 
given in the Supplementary Materials. 

 

III.B. AtomAI models and high-level API. 

The models in AtomAI contain deep learning models for performing semantic segmentation 
of image data (Segmentor models), predicting spectra from images and vice versa (ImSpec), and 
a judicious collection of deep generative models based on variational autoencoders (VAE, rVAE, 
jVAE, jrVAE) with translational and/or rotational invariances for learning continuous and discrete 
latent representations of the data.  

Segmentor. The semantic segmentation models categorize each pixel in the input image as 
belonging to a particular object (e.g., atom type, defect structure, etc.) or to a background. As such, 
it can be applied to problems such as atom finding in STM and STEM, identification of atomic 
steps in STM data, identification of domain walls in piezo-response force microscopy (PFM) data, 
and particle finding in atomic force microscopy (AFM) or optical microscope data. The semantic 
segmentation model can be initialized and trained with just a few lines of code: 

 
import atomai as aoi 

# Initialize model 

model = aoi.models.Segmentor(nb_classes=3)  # uses U-Net by default 

# Train 

model.fit(images, labels, images_test, labels_test, # training data 

          training_cycles=300, compute_accuracy=True, swa=True # training params 

          ) 
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Here the swa=True argument turns on the stochastic weight averaging, which usually allows 
improving the model's accuracy and leads to better generalization.118 The prediction with the 
trained Segmentor model requires just a single line of code: 

 
nn_output, coordinates = model.predict(expdata) 

 
Here, the coordinates are a dictionary with NumPy arrays of N×3 dimension (keys correspond to 
image numbers in a stack) where N is a number of detected objects (e.g., atoms), the first two 
columns correspond to the predicted x and y coordinates of the objects (e.g., atomic centers), and 
the third column corresponds to the predicted class (e.g., type of atom).  

Note that there is also an option to refine the predicted position with a 2D Gaussian fit (by 
passing a refine=True keyword argument to model’s predict() method) using the coordinates 
predicted by Segmentor as an initial guess. 

 
ImSpec. In the im2spec model, the images (or image patches) representing a local structure 

are “compressed” via a convolutional neural network to a small number of latent variables, which 
are then “deconvoluted” to yield the spectra. In the spec2im model, the process is reversed.  The 
im2spec models have been used for predicting hysteresis loops from topographic images in PFM 
experiments119 and for predicting electron energy loss spectra from HAADF STEM images.120 The 
initialization and training of the im2spec model are similar to that of the semantic segmentation 
model, with the main difference being that one has to specify the dimensions of input and output 
data: 

 
in_dim = (16, 16)  # Input dimensions (image height and width) 

out_dim = (64,)  # Output dimensions (spectra length) 

  

# Initialize and train model 

model = aoi.models.ImSpec(in_dim, out_dim, latent_dim=10) 

model.fit(imgs_train, spectra_train, imgs_test, spectra_test,  # training data 

          full_epoch=True, training_cycles=120, swa=True  # training parameters 

          ) 

 
As with the semantic segmentation models, the prediction with the im2spec model takes a single 
line of code: 

 
predicted_spectra = model.predict(imgdata) 

 
Deep Ensembles. AtomAI can also be used to train ensembles of models. The mean ensemble 

prediction is usually more accurate and reliable than that of the single model.121 In addition, it also 
yields information about the uncertainty in prediction for each pixel/point, which can further be 
used for anomaly detection122 and implementation of automated experiment workflows.123  

There are currently three strategies for training ensembles:  
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i) train_ensemble_from_scratch where each model in the ensemble starts with a different 
random initialization of weights and the data is shuffled differently for each model in the ensemble;  

ii) train_ensemble_from_baseline where first a single model is trained for N epochs and 
then used as a baseline to train an ensemble of models, each with the reset optimizer  and different 
random shuffling of training data (guaranteeing a different training trajectory), for n << N epochs;  

iii) train_swag which performs sampling from a Gaussian subspace along a single training 
trajectory. 

The ensemble training routines can be applied both to the built-in models and user-defined 
models. A code example of ensemble training can be found in the Supplementary Materials. 

