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Knowledge graph-enhanced molecular 
contrastive learning with functional prompt

Yin Fang    1,2,3, Qiang Zhang    1,2  , Ningyu Zhang    1,4,5, Zhuo Chen    1,2, 
Xiang Zhuang    1,2, Xin Shao    3, Xiaohui Fan    3,6,7   & Huajun Chen    1,2,5,8 

Deep learning models can accurately predict molecular properties and 
help making the search for potential drug candidates faster and more 
efficient. Many existing methods are purely data driven, focusing on 
exploiting the intrinsic topology and construction rules of molecules 
without any chemical prior information. The high data dependency makes 
them difficult to generalize to a wider chemical space and leads to a lack of 
interpretability of predictions. Here, to address this issue, we introduce 
a chemical element-oriented knowledge graph to summarize the basic 
knowledge of elements and their closely related functional groups. We 
further propose a method for knowledge graph-enhanced molecular 
contrastive learning with functional prompt (KANO), exploiting external 
fundamental domain knowledge in both pre-training and fine-tuning. 
Specifically, with element-oriented knowledge graph as a prior, we first 
design an element-guided graph augmentation in contrastive-based 
pre-training to explore microscopic atomic associations without violating 
molecular semantics. Then, we learn functional prompts in fine-tuning to 
evoke the downstream task-related knowledge acquired by the pre-trained 
model. Extensive experiments show that KANO outperforms state-of-the-art 
baselines on 14 molecular property prediction datasets and provides 
chemically sound explanations for its predictions. This work contributes 
to more efficient drug design by offering a high-quality knowledge 
prior, interpretable molecular representation and superior prediction 
performance.

Molecular property prediction is widely considered one of the most 
important tasks in drug discovery. Traditional wet-lab experiments are 
time consuming and require a huge and incessant investment1,2. With 
artificial intelligence, researchers have studied molecular property 
prediction models to assess the clinical trial success rate and thera-
peutic potential of drug candidates, or even directly predict whether 
a compound will receive US Food and Drug Administration approval, 

substantially speeding up drug development and avoiding costly 
late-stage failures.

With the increasing availability of chemical experimental data, 
researchers have adopted pre-training models on extensive collections 
of unlabelled molecules, followed by fine-tuning on a limited number of 
labelled molecules for a specific task3–6. Most of these self-supervised 
learning (SSL) methods on molecules are purely data driven, focusing 
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knowledge in ElementKG to generate functional prompts, prompting 
the pre-trained model to recall task-related knowledge.

Finally, we thoroughly evaluate KANO on 14 various molecular 
property prediction tasks, demonstrating its superiority over com-
petitive baselines. We also conduct extensive experiments to verify the 
necessity of each component of KANO, and to investigate its robustness 
and interpretability.

Results
Overview of KANO
In this paper, we propose KANO, a new KG-enhanced molecular contras-
tive learning with functional prompt method, which consists of three 
main components: (1) ElementKG construction and embedding, (2) 
contrastive-based pre-training and (3) prompt-enhanced fine-tuning. 
An overview of KANO is shown in Fig. 1.

ElementKG construction and embedding. Chemical domain knowl-
edge is critical for molecular analysis, and integrating it into structured 
data can make it more standardized and easier to use. Some research-
ers have built KGs from public chemical databases and scientific lit-
erature to extract associations between chemicals and diseases or 
drug pairs19,20. However, in contrast to these approaches, we focus on 
the most fundamental chemical knowledge—the chemical elements. 
Over more than a century, the Periodic Table has evolved into an inter-
related and complete system of elements, revealing the inherent laws 
of the complex real world and enabling chemical research to achieve a 
fundamental leap from phenomenon to essence. While a recent study11 
developed a KG that incorporates elements and their corresponding 
chemical attributes, its basic relations are inadequate for accommo-
dating thorough and well-organized fundamental chemical knowl-
edge. To provide a holistic view of the Periodic Table, we construct an 
element-oriented KG that combs the class hierarchy, data properties 
and object properties of elements. Additionally, we recognize the 
importance of functional groups and their close relationship to chemi-
cal elements, and thus, we collect relevant knowledge about functional 
groups from Wikipedia pages to make ElementKG more informative.

Figure 2a shows a snapshot of ElementKG, which consists of two 
levels: instance level and class level, coloured as red and blue, respec-
tively. At the instance level, chemical elements and functional groups are 
represented as entities in ElementKG, denoted by red blocks. To record 
various chemical attributes of each element (for example, electron affin-
ity and boiling point) and the composition of each functional group (for 
example, bond type), we apply data properties that attach literal data 
type values to an entity. The dotted block represents the data properties 
of the entity in the red block above it. Furthermore, as indicated by the 
red arrows, we establish associations between entities through object 
properties, such as chemical attribute relations between elements and 
the inclusion relations between elements and functional groups. We 
then classify all entities on the basis of their commonalities, resulting in 
the class level of ElementKG. Entities are assigned to the corresponding 
classes via rdf:type, denoted by dashed black arrows. The blue blocks 
represent different classes, while the blue arrows reflect the inclusion 
(rdfs:subClassOf) or disjointness (owl:disjointWith) between them. 
In particular, the subClassOf relations between classes form the class 
hierarchy, which serves as the backbone of ElementKG. The construc-
tion details can be found in Methods, and the statistics of ElementKG 
are displayed in Supplementary Information.

To comprehensively explore the structural and semantic informa-
tion and obtain meaningful representations of all entities, relations and 
other components in ElementKG, we adopt a KG embedding approach 
based on OWL2Vec* (ref. 21). For further elaboration, please see Methods.

