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Accurate prediction of molecular properties 
and drug targets using a self-supervised 
image representation learning framework

Xiangxiang Zeng    1,7, Hongxin Xiang    1,7, Linhui Yu    1, Jianmin Wang    1, 
Kenli Li1, Ruth Nussinov2,3 & Feixiong Cheng    4,5,6 

The clinical efficacy and safety of a drug is determined by its molecular 
properties and targets in humans. However, proteome-wide evaluation of 
all compounds in humans, or even animal models, is challenging. In this 
study, we present an unsupervised pretraining deep learning framework, 
named ImageMol, pretrained on 10 million unlabelled drug-like, bioactive 
molecules, to predict molecular targets of candidate compounds. The 
ImageMol framework is designed to pretrain chemical representations 
from unlabelled molecular images on the basis of local and global structural 
characteristics of molecules from pixels. We demonstrate high performance 
of ImageMol in evaluation of molecular properties (that is, the drug’s 
metabolism, brain penetration and toxicity) and molecular target profiles 
(that is, beta-secretase enzyme and kinases) across 51 benchmark datasets. 
ImageMol shows high accuracy in identifying anti-SARS-CoV-2 molecules 
across 13 high-throughput experimental datasets from the National Center 
for Advancing Translational Sciences. Via ImageMol, we identified candidate 
clinical 3C-like protease inhibitors for potential treatment of COVID-19.

Despite recent advances in biomedical research and technologies, 
drug discovery and development remains a challenging multidimen-
sional task requiring optimization of vital properties of candidate 
compounds, including pharmacokinetics, efficacy and safety1,2. It 
was estimated that pharmaceutical companies spent $2.6 billion in 
2015, up from $802 million in 2003, on drug approval by the US Food 
and Drug Administration3. The increasing cost of drug development 
resulted from lack of efficacy of the randomized controlled trials, 
and the unknown pharmacokinetics and safety profiles of candidate 
compounds4–6. Traditional experimental approaches are unfeasible in 
proteome-wide evaluation of molecular targets for all candidate com-
pounds in humans, or even animal models. Computational approaches 

and technologies have been considered a promising solution7,8, which 
can substantially reduce costs and time during the complete pipeline 
of drug discovery and development.

The rise of advanced artificial intelligence technologies9,10  
motivated their application to drug design11–13 and target iden-
tification14–16. One of the fundamental challenges is how to learn 
molecular representation from chemical structures17. Previous 
molecular representations were based on hand-crafted features,  
such as fingerprint-based features16,18, physiochemical descriptors and 
pharmacophore-based features19,20. However, these traditional molecu-
lar representation methods rely on a large amount of domain knowl-
edge to extract molecular features, such as functional-connectivity 
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random scaffold split and balanced scaffold split, the datasets are 
divided according to the molecular substructures: the substructures 
in the training set, validation set and test set are disjoint, making them 
ideal to test robustness and generalizability of models. In a classifica-
tion task, using the area under the receiver operating characteristic 
(ROC) curve (AUC), ImageMol achieves high AUC values (Fig. 2a) with 
random scaffold split across BBBP (AUC = 0.952), Tox21 (AUC = 0.847), 
ClinTox (AUC = 0.975), BACE (AUC = 0.939), Side Effect Resource 
(AUC = 0.708) and ToxCast (AUC = 0.752). We found similar results on 
scaffold split as well (Fig. 2a). In a regression task, ImageMol achieves 
low error values with scaffold split (Supplementary Table 5) across 
FreeSolv (root-mean-square error, RMSE = 2.02), ESOL (RMSE = 0.97), 
lipophilicity (RMSE = 0.72) and Quantum Machine 9 (mean absolute 
error = 3.724) and with random scaffold split (Supplementary Table 6)  
across FreeSolv (RMSE = 1.149), ESOL (RMSE = 0.690), lipophilic-
ity (RMSE = 0.625) and QM7 (mean absolute error = 65.9). In addi-
tion, the probability distributions of ImageMol on BBBP and BACE 
datasets have similarity greater than 95%, revealing that ImageMol 
has high consistency and stability during training (Supplementary  
Fig. 6). On the basis of more comprehensive evaluation metrics (includ-
ing accuracy, AUC, AUPR—area under the precision–recall curve,  
F1 score, precision, recall, kappa and confusion matrix), we found that 
ImageMol is able to achieve high performance across these metrics 
(Supplementary Tables 7 and 8 and Supplementary Figs. 7 and 8). 
For a fair comparison in Fig. 2b and Supplementary Fig. 9, we used 
the same experimental set-up as Chemception46, a state-of-the-art 
convolutional neural network (CNN) framework. ImageMol achieves 
elevated AUC values on HIV (AUC = 0.814) and Tox21 (AUC = 0.826) 
compared with Chemception, suggesting that ImageMol can cap-
ture more biologically relevant information from molecular images 
than Chemception. We further evaluated the performance of Ima-
geMol in prediction of drug metabolism across five major metabolic 
enzymes: CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 (Meth-
ods). Figure 2c shows that ImageMol achieves higher AUC values 
(ranging from 0.799 to 0.893) in the prediction of inhibitors versus 
non-inhibitors across five major drug metabolism enzymes as well, 
compared with three state-of-the-art molecular image-based repre-
sentation models: Chemception46, ADMET-CNN12 and QSAR-CNN47. 
Additional results of the detailed comparison are provided in  
Supplementary Fig. 10.

We further compared the performance of ImageMol with 
three types of state-of-the-art molecular representation model: (1) 
fingerprint-based, (2) sequence-based and (3) graph-based models. 
As shown in Fig. 2d,e, ImageMol has better performance compared 
with fingerprint-based (for example, AttentiveFP11), sequence-based 
(for example, TF_Robust48) and graph-based models (for example, 
N-GRAM45, GROVER35 and MPG37) using a random scaffold split. In 
addition, ImageMol achieved higher AUC values (Fig. 2f) on CYP1A2 
(AUC = 0.852), CYP2C9 (AUC = 0.870), CYP2C19 (AUC = 0.871), CYP2D6 
(AUC = 0.893) and CYP3A4 (AUC = 0.799) compared with traditional 
MACCS-based methods and FP4-based methods49 across multiple 
machine learning algorithms, including support vector machine, 
decision tree, k-nearest neighbours, naive Bayes and their ensemble 
models49, across all five cytochrome P450 (CYP) isoform datasets 
(Supplementary Table 9). Compared with sequence-based (including 
RNN_LR, TRFM_LR, RNN_MLP, TRFM_MLP, RNN_RF, TRFM_RF50 and 
CHEM-BERT51) and graph-based models (including MolCLRGIN, Mol-
CLRGCN

