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In Ref. [1], Schuetz et al provide a scheme to employ
graph neural networks (GNN) as a heuristic to solve a
variety of classical, NP-hard combinatorial optimization
problems. It describes how the network is trained on
sample instances and the resulting GNN heuristic is eval-
uated applying widely used techniques to determine its
ability to succeed. Clearly, the idea of harnessing the
powerful abilities of such networks to “learn” the intrica-
cies of complex, multimodal energy landscapes in such a
hands-off approach seems enticing. And based on the ob-
served performance, the heuristic promises to be highly
scalable, with a computational cost linear in the input
size n, although there is likely a significant overhead in
the pre-factor due to the GNN itself. However, closer in-
spection shows that the reported results for this GNN are
only minutely better than those for gradient descent and
get outperformed by a greedy algorithm, for example, for
Max-Cut. The discussion also highlights what I believe
are some common misconceptions in the evaluations of
heuristics.

Among a variety of QUBO problems Ref. [1] consider
in their numerical evaluation of their GNN, I want to
focus the discussion here on Max-Cut. As explained in
the context of Eq. (7), it is derived from an Ising spin-
glass Hamiltonian on a d-regular random graph [2] for
d = 3. (In the physics literature, for historical reason
such a graph is often referred to as a Bethe-lattice [3, 4].)
Minimizing the energy of the Hamiltonian, H, maximizes
the cut-size cut = −H. The cut results for the GNN (for
both, d = 3 and 5) are presented in Fig. 4 of Ref. [1],
where they find cut ∼ γ3n with γ3 ≈ 1.28 via an asymp-
totic fit to the GNN data obtained from averaging over
randomly generated instances of the problem for a pro-
gression of different problem sizes n. In Fig. 1(a) here,
I have recreated their Fig. 4, based on the value of γ3
reported for GNN (blue line). Like in Ref. [1], I have also
included what they describe as a rigorous upper bound,
cutub (black-dashed line), which derives from an exact
result obtained when d =∞ [5]. While the GNN results
appear impressively close to that upper bound, however,
including two other sets of data puts these results in a
different perspective. The first set I obtained at signif-
icant computational cost (∼ n3) with another heuristic
(“extremal optimization”, EO) long ago in Ref. [4] (black
circles). The second set is achieved by a simple gradient
descent (GD, maroon squares). GD sequentially looks
at randomly selected (Boolean) variables xi among those

102 103 104 105

number of nodes n
102

103

104

cu
t s

iz
e cutub

EO
GNN
GD

(a)

0 0.0005 0.001 0.0015
1/n

-0.76

-0.74

-0.72

-0.70

-0.68

-0.66

-0.64

-0.62

-0.60

<e
3>
/31

/2

Gradient Descent
GNN
GraphSAGE
Greedy Search
EO-Heuristic
1-RSB
-P*(Parisi Energy)

(b)

Figure 1. Results discussed in the text for various heuristics
and bounds for the Max-Cut problem on a 3-regular random
graph ensemble, (a) plotted for the raw cut-size as a function
of problem size n, and (b) as an extrapolation plot according
to Eq. (1). Note that in (b), a fit (red-dashed line) to the
EO-data (circles) suggests a non-linear asymptotic correction
with ∼ 1/n2/3 [4].

whose flip (xi 7→ ¬xi) will improve the cost function.
(Such “unstable” variables are easy to track.) After only
∼ 0.4n such flips, typically no further improvements were
possible and GD converged; very scalable and fast (done
overnight on a laptop, averaging over 103−105 instances
at each n, up to n = 105). Presented in the form of
Fig. 1(a), the results all look rather good, although it is
already noticeable that results for GD are barely distin-
guishable from those of the elaborate GNN heuristic.

