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Abstract 21 

Tissue biomarkers are crucial for cancer diagnosis, prognosis assessment, and treatment planning. 22 

However, there are few known biomarkers that are robust enough to show true analytical and clinical 23 

value. Deep learning (DL)-based computational pathology can be used as a strategy to predict survival, 24 

but the limited interpretability and generalizability prevent acceptance in clinical practice. Here we 25 

present an interpretable human-centric DL-guided framework called PathFinder (Pathological-26 

biomarker-finder) that can help pathologists to discover new tissue biomarkers from well-performing 27 

DL models. By combining sparse multi-class tissue spatial distribution information of whole slide 28 

images (WSIs) with attribution methods, PathFinder can achieve localization, characterization, and 29 

verification of potential biomarkers, while guaranteeing state-of-the-art prognostic performance. Using 30 

PathFinder, we discovered that spatial distribution of necrosis in liver cancer, a long-neglected factor, 31 

has a strong relationship with patient prognosis. We therefore proposed two clinically independent 32 

indicators, including necrosis area fraction and tumor necrosis distribution, for practical prognosis, and 33 

verified their potentials in clinical prognosis according to Reporting Recommendations for Tumor 34 

Marker Prognostic Studies (REMARK)-derived criteria. Our work demonstrates a successful example 35 

of introducing DL into clinical practice in a knowledge discovery way, and the approach may be 36 

adopted in identifying biomarkers in various cancer types and modalities.  37 
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Introduction 38 

Pathological analysis of WSIs is the gold standard for cancer diagnosis and prognosis. Tumor 39 

classification, staging, and prognosis are assessed according to tissue biomarkers on WSIs1,2. 40 

Unfortunately, even though various tissue biomarkers have been proposed, few of them is robust with 41 

high sensitivity and specificity3,4. Thus there is still a desperate need for identifying additional robust 42 

biomarkers to guide tumor diagnosis and prognosis, and to direct the research of tumor mechanism5–7. 43 

Specifically in cancer prognosis, with the advancement of computational pathology in recent years, 44 

DL models based on end-to-end training can predict a risk score that outperforms current clinical 45 

staging, showing the potential of learning knowledge from current medical data8–12. However, due to 46 

limited interpretability and generalizability, DL-based risk score is still difficult to be accepted as a 47 

useful biomarker for clinical prognosis6,13,14.  48 

Considering that clinicians are likely to keep playing the central role in patient care, it is essential 49 

to focus the development and evaluation of AI-based clinical algorithms on their potential to augment 50 

rather than replace human intelligence15–17. Although some studies have attempted to use established 51 

biomarkers and attribution methods to verify the credibility of abstract risk scores8–11, this strategy 52 

fails in generating new knowledge for clinical prognosis. Knowledge discovery based on AI, especially 53 

the discovery of new or dominant prognostic biomarkers of clear pathological significance and explicit 54 

mathematical model, will open up new direction of human-centric AI for cancer prognosis.  55 

Different from that in the fields of genetics where biologically informed sparse DL models 56 

combined with attribution methods has been used to guide preclinical discovery18, the identifying of 57 

tissue biomarkers from well-performing prognostic DL models is challenging8–12. On one hand, the 58 

input multi-dimensional images of WSIs for prognosis are of high information density, compared to 59 
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molecular data inputs which are usually one-dimensional vector and have specific labels or 60 

descriptions18. Thus it is difficult to build a sparse network while guaranteeing the prognostic 61 

performance19. On the other hand, current attribution methods usually achieve a two-dimensional 62 

attribution map for spatial attribution positioning13,14, which is far from locating specific high-63 

attribution features in high-information-density input. These two problems lead to insufficient 64 

interpretation, as low-dimensional attribution knowledge is used to interpret abstract results based on 65 

high-dimensional inputs. Even worse, it makes one use pre-existing knowledge in explanation, which 66 

contradicts the aim of discovering new biomarkers19–21.  67 

Histologically, gigapixel WSIs can be regarded as self-multimodal information sources with both 68 

slide-level macro mode and region-level micro mode14. The former contains multi-class tissue spatial 69 

distribution and interaction information, while the latter contains cell texture and structure information 70 

(Methods, Extended Data Fig. 1). However, limited by GPUs (Graphics Processing Units) memory 71 

and deep neural network architecture, WSIs are generally cut into patches and only the micro mode 72 

information is paid attention to in most DL-based studies9,10,22–24. Moreover, in clinics, due to the lack 73 

of precise quantification of WSIs, the relationship between tissue spatial distribution and patients’ 74 

prognostic result is still not clear.  75 

Here we propose an interpretable, human-centric, DL framework, named as PathFinder, that uses 76 

the sparse multi-class tissue spatial distribution information of WSIs for assessing prognosis and 77 

discovering new biomarkers. Using the macro mode of WSIs, which is of low information density that 78 

perfectly matches current spatial-positioning attribution methods, Pathfinder can achieve state-of-the-79 

art prognostic performance. Inspired by the exact and intuitive attribution maps of PathFinder, we 80 

found spatial distribution of necrosis in liver, a common but overlooked pathological morphology, has 81 
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a strong relationship with patients’ prognosis, based on which we characterized two significant 82 

indicators for clinical prognosis.  83 

Interpretable AI-based framework for biomarker discovery 84 

Figure 1 shows the workflow of Pathfinder. It consists of three parts: macro mode acquiring, 85 

prognostic deep neural network training, and new biomarker discovery. We first trained the multi-class 86 

tissue segmentation network PaSegNet to obtain the multi-class tissue probability heatmaps as the 87 

macro mode of WSIs (Methods). In order to acquire high-quality macro mode, we proposed meta 88 

annotation, a data-centric annotation method that combined with pathological priors to bridge the gap 89 

between current pathological annotation methods and DL training requirements, and achieved efficient, 90 

high diversity, and low similarity class-balanced training dataset (Methods, Extended Data Fig. 2). 91 

With the macro mode of WSIs, we built MacroNet for high-precision prognosis, which is composed 92 

of a convolution feature extractor and a multilayer perceptron (MLP) with a batch normalize layer25 93 

(Methods). Using only time-to-event patient death information as the input mode label and Cox 94 

proportional likelihood loss as the network loss, the MacroNet can learn to predict the patients’ risk 95 

score based on macro mode only. Then we used attribution methods on the trained MacroNet to acquire 96 

the attribution map of input image26, and overlapped the attribution map on the corresponding multi-97 

class segmentation map. The generated two-dimensional attribution map shows the spatial areas that 98 

MacroNet focuses on, which matches well with the sparse multi-class tissue spatial distribution 99 

information, making the interpretation more direct and objective. Based on integrative analysis of 100 

macro mode and attribution map, pathologists can propose the hypothesis of the biomarkers that the 101 

model is concerned with, followed by quantitatively characterization. The new biomarkers, whose 102 

visualizations are similar with the corresponding attribution map, were used as indicators to perform 103 
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multivariate analysis according to REMARK-derived criteria27. After testing with clinical dataset, new 104 

biomarkers of significantly independent prognostic effect were discovered. 105 

With Pathfinder, we performed the discovery of new tissue biomarkers for clinical prognosis of 106 

hepatocellular carcinoma (HCC), which is the fourth leading cause of cancer-related death worldwide28. 107 

In this study, we collected 342 WSIs from 330 patient samples in The Cancer Genome Atlas Liver 108 

Hepatocellular Carcinoma dataset (TCGA dataset) and 1182 WSIs from 83 patient samples in Beijing 109 

Tsinghua Changgung Hospital dataset (QHCG dataset) (Extended Data Fig. 3 and Supplementary Fig. 110 

1). As for the case that there are multiple WSIs for a patient, we selected the one of largest tumor 111 

fraction as the patient’s representative WSI, as discussed later. We trained MacroNet in a 10-fold cross-112 

validation on TCGA dataset, tested the generalization of trained model on QHCG dataset. In order to 113 

better compare the prognostic performance of MacroNet, we also designed and trained MicroNet and 114 

M2MNet for prognosis task. The former one is based on micro mode, which takes high resolution 115 

tumor patches as inputs, and the latter one is based on both macro mode and micro mode, which 116 

attempts to fuse these two modes (Methods, Extended Data Fig. 4). 117 

Evaluation of model performance 118 

We first evaluated the multi-class classification performance of PaSegNet on the internal test set 119 

of QHCG dataset and external independent test sets including TCGA dataset and Pathology AI 120 