 

Variational Autoencoders. AtomAI has a built-in variational autoencoder (VAE)124 and its 
multiple extensions for unsupervised determination of the most effective reduced representation 
of the system's local descriptors. Specifically, in addition to regular VAE, one can choose 
rotationally and (optionally) translationally invariant VAE (rVAE), as well as joint VAEs for 
disentangling continuous and discrete latent representations with (jrVAE) and without (jVAE) 
invariance to rotations and translations.  

The VAEs can be applied to both raw data and output of a neural network, but typically work 
better with the latter (for example, passing raw data through a Segmentor prior to VAE analysis 
will typically lead to better convergence and improved results). Below is an example of initializing 
and training a rVAE which takes just a few lines of code: 

 
# Get a stack of image patches from the experimental data or Segmentor output 

window_size=32 

imstack, com, frames = aoi.utils.extract_subimages(nn_output, coords, window_size) 

  

# Initialize rVAE model 

input_dim = (32, 32) 

rvae = aoi.models.rVAE(input_dim) 

  

# Train 

rvae.fit(imstack_train, latent_dim=2, rotation_prior=np.pi/3, 

         training_cycles=100, batch_size=100) 

 
To visualize the learned latent manifold, one simply needs to run: 

 
# Visualize the learned manifold 

rvae.manifold2d(); 

 
III.C. Other utilities. 

AtomAI is not limited to deep learning applications and includes classes and methods for 
statistical and graph analysis, as well as utilities for training data preparation and conversion of 
deep learning predictions into the inputs for ab-initio simulations. 
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Statistics. AtomAI allows users to perform a multivariate statistical analysis on their datasets 
and/or on the predictions of the AtomAI’s models. The statistics toolbox is available from the 
AtomAI’s stat and includes principal and independent component analysis (PCA and ICA), non-
negative matrix factorization (NMF), and Gaussian mixture model (GMM). In the example below, 
we use the stat.imlocal class to generate a stack of image patches centered around a specific class 
of objects predicted by the Segmentor (e.g., a specific type of atom or defect) in a larger image 
and then perform one of the aforementioned types of statistical analysis: 

 
# Get local descriptors 

imstack = aoi.stat.imlocal(nn_output, coords, window_size=32, coord_class=1) 

  

# Compute distortion "eigenvectors" with associated loading maps 

pca_results = imstack.imblock_pca(n_components=4, plot_results=True) 

 
The stat also has functions for the refinement of atomic classes predicted by the Segmentor 

based on the statistical analysis of the intensities and local neighborhoods of the identified atomic 
features.  

Graph Analysis. The AtomAI’s graphx module can be used for the graph-based analysis of 
the atomic coordinates, typically from a Segmentor output. One of the applications is the 
identification of specific ring structures in coordinates data from carbon materials (e.g., graphene 
or nanotubes) using a depth-first search method. Because it constructs graphs using the information 
about actual atomic covalent radius, one has to specify a dictionary that will map classes from the 
Segmentor output (0, 1, …) into chemical elements (e.g., ‘C’, ‘Si’, …). In addition, we do not 
assume that the metadata about scan size is always available (or correct) and hence a user needs to 
supply a coefficient for converting pixel coordinates to coordinates in angstroms. 

Atomic simulation environment. AtomAI has two specific utility functions in the aseutils, 
namely ase_obj_basic and ase_obj_adv to convert the Segmentor-predicted coordinates into 
objects readable by the Python-based atomic simulations environment (ASE). These objects are 
also well-suited to be directly used in commonly known electronic structure codes such as VASP 
and can be visualized with packages such as VESTA.97 The utility function ase_obj_basic reads 
in the dictionary containing the list of atomic positions and writes files assuming a cubic cell. Here, 
by default, the lattice parameters are assumed based on the maximum value of the coordinates. 
The ase_obj_adv gives a user an option to construct the cell. The user is asked to provide inputs 
for all lattice vectors along three dimensions. 