39 and GROVER35), ImageMol achieves better AUC performance 
than other methods (Fig. 2g) across CYP1A2 (AUC = 0.912), CYP2C9 
(AUC = 0.858), CYP2C19 (AUC = 0.873), CYP2D6 (AUC = 0.827) and 
CYP3A4 (AUC = 0.903) (the AUCs and confusion matrix are provided in 
Supplementary Figs. 11 and 12 respectively) and achieves elevated per-
formance using other performance metrics (Supplementary Table 10) 
as well. We extended CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 
to multilabelled classification, and ImageMol achieved state-of-the-art 

fingerprints21 and extended-connectivity fingerprints22. Compared 
with traditional representation methods, automatic molecular 
representation learning models perform better on most drug dis-
covery tasks23–25. With the rise of unsupervised learning in natural 
language processing26,27, recent approaches that incorporate unsu-
pervised learning with one-dimensional sequential strings, such as 
the simplified molecular-input line-entry system (SMILES)28–31 and 
International Chemical Identifier (InChI)32–34, or two-dimensional 
(2D) graphs35–39, have also been developed for various computational 
drug discovery tasks. Yet, their accuracy in extracting informative 
vectors for description of molecular identities and biological charac-
teristics of the molecules is limited. Recent advances of unsupervised 
learning in computer vision40,41 suggest that it is possible to apply 
unsupervised image-based pretraining models for computational  
drug discovery.

In this study, we developed an unsupervised molecular image 
pretraining framework (named ImageMol) with chemical awareness 
for learning the molecular structures from large-scale molecular 
images. ImageMol combines an image processing framework with 
comprehensive molecular chemistry knowledge for extracting fine 
pixel-level molecular features in a visual computing way. Compared 
with state-of-the-art methods, ImageMol has two important improve-
ments: (1) it utilizes molecular images as the feature representation of 
compounds with high accuracy and low computing cost; (2) it exploits 
an unsupervised pretrained learning framework to capture the struc-
tural information of molecular images from 10 million drug-like com-
pounds with diverse biological activities at the human proteome (Fig. 1).  
We demonstrated the high accuracy of ImageMol in a variety of drug 
discovery tasks. Via ImageMol, we identified anti-SARS-CoV-2 mol-
ecules across 13 high-throughput experimental datasets from the 
National Center for Advancing Translational Sciences. In summary, 
ImageMol provides a powerful pretraining deep learning framework 
for computational drug discovery.

Results
Description of ImageMol
Here, we developed a pretraining deep learning framework, ImageMol, 
for accurate prediction of molecular targets. ImageMol pretrained 
9,999,918 images of drug-like, bioactive molecules from PubChem 
databases42. We assembled five pretext tasks to extract biologically 
relevant structural information: (1) a molecular encoder is designed to 
extract latent features from ~10 million molecular images (Fig. 1a); (2) 
five pretraining strategies (Supplementary Figs. 1–5) are utilized to opti-
mize the latent representation of the molecular encoder by considering 
the chemical knowledge and structural information from molecular 
images (Fig. 1b); (3) a pretrained molecular encoder is fine-tuned on 
downstream tasks to further improve model performance (Fig. 1c).

Benchmark evaluation of ImageMol
We first evaluated the performance of ImageMol using eight types 
of benchmark dataset for drug discovery (Supplementary Tables 
1–4): (1) molecular targets—human immunodeficiency virus (HIV), 
beta-secretase (BACE, a key target in Alzheimer’s disease) and maximum 
unbiased validation (17 targets for virtual screening); (2) blood–brain 
barrier penetration (BBBP); (3) the drug’s metabolism and side effect 
resource; (4) molecular toxicities—toxicity using the Toxicology in 
the 21st Century (Tox21) and clinical trial toxicity (ClinTox) databases 
and Toxicity Forecaster (ToxCast); (5) solubility—Free Solvation (Free-
Solv) and Estimated Solubility (ESOL)—and lipophilicity; (6) quantum—
Quantum Machine 7 (QM7) and Quantum Machine 9; (7) ligand–GPCR  
(G protein-coupled receptor) binding activity; (8) compound–kinase 
binding activity (Methods).

We used the three popular split strategies (scaffold split36,43,44 
balanced scaffold split35, and random scaffold split37,45) to evaluate 
the performance of ImageMol on all benchmark datasets. In scaffold, 
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performance (AUCs and confusion matrix in Supplementary Figs. 13  
and 14 respectively) on multiple evaluation metrics (Supplemen-
tary Table 11). In compound–protein binding prediction tasks, Ima-
geMol achieved better performance (AUCs and confusion matrix in  
Supplementary Figs. 15 and 16) on ten GPCRs (regression task) and ten 
kinases (classification task) compared with existing approaches as well  
(Supplementary Tables 12 and 13).

We further used the McNemar test to assess the statistical sig-
nificance of performance differences among state-of-the-art models 
and ImageMol. ImageMol shows statistically elevated performance 
compared with existing methods on multiple datasets (Supplementary 
Tables 11 and 13–17). The detailed comparisons of ImageMol with each 
model/method are provided in Supplementary Results. Altogether, 
ImageMol achieves improved performance in various drug discovery 
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Fig. 1 | A diagram illustrating the ImageMol framework. a, A molecular encoder 
(light blue throughout) is used to extract the latent features of the molecular 
images. b, Five strategies are used to pretrain the molecular encoder. The 
structural classifier (dark blue) in MG3C is used to predict chemical structural 
information in molecular images. The rationality classifier (green) in MRD is used 
to distinguish rational and irrational molecules. The jigsaw classifier (light grey) in 
jigsaw puzzle prediction is used to predict rational permutations. The contrastive 
classifier (dark grey) in mask-based contrastive learning is used to maximize 
the similarity between the original image and the masked image. The generator 

(yellow) in molecular image reconstruction is used to restore latent features to the 
molecular image and the discriminator (purple) is used to discriminate between 
real and fake molecular images. c, ImageMol for discovery of anti-SARS-CoV-2 
inhibitors. A fully connected layer is appended to the pretrained molecular 
encoder for fine-tuning on the COVID-19 dataset. Subsequently, the fine-tuned 
model is used for virtual screening from approved drugs in DrugBank. The 75% 
success rate of the top 20 drugs as potential inhibitors of COVID-19 has been 
validated by experimental and clinical evidence.
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tasks, outperforming state-of-the-art methods (Fig. 2a–g, Supplemen-
tary Figs. 9–16 and Supplementary Tables 5–17).

