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Pan-Peptide Meta Learning for T-cell 
receptor–antigen binding recognition

Yicheng Gao1,2,5, Yuli Gao1,2,5, Yuxiao Fan1,2, Chengyu Zhu1,2, Zhiting Wei1,2, 
Chi Zhou1,2, Guohui Chuai1,2, Qinchang Chen3, He Zhang2 & Qi Liu    1,2,3,4 

The identification of the mechanisms by which T-cell receptors (TCRs) 
interact with human antigens provides a crucial opportunity to develop 
new vaccines, diagnostics and immunotherapies. However, the accurate 
prediction and recognition of TCR–antigen pairing represents a substantial 
computational challenge in immunology. Existing tools only learn the 
binding patterns of antigens from many known TCR binding repertoires and 
fail to recognize antigens that have never been presented to the immune 
system or for which only a few TCR binding repertoires are known. However, 
the binding specificity for neoantigens or exogenous peptides is crucial for 
immune studies and immunotherapy. Therefore, we developed Pan-Peptide 
Meta Learning (PanPep), a general and robust framework to recognize 
TCR–antigen binding, by combining the concepts of meta-learning and the 
neural Turing machine. The neural Turing machine adds external memory to 
avoid forgetting previously learned tasks, which is used here to accurately 
predict TCR binding specificity with any peptide, particularly unseen 
ones. We applied PanPep to various challenging clinical tasks, including 
(1) qualitatively measuring the clonal expansion of T cells; (2) efficiently 
sorting responsive T cells in tumour neoantigen therapy; and (3) accurately 
identifying immune-responsive TCRs in a large cohort from a COVID-19 
study. Our comprehensive tests show that PanPep outperforms existing 
tools. PanPep also offers interpretability, revealing the nature of peptide and 
TCR interactions in 3D crystal structures. We believe PanPep can be a useful 
tool to decipher TCR–antigen interactions and that it has broad clinical 
applications.

Neoantigens and virus peptides are presented by the major histocom-
patibility complex I (MHC-I), which elicits an immune response by being 
recognized by the T-cell receptor on the surface of T cells that carry the 
CD8 antigen (CD8+)1. The identification of immunogenic peptides or 
clonally expanded responsive T cells provides a great opportunity to 

develop new vaccines, diagnostics and immunotherapies2–4. Accord-
ingly, many experimental approaches, such as tetramer analysis5, 
tetramer-associated T-cell receptor sequencing6 and T-scan7, have been 
developed to detect interactions between TCRs and peptides presented 
by MHC molecules (pMHCs). However, these experimental methods are 
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interaction between the peptide and its complementarity-determining 
region 3 (CDR3) loop.

Results
PanPep overview
PanPep is a universal framework constructed to recognize any 
type of peptide–TCR binding, which is inspired by an integration 
of of meta-learning28–31 with an NTM32 (Fig. 1). In this framework, 
meta-learning achieves fast adaptation from few samples in different 
tasks28,33, and NTM uses external memory to avoid forgetting in the 
learning process32. Therefore, PanPep is able to unify the recognition 
of peptide–TCR binding for any type of peptide in a pan-peptide man-
ner by formulating the recognition in a meta-learning framework with 
memory storing of the learned peptide-specific TCR recognition task 
information. In other words, PanPep is equipped with the intuitions 
of human learning, similar to the approach that people use to adapt 
quickly and handle never-seen-before tasks based on experiences 
from their past. PanPep consists of two main learning modules (Fig. 1):  
a meta-learning module and a disentanglement distillation module 
(Methods). It facilitates peptide–TCR binding recognition in three set-
tings: few-shot, zero-shot and majority (Fig. 1, Methods). PanPep starts 
to predict the peptide-specific binding TCRs in the few-shot setting 
and then generalizes it to identify TCRs binding unseen peptides in the 
zero-shot setting while also maintaining the capability of identifying 
the binding TCR in the majority setting. Specifically, in the few-shot 
setting, PanPep applies a model-agnostic meta-learning (MAML)-based 
model28 at a peptide-specific task level. Peptide–TCR binding recogni-
tion is formulated in a peptide-specific manner, where a meta-training 
and a meta-testing procedure are performed. In the meta-training 
procedure, the model is trained on a set of peptide-specific TCR binding 
tasks containing a support set and a query set to obtain peptide-specific 
learners and update a meta-learner. In the meta-testing procedure, the 
meta-learner is fine-tuned on a new peptide-specific binding recogni-
tion task with only a small number of known peptide–TCR samples 
available (few support set) and finally tested on the query set (Fig. 1, 
Methods). In the zero-shot setting, we developed an NTM-inspired 
disentanglement distillation method to better generalize PanPep for 
unseen peptide–TCR recognition (no support set) (Methods). The 
rationale is to map an unseen peptide to a peptide-specific learner 
generation space (PLGS), where new peptide-specific learners are gen-
erated by retrieving the memory based on the PLGS (Methods). This 
method helps to generalize PanPep to recognize TCR binding to unseen 
peptides. Notably, we clearly define ‘unseen’ peptides in this setting: 
for existing tools using traditional machine learning models, unseen 
peptides are those that are unavailable in their own training dataset, 
while for PanPep, unseen peptides are new peptide-specific TCR bind-
ing tasks and no support set is available to fine-tune the meta-learner 
for these peptides (Fig. 1, Supplementary Table 1). In the majority set-
ting, the meta-learner alone serves as a prior, which is used as a model 
parameter for initialization, and it is retrained for a specific peptide 
with a large number of known binding TCRs (large support set) (Fig. 1). 
Collectively, by applying PanPep in these three settings, it is designed 
as a universal framework that can be adapted quickly and well to rec-
ognize any type of peptide–TCR binding. PanPep outputs a continu-
ous binding score between 0 and 1, reflecting the binding probability 
between a peptide and a TCR. Higher binding scores will have higher 
binding probabilities for each peptide–TCR pair and the TCR will be 
more likely to clonally expand.

Existing tools failed on recognition TCRs to unseen peptides
We started our study based on a comprehensively curated peptide–TCR 
binding dataset (base dataset), which exhibited a long-tail distribution. 
Directly constructing a model based on these data may bias to the 
majority setting and fail in the few-shot and zero-shot settings (Sup-
plementary Note 1). Then we benchmarked existing tools to determine 

time-consuming, technically challenging and costly8. Therefore, the 
accurate prediction and recognition of TCR–antigen pairing is in high 
demand and represents one of the most computationally challenging 
issues in modern immunology.