Platform 2019 challenge dataset (PAIP dataset). Confusion matrices and receiver operating 121 

characteristic (ROC) curves are used to demonstrate classification results (Fig. 2a, Supplementary Figs. 122 

2, 3). The macro-average accuracy and area under the curve (AUC) are selected to evaluate model 123 

performance. Across all test sets, PaSegNet achieved accuracy of 0.948, 0.956, 0.941, and AUC of 124 

0.9980, 0.9984, 0.9974, on QHCG, TCGA, PAIP test set, respectively. The results show that the 125 
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PaSegNet trained on the meta-annotated dataset can achieve accurate multi-class tissue classification. 126 

To evaluate the segmentation performance of WSIs, we further visualized the multi-class tissue 127 

probability heatmaps and segmentation maps obtained by PaSegNet, both of which demonstrate that 128 

the model can accurately and smoothly segment WSIs and identify small key lesion areas (Extended 129 

Data Fig. 5). In general, PaSegNet trained on the meta-annotation dataset can efficiently quantify WSIs’ 130 

macro mode and ensure the following prognostic network training. 131 

We next evaluated the prognostic capability of MacroNet, MicroNet, and M2MNet, by using 10-132 

fold cross-validation on TCGA dataset. To compare the performance of prognostic networks, we used 133 

the median of cross-validated concordance index (C-Index) to measure the predictive accuracy of each 134 

model, Kaplan-Meier curves to visualize the quality of patient stratification between predicted high-135 

risk and low-risk patients, and the logrank test to test the statistical difference between high-risk and 136 

low-risk groups (Supplementary Note 1). MacroNet achieved a C-Index of 0.708, similar to the C-137 

Index 0.717 using MicroNet and lower than the C-Index 0.787 using M2MNet (Fig. 2b). In visualizing 138 

the Kaplan-Meier survival curves of predicted high-risk and low-risk patient groups, MacroNet also 139 

showed well discrimination between the two risk groups (p-value = 1.25×10-7) compared to M2MNet 140 

and clinical staging (Figs. 2d, e, Extended Data Fig. 6a). In addition, we also reported dynamic area 141 

under the curve (AUC; termed as Survival AUC) to measure the prognostic performance of the 142 

networks. Similar conclusion can be achieved as MacroNet achieved the Survival AUC of 0.732, 143 

similar to the Survival AUC 0.729 using MicroNet and lower than the Survival AUC 0.832 using 144 

M2MNet (Supplementary Fig. 4a). 145 

We further evaluated the models’ generalization capability by training the models on TCGA 146 

dataset and testing them on QHCG dataset. MacroNet achieved a C-Index of 0.754, whereas M2MNet 147 
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and MicroNet achieved C-Indices of 0.695 and 0.652, respectively (Fig. 2c). On Survival AUC, we 148 

observed similar model performances with MacroNet reaching an AUC of 0.796 compared with 0.733 149 

in M2MNet and 0.666 in MicroNet (Supplementary Fig. 4b). These results demonstrated that 150 

MacroNet has stronger generalization ability in prognosis. In addition, the Kaplan-Meier survival 151 

curves of MacroNet showed well discrimination between two risk groups (p-value = 7.68×10-7) on 152 

QHCG dataset, as M2MNet did (Fig. 2g, Extended Data Fig. 6b). Furthermore, the multivariable 153 

analysis revealed that the risk score predicted by MacroNet (Hazard ratio (HR): 2.21, 95% confidence 154 

interval (CI): 1.26 to 3.86, p-value = 0.0057, TCGA dataset; HR: 6.56, 95% CI: 2.01 to 21.36, p-value 155 

= 0.0018, QHCG dataset) was independent of other clinicopathological characteristics (Figs. 2f, h, 156 

Supplementary Tables 1, 2), and the risk scores generated by MicroNet and M2MNet were also 157 

independent of other clinicopathological characteristics (Supplementary Tables 3-6). These results 158 

indicate that MacroNet can achieve state-of-the-art prognostic performance using only macro mode of 159 

WSIs and has potential in finding useful prognostic biomarkers. 160 

Discovery, characterization, and verification of biomarkers 161 

In order to interpret why MacroNet can achieve high-performance prognosis and to explore which 162 

macro features largely contribute to risk score, we conducted an integrated analysis from both global 163 

and individual perspectives. We counted the difference in the tissue fractions in patients of high-risk 164 

scores and low-risk scores from a global perspective, and found that the necrosis fraction is 165 

significantly higher in the high-risk score group (Extended Data Figs. 7a, c). Then we analyzed the 166 

segmentation map of high-risk and low-risk WSIs, and observed that necrosis occurred in every high-167 

risk WSI, but not in all low-risk WSIs (Fig. 3a). From an individual perspective, we used the attribute 168 

method to locate the areas where MacroNet focused on in the form of a two-dimensional heatmap, and 169 
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overlapped the result with the segmentation map for better visualization (Fig. 1). We discovered that 170 

the areas of high contribution are almost the junctions of necrosis and other tissues (Fig. 3b), which is 171 

consistent with our former conclusions obtained from the global perspective. All the discoveries 172 

inspired us that spatial distribution of necrosis may have a strong relationship with HCC prognosis. 173 

To make the DL-based MacroNet acceptable in clinical practice, we proposed two hypotheses of 174 

new biomarkers, namely necrosis area fraction in WSIs (NEC) and tumor necrosis distribution (TND), 175 

based on above integrated analyses and inspirations of MacroNet. We first established mathematical 176 

models of these two indicators to characterize them, and achieved their quantification based on the 177 

existing macro mode (Methods). By visualizing these two indicators and comparing them with the 178 

corresponding attribution map, we found that these two hypothetical indicators can well characterize 179 

the features that MacroNet pays attention to (Fig. 3b, Extended Data Fig. 8), indicating that these two 180 

clinically available indicators are of great potential to affect the prognosis of the risk score given by 181 

MacroNet. It also should be noted that these biomarkers are objective and universal pathological 182 

features, considering that NEC is a common and inherent attribute of WSIs, and TND is a newly 183 

designed indicator that takes into account the spatial distribution and interaction between tumor and 184 

necrosis. 185 

To verify whether NEC and TND are independent prognostic indicators, we investigated the 186 

prognostic significance of these two indicators on both TCGA and QHCG datasets using Kaplan-Meier 187 

curves and Cox hazard analysis by conducting univariate and multivariate analyses of 188 

clinicopathological parameters. Additionally, to compare the performance with new clinical indicators 189 

inspired by AI, we quantified tumor-infiltrating lymphocytes (TILs), which is already known as a 190 

prognostic factor and is significantly different between high-risk group and low-risk group (Extended 191 
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Data Figs. 7b, d, Methods)12,29, as an indicator designed based on known clinical experience. The 192 

Kaplan-Meier curves and logrank test based p-values showed that NEC and TND can significantly 193 

distinguish high-risk and low-risk groups on both TCGA and QHCG datasets (Figs. 4a, c, e, g). The 194 

univariate and multivariable analyses revealed that the dependences of overall survival on NEC (HR: 195 

4.66, 95% CI: 1.77 to 12.28, p-value = 0.0019, QHCG dataset; HR: 1.80, 95% CI: 1.13 to 2.87, p-196 

value = 0.0133, TCGA dataset) and TND (HR: 6.67, 95% CI: 2.36 to 18.85, p-value = 0.0003, QHCG 197 

dataset; HR: 3.00, 95% CI: 1.56 to 5.74, p-value = 0.0009, TCGA dataset) were more significant than 198 

most clinical indicators including TILs (Figs. 4b, d, f, h). This suggests that the two indicators are 199 

independent of other clinicopathological characteristics. In addition, NEC (HR: 3.31, 95% CI: 1.73 to 200 

6.30, p-value = 0.0003) and TND (HR: 2.92, 95% CI: 1.52 to 5.60, p-value = 0.0012) can even be used 201 

as significant indicators in recurrence prediction (Extended Data Figs. 6c-i, Supplementary Table 9). 202 

It is worth noting that the Cox’s proportional hazard model was able to achieve a C-Index 0.7 without 203 

utilizing additionally clinical variables or risk score predicted by DL methods, as it makes predictions 204 

only based on NEC (C-Index: 0.703) or TND (C-Index: 0.691) (Figs. 5d, e). In addition, taking other 205 

clinical factors together into consideration, the C-Indices of NEC and TND can be further improved to 206 