Prediction of antiviral activities across 13 SARS-CoV-2 targets
The ongoing global COVID-19 pandemic caused by the SARS-CoV-2 
virus has led to more than 1.1 billion confirmed cases and over 6 million 
deaths worldwide as of 15 March 2022. There is a critical, time-sensitive 
need to develop effective antiviral treatment strategies for the COVID-
19 pandemic6,52. We therefore test ImageMol to identify potential 
anti-SARS-CoV-2 treatments across a variety of SARS-CoV-2 biological 
assays, including viral replication, viral entry, counterscreen, in vitro 
infectivity and live virus infectivity20. In total, we evaluated ImageMol 
across 13 SARS-CoV-2 bioassay datasets (Supplementary Table 18).

Across 13 SARS-CoV-2 bioassay datasets, ImageMol achieves high 
AUC values ranging from 72.6% to 83.7% (Fig. 3a). To test whether 
ImageMol capture biologically relevant features, we used the global 
average pooling layer of ImageMol to extract latent features and used 
t-distributed stochastic neighbour embedding (t-SNE) to visualize 
latent features. Figure 3a reveals that the latent features identified 
by ImageMol are well clustered according to whether they are active 
or inactive anti-SARS-CoV-2 agents across all 13 targets or endpoints. 
These observations show that ImageMol can accurately extract discrim-
inative, antiviral features from molecular images for downstream tasks.

We further compared ImageMol with both deep learning and 
machine learning frameworks: (1) a graph neural network (GNN) 
with a series of pretraining strategies (termed Jure’s GNN53) and (2) 
REDIAL-202020, a suite of machine learning models for estimating 
small-molecule activities in a range of SARS-CoV-2-related assays. We 
found that ImageMol notably outperforms Jure’s GNN models across 
all 13 SARS-CoV-2 targets (Fig. 3a and Supplementary Table 19). For 
instance, the AUC values of ImageMol (AUC = 0.837) compared with 
Jure’s GNN model (AUC = 0.704) in prediction of 3-chymotrypsin-like 
(3CL) protease inhibitors are elevated by over 12%. We further evaluated 
the AUPR, which is highly sensitive to the imbalance issues of positive 
versus negative labelled data. Compared with Jure’s GNN models, the 
elevated AUPR of ImageMol ranges from 1.9% to 25.6% with a perfor-
mance advantage of 6.4% on average across 13 SARS-CoV-2 bioassay 
datasets, in particular for 3CL protease inhibitors (12.3% AUPR improve-
ment) and ACE2 enzymatic activities (25.6% AUPR improvement). To 
compare with REDIAL-202020, we used the same experimental settings 
and performance evaluation metrics, including accuracy, sensitivity, 
precision, F1 (the harmonic mean between sensitivity and precision) 
and AUC. We found that ImageMol outperformed REDIAL-2020 as 
well (Supplementary Table 20). To test the generalization of ImageMol 
across 13 anti-SARS-CoV-2 bioassay datasets, we split the datasets 
using a balanced scaffold split. Compared with both sequence-based 
and graph-based models, ImageMol achieves better performance 
(including accuracy, AUC, AUPR, F1 score, kappa, confusion matrix) 
than other methods (Supplementary Table 21 and Supplementary  
Figs. 17 and 18). In addition, a McNemar test showed that ImageMol 

achieves statistically higher performance compared with existing 
methods on multiple anti-SARS-CoV-2 bioassay datasets.

In summary, these comprehensive evaluations reveal a high 
accuracy of ImageMol in identifying anti-SARS-CoV-2 molecules 
across diverse viral targets and phenotypic assays. Furthermore, 
ImageMol is more capable on datasets with extreme imbalance of 
positive and negative samples compared with traditional deep learn-
ing pretrained models53 or machine learning approaches20 and has 
strong generalization compared with sequence-based50,51 and graph- 
based models35,39.

Identifying anti-SARS-CoV-2 inhibitors via ImageMol
We next turned to identification of potential anti-SARS-CoV-2 inhibi-
tors using 3CL protease as a prototypical example, as it has been  
shown to be a promising target for therapeutic development in 
treating COVID-1954,55. We focused on 2,501 US Food and Drug 
Administration-approved drugs from DrugBank56 to identify 
ImageMol-predicted 3CL protease inhibitors as drugs repurposable 
for COVID-19 using a drug repurposing strategy52.

Via molecular image representation of the 3CL protease inhibitor 
versus non-inhibitor dataset under the ImageMol framework, we found 
that 3CL inhibitors and non-inhibitors are well separated in a t-SNE plot 
(Fig. 3b). Molecules with activity concentration 50% less than 10 μM 
were defined as inhibitors; otherwise they were non-inhibitors. We 
showed the probability of each drug in DrugBank being inferred as a 
3CL protease inhibitor (Supplementary Table 22) and visualized their 
overall probability distribution (Supplementary Fig. 19). We found that 
11 of the top 20 drugs (55%) have been validated (including cell assay, 
clinical trial or other evidence) as potential SARS-CoV-2 inhibitors 
(Supplementary Table 22), among which two drugs are further veri-
fied as potential 3CL protease inhibitors by biological experiments. 
To test the generalization ability of ImageMol, we used 16 experimen-
tally reported 3CL protease inhibitors as an external validation set  
(Supplementary Table 23). ImageMol identified 10 out of 16 known 3CL 
protease inhibitors and visualized these 10 drugs to embedding space 
in Fig. 3c (62.5% success rate, Fig. 3d), suggesting a high generalization 
ability in anti-SARS-CoV-2 drug discovery.

We further used the HEY293 assay to predict anti-SARS-CoV-2 
repurposable drugs. We collected experimental evidence for the 
top 20 drugs as potential SARS-CoV-2 inhibitors (Supplementary  
Table 24). We found that 15 out of 20 drugs (75%) have been validated 
by different experimental assays as potential inhibitors for the treat-
ment of SARS-CoV-2 (such as in vitro cellular assays and clinical tri-
als) as shown in Supplementary Table 24. Meanwhile, 122 drugs have 
been identified to block SARS-CoV-2 infection57. From these drugs, we 
selected a total of 70 small molecules overlapping in DrugBank to evalu-
ate the performance of the KEY293 model. We found that ImageMol 
successfully predicted 42 out of 70 (60% success rate, Supplementary 
Table 25), suggesting a high generalizability of ImageMol for inferring 
potential candidate drugs in the HEY293 assay as well.