Several computational tools exist to analyse diverse TCR patterns 
and predict peptide–TCR binding specificity9–21. These tools are mainly 
categorized into three groups: (1) defining quantitative similarity 
measurements to cluster TCRs and decipher their antigen-specific 
binding patterns, including TCRdist22, DeepTCR23, GIANA24, iSMART25, 
GLIPH9,10 and ELATE11; (2) developing peptide-specific TCR binding 
prediction models, including TCRGP12, TCRex13, and NetTCR-214; and 
(3) developing peptide–TCR binding prediction models not restricted 
to specific peptides while requiring the available known binding TCRs 
for model training, including pMTnet8, DLpTCR15, ERGO216 and TITAN17. 
Clearly, the tools in the first category cannot be applied directly for 
peptide–TCR binding recognition and the tools in the second category 
are restricted to specific peptides with limited utility. Efforts have been 
made in the third category to develop general peptide–TCR binding 
prediction models in which both the peptide and TCRs are embedded. 
However, these methods only show a relatively robust TCR recogni-
tion accuracy to learn the binding patterns of peptides with a large 
number of known TCR binding repertoires. They failed to recognize 
peptides with few known binding TCRs or those that were not present 
in the training data due to the substantial diversity of the interaction 
space8,15,18. In other words, these models cannot be generalized to learn 
peptide–TCR binding patterns of peptides unavailable in the training 
dataset (unseen) or exogenous peptides to the immune system, while 
recognition of the binding specificity for neoantigens or exogenous 
peptides is crucial for immune studies and immunotherapy19,20.

Accurate identification of TCRs binding any peptide in a 
pan-peptide manner is challenging19, as this approach requires crea-
tive strategies that (1) fully exploit the information from peptides 
that are recorded to bind only a few TCRs, (2) adequately generalize 
to recognize the binding of TCRs to peptides that were previously 
unseen by the immune system, and (3) clearly reveal which part of the 
TCR plays a crucial role in binding and recognition. The development 
of such general and robust peptide–TCR binding recognition methods 
remains one of the most challenging problems in immunology stud-
ies, and it is expected to facilitate the investigation of the biological 
processes underlying the interaction between antigens and TCRs and 
the development of personalized immunotherapy21,26,27.

Therefore, we introduce PanPep for TCR–antigen binding recog-
nition, which is presented as a general and robust framework inspired 
by the integration meta-learning28–31 with a neural Turing machine 
(NTM)32, for accurately predicting TCR binding specificity with any 
peptide, particularly neoantigens or exogenous peptides. Specifically, 
PanPep formulates peptide–TCR recognition as a set of peptide-specific 
TCR binding recognition tasks in a meta-learning framework that can be 
generalized to any new peptide-specific tasks in a pan-peptide manner. 
We apply PanPep in three different settings: majority, few-shot33 and 
zero-shot learning34, which generalize well to any type of peptide–TCR 
pair recognition. These three settings correspond to the three recogni-
tion settings of the peptide-binding patterns: (1) with a large number 
of known binding TCRs, (2) with few known binding TCRs or (3) with 
peptides that were not present in the training data, mimicking those 
peptides that may be totally unseen by the immune system. Our com-
prehensive testing results show that PanPep significantly outperforms 
existing methods for TCR recognition of any type of peptide at all 
three settings, and most importantly, none of the existing tools except 
PanPep accurately identifies TCRs binding exogenous or new peptides 
to the immune system. We further demonstrate the utility of PanPep 
in several clinical applications under the zero-shot setting. Finally, we 
suggest that the interpretability of PanPep reveals the nature of the 
interaction between the peptide and TCR in a 3D crystal structure, 
helping to discover the effects of different TCR amino acids on the 
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whether they failed on recognition of TCRs to unseen peptides. To this 
end, three mainstream tools for predicting peptide–TCR binding from 
the third category (pMTnet8, ERGO218, and DlpTCR15), were tested at 

three levels with their own testing datasets (Supplementary Methods). 
Notably, TITAN17 was excluded because this model removed peptides 
with few known binding TCRs and is trained on specific COVID-19 data 
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Fig. 1 | Illustration of the PanPep framework. PanPep comprises two modules: 
a meta-learning module and a disentanglement distillation module. The 
PanPep framework is tested in three settings. (1) Few-shot setting: PanPep 
uses the support sets to fine-tune the meta-learner with a few loops (usually 
approximately three), and the TCR binding recognition is evaluated with the 

query sets. (2) Zero-shot setting: PanPep extends TCR binding recognition from 
few-shot learning to zero-shot learning by disentanglement distillation.  
(3) Majority setting: PanPep uses the meta-learner as a prior, it is retrained with a 
large number of loops (usually ~1,000 loops), and the TCR binding recognition is 
evaluated with the query sets.
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without data on cross-reactive T cells, and thus it has limited applica-
tions. In the few-shot setting, pMTnet and ERGO2 both showed poorer 
performance in terms of area under the receiver operating charac-
teristic curve (ROC-AUC) and area under the precision-recall curve 
(PR-AUC), compared with in the majority setting (Fig. 2a,b, Supplemen-
tary Data 1–3). DlpTCR showed similar performance in the few-shot 
compared to the majority setting, perhaps because it ensembles 125 
deep models and the overfits the data. In the zero-shot setting, all three 
models generated approximately 0.5 as a random guess in terms of 
ROC-AUC and PR-AUC, indicating that all these models failed to gen-
eralize to recognition of TCR binding to unseen peptides (Fig. 2a,b). 
In the majority setting, all these models achieved an ROC-AUC greater 
than 0.8. pMTnet and DlpTCR also achieved a PR-AUC of 0.8, but ERGO2 
only achieved a PR-AUC of 0.6 owing to seriously imbalanced samples 
in the testing dataset (Fig. 2a,b). These failings in peptide–TCR binding 
prediction in few-shot and zero-shot settings are expected, as all these 
existing models are biased toward the majority setting, tending to learn 
the peptide–TCR binding patterns for peptides within a large TCR bind-
ing repertoire. This prevents their further application to exogenous or 
newborn antigen recognition in the clinic.

PanPep achieved good performance in different settings
In this study, we investigated the generalized ability of PanPep 
to predict peptide–TCR recognition in three different settings.  

We initially analysed PanPep in the few-shot setting. In this setting, 
208 peptide-specific TCR binding repertoires were curated as the 
meta-dataset, and they were randomly split into a meta-training 
dataset and meta-testing dataset for model training and testing 
(Methods).