Training data preparation. Finally, AtomAI’s has utility functions for training data 
preparation, including generation of single-class and multi-class ground truth “masks” from atomic 
coordinates as well as data augmentation that can be performed before and/or during model 
training with both built-in functions (including blurring, Gaussian and Poisson noises, rotation, 
zooming, and resizing) and user-defined functions. 

 

IV. CASE STUDIES 

Here we illustrate several case studies using AtomAI. For more examples, please refer to the 
GitHub page of the project.125 
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IV.A. Semantic segmentation of the atom-resolved images.  

Semantic segmentation of atomically resolved microscopic images involves classifying every 
pixel in the image as belonging to specific atom and/or defect classes. This is different compared 
to classifying natural images where we categorize one image as a whole. Because this is a 
supervised method, it requires training data where the atoms and/or defects are labelled. Once 
trained, a Segmentor model can be used to predict the position of the atoms and/or defects in 
previously unseen data. Below we show an example of how one can train a Segmentor model using 
labeled experimental images and apply the trained model to data from a different experiment 
alongside performing multivariate statistical analysis on the semantically segmented output.  

To prepare the training data, we used a single labeled experimental STEM image from Sm-
doped BiFeO3 with the resolution of 3000 × 3000 pixels containing ~20,000 atomic unit cells.122 
The image is part of a publicly available dataset.126 The corresponding mask (aka ground truth) 
was generated using the atomic coordinates from a Gaussian fit. Here, there are three different 
classes in the labelled data corresponding to atomic columns (hereafter referred to simply as 
“atoms”) in A-lattice (center atom) and B-lattice (4 corner atoms). About 2000 patches of image-
masks pairs with the size of 256 × 256 pixels were cropped and further “augmented” by applying 
different levels of noise, blurring, as well as changing scale (zooming-in) and 90-rotations. The 
purpose of such augmentation is to account for variations in imaging conditions between different 
experiments. Figure 3 shows five different augmented images and corresponding ground truths. 

 

 
Figure 3. The top row represents the input to the Segmentor model and the bottom row represents 
the ground truth to which the output generated by the model will be compared during the model 
training. 

 
The default Segmentor model is based on the U-Net neural network but one can also choose 

a different model or define a custom fully convolutional neural network. The Segmentor’s raw 
output represents a set of well-defined (semantically segmented) blobs corresponding to different 
atomic types on a uniform background. For the trained model, the centers of the mass of the 
predicted blobs correspond to the atomic centers. 
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Figure 4. (a) STEM image from a similar material obtained in a different experiment (i.e., the 
Segmentor has not seen this image before). (b, c) Prediction of the trained Segmentor model: (b) 
semantically segmented raw output and (c) refined atomic coordinate (see the supplemental 
materials for a comparison between refined and non-refined prediction). Note that the model is 
robust with respect to variations in sample thickness.  

 

 
Figure 5. The results from the patch-based NMF analysis with the displacement components and 
associated loading maps shown in (a) and (b), respectively. Similar analysis was reported earlier 
in [59] using our AICrystallographer package (the AtomAI’s predecessor). 

 
The prediction of the trained Segmentor for a different experimental image (La-doped 

BiFeO3) obtained in a different experiment59 is shown in Figure 4 (b,c) where it was able to remove 
the experimental noise and separate two sublattices into different classes (red and green in Fig. 4b, 
c). We note that in this case the input image had a size of 1024 × 1024 pixels while our network 
was trained only using images of 256 × 256 pixels. This underscores a very important aspect of 
the fully convolutional neural networks, namely, that they are not sensitive to the size of input 
image as long as it can be divided by 2 , where n is a number of max-pooling layers in the network 
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(here it is equal to 3). However, there is always some optimal pixel-to-angstrom ratio (or, roughly, 
number of pixels per atom/defect/particle) for which a network will generate the best results. We 
note that although in this example the Segmentor was trained essentially on a single image, it is 
generally better to use a large(r) and diverse set of images. 

Once we have all atomic coordinates and semantically segmented images, we can perform 
various forms of multivariate analysis on local image descriptors formed by extracting patches of 
a fixed size centered around one type of the lattice sites. The results of applying NMF to the 
Segmentor output are shown in Figure 5.  The four NMF components provide clear pictures of 
atomic displacements whereas the corresponding loading maps show characteristics of the domain 
structure, all found in an unsupervised manner. 