Fig. 2 | Performance evaluation of ImageMol using the benchmark datasets. 
The performance was evaluated in a variety of drug discovery tasks, including 
molecular properties (that is, drug metabolism, toxicity, brain penetration) and 
molecular target profiles (that is, HIV and BACE). a–c, FPR, false positive rate; 
TPR, true positive rate The AUC values are given in each panel. a, ROC curves of 
ImageMol across eight datasets (BBBP, Tox21, HIV, ClinTox, BACE, Side Effect 
Resource (SIDER), maximum unbiased validation (MUV) and ToxCast) with 
scaffold split and random scaffold split. b, ROC curves of Chemception46 and 
ImageMol on HIV and Tox21 datasets with the same experimental set-up as for 
Chemception, which is a classical CNN for predicting molecular images. c, ROC 
curves of Chemception, ADMET-CNN12, QSAR-CNN47 and ImageMol on five CYP 
isoform validation sets (PubChem data set II). ADMET-CNN and QSAR-CNN 
are the latest molecular image-based drug discovery models. d, The ROC-AUC 

performance of sequence-based, graph-based and fingerprint-based models and 
ImageMol across six classification datasets (BBBP, Tox21, BACE, ClinTox, SIDER 
and ToxCast) with random scaffold split. For each type of method the maximum 
value is selected for display. e, The ROC-AUC performance across four regression 
datasets (FreeSolv, ESOL, lipophilicity (Lipo) and QM7) with random scaffold 
split. For each type of method the maximum value is selected for highlighting. 
For aesthetic presentation, the results of FreeSolv and QM7 are scaled down by 
a factor of 10 and 100, respectively. MAE, mean absolute error. f, The ROC-AUC 
performance of fingerprint-based (MACCS-based and FP4-based) methods and 
ImageMol across five major CYP isoform validation sets (PubChem data set II).  
g, The ROC-AUC performance of sequence-based and graph-based models across 
CYP450 datasets with balanced scaffold split.
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Biological interpretation of ImageMol
We next turned to using t-SNE to visualize molecular representations 
from different models to test the biological interpretation of ImageMol. 
We used the clusters identified by the multigranularity chemical cluster 
classification (MG3C) task (Methods) to split the molecular structures. 
We randomly selected 10% of clusters obtained from MG3C and sampled 
1,000 molecules for each cluster. We performed three comparisons for 
each molecule: (1) MACCS fingerprints with 166-dimensional features, 

(2) ImageMol without pretrained models with 512-dimensional fea-
tures and (3) ImageMol pretrained 512-dimensional features. We found 
that ImageMol distinguishes molecular structures very well (Fig. 4e 
and Supplementary Fig. 20c), outperforming MACCS fingerprints  
(Supplementary Fig. 20a) and non-pretrained models (Supplemen-
tary Fig. 20b). ImageMol can capture prior knowledge of chemical 
information from the molecular image representations, including the 
 =O bond, –OH bond, –NH3 bond and benzene ring (Fig. 4a). We further 
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used the Davies–Bouldin (DB) index58 to quantitatively evaluate the 
clustering results: smaller DB index represents better performance. We 
found that ImageMol (DB index 1.92) was better than MACCS fingerprint 

(DB index 2.93); furthermore, pretrained models can greatly improve 
the molecular representation as well (DB index of ImageMol without 
pretraining is 19.40).
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Fig. 3 | Evaluation and discovery of anti-SARS-CoV-2 inhibitors using 
ImageMol. a, ROC curves and t-SNE visualizations across 13 high-throughput 
experimental SARS-CoV-2-related datasets. The ROC curves include Jure’s GNN 
and ImageMol. The t-SNE visualizations are produced by using the latent features 
of the global average pooling layer of our ImageMol. b, t-SNE visualization of 
the 3CL dataset from the antiviral activity prediction task. The molecules with 
activity concentration 50% of less than 10 were treated as inhibitors and those 

with greater than 10 were treated as non-inhibitors. From blue to red indicates 
the feature embedding of 3CL non-inhibitors and inhibitors. The grey dots 
indicate drugs from DrugBank. c, Drug discovery of 3CL potential inhibitors on 
the DrugBank dataset. The black dots represent the probability distribution of 
drug molecules from DrugBank, and the white dots represent the known 3CL 
inhibitors found by ImageMol. d, Molecular structure of the 3CL inhibitors 
discovered by ImageMol.
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Gradient-weighted Class Activation Mapping (Grad-CAM)59 is a 
commonly used CNN visualization method60,61. Figure 4b,c illustrates 
12 example molecules of the Grad-CAM visualization of ImageMol  
(Supplementary Figs. 21 and 22). ImageMol accurately captures atten-
tion to the global (Fig. 4b) and the local (Fig. 4c) structural information 
simultaneously. Since the warmer colour in Grad-CAM is sometimes 
centred in the blank areas of the image and covers more than 10 atoms, 
we found that setting a high attention value to capture the highlighted 
areas was more informative for chemists (Supplementary Table 26). 
Specifically, it captures key substructures related to a certain biological 
function by observing a pair of molecules with similar structures but 
different biological activities (Supplementary Fig. 23). In addition, we 
counted the proportion of blank areas in the images to the entire molec-
ular image across 11 SARS-CoV-2 datasets (Supplementary Table 27).  
We found an average sparsity (sparsity refers to the proportion of blank 
areas in an image) of 94.9% across the entire dataset, suggesting that 
ImageMol models are easily inclined to use blank areas of the image 
for meaningless inferences47. Figure 4d shows that ImageMol primarily 

pays attention to the middle area of the image during predictions. Thus, 
ImageMol indeed predicts on the basis of the molecular structures 
rather than using meaningless blank areas. We further calculated the 
coarse-grained and fine-grained hit rates (Supplementary Fig. 24). The 
coarse-grained hit rate illustrates that ImageMol can utilize molecular 
structures of all images for inference, with a ratio of 100%, compared 
with the QSAR-CNN models47 with 90.7%. The fine-grained hit rate 
shows that ImageMol can leverage almost all structural information 
in molecular images to inference, with a ratio of over 99%, reflecting 
its ability to capture global information of molecules.

In summary, ImageMol captures the biologically relevant chemical 
information of molecular images with both local and global levels of 
structural information, outperforming existing state-of-the-art deep 
learning approaches (Fig. 4).