In the few-shot setting, the support set of each peptide-specific 
task in the meta-testing dataset is used to fine-tune the meta-learner, 
and the query set in the meta-testing dataset is used as the test dataset. 
To test the performance of PanPep in few-shot setting, we perform the 
fivefold cross-validation in meta-dataset (Methods), and all the bind-
ing TCRs in both the support set and query set were balanced using 
the control TCR set (see Methods for the construction of control TCR 
set). In this case, PanPep achieved an average of 0.734 ROC-AUC and 
0.751 PR-AUC in the few-shot setting (Fig. 2d). Furthermore, PanPep 
achieved better performance because the number of peptide-specific 
tasks increased in the meta-training dataset (Fig. 2c). Specifically, we 
started with 30 randomly sampled peptide-specific tasks and gradu-
ally increased the number of tasks, showing that PanPep achieved 
considerably better performance with more available peptide-specific 
tasks during meta-training (Fig. 2c). This analysis indicated that Pan-
Pep effectively uses different peptide-specific TCR binding tasks and 
improves the meta-learner with a better ability to rapidly adapt to a new 
peptide-specific TCR recognition task, thus substantially improving 
performance in the few-shot setting.
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Fig. 2 | The performance of PanPep and other existing tools. a, The ROC-AUCs 
for pMTnet, ERGO2 and DLpTCR on their own datasets in the three settings. 
b, The PR-AUC for pMTnet, ERGO2 and DLpTCR on their datasets in the three 
settings. c, Effect of the number of peptide-specific tasks in meta-training on 
the performance of PanPep in few-shot learning. The performance is measured 
by calculating ACC based on fivefold cross-validation (average ACC of 0.599 
for 30 peptides, 0.627 for 60 peptides, 0.647 for 90 peptides, 0.656 for 120 

peptides and 0.661 for 150 peptides) and the ACC value of each fold was used as 
a sample point for generating the violin plot. For the boxplots within the violin 
plot, box boundaries represent interquartile range, whiskers extend to the most 
extreme data point no more than 1.5 times the interquartile range and the white 
dots represent the median. d, The ROC-AUC and PR-AUC for PanPep in the three 
different settings. e, The ROC-AUC and PR-AUC for PanPep and the other three 
tools in the zero-shot setting.
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In the zero-shot setting, we designed a disentanglement distilla-
tion module (Methods) to extend few-shot learning to zero-shot learn-
ing, in which no support set is available to fine-tune the model for the 
new incoming peptide. In the disentanglement distillation module, we 
constructed mapping between peptide encoding and peptide-specific 
learners. A read head is designed to map a peptide encoding to a new 
PLGS (Methods), and a write head is designed to disentangle the 
peptide-specific learners based on the NTM concept. The memory 
consists of a basis and content memory, which stores the mapping 
between peptide embedding and the peptide-specific learner. Then, 
we can retrieve the memory to generate a new peptide-specific learner 
based on the embedding of the new peptide. Notably, we compared the 
different sizes of the basis from one to ten for the reconstruction error, 
and a basis of three dimensions was selected as the optimal parameter 
for PanPep (Supplementary Fig. 4a). We subsequently investigated the 
characteristics of the new peptide embedding generated by the read 
head. Compared with the original Atchley factor encoding of each 
peptide, each peptide was embedded into three features with PLGS. 
Based on this new peptide embedding, we found that similar TCR 
binding repertoires showed significantly smaller peptide distances 
with p values < 1 × 10−9 (Supplementary Fig. 1f), while the negative cor-
relation between peptide distances and the similarity of TCR binding 
repertoires became more significant (−0.82) (Supplementary Fig. 1e), 
clearly indicating that PLGS has a great ability to embed peptides by 
extracting the nature of the peptide–TCR binding pattern; thus, it can 
be effectively applied for generalization in the zero-shot setting. We 
illustrated the effectiveness of our disentanglement distillation module 
by testing PanPep using the zero-shot dataset consisting of 491 unseen 
peptides with known binding TCR record used as the query set. In this 
case, no support set is available to fine-tune the model. Importantly, 
all the known binding TCRs in the query set were balanced using the 
control TCR set. PanPep achieved a 0.708 ROC-AUC and 0.715 PR-AUC  
(Fig. 2d), indicating that PanPep extends peptide–TCR binding rec-
ognition from the few-shot to zero-shot setting and generalizes 
well to unseen peptides. Furthermore, we compared PanPep with 
the transfer learning model (denoted as baseline model in this 
work), and PanPep shows a better performance compared with the 
transfer-learning-based strategy, which further illustrated the effec-
tiveness of the meta-learning and disentanglement distillation strategy 
(Supplementary Methods and Supplementary Fig. 4b,c).

Finally, we illustrated that PanPep can be easily generalized to the 
majority setting, in which the three mainstream tools perform relatively 
well. A majority dataset containing 25 peptide-specific tasks was used to 
test PanPep (Methods). We evaluated PanPep by retraining (fine-tuning 
on 1,000 loops) the meta-learner on the support set and classifying the 
TCRs in the query set for each peptide-specific task. PanPep not only 
performed well in the few-shot setting and zero-shot setting but also 
exhibited relatively high performance in the majority setting (ROC-AUC 
of 0.792 and PR-AUC of 0.797) compared with existing tools (Fig. 2d 
and Supplementary Data 4).

PanPep outperforms existing methods in the zero-shot setting
In this test, we compared PanPep with existing tools for predicting 
peptide–TCR binding for unseen peptides, which is the main focus of 
our study. Thus, the curated zero-shot dataset was applied here as an 
independent test dataset, in which the peptides in this dataset are una-
vailable in the meta-dataset of PanPep and in any training sets of other 
existing tools. Additionally, no support set is available to fine-tune the 
model for these peptides in PanPep. As a result, PanPep significantly 
outperformed the other methods in the zero-shot setting, with an 
ROC-AUC of 0.744 and a PR-AUC of 0.755 (ROC-AUC of 0.563 and PR-AUC 
of 0.555 for pMTnet; ROC-AUC of 0.496 and PR-AUC of 0.542 for ERGO2; 
and ROC-AUC of 0.517 and PR-AUC of 0.488 for DLpTCR) (Fig. 2e and 
Supplementary Data 5). Thus, PanPep can predict peptide-specific TCR 
binding for unseen peptides, showing great potential for exogenous 

or newborn antigen recognition in various immunology studies and 
clinical applications.

PanPep exhibits potential in different clinical applications
We further demonstrated the utility of PanPep in several clinical appli-
cations, including (1) qualitatively measuring the clonal expansion of 
T cells, (2) sorting the responsive T cells efficiently in tumor neoan-
tigen therapy and identifying neoantigen-reactive T-cell signatures, 
and (3) accurately identifying the immune-responsive TCR among 
millions of antigen-TCR pairs in large COVID-19 cohort, where none 
of the existing tools except PanPep can be scaled sufficiently to such 
a large-scale dataset.