 

IV.B. Graph analysis: Localization of topological defects 

 In addition to the multivariate analysis of the semantically segmented output, it is also 
possible to analyze the predicted coordinates using graphs. For example, one can combine a deep 
learning network for atomic-level semantic segmentation and a depth-first search for traversing a 
graph formed from predicted coordinates and create a “defect sniffer” that identifies specific types 
of topological defects (in this example, 5 and 7 member rings) from STEM data on graphene 
(Figure 6). We note that the semantic segmentation model used in the analysis was trained using 
the atomic coordinates produced by molecular dynamics simulations of a large variety of 
structural/topological defects in graphene. 

 

 

Figure 6. (a) Raw experimental STEM image of graphene. (b) Application of the “defect sniffer” 
(Segmentor + graph analysis) for rapidly (~1 sec) locating specific topological structures (in this 
case, 5 and 7 member rings) in the image.  
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IV.C. Variational Autoencoders (VAE): analysis of structural order parameters  

An autoencoder generally refers to a special class 
of neural networks where the original data set is 
compressed to a small number of continuous latent 
variables and is then expanded back to the original 
data set. In the process, the network learns how to 
optimally describe the data in terms of the latent 
variables. This allows the autoencoder to discover 
the optimal representation(s), while also rejecting 
the noise present in the data. The variational 
autoencoder (VAE) builds upon this concept by 
making the reconstruction process probabilistic. In 
this case, the latent variables are drawn from a 
certain (typically standard Gaussian) distribution, 
and the training process seeks to optimize both the 
reconstruction loss and the Kullback-Leibler 
divergence between the encoded distribution and 
the chosen prior. The advantages of the VAE over 
classical autoencoders include enforcement of 
structure and smoothness in the latent space, the 
ability to learn both continuous and discrete 
distributions, and state-of-the-art performance for 
the weakly- and semi-supervised learning (when 
only a small part of data is labeled).  In fact, VAEs 
have been actively used for discovering trends in 
various high-dimensional datasets.127-129 Examples 
of such trends include emotional expressions in 
facial databases and writing styles in hand-written 
digits databases.  

AtomAI expands the classical VAE 
architecture to disentangle both discrete and 
continuous representations of the data while accounting for translational and rotational 
invariances. Recently, the VAE module in AtomAI has been used identify an order parameter in 
disordered system from atom-resolved  movies60 and to (re)discover molecular building blocks 
and chemical reaction pathways directly from electron microscopy data in an unsupervised 
fashion.130 It has also been used to probe atomic-scale symmetry breaking from CBED patterns.131  

Here we briefly illustrate the application of the rotationally invariant VAE (rVAE) to an 
atomic force microscopy movie of protein self-organization112 as shown schematically in Figure 
7. We start by applying a pre-trained Segmentor to the AFM movie frames. The Segmentor was 
trained on just a few labeled images from a “stable” phase of the process characterized by relatively 
low noise and absence of large scars along the fast scan direction. The Segmentor output then 
serves as the input (and output) for the rVAE which automatically separates the orientation of the 
particles from other degrees of freedom thereby allowing to encode (and analyze) a rich spectrum 
of local transitions into the latent space. Depicted in Fig. 7 is a slice of the learned latent manifold 
associated with an ordering transition. Note that in classical VAE the rotational factor of variation 

 
Figure 7. Schematics representing the 
analysis of AFM movie on protein self-
organization via the AtomAI’s Segmentor 
and rotationally-invariant variational 
autoencoder (rVAE) for disentangling 
latent mechanisms associated with local 
transitions. Based on the results published 
in Ref [112] 
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gets admixed into the factors associated with physical mechanisms preventing from learning a 
proper disentangled representation for any physically meaningful number of latent dimensions.   