Ablation analysis of ImageMol
The robustness of the model to hyperparameters is important because 
different hyperparameters can affect the performance of the model62. 

a b

c

0 0.2 0.4 0.6 0.8 1.0
Attention weight

d e

3CL ACE2 HEK293 hCYTOX MERS-PPE

MERS-PPE_cs CoV-PPE CoV-PPE_cs CPE CytoTox

AlphaLISA TruHits TMPRSS2 t-SNE-1 t-SNE-2

t-
SN

E-
1

t-
SN

E-
2

Average attention weight
0 0.2 0.60.4 0.8 1.0

Fig. 4 | Biological Interpretation of ImageMol. a, Examples of ImageMol’s 
feature maps. Hotter colour area indicates higher ImageMol attention.  
b,c, ImageMol’s heatmaps (b, global; c, local) of several molecular images whose 
structures are highlighted by Grad-CAM. The warmer the colour, the higher 
the attention of the area, and the colder the colour, the lower the attention of 
the area. In particular, the red area indicates that the model pays the highest 
attention to it, while the light blue indicates that the model does not pay any 

attention to it. d, The average heat map of all molecular images on each dataset, 
using Grad-CAM to obtain the heat map of each molecular image in the dataset 
and calculate the average of these heat maps in each dimension. e, The variable 
probability distribution figures (principal diagonal) and the kernel density 
estimate figures (subdiagonal) of representations learned by ImageMol. The 
representations extracted by ImageMol are dimensionally reduced by t-SNE.  
The different colours indicate different clusters.
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As shown in Supplementary Fig. 25, we found that ImageMol has lower 
s.d. than ImageMol_NonPretrained (average s.d. of 0.5% versus 8.9% on 
the classification task and 0.654 versus 1.68 on the regression task), 
which demonstrates that pretraining strategies improve the robust-
ness of ImageMol to hyperparameters.

We explored the impact of pretraining with different data scales 
and found that the average ROC-AUC performance increased from 1.2% 
to 10.2% as the pretrained data scale increased (Supplementary Fig. 26). 
Thus, ImageMol can be further improved as more drug-like molecules 
can be pretrained. We further investigated the impact of different 
pretext tasks (Methods) and found that each pretext task improves 
the mean AUC value of ImageMol from 0.7% to 4.9% (Supplementary  
Fig. 27). More details of ablation studies (including data augmentation) 
can be found in Supplementary Note C.5 and Supplementary Table 28.  
In summary, each task integrated implemented the ImageMol 
framework to synergistically improve performance, and models can  
be improved further by pretraining from larger drug-like chemical 
datasets in the future.

Discussion
We have presented a self-supervised image-processing-based pre-
training deep learning framework that combines molecular images 
and unsupervised learning to learn molecular representations. We 
demonstrated the high accuracy of ImageMol across multiple bench-
mark biomedical datasets with a variety of drug discovery tasks  
(Figs. 2 and 3). In particular, we identified candidate anti-SARS-CoV-2 
agents, which were validated by ongoing clinical and experimental 
data across 13 biological anti-SARS-CoV-2 assays. If broadly applied, 
our pretraining deep learning framework will offer a powerful tool for 
rapid drug discovery and development for various emerging diseases, 
including the COVID-19 pandemic and future pandemics as well.

We highlighted several improvements of ImageMol compared 
with existing state-of-the-art methods. First, ImageMol achieved 
high performance across diverse tasks of drug discovery, including 
drug-like property assessment (brain permeability, drug metabolism 
and toxicity) and molecular target prediction across diverse targets, 
such as Alzheimer’s disease (that is, BACE) and emerging infectious 
diseases caused by HIV and SARS-CoV-2 virus. Furthermore, ImageMol 
outperforms state-of-the-art methods, including sequence-based, 
fingerprint-based and graph-based representation methods (Fig. 2). 
Finally, ImageMol has better interpretability and is more intuitive in 
identifying biologically relevant chemical structures or substructures 
for molecular properties and target binding (Fig. 4a–c).

We acknowledge several limitations. Although we mitigated the 
effects of different representations of molecular images through data 
augmentation, perturbed views (that is, rotation and scaling) of the 
input images may still affect the prediction results of ImageMol. We 
did not optimize for the sparsity of molecular images, which may affect 
the latent features extracted by the model. Our current ImageMol 
framework cannot capture three-dimensional (3D) structural infor-
mation on ligands, receptors and ligand–receptor interactions. It is 
challenging to explicitly define the chemical properties of atoms and 
bonds compared with graph-based methods45,53, which will inevitably 
lead to insufficient chemical information. Several potential directions 
may improve ImageMol further: (1) integration of larger-scale bio-
medical data and larger-capacity models (such as ViT63) in molecular 
images will inevitably be the focus of future work; (2) multiview learn-
ing of joint images and other representations (for example SMILES 
and graph) is an important research direction; (3) incorporating more 
chemical knowledge (such as atomic properties, chemical properties 
and 3D structural information) into each image or pixel area is also 
a promising future direction. Specifically, we can visualize atoms or 
atomic fragments of different chemical properties as different colours 
in molecular images. For example, high hydrophobicity versus low 
hydrophobicity (for example, on the basis of Ghose–Crippen atom 

types) and different charge properties (for example, Gasteiger–Marsili  
partial charges) can be visualized as differently coloured atomic frag-
ments. Meanwhile, integration of 3D structural information on ligands, 
receptors and ligand–receptor interactions is also crucial for deter-
mining molecular properties and drug effects, which is promising for 
further improving the performance of ImageMol. Therefore, we will 
integrate more atomic properties and 3D information into molecular 
images (for example, ligand–receptor complex) to further develop Ima-
geMol version 2.0. In summary, ImageMol is an active self-supervised 
image processing-based strategy that offers a powerful toolbox  
for computational drug discovery in a variety of human diseases, 
including COVID-19.

Methods
Strategies for pretraining ImageMol
Pretraining aims to make the model learn how to extract expressive 
representations by training on large-scale unlabelled datasets and then 
applying the well pretrained model to related downstream tasks and 
fine-tuning to improve performance. Definition of several effective 
and task-related pretext tasks is required to pretrain the model. In this 
Article, the core of our pretraining strategy is the visual representation 
of molecules by considering three principles: consistency, relevance 
and rationality. These principles lead ImageMol to capture meaning-
ful chemical knowledge and structural information from molecular 
images. Specifically, consistency means that the semantic information 
of the same chemical structure in different images is consistent, such 
as –OH, =O, benzene. Relevance means that different augmentations of 
the same image (such as mask, shuffle) are related in the feature space. 
For example, the distribution of the image after the mask should be 
close to that of the original image. Rationality means that the molecular 
structure must conform to chemical common sense. The model needs 
to recognize the rationality of the molecule to promote the understand-
ing of the molecular structure. Unlike graph-based and SMILES-based 
pretraining methods (they consider either only consistency or only cor-
relation), ImageMol is a molecular image-based pretraining framework 
and considers multiple principles comprehensively by five defined 
effective pretext tasks.