PanPep qualitatively measures clonal expansion of T cells. As 
T cells with stronger binding to the peptide may undergo more clonal 
expansion35, we further validated whether the predicted binding score 
of PanPep corroborated this impact qualitatively. This study is focused 
on the data generated from the 10x Genomics Chromium Single Cell 
Immune Profiling platform, which applies feature barcode technol-
ogy to generate single-cell 5′ libraries and V(D)J-enriched libraries 
for TCR sequences and uses a highly multiplexed pMHC multimer 
reagent to identify binding specificity (Fig. 3a). We examined two 
single-cell datasets that contain profiles of CD8+ T cells specific to 
44 pMHC complexes from two healthy donors with no documented 
viral infection, and investigated the correlation between their clonal 
T-cell expansion ratios and the two binding indicators, that is PanPep 
binding score and original unique molecular identifier (UMI) count 
(Supplementary Methods). PanPep predicted the binding score for 
each T cell to the 44 pMHCs in the zero-shot setting and calculated 
the Spearman correlation coefficient with the clonal expansion ratio, 
where the same correlation analysis was performed using the UMI 
count in the previous study. In the comparison, the PanPep score of 
donors was positively correlated with the clonal ratio of T cells (cor-
relation score of 0.280 for donor 1 and correlation score of 0.234 for 
donor 2), which is consistent with the expected conclusion that TCRs 
with higher binding scores are more likely to be clonally expanded 
(Fig. 3b). By contrast, the correlation between the UMI of donors and 
the clonal ratio of T cells was approximately 0 (correlation score of 
0.045 for donor 1 and correlation score of 0.016 for donor 2), indicating 
that the UMI-based indicator is not appropriate to qualitatively reveal 
the clonal ratio of T cells (Fig. 3c). We also performed a digital scale of 
expansion (0 for unique clones and 1 for expanded clones) and tested 
the discrimination ability of PanPep score and UMI on it as a classifica-
tion problem. In this case, PanPep score also exhibited higher perfor-
mance compared with UMI in the classifications (Supplementary Fig. 5).  
Nevertheless, we found that the correlation between PanPep score 
and clone expansion is modest, and the performance improvements 
using PanPap score compared with UMI in the classification are also 
relatively small, indicating that the clonal expansion is highly context 
specific. Taken together, our results suggest that the PanPep score is 
more likely to be a clonally expanded indicator in a qualitative manner, 
and this predicted score potentially serves as a more accurate binding 
indicator for accurate clonal T-cell identification.

PanPep assists with T-cell sorting in neoantigen therapy. Adop-
tive cell transfer (ACT) is a promising method for cancer immuno-
therapy, but its efficiency essentially depends on the enrichment of 
tumour-specific T cells in the graft22,36. The effective sorting of T cells 
responding to specific neoantigens is the key step in ACT-based immu-
notherapy9,37. A previous study combined next-generation sequencing 
technology with high-throughput immunologic screening to identify 
tumour-infiltrating lymphocytes from nine patients with metastatic 
gastrointestinal cancers containing CD8+ T cells that recognize somatic 
mutational neoantigens38. In the present study, we collected 10 dif-
ferent neoantigens and the specific experimentally validated TCRs to 
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which they bind based on previous work38. All the validated binding 
TCRs were balanced by the control TCR set, and we tested whether 
the immune-responsive T cells were identified accurately by PanPep 
in the zero-shot setting (Supplementary Data 6 and Supplementary 
Methods). Compared with the failure of pMTnet, ERGO2 and DlpTCR 
to identify immune-responsive T cells, PanPep exhibited the best 
performance with an ROC-AUC of 0.7067 and a PR-AUC of 0.7821 for 
immune-responsive T-cell identification of neoantigens (Fig. 4a,b).

Furthermore, PanPep identifies neoantigen-reactive T-cell signa-
tures. A recent study performed immunologic screening and single- 
cell RNA sequencing on five patients with gastrointestinal cancer to 

characterize the transcriptomic landscape of CD8+ immune-responsive 
T cells39. In the present study, we collected 68 neoantigens and 1,448 
CD8+ T cells with CDR3 beta sequences available from these five 
patients39 (Supplementary Methods). PanPep was then used for T-cell 
sorting and identified the neoantigen-reactive T cells in the zero-shot 
setting (Supplementary Data 7). We found that T cells in the responsive 
group exhibited significantly higher exhaustion scores and cytotoxicity 
scores (Fig. 4c). Responsive CD8+ T cells tended to coexpress the CXCL13 
and GZMA genes at high levels, as shown in a previous study39 (Fig. 4d).  
In addition, we also calculated the distribution of GZMA/CXCL13 
among patients (Supplementary Fig. 6). We subsequently analysed 
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Fig. 4 | Validation of PanPep in sorting immune-responsive T cells and 
identifying the neoantigen-reactive T-cell signature. a, ROC-AUC for PanPep, 
pMTnet, ERGO2 and DLpTCR using gastrointestinal cancer dataset38 reported 
previously. b, PR-AUC for PanPep, pMTnet, ERGO2 and DLpTCR in immune-
responsive T-cell sorting. c, Exhaustion scores and cytotoxicity scores of T cells 
in the responsive group (a total of 324 independent T cells) and nonresponsive 
group (a total of 1,122 independent T cells). Both scores were normalized using 
max–min normalization. The data are represented as median values and the error 

bars show the 95% confidence interval of the median estimate (1,000 bootstrap 
iterations). The exhaustion scores and cytotoxicity scores are significantly  
higher in the responsive group compared to the nonresponsive group, with  
P values of 0.0005 and 0.0001, respectively. The P value was calculated by the 
two-sided t test. ***P < 0.001. d, The ratio of CD8+ T cells with different levels 
of GZMA and CXCL13 coexpression between the responsive group and the 
nonresponsive group. e, Upregulated genes that were differentially expressed in 
responsive T cells and nonresponsive T cells are enriched for T-cell functions.
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differentially expressed genes with a fold change >2 and FDR < 0.01 
between the responsive T-cell group and the nonresponsive T-cell 
group. Gene ontology analysis showed that these upregulated genes 
were enriched in functions playing important roles in many immune 
processes40–42, such as T-cell migration and activation (Fig. 4e). Over-
all, our results further suggested that PanPep can be applied to sort 
immune-responsive T cells in neoantigen screening, helping to identify 
neoantigen-reactive T-cell signatures that showed great potential in 
the development of effective ACT-based tumour immunotherapy.

PanPep exhibits high performance in virus immune recognition. We 
further investigated the applications of PanPep in virus immune recog-
nition for the COVID-19 study. We collected a recently published dataset 
from a COVID-19 cohort provided by the ImmuneCODE project43,44, 
which collected millions of TCR sequences from more than 1,400 
subjects exposed to or diagnosed with COVID-19, and high-confidence, 
virus-specific TCRs were recorded44. We curated this large COVID-19 
dataset, resulting in a total of 1,168,776 peptide–TCR pairs associated 
with 541 different peptides (Supplementary Methods).