0.831 and 0.845, indicating the value of these two indicators in clinical prognosis (Supplementary Fig. 207 

5). 208 

Overall, the above results verified spatial distribution of necrosis as a new biomarker for 209 

prognosis. We demonstrated that the prognostic performance of the AI inspired indicators based on 210 

WSIs macro mode is comparable to the performances of various DL models based on WSIs micro 211 

mode, genomics, and multimodality9–12. 212 

Robustness of macro mode indicators 213 
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In clinical practice, there are generally many WSIs with different sampling positions from a 214 

patient (Fig. 5a). As the micro mode is not greatly affected by the sampling locations, the prognostic 215 

DL models trained on the micro mode rarely discuss the situation where a patient has multiple WSIs8. 216 

However, different sampling positions will cause huge differences in the macro mode, which will lead 217 

to deviations in the risk scores predicted by MacroNet (Fig. 5b, Extended Data Figs. 7e, f). Exploring 218 

how to select representative WSI from multiple WSIs of a patient becomes an unavoidable problem in 219 

applying macro indicators in clinical prognosis. 220 

In our former study, we selected the largest tumor fraction one as the patient’s representative WSI. 221 

In order to explore the robustness and effectiveness of this selection rule in clinical prognosis, we 222 

calculated the risk score, TND, and NEC of all WSIs, and randomly selected one from the multiple 223 

WSIs of a patient as the representative WSI, with C-Index being used to measure the accuracy of 224 

prognosis under this random sampling standard. After 10,000 simulations under random selection 225 

strategy, the prognostic performance of our former selection rule is better than most random selections 226 

(Figs. 5c, d, e). Even for NEC and TND, two objective and universal biomarkers, the results based on 227 

largest tumor fraction selection rule were better than 94% of the results based on random selection rule, 228 

indicating that the largest tumor fraction selection rule can be adopted with NEC and TND biomarkers 229 

for clinical prognosis. 230 

Besides, it is important to verify the prognostic robustness of these two indicators calculated from 231 

segmentation maps with different accuracies. We first calculated the TND and NEC scores 232 

corresponding to the segmentation maps generated by 11 commonly used convolutional neural 233 

networks (CNNs) (Extended Data Figs. 9, 10, Supplementary Note 2, Supplementary Figs. 6, 7). Then 234 

we measured the corresponding prognostic performance (i.e. C-Index) of NEC and TND scores. No 235 
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major difference was found in the TND and NEC scores calculated from segmentation results 236 

generated by different CNNs of the same patient, and the overall trend of score ranking remains 237 

relatively consistent across all patients (Extended Data Figs. 9a, 10a). More specifically, except for 238 

AlexNet that has poor classification performance, the C-Indices of TND (Extended Data Figs. 9b, c) 239 

and NEC (Extended Data Figs. 10b, c) obtained from segmentation maps generated by other CNNs 240 

are close. These indicate the robustness of these two indicators on prognosis, which further illustrates 241 

their generalization ability and usability in clinical practice. 242 

Discussion 243 

We present PathFinder as a complete framework of AI inspired discovery of clinically acceptable 244 

biomarkers. Instead of using DL to predict a risk score from WSIs8–11,24, we focus on proposing human-245 

centric workflows for inspiring pathologists to discover new clinically acceptable biomarkers from 246 

well-performing black-boxes. We show a method of bridging AI and clinical prognosis, and prove the 247 

potential of AI in learning and exploring new prognostic biomarkers based on large datasets and 248 

objective survival information. 249 

To overcome the limited interpretability and generalizability of DL-based risk scores, we 250 

proposed to simplify the input of DL models and explored the relationship between multi-class tissue 251 

spatial distribution and prognosis. Different from utilizing pre-trained networks to compress 252 

WSIs8,10,24,30, our input is more sparse and has explicit medical meaning, which enables the attribution 253 

method to characterize the biomarkers, that the model focuses on, more accurately. Our results show 254 

that the prognostic performance of DL is still good even when the input is reduced from WSIs of 255 

several gigabytes to macro mode of several megabytes. This indicates that the multi-class tissue spatial 256 

distribution of WSIs has prognostic information and the conventional inputs of prognostic DL models 257 
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are redundant. 258 

In this study, we did not target AI as a substitute for pathologists, but as a tool for pathologists to 259 

mine dominate biomarkers. Just as AI guides mathematical intuition31, pathologists can formulate 260 

specific hypotheses based on their clinical experience, and then use PathFinder to deeply mine the 261 

connection between hypotheses-relevant information and prognosis. Inspired by PathFinder, we 262 

defined two necrosis-related clinical prognostic indicators, NEC and TND, and demonstrated their 263 

feasibility in HCC prognosis. Even as a common pathological morphology in liver cancer, spatial 264 

distribution of necrosis has caught few attentions and has not been put into clinical staging guidelines 265 

in detail32–34. Our findings demonstrate that AI can analyze data more objectively and alert us about 266 

missing information. Different from highly diverse tumor tissues, necrosis is easier to be distinguished 267 

in both clinics and computer vision, which makes it convenient for clinical prognosis. Meanwhile, the 268 

mechanisms between tumor and necrosis are still unclear. The significant effect of TND and NEC on 269 

prognosis may suggest that the spatial distribution of tissue is worth considering in researches of 270 

necrosis mechanisms. Additionally, tumor necrosis is postulated to be caused by tumor necrosis 271 

factors35, which have been found significant correlations with TILs36,37. However, our results suggest 272 

a low correlation between tumor necrosis and TILs (Extended Data Figs. 6j, k), indicating that HCC 273 

necrosis may have its own specific causes and mechanisms. 274 

As products of knowledge discovery, TND and NEC have clear pathological significance and 275 

explicit mathematical model. The strong generalizability of these new biomarkers is evaluated on 276 

TCGA and QHCG datasets, suggesting the great advantages of human-centric AI for knowledge 277 

discovery and clinical prognosis.  278 

Same as all commonly used DL models, the focusing features of PathFinder would be affected by 279 
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training data and hyperparameters. In addition, the intra-individual variability of the macro mode 280 

cannot be ignored. However, we explored the robustness of macro mode and gave a feasible selection 281 

rule for macro mode variability problem. 282 

In PathFinder, the macro mode can achieve state-of-the-art prognostic performance as micro 283 

mode does. Considering that numerous studies have achieved multi-class tissue segmentation across 284 

various cancer types38,39, further exploration of the impact of these ready-made segmentation maps on 285 

prognosis may lead to new discoveries. Moreover, benefiting from its simple and easy-to-use features, 286 

PathFinder can be easily migrated to similar tasks such as spatial multi-omics and three-dimensional 287 

pathological prognosis to discover new biomarkers in different modalities40–42. We expect Pathfinder 288 

as a fundamental mechanism to better integrate the two fields of clinical prognosis and AI, and inspire 289 

more meaningful discoveries. 290 

  291 
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Methods 292 

Meta Annotation 293 

The acquisition of annotated data is a major challenge for deep-learning-based computational 294 

pathology. Recently, annotation-free methods such as multi-instance learning (MIL) or self-supervised 295 

learning (SSL) have achieved well-performance on both WSIs segmentation, diagnosis, and 296 

prognosis22,43. However, these annotation-free approaches usually require a large amount of data and 297 

computing power to make up the cost for the lack of existing pathology priors during training. 298 

Improving annotation method and/or dataset quality without changing existing supervised learning 299 

method may be another means to solve the dilemma44. Here we analyzed the gap between pathological 300 

annotation and DL, and proposed the meta annotation based on existing pathological priors and 301 

training requirements of DL models to achieve efficient and high-quality pathological image 302 

annotation and dataset generation. 303 

The gap between pathological annotation and deep learning. Conventional WSIs pathological 304 

annotation methods usually annotate the contour of specific tissues, e.g., tumor boundaries (Extended 305 

Data Fig. 2b). However, annotating WSIs is time-consuming and laborious due to the complex 306 

boundaries and large scale. Furthermore, the tissue boundaries always contain other tissues which are 307 

difficult to exclude by annotating (Extended Data Fig. 2d), which would introduce noise label data into 308 

the DL training set (Extended Data Fig. 2a). Some of the WSIs regions are completely mixed by 309 

multiple tissue types that can’t be annotated precisely at all (Extended Data Fig. 2e). Moreover, tissue 310 

area fractions of different classes in WSIs are quite different, e.g., bile duct reaction tissue may occupy 311 