Consistency for pretraining
Considering that the semantic information of the same chemical struc-
ture in different images is consistent, the MG3C task (Supplementary 
Fig. 1), which discovers semantic consistency by predicting the chemical 
structure of the molecule, is proposed. Briefly, multigranularity cluster-
ing is first used to assign multiple clusters of different granularities to 
each chemical structural fingerprint. Then, each cluster is assigned as 
a pseudolabel to the corresponding molecule and each molecule has 
multiple pseudolabels with different granularities. Finally, a molecular 
encoder is employed to extract the latent features of the molecular 
images and a structural classifier is used to classify the pseudolabels.

Specifically, we employed the MACCS key, which is a 166-length 
sequence composed of 0 and 1 values, as the descriptor of molecular 
fingerprints. These molecular fingerprint sequences can be used as a 
basis for clustering: the shorter the distance between molecular fin-
gerprints the more likely they are to belong to a cluster. Finally, we  
use the K means64 with different K = 100, 1,000, 10,000 (see Supple-
mentary Note A.2 and Supplementary Fig. 28 concerning selection of 
K) to cluster molecules to obtain clusters with different granularities 
from coarse grained to fine grained. According to the clustering results, 
we assigned three pseudolabels to each molecular image and then 
applied ResNet1865 as a molecular encoder to extract a latent feature 
and a structural classifier to predict the pseudolabels of the latent 
feature. The structural classifier is multitask, consisting of three  
parallel fully connected layers corresponding to three different  
clustering granularities. The numbers of neurons of each fully con-
nected layer are 100, 1,000 and 10,000, respectively. Formally, the 
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molecular image and the three corresponding pseudolabels are rep-
resented by xn ∈ ℝ224×224×3, 𝒴𝒴100n ∈ {0, 1, ...,99}100, 𝒴𝒴1,000n ∈ {0, 1, ...,999}1,000 
and 𝒴𝒴10,000n ∈ {0, 1, ...,9,999}10,000 , respectively, and the cost function 
ℒMG3C of the MG3C task is as follows:

ℒMG3C = arg min
θ,W

1
N

N

∑
n=1

ℓ (w100 (fθ (xn)) , 𝒴𝒴100n ) + ℓ (w1,000 (fθ (xn)) , 𝒴𝒴1,000n )

+ℓ (w10,000 (fθ (xn)) , 𝒴𝒴10,000n )
(1)

where fθ and θ refer to the mapping function and corresponding param-
eters of the molecular encoder, respectively. w100, w1,000 and w10,000 
represent the parameters of three fully connected classification layers 
in a structural classifier with 100, 1,000 and 10,000 neurons, respec-
tively. W represents all parameters of w100, w1,000 and w10,000. ℓ is the 
multinomial logistic loss or the negative log-softmax function.

Relevance for pretraining
On the basis of the assumption that different augmentations (such as 
mask, shuffle) of the same image are related in the feature space, we use 
a pixel-level task to reconstruct molecular images from latent features 
and use an image-level task to maximize the correlation between the 
original sample and the mask sample in that space.

Molecular image reconstruction. Molecular image reconstruction 
reconstructs the latent features to the molecular images. We input the 
original molecular image xn into the molecular encoder to obtain the 
latent feature fθ(xn). To make the model learn the correlation between 
the molecular structures in the image, we shuffle and rearrange  
the input image xn (as in Rationality for pretraining) in the hope that the 
correct image can be reconstructed. After this, we define a generator  
G and a discriminator D to reconstruct the latent features. G is composed 
of four 2D deconvolution layers with a batch normalization 2D layer and 
ReLU (rectified linear unit) activation function, and one deconvolution 
layer with a tanh activation function. The discriminator is also composed 
of four 2D convolutional layers with a batch normalization 2D layer, a 
LeakyReLU activation function and one 2D convolutional layer with a 
sigmoid activation function. For further details of the generative adver-
sarial network model see Supplementary Fig. 5. Since it is difficult for 
the generator to reconstruct the latent features to 224 × 224 molecular 
images, we simplify the task to reconstruct the latent features to 64 × 64 
molecular images. The discriminator accepts 64 × 64 molecular images 
and distinguishes real or fake images. In detail, first the generator is 
used to reconstruct the latent feature fθ(xn) to a 64 × 64 molecular image 
x̃64×64n = G (fθ (xn)). Then, we resize the original molecular image xn of 
224 × 224 to the molecular image x64×64n  of 64 × 64 and input it into D 
together with the molecular image generated by G at the same time to 
obtain D (x64×64n ) and D (G (fθ (xn))). Finally, we update the parameters of 
the generator and the discriminator through their cost functions ℒG 
and ℒD respectively, which are defined as

ℒG = 𝔼𝔼 [D (G (fθ (xn)))] + ||G (fθ (xn)) , x64×64n ||2 (2)

ℒD = 𝔼𝔼 [D (x64×64n )] − 𝔼𝔼 [D (G (fθ (xn)))]. (3)

For ℒG, the first term represents Wasserstein loss, and the second 
term represents the Euclidean distance between the generated image 
G(fθ(xn)) and the corresponding real image x64×64n . For ℒD, we use this loss 
to approximate the Wasserstein distance of the distribution of real images 
x64×64n  and fake images G(fθ(xn)). Finally, the molecular encoder model is 
updated by using the cost function ℒMIR, which was formalized as

ℒMIR = 𝔼𝔼 [D (G (fθ (xn)))] + ||G (fθ (xn)) , x64×64n ||2 − 𝔼𝔼 [D (G (fθ (xn)))]. (4)

Mask-based contrastive learning. Recently, the performance gap 
between unsupervised pretraining and supervised learning in com-
puter vision has narrowed, notably owing to the achievements of con-
trastive learning methods40,41. However, these methods typically rely 
on a large number of explicit pairwise feature comparisons, which is 
computationally challenging66. Furthermore, to maximize the feature 
extraction ability of the pretraining model, contrastive learning must 
select good feature pairs, which obviously increases the huge cost in 
computing resources. Therefore, to save computing resources and 
mine the fine-grained information in the molecule images, we intro-
duce a simple contrastive learning method in molecular images, namely 
mask-based contrastive learning (Supplementary Fig. 4). We first use 
a 16 × 16 square area to randomly mask the molecular images  
(Supplementary Fig. 29), denoted by x̃n. Then, the masked molecular 
images x̃n and the unmasked molecular images xn are simultaneously 
input into the molecular encoder to extract latent features fθ (x̃n), fθ(xn). 
Finally, the cost function ℒMCL is introduced to ensure consistency 
between the latent feature extracted by the molecular image before 
and after the mask, formalized as

ℒMCL = arg min
θ

1
N

N

∑
n=1

|| fθ (x̃n) , fθ (xn) ||2 (5)

where || fθ (x̃n) , fθ (xn) ||2 means the Euclidean distance between fθ (x̃n) 
and fθ(xn).