As a result, PanPep achieved an ROC-AUC of 0.668 and a PR-AUC 
of 0.677 in this zero-shot setting (Fig. 5a,b). Compared with the other 
three tools with an ROC-AUC of approximately 0.5 and a PR-AUC of 0.5,  

which is similar to a random guess, PanPep exhibited a substantial 
improvement in peptide-specific TCR recognition (Fig. 5a,b). In addi-
tion, we investigated whether PanPep performed well when the distance 
of COVID-19 peptides is far from those peptides in the meta-training 
dataset. For this case, all peptide embeddings were generated by the 
read head of PanPep. The Euclidean distance between one COVID-19 
peptide and each peptide in the meta-training dataset of PanPep was 
calculated, and the minimum distance was selected. The performance 
of PanPep showed no correlation between the minimum distance and 
the performance of specific COVID-19 peptides in terms of ROC-AUC 
(Spearman’s correlation analysis, P = 0.248) and PR-AUC (Spearman’s 
correlation analysis, P = 0.115), indicating that the performance of 
PanPep is robust even for the most distant peptides in the COVID-19 
dataset (Fig. 5d,e). Overall, our results from this large independent 
COVID-19 cohort study further suggest that PanPep was generalized well 
across species since the training peptides for PanPep are all from Homo 
sapiens while it is applied for virus peptide recognition. In addition, we 
compared the computational efficiency of PanPep to the other three 
tools. Because of the data input size limitation of ERGO and DLpTCR, 
we must randomly select 100,000 examples from the COVID-19 dataset 
to fairly benchmark the computational efficiency of these tools. As a 
result, PanPep required the significantly shortest time to complete the 
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Fig. 5 | Validation of PanPep using the COVID-19 dataset. a, ROC-AUC for 
PanPep, pMTnet, ERGO2 and DLpTCR using a large independent COVID-19 
dataset. b, PR-AUC for PanPep, pMTnet, ERGO2 and DLpTCR using a large 
independent COVID-19 dataset. c, Comparison of the computational efficiency 
of different tools. The running times are log2 transformed. d, The ROC-AUC 
of PanPep shows no correlation between the distance of the peptide from the 
COVID-19 dataset and the peptides from the meta-training dataset. The P value 

was calculated by a Spearman correlation test. e, The PR-AUC of PanPep shows 
no correlation between the distance of the peptide from the COVID-19 dataset 
and the peptides from the meta-training dataset. The P value was calculated 
by a Spearman correlation test. The x axis in d and e represents the minimum 
distances between peptides from the COVID-19 dataset and the peptides in 
the meta-training dataset. The y axis in d and e represents the performance of 
identifying TCRs binding to the peptide.
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prediction at 4.27 seconds due to the fast generation of peptide-specific 
learners in the zero-shot setting, while pMTnet required approximately 
20 h 30 min (Fig. 5c). This result further indicated the significantly high 
computational efficiency of PanPep in immune recognition, and none 
of the existing tools except PanPep can be scaled sufficiently to the 
large-scale dataset containing millions of antigen–TCR pairs.

PanPep discovers crucial sites in peptide–TCR 3D structure
Although PanPep is designed at the 1D sequence level, we showed that 
it can perform a simulated mutation analysis to obtain structural evi-
dence of CDR3 residues whose mutations lead to significant changes in 
the predicted binding between the TCR and peptide in the 3D structure. 
The alanine scanning technique45 is a site-directed mutagenesis method 
used to discover the contributions of specific residues to the function 
of a particular protein in structural biology studies. Therefore, we per-
formed residue-wise alanine substitution for the TCRs in the zero-shot 

dataset, and PanPep predicted the binding scores of these mutated 
TCRs to their specific peptide through zero-shot learning. We then 
divided CDR3 into five equal segments and, as expected, residues in 
the middle segments of CDR3 are more likely to be in close contact with 
peptides, resulting in a larger change in predicted binding compared 
to those in the other segments (Fig. 6a). Additionally, we collected 77 
peptide–TCR 3D crystal complexes from the IEDB database46 and manu-
ally curated the buried fraction of each residue in CDR3 (Supplementary 
Data 8 and Supplementary Methods). We next performed the same 
simulated alanine scanning mutation of these TCR CDR3s, and each 
TCR was divided into groups of buried and nonburied sites based on 
whether the buried fraction value was larger than 0. We clearly showed 
that the residues in buried sites indeed induced a significant change 
compared with the nonburied sites (t test, P < 1 × 10−10; Fig. 6b). These 
finer 3D structural data support the hypothesis that PanPep captures 
the residues involved in contact between peptides and TCRs in the 3D 
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Fig. 6 | Validation of PanPep in the identification of crucial sites in the 3D 
crystal structure. a, Residues in the middle of the TCR CDR3 sequence show 
significant changes in the score predicted by PanPep through alanine scanning 
mutagenesis. A total of 561 TCR CDR3 sequences that can be divided into five 
segments of equal length from the zero-shot dataset was used to perform the 
alanine scanning. The absolute change in the predicted scores of mutated TCR 
to the original TCR was normalized by max–min normalization in each segment 
for the peptide. The difference in values between Part 2 and Part 3 and the other 
parts are significant, calculated by the two-sided t test, with P < 0.05. b, Residues 
in buried sites of the TCR CDR3 sequence show significant changes in the 
predicted score using PanPep by alanine scanning mutagenesis compared with 
the nonburied sites, calculated by the two-sided t test, with P < 1 × 10−10. A total 
of 77 peptide–TCR 3D crystal complexes from the IEDB database were analysed 
here. A similar absolute change value normalization method was performed. For 

the boxplots in the violin plot (a,b), the box boundaries represent interquartile 
range, whiskers extend to the most extreme data point no more than 1.5 times the 
interquartile range, and the white solid dot in the middle of the box represents 
the median. c, The contribution score of each residue in the TCR CDR3 sequence. 
The contribution score was calculated as follows: (1) calculating the averaged 
attention scores of that residue in CDR3 to all amino acids in the peptide, which 
is denoted as pep-score; (2) calculating the averaged attention scores of that 
residue in CDR3 to all amino acids in CDR3 itself, which is denoted as TCR-score; 
and (3) the contribution score is defined as log2(pep-score/TCR-score) for each 
residue. A higher positive contribution score indicates that the residue is more 
important to the peptide, and a lower negative contribution score indicates that 
the residue is more important to the TCR. d, The 3D crystal structure of 3VXU. 
Red, CDR3 sequence of TCR; green, peptide epitope.
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structure. Furthermore, the interpretable mechanism of the PanPep 
model was shown with an example of a peptide–TCR crystal structure47 
(Protein Data Bank (PDB) ID: 3VXU; Fig. 6d). PanPep identified the H 
residue with highest contribution score, which involves the pi–cation 
interaction with peptide (Fig. 6c; Supplementary Note 2). Overall, 
our results suggest that although PanPep was constructed at the 1D 
sequence level by taking advantage of the attention mechanism, it can 
be applied to capture the nature of the interactions between peptides 
and TCRs and discover crucial sites in 3D structures.

Discussion
Owing to the broad clinical applications of recognizing TCRs binding 
to unseen peptides and the vast generation space of unseen peptides, 
such as neoantigens and exogenous virus peptides, an effective and 
robust peptide–TCR binding recognition model for any type of peptide, 
especially neoantigens and exogenous peptides, is needed. Therefore, 
PanPep is designed as a universal framework for robust peptide–TCR 
binding recognition in various settings, including few-shot learning, 
zero-shot learning and majority learning.

Notably, in the current study, we did not consider the alpha chain 
of TCR in our model, as most of the previous studies did not consider 
this point either8,17. The main reason lies in the limited availability of TCR 
data with both alpha and beta chain information in existing databases 
(see Supplementary Methods for detailed statistics of the alpha chain 
information in existed databases)14,48. We also did not consider the HLA 
typing for peptide–TCR binding recognition at present, while PanPep 
can be easily extended by incorporating the HLA type information 
and achieved acceptable prediction ability (Supplementary Note 3). 
The limited availability of HLA type information at present limits the 
downstream applications. However, future updating is expected when 
more information on alpha chains and HLA typing are available.