0.01% of the WSI tissue area while tumor tissue occupies 60%. In addition, a tissue type with a large 312 
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area in one WSI is always similar in content, which is redundant (Extended Data Fig. 2f). Such 313 

unbalance data brings difficulties to DL training (Extended Data Fig. 2a).  314 

However, when it comes to DL, the desired training set is class balanced, high diversity, and low 315 

similarity. And even a small dataset can achieve a high performance if it has such features (Extended 316 

Data Fig. 2a). Most segmentation tasks first classify patches and then stitch them together according 317 

to their spatial distribution, to acquire the segmentation map of WSI. However, it is difficult to annotate 318 

the junction of tissues and give a specific label to the segmented patches from tissue boundary. 319 

Meanwhile, according to the pathological priors, most of specific tissues on a WSI are actually similar 320 

(Extended Data Fig. 2f), and using all specific tissues as the training set will cause serious problems 321 

of data imbalance. Therefore, for the segmentation methods based on patches classification, it is not 322 

advisable to realize the complete annotation of outer contours to improve the training performance. 323 

Designing new annotation methods based on the requirements of DL and the properties of WSI may 324 

enable efficient data annotation and well-performance segmentation. 325 

Purpose of meta annotation. We proposed the meta annotation to close the gap between conventional 326 

WSIs pathological annotation and DL training requirements. Meta annotation method aims to ensure 327 

the diversity of annotated tissues while reducing redundant annotation between similar tissues based 328 

on WSIs prior and pathologists’ experience. The basic purpose of pathological annotation is to label 329 

different classes of tissues, where the classes can be different types of tissues, such as fibrosis and 330 

tumor, or different subtypes, such as early-stage tumor and late-stage tumor. In our experiment, we pay 331 

attention to 7 different types of tissues and empty area (TUM, tumor; Nor, normal; FIB, fibrosis; INF, 332 

inflammation; NEC, necrosis; REA, bile duct reaction; STE, steatosis; EMP, empty), and different 333 

subtypes of the same tissues (e.g., early-stage tumor vs. late-stage tumor) are considered as 334 
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intraspecific diversity9,45,46. The selected 7 tissue types are common, which basically cover histological 335 

features that are easily identified at the resolution level of current WSIs. Based on such classification, 336 

we can study macro spatial distributions of multi-class tissue. 337 

Details of meta annotation. The process of meta annotation and the acquisition of PaSegNet dataset 338 

for segmentation is shown in Extended Data Fig. 2g. For the WSI that needs to be annotated, 339 

pathologists use rectangular boxes to annotate typical areas to reduce the difficulty of labeling. For 340 

example, for large tumor or normal regions, pathologists only annotate a small region of inside areas, 341 

and perform sampling in multiple spatial regions to ensure high diversity and low similarity of the data. 342 

For tissue types which only occupy small areas, such as inflammation and bile duct reactions, 343 

pathologists use rectangular boxes to enclose their regions as much as possible. After annotating WSIs, 344 

nonoverlap 150×150 pixels patches are extracted automatically based on the annotated rectangular 345 

boxes. Although the impact of class imbalance has been minimized in the annotating process, there is 346 

still a situation that TUM and NOR patches are much more than REA and INF patches. To overcome 347 

this problem, during automatically extraction, we specify that TUM and NOR classes are randomly 348 

extracted up to 100 patches based on rectangular annotations in one WSI, and all annotated regions of 349 

other classes are extracted in full patches. After patches extraction, resampling is applied to the 350 

extracted dataset to achieve better class balance, which leads to the final meta annotation training set. 351 

WSI decoupling and sparsification  352 

To overcome the problem of the high information density of WSIs and make prognostic DL model 353 

more suitable for current attribution methods, we decoupled the input WSI into macro mode and micro 354 

mode. In our study, we selected the multi-class tissue probability heatmaps as the macro mode and the 355 

morphology of tissue patches as the micro mode of WSIs (Extended Data Fig. 1). We first used OTSU 356 
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method to remove background47, divided the non-background area into 150×150 RGB image patches 357 

at 20× magnification, and recorded the locations of all patches. Then we proposed PaSegNet 𝑓𝑠𝑒𝑔, a 358 

ResNeXt50-based multi-class classification convolutional neural network25 pretrained on ImageNet48, 359 

to encode the input patch 𝐈(𝑖, 𝑗) ∈ ℝ150×150×3 into probability vector 𝒑(𝑖, 𝑗) ∈ ℝ8, where (𝑖, 𝑗) is 360 

the location of patch 𝐈, 𝒑𝑡 is the probability of 𝐈 belonging to class 𝑡 in 8 tissue classes (TUM, 361 

tumor; Nor, normal; FIB, fibrosis; INF, inflammation; NEC, necrosis; REA, bile duct reaction; STE, 362 

steatosis; EMP, empty). Specifically, we used the convolution layers 𝑓𝑐𝑜𝑣𝑛 of ResNeXt50 to convert 363 𝐈 into 2048-dimensional feature vector, and modified the last output feature of fully connection layers 364 

(𝑓𝑓𝑐) 𝒈’s dimension to 8: 365 𝒑(𝑖, 𝑗) = softmax (𝑓𝑓𝑐 (𝑓𝑐𝑜𝑣𝑛(𝐈(𝑖, 𝑗)))) = softmax(𝒈) = 𝑓𝑠𝑒𝑔(𝐈(𝑖, 𝑗)) (1) 366 

𝒑𝑡(𝑖, 𝑗) = exp(𝒈𝑡)∑  8𝑗=1 exp(𝒈𝑗) (2) 367 

After training, the PaSegNet can map the input WSI 𝐖 ∈ ℝ𝑚×𝑛×3 to macro mode 𝐌 ∈ ℝ𝑚′×𝑛′×8, 368 𝑚′ = int(𝑚/150), 𝑛′ = int(𝑛/150): 369 𝐌 = 𝑓𝑠𝑒𝑔(𝐖) (3) 370 

where 𝐌𝑖𝑗 = 𝒑(𝑖, 𝑗) , 𝐖𝑖𝑗 = 𝐈(𝑖, 𝑗) , 𝐌𝑡 ∈ ℝ𝑚′×𝑛′×1  is the probability map of class 𝑡  in 8 tissue 371 

classes. The class index 𝑐(𝑖, 𝑗) of 𝐈(𝑖, 𝑗) was selected as : 372 𝑐(𝑖, 𝑗) = argmax𝑡 (𝒑(𝑖, 𝑗)) (4) 373 

and the segmentation map 𝐒 ∈ ℝ𝑚′×𝑛′×1 can be obtained on 𝐌 by calculating the class index 𝑐(𝑖, 𝑗) 374 

of each position: 375 𝐒 = argmax𝑡 (𝐌) (5) 376 

where 𝐒𝑖𝑗 = 𝑇(𝑖, 𝑗). Based on the segmentation map, 16 patches of 512×512 RGB images in tumor 377 

area were randomly extracted at 20×  magnification. For the cases of insufficient tumor area, 16 378 
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patches were randomly selected with the highest tumor probability. After color normalizing49, these 379 

patches were combined as the micro mode 𝐂 ∈ ℝ512×512×(3×16) of the WSI.  380 

Datasets Description 381 

A summary of the selection and study design of the data used in this work are shown in Supplementary 382 

Fig. 1 and Extended Data Fig. 3. 383 

Data Source. The data used in this work comes from two publicly available datasets, including The 384 

Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA dataset) and Pathology AI Platform 385 

2019 challenge (PAIP dataset), and the in-house dataset of Beijing Tsinghua Changgung Hospital 386 

(QHCG dataset) (Supplementary Fig. 1, Extended Data Fig. 3a). In the TCGA dataset, there are 342 387 

WSIs of 330 patients, and each WSI has the clinical information correspondingly. In the PAIP dataset, 388 

there are 100 WSIs, but no clinical or survival information available. In the QHCG dataset, there are 389 