 

IV.D. Predictability of localized functional responses 

The AtomAI’s ImSpec models can be trained to predict localized functional responses in the 
form of 1D spectra from structural 2D images. The method is based on the idea that local structures 
and functional phenomena are (cor)related and the relationship is parsimonious, that is, it can be 
explained by a relatively small number of (latent) mechanisms. The ImSpec consists of encoder in 
the form of convolutional neural network that that maps the 2D images into the low-dimensional 
latent vector and the decoder in the form of 1D convolutional neural network that reconstructs the 
spectra from this latent representation. Note that this is different from the (variational) autoencoder 
approach where inputs and outputs are the same. The correlative structure-property relationships 
can be analyzed by projecting the learned latent vector representation (for a particular dataset) to 
the spectral and image domains. As with all supervised ML methods, the caveat is that ImSpec 
shows good/reliable predictive performance only on the data obtained under similar experimental 
conditions (see however the next section on some ways of addressing this limitation). In Figure 8, 
we summarized an example of applying ImSpec-type of models to arrays of plasmonic 
nanoparticles. Here the inputs are HAADF-STEM structural images whereas the output/targets are 
EEL spectra. Interestingly, the trained model outputs smoothed spectra closely resembling the 
shapes of the original ones even though we did not explicitly train it to clean the data. In addition, 
the analysis of the latent space distributions projected to the image and spectral domains provided 
an insight into the generative mechanisms of plasmonic interactions in the nanoparticle arrays.120 

 

 
Figure 8. Investigating a predictability of plasmonic spectra with an ImSpec model. (a, b) 
Experimental data: (a) HAADF-STEM image of nanoparticle array and (b) EELS from 4 selected 
locations in (a). (c) In the ImSpec model, the inputs (x) are images and the outputs/targets (y) are 
spectra associated with these images. The correlative structure-property relationship is assumed to 
be encoded into the latent vector z during the model training. (d, e, f) The trained model can be 
used to predict spectra from new structural images obtained under similar conditions (d) as well 
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as to view/analyze the latent space representations (e, f) by projecting them image and spectral 
domains. The images are adapted with changes from Ref [120] (reproduced with permissions from 
John Wiley and Sons) 

 

IV.E. Ensemble Learning-Iterative Training (ELIT) 

In general, the performance of deep neural networks varies significantly based on the choice of 
training data and experimental noise, bias, and data acquisition parameters. One way to (partially) 
account for these issues is to utilize Ensemble Learning (EL) which combines the predictions of 
multiple models. Here, multiple learners are trained to solve a given problem as compared to 
commonly constructed ML models that depend on only a single learner. The utilization of a 
combination of learners allows for a flexibility in the search processes of an algorithm (in this case, 
a deep learning model), and selection of a broad hypothesis space. Hence, the generalization 
capability of EL is superior compared to that of a single model, leading to higher prediction 
accuracies on new data. This approach has already been widely used in various applications132, 133 
ranging from character recognition, text categorization, face recognition to computer-aided 
medical diagnosis and gene expression analysis. 

One such application of interest is feature finding in image data. For image datasets where the 
tens of thousands of samples with large variabilities are commonly available (such as MNIST and 
CIFAR), the common deep learning classification strategies work very well. In such cases, the 
training and validation data are drawn from the (more or less) i.i.d. data making the feature-based 
classifications perform with reasonable accuracies. 
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Figure 9. An illustrative graphical representation of ELIT workflow62 demonstrating the main 
steps of the framework (the photo of a microscope is obtained from the ORNL photo gallery with 
permission for public release) 

 

In contrast, for datasets consisting of atomically resolved STEM or STM images, the presence 
of almost identical atoms or objects is common, even when the imaging or simulation conditions 
are varied. The disparities in detected features for many experimental or atomistic simulation 
conditions are often negligible which makes the task of feature finding much more challenging. 
As a result, deep neural networks trained to account for a large variety of experimental conditions 
are not always good enough to recognize subtle distinctions in atomic features present in a 
particular experimental dataset. In addition, the applications of deep neural networks to such 
problems must be able to deal with out-of-distribution effects by rapidly adapting to changes in 
the imaging conditions.  