Although PanPep outperformed other methods significantly, the 
performance can be improved especially for the few-shot and zero-shot 
settings when more training data are available. Future updating of 
PanPep is expected. (1) The performance of PanPep was limited by 
the number of available peptides that could be used to construct the 
peptide episodes. Increased availability of experimentally validated 
data will further improve the performance of PanPep, and a carefully 
designed model can also be developed for output evaluation with confi-
dence score. (2) Currently, PanPep only considers the interaction of the 
CDR3 beta chain of TCR with the peptide. Recent work49 also suggested 
that catch bonds50 in other chains may play an important role in the 
TCR recognition of neoantigens, and thus future modelling consider-
ing more information, such as the HLA type and alpha/beta chains, is 
expected. (3) As more 3D crystal structure data become available in 
the future, building models with 3D data directly will further improve 
peptide–TCR binding recognition. (4) More direct applications are 
expected to illustrate the superiority and utility of PanPep in the future.

Methods
Design of PanPep
We constructed PanPep and applied it to three settings, that is, the 
few-shot setting, zero-shot setting and majority setting, to address 
the challenge of the long-tail data distribution of the TCR binding 
repertoire and generalize the recognition of TCR binding to unseen 
peptides. The framework consists of two main learning modules  
(Fig. 1), that is, the meta-learning module and disentanglement distilla-
tion module. In the meta-learning module, the meta-learner is responsi-
ble for capturing the meta information about the interactions between 
TCRs and peptides by operating across different peptide-specific 
tasks. The peptide-specific learner is responsible for capturing the 
peptide-specific TCR recognition information by operating on each 
peptide-specific task. In the disentanglement distillation module, we 
constructed the map between peptide embedding and peptide-specific 
learner through model distillation.

We trained PanPep by generating a set of peptide-specific tasks, 
where each peptide-specific task consists of a support set .. and a query 
set {tcri, yi}Qi=1. Each pair of tcr and y represents a TCR sequence and a 
label indicating whether this TCR recognizes this peptide, respectively. 
In this study, a peptide-specific task consisting of a support set and a 
query set is called a peptide episode (Supplementary Fig. 2a). Overall, 
the PanPep training process consists of three main procedures: acquisi-
tion of high-order meta information, storage of the peptide-specific 
learner parameters and construction of a mapping between peptide 
and peptide-specific learners. The first two steps are performed col-
lectively by the meta-learner and peptide-specific learner in the 
meta-learning module, while the last step is performed by NTM through 
model distillation in the disentanglement distillation module.

In the testing procedure, we sampled another set of peptide-specific 
tasks with these peptides unseen to the training tasks to perform a 
pan-peptide test of PanPep that would indicate its generalizability. 
Then, the trained model was fine-tuned on its support set and applied 
to classify the TCRs in its query set. Specifically, PanPep was tested 
in three settings. In the few-shot setting, we sampled another set of 
peptide-specific tasks with peptides that were unseen in the training 
tasks, and the number of TCRs in the support set was very small. Then, 
the model was fine-tuned for a few epochs on its support set and applied 
to classify the TCRs in its query set. In the zero-shot setting, we collected 
the peptide-specific tasks with these peptides that were unseen to the 
training tasks, and no support sets were available for their tasks. Then, 
the peptide-specific model was generated based on peptide embedding 
using the disentanglement distillation module, thereby classifying the 
TCRs in its query set. In the majority learning setting, we also sampled 
another set of peptide-specific tasks with a large number of support set 
samples. Then, the model was fine-tuned for a large number of epochs 
on its support set and applied to classify the TCRs in its query set. The 
difference between the few-shot setting and the majority setting is that 
the number of TCRs in the support set was large in the majority setting 
compared to that of the few-shot setting; therefore, the fine-tuning 
applied in the majority setting tended to prevail over the prior rather 
than that of a fast adaptation from the prior in the few-shot setting.

Notably, a clear comparison between the meta-learning-based 
model formulation of PanPep and existing peptide–TCR prediction 
tools in terms of model training and testing in three different settings 
is summarized in Supplementary Table 1.

Meta-learning module. In the meta-learning module, we adopted the 
MAML framework28 that can be adapted to the peptide-specific task 
distribution p(T). This framework does not make an assumption on the 
form of the model, other than to assume that the model is parameter-
ized by a parameter vector θ. Specifically, a model can be considered 
a function fθ with parameter θ. A meta-learner aims to learn a parameter 
θmeta with high-order meta information that can be rapidly adapted to 
a new peptide-specific task from p(T). When the meta-learner is 
adapted to a new task Ti the meta-learner parameter θmeta will be 
updated into peptide-specific learner parameter θi by a few gradient 
descent updates on task Ti. The parameter updates based on the sup-
port set for each task Ti will be called inner loops. In the present study, 
we set the inner loop as 3 and use the cross-entropy ℒ as the loss func-
tion. Therefore, the updates of parameter θi of the peptide-specific 
learner on Ti are formulated as follows:

θ(1)i = θmeta − ℓ ⋅ ∇θmetaEtcr ′j ,y ′j ∼Si [ℒ [fθmeta (TEi, tcr
′
j ) , y′j ]] (1)

θ(2)i = θ(1)i − ℓ ⋅ ∇θ(1)i
Etcr ′j ,y ′j ∼Si [ℒ [fθ(1)i (TEi, tcr′j ) , y′j ]] (2)

θ(3)i = θ(2)i − ℓ ⋅ ∇θ(2)i
Etcr ′j ,y ′j ∼Si [ℒ [fθ(2)i

(TEi, tcr′j ) , y′j ]] (3)
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where θ(3)i  represents the parameter of the peptide-specific learner after 
three inner loops on task Ti, ℓ is the learning rate of the inner loop and 
Si denotes the support set of task Ti. TEi is the peptide-specific task 
embedding, which also represents the encoding of peptide i. The 
peptide-specific learner uses (TEi, tcr′j ) as input, which represents the 
pair of peptide encoding of task Ti and encoding of TCR i. y′j is the label 
ndicating whether tcr′j binds to peptide i.

The meta-learner parameter θmeta is trained by optimizing the 
performance of fθi on query set Qi with respect to θmeta across tasks from 
p (T). Specifically, the objective of the meta-learner is to optimize the 
parameter θmeta such that a few gradient steps (inner loops) in a new 
task will produce the most efficient behaviour for that task. The 
meta-learner parameter updates across tasks are called outer loops. 
In this study, we adopted the Adam optimizer to perform the 
meta-learner optimization, and the peptide-specific task batch size is 
1; therefore, the meta-learner parameter θmeta at one step is updated as 
follows:

θmeta ← θmeta − ℓ′ ⋅ ∇θmetaEtcrj ,yj∼Qi [ℒ [fθ(3)i
(TEi, tcrj) , yj]] (4)

where ℓ′ is the learning rate of the outer loop. tcrj, yj are the TCR j and 
label j indicating whether tcrj in the query set binds to the peptide i in 
task Ti, respectively. Therefore, the updates of the meta-learner param-
eter involve the high-order derivative of the gradient. We also store the 
peptide-specific learners fθ∗i  and their query sets Q∗

i  for all training tasks 
after the convergence of the meta-learner for the next disentanglement 
distillation module.