1182 WSIs of 83 patients with clinical information and 151 external WSIs without clinical information. 390 

In this study, all WSIs were processed at 20× magnification. 391 

Datasets for WSI Segmentation. The training set for segmentation was obtained by meta annotation on 392 

the 151 WSIs with no clinical information of QHCG dataset. The extracted training set had 40,000 393 

patches for each class. The test sets were composed of an internal test set and an external test set to 394 

characterize the classification performance and generalization ability of the trained model. The internal 395 

test set was randomly annotated by pathologists in QHCG's 1182 WSIs that were not included in the 396 

training set and were not from a same patient, and each class had 550 patches. The external test sets 397 

contained TCGA test set and PAIP test set, from which 200 patches per class were randomly extracted, 398 

separately. 399 
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Datasets for prognosis. 1182 WSIs from 83 clinically informative patients in QHCG dataset and 342 400 

WSIs from 330 patients in TCGA dataset were used to train and test the prognostic network. The macro 401 

mode obtained by WSI decoupling and the patients’ survival information constituted the MacroNet 402 

prognosis dataset; the micro mode obtained by WSI decoupling and the patients’ survival information 403 

constituted the MicroNet prognosis dataset. Macro mode, micro mode, and patients’ survival 404 

information constituted the multimodal M2MNet prognostic dataset. The data was split randomly 405 

during cross validation. 406 

Deep Learning Network Architecture 407 

Considering that the macro mode on prognosis has not been explored, while it may have advantages 408 

in being easy to interpret with attribution methods, we designed MicroNet, MacroNet, and M2MNet, 409 

to test whether the performance of macro mode on prognosis can be comparable with that based on 410 

tumor cell morphology (micro mode), and whether the combination of tumor cell morphology and 411 

spatial distribution information is helpful for prognosis. A summary of network architectures is shown 412 

in Extended Data Fig. 4. 413 

MacroNet. To perform survival prediction from macro mode of WSIs, we extended ResNeXt50 to 414 

learn the representation feature vector of macro mode and give corresponding risk score by receiving 415 

multi-channel sparse macro mode and making survival regression. The MacroNet 𝑓𝑚𝑎𝑐𝑟𝑜  can be 416 

described by three components, the macro mode encoding module 𝑓𝑚𝑎𝑐𝑟𝑜_𝑒𝑛𝑐𝑜 , the feature 417 

compression and stabilization module 𝑓𝑐𝑜𝑚𝑝_𝑠𝑡𝑎𝑏, and the prediction module 𝑓𝑝𝑟𝑒𝑑. Specifically, we 418 

modified the input channel number of ResNeXt50 to 8 to match channel number of sparse macro mode 419 𝐌. The modified convolution layers were selected as macro mode encoding module 𝑓𝑚𝑎𝑐𝑟𝑜_𝑒𝑛𝑐𝑜 to 420 

encode 𝐌  into a more compact 2048-dimensional feature space by extracting the information of 421 
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multi-class spatial distribution and interaction. To further compress the encoded macro feature vector 422 𝒌𝑚𝑎𝑐𝑟𝑜 ∈ ℝ2048  to macro mode representation 𝒉𝑚𝑎𝑐𝑟𝑜 ∈ ℝ32  and improve the robustness of 423 

network, a fully connected layer (FC) followed by batch normalization (BN) and rectified linear unit 424 

(ReLU) constructed feature compression and stabilization module 𝑓𝑐𝑜𝑚𝑝_𝑠𝑡𝑎𝑏. Then the final patient-425 

level risk score 𝐑𝐒𝑚𝑎𝑐𝑟𝑜  was computed from 𝒉𝑚𝑎𝑐𝑟𝑜  using 𝑓𝑝𝑟𝑒𝑑 , a fully connected layer with 426 

weights 𝐕 ∈ ℝ1×32 and survival loss function (described in detail in Loss function). The whole model 427 

is shown the equations below: 428 𝒌𝑚𝑎𝑐𝑟𝑜 = 𝑓𝑚𝑎𝑐𝑟𝑜_𝑒𝑛𝑐𝑜(𝐌) (6) 429 𝒉𝑚𝑎𝑐𝑟𝑜 = 𝑓𝑐𝑜𝑚𝑝_𝑠𝑡𝑎𝑏(𝒌𝑚𝑎𝑐𝑟𝑜) = ReLU (BN(FC(𝒌𝑚𝑎𝑐𝑟𝑜))) (7)  430 𝐑𝐒𝑚𝑎𝑐𝑟𝑜 = 𝑓𝑝𝑟𝑒𝑑(𝒉𝑚𝑎𝑐𝑟𝑜) = 𝐕𝒉𝑚𝑎𝑐𝑟𝑜T  (8) 431 

MicroNet. To perform survival prediction from micro mode of WSIs, we extended ResNeXt50 to learn 432 

the representation feature vector of micro mode and give corresponding risk score by receiving multi-433 

channel micro mode and making survival regression. The MicroNet 𝑓𝑚𝑖𝑐𝑟𝑜 can be described by three 434 

components, the micro mode encoding module 𝑓𝑚𝑖𝑐𝑟𝑜_𝑒𝑛𝑐𝑜, the feature compression and stabilization 435 

module 𝑓𝑐𝑜𝑚𝑝_𝑠𝑡𝑎𝑏 , and the prediction module 𝑓𝑝𝑟𝑒𝑑 . Specifically, we modified the input channel 436 

number of ResNeXt50 to 48 to match channel number of micro mode 𝐂. The modified convolution 437 

layers were selected as macro mode encoding module 𝑓𝑚𝑖𝑐𝑟𝑜_𝑒𝑛𝑐𝑜 to encode 𝐂 into a more compact 438 

2048-dimensional feature space by extracting the information of micro morphology. Feature 439 

compression and stabilization module 𝑓𝑐𝑜𝑚𝑝_𝑠𝑡𝑎𝑏  was used to further compress the encoded micro 440 

feature vector 𝒌𝑚𝑖𝑐𝑟𝑜 ∈ ℝ2048  to micro mode representation 𝒉𝑚𝑖𝑐𝑟𝑜 ∈ ℝ32  and improve the 441 

robustness of network. Then the final patient-level risk score 𝐑𝐒𝑚𝑖𝑐𝑟𝑜 was computed from 𝒉𝑚𝑖𝑐𝑟𝑜 442 

using 𝑓𝑝𝑟𝑒𝑑. The whole model is shown the equations below: 443 
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𝒌𝑚𝑖𝑐𝑟𝑜 = 𝑓𝑚𝑖𝑐𝑟𝑜_𝑒𝑛𝑐𝑜(𝐂) (9) 444 𝒉𝑚𝑖𝑐𝑟𝑜 = 𝑓𝑐𝑜𝑚𝑝_𝑠𝑡𝑎𝑏(𝒌𝑚𝑖𝑐𝑟𝑜) = ReLU(BN(FC(𝒌𝑚𝑖𝑐𝑟𝑜))) (10)  445 𝐑𝐒𝑚𝑖𝑐𝑟𝑜 = 𝑓𝑝𝑟𝑒𝑑(𝒉𝑚𝑖𝑐𝑟𝑜) = 𝐕𝒉𝑚𝑖𝑐𝑟𝑜T  (11) 446 

M2MNet. To achieve multimodal survival prediction from both macro mode and micro mode, 447 

MacroNet and MicroNet were used to extract macro mode representation 𝒉𝑚𝑎𝑐𝑟𝑜 and micro mode 448 

representation 𝒉𝑚𝑖𝑐𝑟𝑜 . Following the unimodal feature representations, multimodal feature 449 

representation 𝒉𝑓𝑢𝑠𝑖𝑜𝑛 ∈ ℝ64  was obtained by concatenating 𝒉𝑚𝑎𝑐𝑟𝑜  and 𝒉𝑚𝑖𝑐𝑟𝑜 . In order to 450 

integrate the unimodal feature representations more comprehensively, a fusion module 𝑓𝑓𝑢𝑠𝑖𝑜𝑛 was 451 

designed to first use a fully connected layer expand 𝒉𝑓𝑢𝑠𝑖𝑜𝑛 to a 1024-dimensional fusion feature 452 

space and then use feature compression and stabilization module 𝑓𝑐𝑜𝑚𝑝_𝑠𝑡𝑎𝑏  with the prediction 453 

module 𝑓𝑝𝑟𝑒𝑑 make survival prediction. 454 𝒉𝑚𝑎𝑐𝑟𝑜 = 𝑓𝑐𝑜𝑚𝑝_𝑠𝑡𝑎𝑏 (𝑓𝑚𝑎𝑐𝑟𝑜_𝑒𝑛𝑐𝑜(𝐌)) (12) 455 𝒉𝑚𝑖𝑐𝑟𝑜 = 𝑓𝑐𝑜𝑚𝑝_𝑠𝑡𝑎𝑏 (𝑓𝑚𝑖𝑐𝑟𝑜_𝑒𝑛𝑐𝑜(𝐂)) (13) 456 𝒉𝑓𝑢𝑠𝑖𝑜𝑛 = 𝒉𝑚𝑎𝑐𝑟𝑜⊕𝒉𝑚𝑖𝑐𝑟𝑜 (14) 457 𝐑𝐒𝑀2𝑀 = 𝑓𝑓𝑢𝑠𝑖𝑜𝑛(𝒉𝑓𝑢𝑠𝑖𝑜𝑛) (15) 458 