Ensemble learning combined with iterative training (ELIT) offers a strategy to surpass the 
above-mentioned challenges (Figure 9). The EL part of the workflow allows for selection of 
artifact-free features and pixel-wise uncertainty maps by combining multiple networks. The IT 
part retrains the ensemble networks with already detected features, focusing its attention on 
features present in the (heavily degenerate) data and thus increasing the detection limit of the 
network on the dataset(s) of interest. 

We have recently successfully applied a ELIT framework to multiple datasets, including the 
dynamic STEM data from graphene with impurities and static STEM data from NiO-LSMO.62 In 
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both cases, the learning begins with training the models on data generated by simulations and 
consequently applying it to the experimental images followed by iterative reevaluations and 
modifications to the training sets to obtain a model that can successfully identify all atoms and 
impurities, or defects present in the system. The ELIT framework works reasonably well for 
feature finding in new experimental data and allows a generation of meaningful uncertainty maps 
on the level of individual pixels. This method also allows for rapid correction for out of distribution 
effects during automated experiments where the imaging conditions change compared to the 
training set. 

 

V. CONNECTION TO AB-INITIO SIMULATIONS  

As described in the previous sections, AtomAI allows using deep fully convolutional neural 
networks (Segmentor models) for finding atoms and/or other relevant features (particles, defects, 
etc.) from microscopic images. The output contains a list of coordinates with corresponding classes 
for all detected atoms, which can easily be converted to Cartesian or fractional coordinates as 
necessary. We note that one of the key steps before performing any atomistic simulation is to build 
the system’s “cell”. It can be of different types such as bulk conventional unit cell, supercell or 
surface depending on the type of simulations and material properties of interest. Hence, once we 
obtain the coordinates corresponding to all atoms present in the system from the Segmentor model, 
our next step is to construct one of these cells. 

 
 

 
Figure 10. Schematic of (a) experimental STEM image of graphene, (b) atomic types and 
coordinates predicted by AtomAI’s Segmentor and (c) a corresponding supercell to be used for 
performing atomistic simulations.  

  

Figure 10 shows an example of a STEM image of graphene, the AtomAI’s Segmentor-
predicted coordinates for C and Si atoms, and the corresponding supercell built using the AtomAI’s 
ase_obj_basic function. Once these cells are constructed, the next task is to optimize the 
geometry. One can obtain the relaxed geometry using quasi-Newton algorithms or first-principles 
methods before proceeding to perform other advanced simulations such as computing the 
electronic properties. 

Within the quasi-Newton methods as implemented in ASE, the algorithms decide the 
positions of atoms at every iteration based on the forces and second derivative of the total energy 
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of the atoms. This may not work well in all cases, where electronic interactions can play a major 
role to acquire relaxed geometry. In such cases, we can employ the objects obtained using AtomAI 
utility functions in electronic structure codes to first relax atom positions, cell shape, and volume 
such that forces and stresses between all atoms are negligible. Consequently, atomistic simulations 
with various classical potentials such Lennard-Jones using built-in ASE calculators or other ab-
initio DFT (using pseudopotentials) or MD codes can be employed to evaluate material properties. 

 

VI. CONCLUSIONS 

The AtomAI package is introduced as a high-level package bridging the instrument-specific 
Python-based ecosystem and deep learning and simulation tools into a single workflow. AtomAI 
allows direct applications of the deep convolutional neural networks for atomic and mesoscopic 
image segmentation, converting the image and spectroscopy data into class-based descriptors. For 
atomically-resolved data, these include the type and positions of atomic species. AtomAI further 
allows the implementation of a broad range of image and spectrum analysis classes and methods, 
including simple and rotationally/translationally invariant variational autoencoders for 
unsupervised classification and disentanglement of continuous traits in datasets. These concepts 
are further extended to im2spec/spec2im type of models for predicting functional spectra from 
structural images and vice versa. Finally, AtomAI allows seamless connection to the Python-based 
first-principles modeling including molecular dynamics and density-functional theory models 
using the derived atomic position.  

While the majority of applications to date were based on the atomically resolved STEM, the 
flexibility of AtomAI allows straightforward extension towards the analysis of mesoscopic 
imaging data once the labels and feature identification workflows are available. 
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