Rationality for pretraining
Inspired by human understanding of the world, we proposed the ration-
ality principle, which means that the structural information described 
by molecular images must conform to chemical common sense. We 
rearranged the original images to construct irrational molecular 
images and designed two pretraining tasks to predict them (Supple-
mentary Figs. 2 and 3), which can effectively improve the model’s 
understanding of molecular images.

Molecular rationality discrimination (MRD). The reason why people 
can easily judge whether things in the image are reasonable on the basis 
of the knowledge they have learned is because people are very good at 
summarizing the spatial structure information in the image scene. For 
example, with an image of a blue sky under the grass and an image of a 
blue sky above the grass we can easily distinguish that the former is 
unreasonable and the latter is reasonable. However, it is difficult for 
an artificial intelligence model to pay attention to this global-level 
spatial structure information spontaneously during the learning pro-
cess. Motivated by these phenomena, we construct a rational and an 
irrational molecular image pair for each molecular image to guide the 
model to learn the structural information. Specifically, as shown in 
Supplementary Fig. 2, we use a 3 × 3 grid to decompose each molecular 
image xn into nine patches and number these 1 to 9. Then, these patch 
numbers are randomly shuffled and respliced according to the shuffled 
patch to form an image with the same dimensions as the original image. 
Finally, these disordered images are viewed as irrational samples x̂n. 
Subsequently, the original ordered image xn and the shuffled image x̂n 
are forward propagated to the molecular encoder to extract latent 
features fθ(xn) and fθ (x̂n), and these features are further input into a 
rationality classifier to obtain the probability value wMRDfθ(xn) for 
whether the sample is reasonable. Here, we define the cost function of 
the MRD task ℒMRD to update ResNet18, formalized as

ℒMRD = arg min
θ,wMRD

1
N

N

∑
n=1

ℓ (wMRD (fθ (xn)) , 𝒴𝒴MRDn ) + ℓ (wMRD (fθ (x̂n)) , 𝒴𝒴MRDn )

(6)

where the first term and the second term represent the binary classifi-
cation loss of the rational image and the irrational image respectively. 

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 4 | November 2022 | 1004–1016 1013

Article https://doi.org/10.1038/s42256-022-00557-6

wMRD represents the parameters of the rationality classifier. 𝒴𝒴MRDn  rep-
resents the real label, which consists of 0 (irrational) and 1 (rational).

Jigsaw puzzle prediction. Compared with MRD, jigsaw puzzle predic-
tion provides a more fine-grained prediction to discover the invariance 
and regularity of molecular images (Supplementary Fig. 3), and is 
widely used in computer vision67. Solving a jigsaw puzzle on the same 
molecular images can help the model pay attention to the more global 
structural information and learn the concepts of spatial rationality to 
improve the generalization of the pretraining model. In this task, by 
using the maximal Hamming distance algorithm in ref. 68, we assign an 
index (ranging from 0 to 100, where 0 represents original permutation) 
to each permutation of patch numbers, which will be used as the clas-
sification label 𝒴𝒴Jign  of the molecular image. Similar to the MRD task, the 
original ordered image xn and the shuffled image x̂n are forward propa-
gated to the molecular encoder to extract latent features fθ(xn) and 
fθ (x̂n). Then, an additional jigsaw classifier is introduced to classify the 

permutation to which the image belongs. The molecular encoder is 
updated by using cost function ℒJPP, which is formalized as

ℒJPP = arg min
θ,wJig

1
N

N

∑
n=1

ℓ (wJig (fθ (xn)) , 𝒴𝒴Jign ) + ℓ (wJig (fθ (x̂n)) , 𝒴𝒴Jign ) (7)

where the first term and the second term represent the classification 
losses of the original ordered image and the shuffled image respec-
tively. wJig represents the parameters of the jigsaw classifier.

Pretraining process
In pretraining, we used ~10 million unlabelled molecules from 
PubChem42 for unsupervised pretraining. The pretraining of ImageMol 
consists of two steps, which are data augmentations and the training 
process. A detailed pretraining data flow can be found in Supplemen-
tary Fig. 30 and Supplementary Note B.2.

Data augmentations. Data augmentation is a simple way to effectively 
augment a limited number of samples and improve the generalization 
ability and robustness of the model, and has been widely used in super-
vised and unsupervised representation learning. However, compared 
with ordinary images, the molecular images are sparser as they are filled 
mostly (>90%) by zeros, resulting in ‘usable’ data being limited to a very 
small fraction of the image46. In view of the above limitation, ‘random 
cropping’ is not applied in our model. Finally, three augmentations are 
selected in the pretraining stage, RandomHorizontalFlip, RandomGray-
scale and RandomRotation, which do not change the original structure 
of the molecular image and allow the model to learn invariance to data 
augmentation (Supplementary Table 29). Hence, before the original 
images are input into our pretraining model, each image has a 50% prob-
ability of being horizontally flipped, 20% probability of being converted 
to greyscale and 100% probability of being rotated between 0° and 360°. 
The augmentations are provided by PyTorch (https://pytorch.org/).

Training process. Here, we used ResNet18 as our molecular encoder. 
After using data augmentations to obtain molecular images xn, we 
forward these molecular images xn to the ResNet18 model to extract 
latent features fθ(xn). Then, these latent features are used by five pretext 
tasks to calculate the total cost function ℒALL, which is defined as

ℒALL = ℒMG3C + ℒJPP + ℒMIR + ℒMRD + ℒMCL.

Finally, the total loss function ℒALL is used for backpropagation to 
update ResNet18. Specially, the cost function ℒALL is minimized using 
mini-batch stochastic gradient descent. See Supplementary Note A.3 
and Supplementary Table 30 for more detailed hyperparameter set-
tings and Supplementary Note C.1 and Supplementary Fig. 31 for the 
loss record during pretraining.