Loss function. To perform survival prediction for both unimodal and multimodal networks, we selected 459 

the negative Cox partial log-likelihood as the loss function50. Let the survival function 𝑆(𝑡) =460 𝑃(𝑇 ≥ 𝑡0) be the probability of a patient surviving longer than time 𝑡0, where 𝑇 is a continuous 461 

random variable that represents patient survival time, the hazard function  ℎ(𝑡)  which describes 462 

probability that an event occurs instantaneously at a time 𝑡 (after 𝑡0) can be written as: 463 ℎ(𝑡) = lim∂𝑡→0  𝑃( 𝑡 ≤ 𝑇 ≤ 𝑡 + ∂𝑡 ∣ 𝑇 ≥ 𝑡 )∂𝑡  (16) 464 
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and the survival function 𝑆(𝑡) is the integration of the hazard function ℎ(𝑡) over the time between 465 𝑡 and 𝑡0:  466 

𝑆(𝑡) = exp(−∫  𝑡0 ℎ(𝑥)𝜕𝑥) (17) 467 

Assuming that the hazard function can be parameterized as an exponential linear function, Cox 468 

proportion hazards model makes semi-parametric approach for estimating the hazard function: 469 ℎ( 𝑡 ∣∣ 𝑿𝑖 ) = 𝑏0(𝑡)𝑒𝑿𝑖𝑇∙𝜷 (18) 470 

where 𝑏0(𝑡) is the baseline hazard that describes how the risk of an event changes over time, 𝜷 is 471 

model parameters vector that describe how the hazard varies with features vector 𝑿𝑖 of patient 𝑖. 472 

Based on Cox proportion hazards model, the negative Cox partial log-likelihood is as follows: 473 

𝑙(𝜷) = −∑  𝑖∈𝑈 (𝑿𝑖𝑇 ∙ 𝜷 − log∑  𝑗∈𝑅𝑖 𝑒𝑿𝑗𝑇∙𝜷) (19) 474 

where 𝑈 is the set of uncensored patients, 𝑅𝑖 = {𝑗 ∣ 𝑌𝑗 ≥ 𝑌𝑖} is the set of patients whose time of death 475 

or last follow-up 𝑌𝑗 is later than patient 𝑖. In this loss function, 𝑿𝑖𝑇 ∙ 𝜷 can be regarded as the risk 476 

score given by 𝑓𝑝𝑟𝑒𝑑 , where 𝜷  is the weights of 𝑓𝑝𝑟𝑒𝑑  and 𝑿𝑖  is the feature vector of patient 𝑖 477 

input into 𝑓𝑝𝑟𝑒𝑑 . To train MacroNet, MicroNet and M2MNet for survival prediction, we used the 478 

negative Cox partial log-likelihood combined with deep networks as loss function, with the derivative 479 

of the loss function used as error during back-propagation. 480 

Training details. MacroNet and MicroNet were trained end-to-end with a mini-batch size of 64, using 481 

Adam optimization with a learning rate of 5×10−3, 𝑏1 coefficient of 0.9, 𝑏2 coefficient of 0.999, 𝐿2 482 

weight decay of 4×10−4. M2MNet was trained end-to-end with a mini-batch size of 32, using Adam 483 

optimization with a learning rate of 1×10−3, 𝑏1 coefficient of 0.9, 𝑏2 coefficient of 0.999, 𝐿2 weight 484 

decay of 4×10−4. To mitigate model overfitting during training, we also added a 𝐿1 regularization 485 
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term with weight 3×10−4 to the loss function and used dropout layers with P = 0.25 during M2MNet 486 

training. 487 

Attribution methods 488 

To explore the well-performance prognostic model 𝑓, we used attribution techniques to find features 489 

or structures that are relevant to the prediction made by 𝑓 , which may guide us to discover new 490 

biomarkers. There are many attribution techniques to achieve such work, including gradient-based 491 

methods51, feature occlusion and attention weights methods52. However, most of current attribution 492 

techniques can only give attribution maps to achieve two-dimensional contribution spatial location, 493 

which may be insufficient to interpret the high information density input.  
494 

To overcome this problem and explore the relationship between macro mode and prognosis, we 495 

decoupled input WSIs into sparse macro mode and trained high-performance MacroNet. The macro 496 

mode, which only has tissue spatial distribution and interaction information, matches well with the 497 

attribution maps produced by current attribution techniques, and the extremely sparse and explicit 498 

information of macro mode makes the interpretation more objective and accurate. In this work, we 499 

used saliency maps, which were generated by calculating the gradient of the loss function for risk score 500 

with respect to the input pixels26, combined with segmentation maps of WSIs to achieve interpretation. 501 

For better visualization, we made the transparency corresponding to the first 30% of the values in the 502 

generated saliency map increasing linearly, and overlapped the saliency map with corresponding 503 

segmentation map. The discovered features can then be useful for guiding hypotheses for new 504 

biomarkers. 505 

Quantification of WSI macro mode 506 
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Tissue fraction. Based on segmentation map 𝐒 , the tissue fraction of class 𝑡  in 7 tissue classes 507 

(exclude empty) can be written as: 508 Fraction𝑡 = 𝑁𝑡𝑁 − 𝑁𝑒𝑚𝑝𝑡𝑦  (20) 509 

where 𝑁𝑡  is the number of pixels belong to class 𝑡 in 𝐒, 𝑁𝑒𝑚𝑝𝑡𝑦  is the number of empty pixels in 𝐒, 510 𝑁 is the number of all pixels in 𝐒. 511 

TIL. Tumor infiltrating lymphocytes (TILs) has been shown to be a key prognostic indicator for a range 512 

of cancers12. We quantified TILs based on segmentation map 𝐒 and TIL abundance (TILAb) score29. 513 

Specifically, 𝐒 was divided into m × n equal sized grids, and the grid size was selected as 10 pixels 514 

in our work. Then the co-localization score M in terms of the Morisita-Horn index is defined as53: 515 

M = 2∑  𝑚𝑖=1 ∑  𝑛𝑗=1 (𝑝𝑖𝑗𝐼𝑁𝐹 × 𝑝𝑖𝑗𝑇𝑈𝑀)∑  𝑚𝑖=1 ∑  𝑛𝑗=1 (𝑝𝑖𝑗𝐼𝑁𝐹)2 + ∑  𝑚𝑖=1 ∑  𝑛𝑗=1 (𝑝𝑖𝑗𝑇𝑈𝑀)2  (21) 516 

where 𝑝𝑖𝑗𝐼𝑁𝐹 and 𝑝𝑖𝑗𝑇𝑈𝑀 represent the percentage of inflammation and tumor regions in the (𝑖, 𝑗)𝑡ℎ 517 

grid-cell, respectively. Considering the inflammatory proliferation in tumor as a good prognostic 518 

indicator for patient survival, the quantified TILs can be written as: 519 

TIL =
{  
  M2 × ∑  𝑚𝑖=1 ∑  𝑛𝑗=1 (𝑝𝑖𝑗𝐼𝑁𝐹)∑  𝑚𝑖=1 ∑  𝑛𝑗=1 (𝑝𝑖𝑗𝑇𝑈𝑀) , ∑  𝑚

𝑖=1 ∑ 𝑛
𝑗=1 (𝑝𝑖𝑗𝑇𝑈𝑀) > 0

1,                       ∑  𝑚
𝑖=1 ∑ 𝑛

𝑗=1 (𝑝𝑖𝑗𝑇𝑈𝑀) ≤ 0
 (22) 520 

NEC and TND. To characterize and verify necrosis area fraction in WSIs (NEC) and tumor necrosis 521 

distribution (TND) were prognostic biomarkers, we built their mathematical models based on 𝐒. For 522 