To discern further details, it is essential to present
the data in a form that, at least, eliminates some of
its trivial aspects. For example, as Schuetz et al ref-
erence themselves, the ratio cut/n ∼ γ converges to a
stable limit with γ ∼ d/4 + P∗

√
d/4 + O(

√
d) + o(n0)

for n, d → ∞ [6], where P∗ = 0.7632 . . . [5]. In fact,
for better comparison with Refs. [3, 4], we focus on the
average ground-state energy density of the Hamiltonian
in their Eq. (7) at n = ∞, which is related to γ via
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〈ed〉 /
√
d =

√
d/4− γ

√
4/d. (The awkward denominator

is owed to fact that P∗ = limd→∞ 〈ed〉 /
√
d. Also, energy

provides a fair reference point to assess relative error be-
cause a purely random assignment of variables results in
an energy of zero, the ultimate null model. Such a refer-
ence point is lacking for the errors quoted in Tab. 1 of
Ref. [1], for example.)

More revealing then merely dividing by n is the trans-
formation of the data into an extrapolation plot [4, 7]:
Since we care about the scalability of the algorithm in
the asymptotic limit for large problem sizes n → ∞,
which in the form of Fig. 1(a) is out of view, it expe-
dient to visualize the data plotted for an inverse of the
problem size (i.e., 1/n or some power thereof [4, 8, 9]).
Independent of the largest sizes n achieved in the data, it
conveniently condenses the asymptotic behavior arbitrar-
ily close to the y-intercept where 1/n→ 0, albeit it at the
cost of sacrificing some data for smaller n. To this end,
I propose to plot the data in the finite-size corrections
form,

〈e3〉n ∼ 〈e3〉n=∞ +
const

n
+ . . . , (n→∞). (1)

In Fig. 1(b) we have plotted the same data from Fig. 1(a)
according to Eq. (1) for d = 3 (modulo a trivial factor of
1/
√
3 for better comparison with P∗). Stark differences

between each set of data appear, since each set converges
asymptotically to a stable but distinct limit at 1/n = 0.
First, we note the addition of a well-known result from
replica theory, a one-step replica symmetry-breaking (1-
RSB) calculation [3, 10] that is expected to yield the
actual value for 〈e3〉n=∞ (and thus, γ3) with a preci-
sion of 10−4 (green line), a superior reference value than
−P∗ (black-dashed line), valid only at d = ∞ although
seemingly sensible in the form of Fig. 1(a). The 1-RSB
value is further emphasized by the fact that the EO data
(black circles) from Ref. [4] smoothly extrapolate to the
same limit within statistical errors. Finally, in the form

of Fig. 1(b), it becomes apparent that the claimed GNN
results (blue line) are systematical far (> 15% at any n)
from optimal (1-RSB, green line) and hardly provide any
improvement over pure gradient descent (GD, maroon
squares). It appears that the GNN learns what is indeed
the most typical about the energy landscape: the vast
prevalence of high-energy, poor-quality metastable solu-
tions that gradient descent gets trapped in, missing the
faint signature of exceedingly rare low-energy minima.
In fact, extending GD by a subsequent 5n spin flips, say,
each flip adjusting one among the least-stable spins (even
if not always unstable), allows this greedy local search to
explore several local minima, still at linear cost. The re-
sults of that simple algorithm, also shown in Fig. 1(b)
(diamonds), already reduce the error to ≈ 6% across all
sizes n, a considerable improvement on the GNN results
in Ref. [1] and still better than an improved version,
GraphSAGE, the authors mention in their response (or-
ange line).

In conclusion, the study in Ref. [1] exemplifies a num-
ber of common shortcomings found in the analysis of op-
timization heuristics (see also Ref. [7]): (1) Reliance on
rigorous but rather poor and often meaningless bounds,
as provided by the Goemans-Williamson algorithm in
this case, instead of using the much more relevant re-
sults (albeit as-of-yet unproven) from statistical physics,
(2) using an obscure presentation of the data, (3) lack of
state-of-the-art comparisons across different areas in sci-
ence, and (4) lack of benchmarking against trivial, base-
line models such as gradient descent or greedy search we
presented here. On such closer inspection, the proposed
GNN heuristic does not provide much algorithmic advan-
tage over that base line. It is likely that these conclusions
are not isolated to this specific example but would also
hold for Max-Cut at d = 5 and for the other QUBO appli-
cations discussed in Ref. [1], as the concurrent comment
by Angelini and Ricci-Tersenghi (arXiv:2206.13211) in-
dicates.
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