Disentanglement distillation module. Although the model can rap-
idly adapt to the new tasks from p (T) in the meta-learning module, the 
peptide-specific learner must be fine-tuned on the support set of task 
Ti. The peptide–TCR binding recognition of those exogenous or new-
born peptides, which are defined as the unseen peptides in our study, 
represents the new tasks for which the support set is lacking for its 
task. We cannot obtain the peptide-specific learners directly for these 
tasks by fine-tuning the meta-learner since the support set is unavail-
able. This type of problem is very challenging and termed zero-shot 
learning in our study. NTM has been considered a perfect candidate 
for meta-learning and few-shot prediction, which extends an external 
memory for the model to rapidly encode and retrieve results. Although 
several studies have combined meta-learning with NTM13,51,52, no pro-
posed method generalizes NTM to the zero-shot prediction. We extend 
the basic idea of NTM and propose a disentanglement distillation 
module in PanPep that allows us to rapidly generate the 
peptide-specific learner for the unseen peptides. Similar to the archi-
tecture of the NTM, the disentanglement distillation module consists 
of a controller, memory, write head and read head, and detailed 
descriptions of these components used in the present study are pro-
vided below.

	(1)	 The controller stores all peptide-specific learners fθ∗i  and query 
sets Q∗

i  on training tasks in the meta-learning module.
	(2)	 Memory consists of basis I and content memory C, where basis 

is an identity matrix IL×L and content memory is a matrix CL×V. V 
is the length of the parameter vector θ∗i  of the peptide-specific 
learner, and L is the dimension of the new peptide embedding 
space, termed the PLGS.

	(3)	 Write head is the disentanglement operation, which is a 
learnable matrix WN×L, where N is the number of peptide-specific 
learners on training tasks.

	(4)	 The read head is a matrix AE×L that maps the peptide-specific 
task embedding TEi to the new peptide embedding space 
(PLGS) as TE′i, where E is the length of the TEi.

We constructed the mapping between peptide embedding and 
peptide-specific learners by first writing all peptide-specific learners 

into the content memory, which is formulated as follows:

M ← (FTW)T (5)

where F is the matrix consisting of peptide-specific learner parameters 
in the controller, that is, FN×V = [fθ∗1 , fθ∗2 , ..., fθ∗N ]

T
.

Then, a new peptide-specific learner f′θ∗i  is generated by retrieving 
the memory. Considering the order-irrelevant peptide-specific tasks, 
we adopt the content-based memory address mechanism in NTM. 
Specifically, the read head uses each peptide-specific task embedding 
TEi as input and outputs a new peptide embedding TE′i  in the PLGS, 
which is used to calculate the similarity with each vector in the basis I. 
In the present study, the similarity function K (u, v) is set as cosine 
similarity:

K (u, v) = u ⋅ v
||u||||v|| (6)

which is used to produce a read-attention weight w (m) on each vector 
I (m) in the basis I, with elements computed based on softmax:

w (m) =
exp (K (TE′i , I (m)))

∑n exp (K (TE
′
i , I (n)))

(7)

such that ∑
m
w (m) = 1, and a new peptide-specific learner is retrieved by 

read-attention weight vector from content memory M:

f′θ∗i ←∑
m

w (m)M (m) (8)

where M (m) represents the mth row parameter vector in M.
Finally, inspired by the idea of learning without forgetting 

(LwF)53, which uses the distil loss as the external term for the loss of the 
next new task, we extended this basic idea to our model disentangle-
ment process. In the meta-learning module, we store the 
peptide-specific learners fθ∗i  and their query sets Qi for all the 
peptide-specific training tasks. After conducting all training tasks, all 
the peptide-specific learners are written into the memory using the 
write head W. Read head A takes the peptide embedding TEi and maps 
it into the PLGS, subsequently generating a new peptide-specific 
learner f′θ∗i  by retrieving the content memory. Then, we propose using 
the distil loss ℒd to update the write head W and read head Q as 
described below.

ℒd = −ETEi∼p(T)[ ∑
tcrj∼Qi

[f+θ∗i (TEi, tcrj) × log (f′+θ∗i (TEi, tcrj))

+f−θ∗i (TEi, tcrj) × log(f′−θ∗i (TEi, tcrj))]]

(9)

where TEi is the embedding of peptide-specific task Ti from p (T). tcrj 
belongs to the query set Qi for peptide-specific task Ti. f+ and f− repre-
sent the probability output of model fθ∗i  or f′θ∗i  for tcrj binding and not 
binding to peptide i, respectively.

Detailed meta-learner architecture of PanPep. PanPep uses the pep-
tide–TCR pair as input and outputs the binding probability of this pair 
(Supplementary Fig. 2b). In the current study, PanPep does not consider 
the HLA typing information and the alpha chain of TCR due to limited 
available data (see Discussion and Supplementary Methods). Each pep-
tide–TCR pair is first encoded by the Atchley factor into a 40 × 5 matrix 
denoted as the peptide–TCR matrix, of which the peptide is padded 
into a 15 × 5 matrix by a zero vector and the TCR CDR3 sequence is pad-
ded into 25 × 5 matrix. Each amino acid was featured as five numerical 
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values, which represented its biochemical characteristics. We captured 
the interaction of the peptide and TCR by adopting the self-attention 
mechanism to the peptide–TCR matrix, and we used the sinusoidal posi-
tion encoding method to add position information to each amino acid 
for the peptide and TCR. The peptide–TCR matrix containing position 
information is then used as input to the self-attention layer, which is a 
powerful architecture that consists of Q, K and V matrices and has been 
widely used in natural language processing to capture the relationship 
between words. We used a one-head self-attention mechanism54, and 
the Q, K and V matrices with a size of 5 × 5 were applied here. The output 
of the self-attention layer was then fed to a 5 × 5 linear transformation 
layer and activated with the ReLU function. Next, the output was the 
same size as the original peptide–TCR matrix, while the embedding 
of each amino acid was added to the information from its context. We 
further used the convolutional layer55 with sixteen 2 × 1 kernels and 
the ReLU activation function56 to extract the latent information, fol-
lowed by a batch-normalization layer and a max-pooling layer with a 
2 × 2 kernel. After the pooling layer, the output was flattened and fed 
into a two-neuron dense layer. Finally, the probability of binding was 
calculated using softmax.