NEC, we used the tissue fraction model to quantify it: 523 NEC = Fraction𝑁𝐸𝐶 = 𝑁𝑁𝐸𝐶𝑁 − 𝑁𝑒𝑚𝑝𝑡𝑦  (23) 524 

where 𝑁𝑁𝐸𝐶  is the number of pixels belong to necrosis in 𝐒.  525 
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TIL quantifies the spatial distribution and the interaction between tumor and inflammation to 526 

characterize tumor infiltrating lymphocytes. Whereas, TND is used to quantify the spatial intersection 527 

of tumor boundaries and necrosis boundaries, which is essentially the spatial distribution and 528 

interaction between tumor and necrosis, to characterize high attribution areas for MacroNet prognosis. 529 

Therefore, we modified TIL into TND by changing 𝑝𝑖𝑗𝐼𝑁𝐹 into the percentage of necrosis regions in 530 

the (𝑖, 𝑗)𝑡ℎ grid-cell 𝑝𝑖𝑗𝑁𝐸𝐶: 531 

M′ = 2∑  𝑚𝑖=1 ∑  𝑛𝑗=1 (𝑝𝑖𝑗𝑁𝐸𝐶 × 𝑝𝑖𝑗𝑇𝑈𝑀)∑  𝑚𝑖=1 ∑  𝑛𝑗=1 (𝑝𝑖𝑗𝑁𝐸𝐶)2 + ∑  𝑚𝑖=1 ∑  𝑛𝑗=1 (𝑝𝑖𝑗𝑇𝑈𝑀)2  (24) 532 

TND =
{  
  M′2 × ∑  𝑚𝑖=1 ∑  𝑛𝑗=1 (𝑝𝑖𝑗𝑁𝐸𝐶)∑  𝑚𝑖=1 ∑  𝑛𝑗=1 (𝑝𝑖𝑗𝑇𝑈𝑀) , ∑  𝑚

𝑖=1 ∑ 𝑛
𝑗=1 (𝑝𝑖𝑗𝑇𝑈𝑀) > 01,                        ∑  𝑚

𝑖=1 ∑ 𝑛
𝑗=1 (𝑝𝑖𝑗𝑇𝑈𝑀) ≤ 0

 (25) 533 

Computational Hardware and Software 534 

Python (version 3.7.9) packages used by the project include PyTorch (version 1.8.0), Lifelines (version 535 

0.25.11), NumPy (version 1.19.2), Pandas (version 1.2.2), Albumentations (version 0.5.2), OpenCV 536 

(version 4.5.1), Pillow (version 7.2.0) and OpenSlide (version 1.1.2). All WSIs were processed on Intel 537 

Xeon multi-core CPUs (Central Processing Units) and a total of four 3090 GPUs (Graphics Processing 538 

Units). Deep learning models were trained with Nvidia softwares CUDA 11.1 and cuDNN 8.0.5. 539 

Saliency was implemented using Captum (version 0.2.0)54. Statistical analyses such as two-sampled t-540 

tests used implementations from SciPy (version 1.4.1), and logrank tests, univariable and multivariable 541 

analyses used implementations from Lifelines (version 0.25.11). Plotting and visualization packages 542 

were generated using Seaborn (version 0.9.0) and Matplotlib (version 3.1.1). 543 

  544 
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Data availability 545 

The TCGA diagnostic whole-slide data and corresponding clinical information are available from NIH 546 

genomic data commons (https://portal.gdc.cancer.gov/projects/TCGA-LIHC). The PAIP histology 547 

data and corresponding annotations are available from the Pathology AI Platform 2019 challenge 548 

(https://paip2019.grand-challenge.org/Dataset/). Restrictions apply to the availability of the QHCG 549 

data, including whole slide images and generated PaSegNet dataset, which were used with institutional 550 

permission through IRB approval for the current study, and are thus not publicly available. Please 551 

email all requests for academic use of raw and processed data to the corresponding author. All requests 552 

will be evaluated based on institutional and departmental policies to determine whether the data 553 

requested is subject to intellectual property or patient privacy obligations. Data can only be shared for 554 

non-commercial academic purposes and will require a formal material transfer agreement. 555 

 556 

Code availability 557 

All code was implemented in Python using PyTorch as the primary deep learning package. All code 558 

and scripts to reproduce the experiments of this paper are available at 559 

https://github.com/Biooptics2021/PathFinder. The code is also available at 560 

https://zenodo.org/record/7628549 (ref.55) 561 
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Figure Legends 579 

Fig. 1 The workflow of PathFinder. Digitized high-resolution histology slides of patients serve as 580 

the input into the framework. The WSI is first processed with PaSegNet, a convolutional neural 581 

network, to obtain the spatial distribution probability heatmaps of 7 common liver tissues. The 582 

achieved macro mode and the corresponding survival time are used as the image-label pair to train the 583 

MacroNet, a prognostic convolutional neural network with the output of corresponding risk score for 584 

guiding the patient’s prognosis. Then one can apply the attribution method to the trained, well-585 

performing MacroNet to explore the model's spatial focus area, from which to get the inspiration of 586 

potential prognostic biomarkers. Following that, these hypothetical biomarkers are modeled based on 587 

the macro mode to achieve quantification and characterization, in which the ones similar to the 588 

attribution map after visualization are selected as candidate biomarkers and used as indicators for 589 

multivariate analysis. After testing with clinical dataset, the significantly independent prognostic 590 

indicators can be identified.  591 

 592 

Fig. 2 Performance of Pathfinder in the discovery of new tissue biomarkers for clinical prognosis 593 

of HCC. a, ROC curves for the multi-class tissue classification, evaluated on the internal test set 594 

(QHCG) and external independent test sets (TCGA, PAIP). The central measure of the CIs is the 595 

median. CI, confidence interval. b, C-Index distribution of MacroNet, MicroNet, and M2MNet on 596 

TCGA dataset in a 10-fold cross-validation (n = 10 independent experiments for MacroNet, MicroNet, 597 

and M2Mnet, respectively). Boxplot whiskers extend to the smallest and largest value within 1.5 times 598 

the interquartile ranges of hinges, and box centre and hinges indicate median and first and third 599 

quartiles, respectively. c, C-Index performance of MacroNet, MicroNet, and M2MNet on QHCG test 600 
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set (n = 83 patients). The data are presented as mean values and the error bars show the 95%-confidence 601 

interval of the mean estimate (1000 bootstrapping samples). d, Kaplan-Meier analysis of patient 602 

stratification of clinical staging patients on TCGA dataset. e, g, Kaplan-Meier analysis of patient 603 

stratification of low and high-risk patients via MacroNet on TCGA dataset (e) and QHCG dataset (g), 604 

respectively. f, h, Multivariable analysis of factors associated with overall survival and MacroNet risk 605 

score on TCGA dataset (n = 330 patients) (f) and QHCG dataset (n = 83 patients) (h), respectively; the 606 

data are presented as hazard ratio estimates (squares) and the error bars show the 95%-confidence 607 

interval of the hazard ratio estimate, according to multivariable Cox proportional hazards model; the 608 

results of univariate and multivariate analyses are described in details in Supplementary Tables 1, 2. P 609 

values according to two-sided Mann-Whitney-Wilcoxon test (b), two-sided two-sample t-test (c), two-610 

sided log-rank test (d, e, g) and multivariable Cox proportional hazards model (f, h). n, sample size; 611 

HR, hazard ratio; Stage, AJCC staging; TIL, tumor infiltrating lymphocytes digital score; BDT, bile 612 

duct thrombosis; AFP, alpha-fetoprotein; MVI, microvascular invasion. 613 

 614 

Fig. 3 Discovery and characterization of new tissue biomarkers. a, Segmentation maps of low and 615 

high-risk WSIs predicted by MacroNet on TCGA dataset and QHCG dataset. b, Attribution heatmaps 616 

of WSIs segmentation maps and their corresponding visualization results of NEC and TND 617 

hypothetical indicators. TUM, tumor; Nor, normal; FIB, fibrosis; INF, inflammation; NEC, necrosis; 618 