Fine-tuning
After completing the pretraining, we fine-tune the pretrained ResNet18 
in the downstream task. Clearly, the performance of the model can be 
further improved by establishing a complex fine-tuning task for the 
pretrained model. However, fine-tuning is not the research focus of 
this Article, so we only use a simple and common fine-tuning method 
to adapt the model to different downstream tasks. In detail, we only 
add an additional full connection layer gω (ω is the parameter of the full 
connection layer) after ResNet18, and the output dimension of the full 
connection layer is equal to the number of classifications of down-
stream tasks. In fine-tuning, we first input the molecular image xftn  (ft 
is an abbreviation for fine-tuning) from the downstream task into 
ResNet18 to obtain the latent feature representation fθ (xftn ). Then, we 
forward the latent feature representation to the full connection layer 
gω to obtain the logical value gω (fθ (xftn )) related to the category and use 
the softmax activation function to normalize these logical values to 
obtain the predicted category probability ̃𝒴𝒴ftn = softmax (gω (fθ (xftn ))). 
Finally, our model will be fine-tuned by calculating the cross-entropy 
loss between the category probability ̃𝒴𝒴ftn  and the true label 𝒴𝒴ftn . Specifi-
cally, since the data in the downstream task have the problem of  
category imbalance, we also added the category weight in the 
cross-entropy loss, formalized as

ℒCE = − 1
N
[
N

∑
i=1

K

∑
k=1
λk𝒴𝒴fti,k log ̃𝒴𝒴fti,k] (8)

where N and K respectively represent the number of samples and the 
number of categories in downstream tasks. λk represents the category 
weight, which is calculated as 1 − Nk

N
 (Nk is the number of samples of 

category k). 𝒴𝒴fti,k and ̃𝒴𝒴fti,k represent the true label and predicted probabil-
ity on the kth category of the ith sample, respectively. Finally, the loss 
function ℒCE is used for backpropagation to update the parameters of 
the model. The more detailed hyperparameter settings can be found 
in Supplementary Note A.3 and Supplementary Table 30.

Downstream task details
To evaluate our proposed pretraining model, we designed four types 
of downstream task related to molecular representation learning for 
testing: molecular property prediction, drug metabolism prediction, 
drug–protein binding prediction and antiviral activity prediction. 
More experimental settings for downstream tasks can also be found 
in Supplementary Note A.1.

Datasets and splitting methods. In molecular property prediction, 
we used multiple benchmark datasets from MoleculeNet13, including 
eight classification datasets and five regression datasets (Supple-
mentary Table 1). In drug metabolism prediction, we use PubChem 
data set I (training set) and PubChem data set II (validation set) from 
Cheng et al.49, which includes five human CYP isoforms (Supplementary 
Table 2). In drug–protein binding prediction, we used the top ten GPCR 
datasets (Supplementary Table 3) from the ChEMBL database and 
KINOMEscan datasets (Supplementary Table 4). In antiviral activity 
prediction, we used 13 high-throughput experimental datasets from the 
COVID-19 portal20 of the National Center for Advancing Translational 
Sciences (Supplementary Table 18) and 11 existing COVID-19 datasets 
from REDIAL-202020 (Supplementary Table 27). To comprehensively 
evaluate the performance of ImageMol, we used several popular split-
ting methods, including cross-validation, stratified split, scaffold split, 
random scaffold split and balanced scaffold split. See Supplementary 
Note A.1 for more details of the dataset and splitting method.

Baselines. We summarized four different types of popular and 
competitive baseline to compare with ImageMol: fingerprint-based 
methods (AttentiveFP11, MACCS-based and FP4-based models across 
multiple machine learning algorithms—support vector machine, 
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decision tree, k-nearest neighbours, naive Bayes and their ensem-
ble models49—and REDIAL-202020), sequence-based methods  
(TF_Robust48, X-MOL30, RNN_LR, TRFM_LR, RNN_MLP, TRFM_MLP, RNN_
RF, TRFM_RF50 and CHEM-BERT51), graph-based methods (GraphConv69, 
Weave70, SchNet71, MPNN72, DMPNN73, MGCN23, Hu et al. ( Jure’s GNN)53, 
N-GRAM45, MolCLR39, GCC74, GPT-GNN75, Grover35, MGSSL36, 3D Info-
Max44, G-Motif35, GraphLoG76, GraphCL77, GraphMVP43 and MPG37) and 
molecular image-based methods (Chemception46, ADMET-CNN12 and 
QSAR-CNN47). See Supplementary Note A.1 for more details of the com-
parison baselines. For our reproduced models (such as CHEM-BERT, 
MolCLR and Chemception), the details of hyperparameter optimiza-
tion can be found in Supplementary Table 31.

Evaluation metrics. For comprehensive evaluation, we used various 
evaluation metrics, including accuracy, ROC-AUC, AUPR, F1, precision, 
recall and kappa. Furthermore, we also used the one-sided McNemar 
significance test with a significance threshold of 0.05 to demonstrate 
the significant performance difference between ImageMol and com-
pared methods. We reported the mean and the s.d. of the metrics by 
executing three independent runs with different random seeds for 
each method.

Data availability
The datasets used in this project can be found at the following links: 
10 million-molecule pretraining dataset, https://deepchemdata.
s3-us-west-1.amazonaws.com/datasets/pubchem_10m.txt.zip; 13 
molecular property prediction datasets (Supplementary Table 1),  
https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/
BBBP.csv (replace the BBBP in the hyperlink with another dataset 
name to download other datasets); 13 SARS-CoV-2 targets, https://
opendata.ncats.nih.gov/covid19/assays (Supplementary Table 18);  
five drug metabolism enzymes, https://drive.google.com/file/
d/1mBsgGWXYqej5McsLwy1_fs_-VGGQnCro/view?usp=sharing (Sup-
plementary Table 2); ten GPCR datasets, https://drive.google.com/
file/d/1HVHrxJfW16-5uxQ-7DxgQTxroXxeFDcQ/view?usp=sharing 
(Supplementary Table 3); ten KINOMEscan datasets, https://lincs.hms.
harvard.edu/kinomescan/ (Supplementary Table 4); US Food and Drug 
Administration-approved drugs in DrugBank, https://go.drugbank.
com/releases/5-1-9/downloads/approved-drug-links; 122 drugs 
that block SARS-CoV-2, https://static-content.springer.com/esm/
art%3A10.1038/s41586-022-04482-x/MediaObjects/41586_2022_4482_
MOESM1_ESM.pdf.

Code availability
All of the codes are freely available at GitHub (https://github.com/
ChengF-Lab/ImageMol). The version used in this publication is avail-
able at https://doi.org/10.5281/zenodo.7088986.
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