Dynamic sampling. In the training process of the meta-learning mod-
ule, we must construct a peptide episode for each peptide-specific task 
in each outer loop. Since the number of known binding TCRs is different 
for those peptides and the data distribution obeys the long-tail distri-
bution, constructing the peptide episode for each peptide once will 
lose considerable information for the peptides with a large TCR bind-
ing repertoire. Therefore, we proposed a dynamic sampling method 
during the meta-learner training process; namely, the support set and 
query set for each peptide will be reselected randomly in each training 
epoch. This method helps to mitigate the effect of an unbalanced data 
distribution on model training57, and it can reduce the randomness 
when evaluating the performance in the few-shot setting as well.

Data curation
Several datasets are curated in our study, including the base dataset, 
control TCR set, meta-dataset and majority dataset. We described the 
detailed data curation procedures for these datasets.

We first collected comprehensive peptide–TCR binding 
records from four databases, including IEDB46, VDJdb58, PIRD59 and 
McPas-TCR60, for the exploratory study, and this dataset is termed the 
base dataset. We used the filtering criteria described below to curate 
the data. We first retained the records for TCRs from Homo sapiens. 
Then, only the records where the description of HLA alleles belong to 
HLA-I were retained. In addition, we excluded those records in VDJdb 
where the confidence scores are equal to 0 indicating that there were no 
insufficient method details or evidence to support the binding conclu-
sions. Also only the high-confidence binding TCRs in the PRID dataset 
were retained. Furthermore, we retained only the records containing 
the CDR3 beta chain due to the importance of the CDR3 beta chain in 
peptide–TCR binding. We did not consider CDR3 alpha chain in the 
current study due to the limited availability of the data (Supplementary 
Methods). As a result, the base dataset contains 699 unique peptides 
and 29,467 unique TCRs with 32,080 related peptide–TCR binding pairs 
considering the cross-reactivity of peptide–TCR binding.

We then designed the control TCR set to contain nonbinding TCRs 
for each peptide-specific task. Since one TCR sequence might bind to 
different peptides with cross-reactivity and the meta-learning module 
of PanPep is highly sensitive to the data quality, we must reduce the bias 
from the mislabels among the nonbinding TCRs as much as possible. 
Therefore, although the negative mismatched TCRs were used as the 
negative controls in several previous studies, we avoided using them 
as the control because this control set is biased and may contain TCRs 
binding to the given peptide through cross-reactivity. In our study, 
the nonbinding TCR repertoire of the control TCR set was collected 

from 587 healthy volunteers’ peripheral blood using a multiplexed 
polymerase chain reaction assay that targets the variable region of 
the rearranged TCRβ locus, which contains 60,333,379 TCRs as the 
repertoire that was not activated, as reported and adopted in previ-
ous studies61,62. Considering the large number of TCRs in this healthy 
repertoire, randomly sampling a part of TCRs from this large pool as 
a control set has a very low probability of encountering TCRs binding 
to the given peptide.

We curated a meta-dataset based on the base dataset where 
peptides with at least five binding TCR records were selected to train 
the meta-learner and obtain peptide-specific learner in PanPep. In 
total, the meta-dataset consists of 208 different peptides with 31,223 
peptide–TCR binding pairs. We randomly split the meta-dataset 
into a meta-training dataset (4/5 of the peptide-specific tasks) and 
a meta-testing dataset (1/5 of the peptide-specific tasks) to perform 
the fivefold cross-validation. We must construct a peptide episode for 
each peptide in the meta-training dataset, which consists of a support 
set of two known binding TCRs and a query set of three known binding 
TCRs, to train the meta-learner in a peptide-specific manner. All the 
binding TCRs were balanced by the control TCR set. Similarly, we also 
constructed the peptide episode for each peptide in the meta-testing 
dataset. For each episode, we used the support set to fine-tune the 
meta-learner, obtaining the peptide-specific learner, and it was tested 
in the query set.

In the zero-shot setting, we want to evaluate the generalizabil-
ity of PanPep to unseen peptides. Therefore, we chose the remain-
ing peptides in the base dataset, which excluded the peptides from 
meta-dataset, resulting in a zero-shot dataset consisting of 491 unique 
peptides with 857 known binding TCR pairs. These peptides were not 
used in the PanPep training process. For each peptide in zero-shot 
dataset, all the known binding TCRs are included in the query set, and 
no TCRs are available in the support set for the fine-tuning of the model. 
Then, all the binding TCRs were balanced by the control TCR set.

We merged the datasets from the existing peptide–TCR binding 
prediction tools, including pMTnet, ERGO2 and DLpTCR, in the major-
ity setting to illustrate that PanPep can also be easily generalized to the 
majority setting. For testing the ability of PanPep in generalization to 
peptides with a large number of TCR, we constructed the majority 
dataset based on the peptides whose known number of binding TCRs 
is more than 100 in the training datasets of these tools. The majority 
dataset consisting of 25 peptides with 23,232 known peptide–TCR 
binding pairs used for training and 5,230 peptide–TCR pairs used 
for testing. For each peptide in the majority setting, we constructed 
a peptide episode that consists of a support set and a query set. The 
support set contains all its corresponding TCRs in the training datasets 
for these tools, and the query set contains all corresponding TCRs in its 
own testing dataset. The support set of each peptide episode was used 
to retrain the meta-learner in PanPep and obtain the peptide-specific 
learner. Then, the query set of each peptide episode was used to evalu-
ate the performance of PanPep in this majority setting.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets used for training and testing PanPep in three settings and 
predicted clone expansion result are shared on the github reposi-
tory (https://github.com/bm2-lab/PanPep) and its Zenodo (https://
doi.org/10.5281/zenodo.7544387)63. The control TCR set where TCRs 
were sequenced from 587 healthy individuals can be obtained from 
original study61 (https://genomemedicine.biomedcentral.com/arti-
cles/10.1186/s13073-015-0238-z) and Zenodo (https://doi.org/10.5281/
zenodo.7544387)63. The datasets used for training and testing were 
integrated from IEDB46 (http://www.iedb.org/), VDJdb58 (https://vdjdb.
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cdr3.net/), PIRD59 (https://db.cngb.org/pird/) and McPas-TCR60 (http://
friedmanlab.weizmann.ac.il/McPAS-TCR/). The detailed information 
of the 10x Genomics cohort is available at: https://www.10xgenomics.
com/resources/datasets. The data used to test the ability of PanPep 
for immune-responsive T-cell sorting in neoantigen screening were 
downloaded from original study38 (https://doi.org/10.1126/science.
aad1253). The single-cell gene expression data used to identify 
neoantigen-reactive T-cell signatures for PanPep is available at: https://
doi.org/10.17632/93cvs2z3mz.2. The published large cohort COVID-
19 dataset is available at https://clients.adaptivebiotech.com/pub/
covid-2020. The collected 3D crystal complexes are available at PDB 
(https://www.rcsb.org) and their accession numbers were provided in 
Supplementary Data 8.

Code availability
PanPep is available on github (https://github.com/bm2-lab/PanPep) 
and its Zenodo (https://doi.org/10.5281/zenodo.7544387)63, together 
with a usage documentation and several example testing datasets.
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