REA, bile duct reaction; STE, steatosis.  619 

 620 

Fig. 4 Verification of new tissue biomarkers. a, c, Kaplan-Meier analysis of patient stratification of 621 

low (low TND score) and high-risk (high TND score) patients on TCGA dataset (a) and QHCG dataset 622 
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(c). b, d, Multivariable analyses of TND and other factors associated with overall survival on TCGA 623 

dataset (b) (n = 330 patients) and QHCG dataset (d) (n = 83 patients). e, g, Kaplan-Meier analysis of 624 

patient stratification of low (low NEC score) and high-risk (high NEC score) patients on TCGA dataset 625 

(e) and QHCG dataset (g). f, h, Multivariable analyses of NEC and other factors associated with overall 626 

survival on TCGA dataset (f) (n = 330 patients) and QHCG dataset (h) (n = 83 patients). b, d, f, h, the 627 

data are presented as hazard ratio estimates (squares) and the error bars show the 95%-confidence 628 

interval of the hazard ratio estimate, according to multivariable Cox proportional hazards model; 629 

details are shown in Supplementary Tables 7, 8. P values according to two-sided log-rank test (a, c, e, 630 

g) and multivariable Cox proportional hazards model (b, d, f, h). n, sample size; HR, hazard ratio; 631 

Stage, AJCC staging; TIL, tumor infiltrating lymphocytes digital score; BDT, bile duct thrombosis; 632 

AFP, alpha-fetoprotein; MVI, microvascular invasion. 633 

 634 

Fig. 5 Exploring the robustness of macro mode indicators. a, Sampling strategy of clinical WSIs. 635 

NLP, non-neoplastic liver parenchyma; TC, tumor center; TI, tumor-liver interface; ANL, adjacent 636 

non-neoplastic liver; RNL, remote non-neoplastic liver. b, Deviations in the risk scores predicted by 637 

MacroNet from different WSIs of a patient. The risk scores of all WSIs (excluded WSIs without tumor) 638 

of 83 patients are ranked in ascending order based on the selected WSI points. Each patient has more 639 

than one WSIs points (blue points on a specific abscissa), in which the selected WSIs to characterize 640 

the patient’s final risk score is labelled as red points. c-e, Random selection strategy simulations of 641 

MacroNet risk score (c), NEC (d), and TND (e), respectively. The red dotted lines represent C-Indices 642 

of MacroNet risk score, NEC, and TND under the largest tumor fraction selection rule. Each blue point 643 

represents the C-Index of one random selection simulation, and all the blue points are ranked in 644 
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ascending order based on their C-Indices. The distribution of these points with respect to the C-Index 645 

is shown on the right side of the image. 646 

  647 
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Figures

Figure 1

The work�ow of PathFinder. Digitized high-resolution histology slides of patients serve as the input into
the framework. The WSI is �rst processed with PaSegNet, a convolutional neural network, to obtain the
spatial distribution probability heatmaps of 7 common liver tissues. The achieved macro mode and the
corresponding survival time are used as the image-label pair to train the MacroNet, a prognostic
convolutional neural network with the output of corresponding risk score for guiding the patient’s
prognosis. Then one can apply the attribution method to the trained, well-performing MacroNet to explore
the model's spatial focus area, from which to get the inspiration of potential prognostic biomarkers.
Following that, these hypothetical biomarkers are modeled based on the macro mode to achieve
quanti�cation and characterization, in which the ones similar to the attribution map after visualization
are selected as candidate biomarkers and used as indicators for multivariate analysis. After testing with
clinical dataset, the signi�cantly independent prognostic indicators can be identi�ed.



Figure 2

Performance of Path�nder in the discovery of new tissue biomarkers for clinical prognosis of HCC. a,
ROC curves for the multi-class tissue classi�cation, evaluated on the internal test set (QHCG) and external
independent test sets (TCGA, PAIP). The central measure of the CIs is the median. CI, con�dence interval.
b, C-Index distribution of MacroNet, MicroNet, and M2MNet on TCGA dataset in a 10-fold cross-validation
(n = 10 independent experiments for MacroNet, MicroNet, and M2Mnet, respectively). Boxplot whiskers



extend to the smallest and largest value within 1.5 times the interquartile ranges of hinges, and box
centre and hinges indicate median and �rst and third quartiles, respectively. c,C-Index performance of
MacroNet, MicroNet, and M2MNet on QHCG test set (n= 83 patients). The data are presented as mean
values and the error bars show the 95%-con�dence interval of the mean estimate (1000 bootstrapping
samples). d, Kaplan-Meier analysis of patient strati�cation of clinical staging patients on TCGA dataset.
e, g, Kaplan-Meier analysis of patient strati�cation of low and high-risk patients via MacroNet on TCGA
dataset (e) and QHCG dataset (g), respectively. f, h, Multivariable analysis of factors associated with
overall survival and MacroNet risk score on TCGA dataset (n = 330 patients) (f) and QHCG dataset (n =
83 patients) (h), respectively; the data are presented as hazard ratio estimates (squares) and the error
bars show the 95%-con�dence interval of the hazard ratio estimate, according to multivariable Cox
proportional hazards model; the results of univariate and multivariate analyses are described in details in
Supplementary Tables 1, 2. Pvalues according to two-sided Mann-Whitney-Wilcoxon test (b), two-sided
two-sample t-test (c), two-sided log-rank test (d, e, g) and multivariable Cox proportional hazards model (f,
h). n, sample size; HR, hazard ratio; Stage, AJCC staging; TIL, tumor in�ltrating lymphocytes digital score;
BDT, bile duct thrombosis; AFP, alpha-fetoprotein; MVI, microvascular invasion.

Figure 3

Discovery and characterization of new tissue biomarkers. a, Segmentation maps of low and high-risk
WSIs predicted by MacroNet on TCGA dataset and QHCG dataset. b, Attribution heatmaps of WSIs
segmentation maps and their corresponding visualization results of NEC and TND hypothetical
indicators. TUM, tumor; Nor, normal; FIB, �brosis; INF, in�ammation; NEC, necrosis; REA, bile duct reaction;
STE, steatosis.



Figure 4

Veri�cation of new tissue biomarkers. a, c, Kaplan-Meier analysis of patient strati�cation of low (low TND
score) and high-risk (high TND score) patients on TCGA dataset (a) and QHCG dataset (c). b, d,
Multivariable analyses of TND and other factors associated with overall survival on TCGA dataset (b) (n
= 330 patients) and QHCG dataset (d) (n= 83 patients). e, g, Kaplan-Meier analysis of patient strati�cation
of low (low NEC score) and high-risk (high NEC score) patients on TCGA dataset (e) and QHCG dataset



(g). f, h, Multivariable analyses of NEC and other factors associated with overall survival on TCGA
dataset (f) (n = 330 patients) and QHCG dataset (h) (n= 83 patients). b, d, f, h, the data are presented as
hazard ratio estimates (squares) and the error bars show the 95%-con�dence interval of the hazard ratio
estimate, according to multivariable Cox proportional hazards model; details are shown in Supplementary
Tables 7, 8. P values according to two-sided log-rank test (a, c, e, g) and multivariable Cox proportional
hazards model (b, d, f, h). n, sample size; HR, hazard ratio; Stage, AJCC staging; TIL, tumor in�ltrating
lymphocytes digital score; BDT, bile duct thrombosis; AFP, alpha-fetoprotein; MVI, microvascular invasion.

Figure 5

Exploring the robustness of macro mode indicators. a, Sampling strategy of clinical WSIs. NLP, non-
neoplastic liver parenchyma; TC, tumor center; TI, tumor-liver interface; ANL, adjacent non-neoplastic liver;
RNL, remote non-neoplastic liver. b, Deviations in the risk scores predicted by MacroNet from different
WSIs of a patient. The risk scores of all WSIs (excluded WSIs without tumor) of 83 patients are ranked in
ascending order based on the selected WSI points. Each patient has more than one WSIs points (blue
points on a speci�c abscissa), in which the selected WSIs to characterize the patient’s �nal risk score is
labelled as red points. c-e, Random selection strategy simulations of MacroNet risk score (c), NEC (d), and
TND (e), respectively. The red dotted lines represent C-Indices of MacroNet risk score, NEC, and TND under
the largest tumor fraction selection rule. Each blue point represents the C-Index of one random selection



simulation, and all the blue points are ranked in ascending order based on their C-Indices. The distribution
of these points with respect to the C-Index is shown on the right side of the image.
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