Contrastive-based pre-training. After obtaining ElementKG and its 
embeddings, we aim to incorporate it into pre-training to enhance the 
model’s understanding of fundamental domain knowledge. We employ 

on exploiting the intrinsic information of molecular graphs without any 
prior chemical knowledge7–10. Moreover, with the enormous chemical 
space, these models rely heavily on pre-training datasets and may not 
generalize well to different downstream prediction tasks. Additionally, 
models that capture only the topology of molecular graphs and simple 
construction rules generally yield low interpretability. Therefore, it is 
important to leverage the fundamental chemical knowledge as a prior 
to guide the model to explore the chemical semantics of molecules 
at the microscopic level and discover meaningful patterns in both 
pre-training and fine-tuning.

As a typical SSL method, contrastive learning has attracted more 
research interest. To construct similar pairs and maximize agreement 
between them, existing methods rely on universal graph augmenta-
tion techniques that include node deletion, edge perturbation and 
subgraph extraction11. However, these techniques can be unsuitable 
for molecular graphs due to the considerable impact of adding or 
removing chemical bonds or atoms, which can alter the molecule’s 
properties and identity12. Moreover, most existing methods consider 
only the connections between atoms established by chemical bonds, 
and thus do not fully explore the underlying relations of atoms in a 
molecular graph, which also highlights the key to incorporating exter-
nal domain knowledge.

Another neglected issue is that the pre-training tasks differ greatly 
from the downstream tasks. Directly applying pre-trained representa-
tions to downstream tasks may result in suboptimal performance. In 
this Article, to address this, we propose providing a chemical prompt 
during fine-tuning based on fundamental chemical knowledge to 
bridge this gap. Inspired by prompt-tuning13, an emerging paradigm 
that has demonstrated remarkable performance on a wide range of 
natural language processing tasks14–17, it is crucial to devise appropri-
ate prompts for molecular graphs based on fundamental chemical 
knowledge to enable more reliable predictions.

To this end, we propose a chemical element-oriented knowledge 
graph (ElementKG), which integrates basic knowledge of elements 
and functional groups in an organized and standardized manner. 
Then we exploit the contained fundamental chemical knowledge as a 
prior in both pre-training and fine-tuning, and propose a novel knowl-
edge graph-enhanced molecular contrastive learning with functional 
prompt (KANO).

Firstly, we construct a chemical ElementKG based on the Periodic 
Table (https://ptable.com) and Wikipedia pages (https://en.wikipedia.
org/wiki/Functional_group). ElementKG offers a comprehensive and 
standardized view from a chemical element perspective, which forms 
the foundation of our work. ElementKG covers the class hierarchy of ele-
ments, the chemical attributes of elements, the relationships between 
elements, the corresponding functional groups, and the connections 
between functional groups and their constituent elements.

Second, we introduce an element-guided graph augmentation in 
contrastive pre-training. Specifically, we augment the original molecu-
lar graph under the guidance of element knowledge in ElementKG, 
extracting rich relations between elements and associations between 
atoms that share the same element type but are not directly con-
nected by chemical bonds. The resulting augmented graph respects 
the chemical semantics within molecules and establishes essential 
connections between atoms that go beyond the structural informa-
tion. On top of this, a contrastive learning framework is developed 
to avoid indiscriminate implantation of external knowledge and to 
mitigate injection noise by allowing the two graph views to comple-
ment each other.

Third, we propose functional prompts to bridge the gap between 
pre-training contrastive tasks and downstream molecular property 
prediction tasks. As sets of atoms bonded together in a specific pattern, 
functional groups play a crucial role in determining the properties 
of the parent molecule18 and are therefore closely related to down-
stream tasks. Therefore, in fine-tuning, we utilize the functional group 
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a contrastive learning method to pre-train a graph encoder on a large 
set of unlabelled molecules, using the basic element knowledge in 
ElementKG. Traditional graph augmentation techniques for creating 
positive pairs of contrastive learning often involve dropping nodes or 
perturbing edges, which can violate chemical semantics within mole-
cules. To address this issue and establish more meaningful connections 
between atoms, we propose an element-guided graph augmentation 
approach for constructing positive pairs in contrastive learning.

As shown in Fig. 1b, we begin by identifying the element types pre-
sent in a given molecule (for example, C, N and O) and retrieving their 
corresponding entities and relations from ElementKG (for example, 
(N, hasStateGas, O), (O, inPeriod2, C)). This forms an element relation 
subgraph that describes the relationships between elements using 

their associated entities and relations. We link the element entity nodes 
in this subgraph to their corresponding atom nodes in the original 
molecular graph to create an augmented molecular graph that inte-
grates fundamental domain knowledge and captures the essential 
associations between atoms that share the same element type, even if 
they are not directly connected by chemical bonds. Our approach pre-
serves the topology structure while incorporating important chemical 
semantics. Additional details about the input features and the triple 
definition can be found in Supplementary Information.

On top of this, we employ a contrastive learning framework to train 
the graph encoder by maximizing the consistency between the original 
molecular graph and the augmented molecular graph, without indis-
criminately embedding element knowledge in the augmented graph. 
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Fig. 1 | Overview of KANO. a, ElementKG construction and embedding. We collect 
basic element knowledge from the Periodic Table and functional group 
knowledge from Wikipedia pages to build ElementKG. Then we apply the KG 
embedding method to obtain the embeddings of all entities and relations in 
ElementKG. b, Contrastive-based pre-training. We use an element-guided graph 
augmentation strategy based on element knowledge of ElementKG to convert the 
original molecular graph G into the augmented molecular graph G̃, establishing 
essential connections between atoms beyond the inherent structure. The graph 

encoders are then trained to maximize the agreement between these two graph 
views to avoid excessive knowledge injection in G̃. c, Prompt-enhanced 
fine-tuning. We leverage functional group knowledge of ElementKG to generate a 
corresponding functional prompt for each molecule, stimulating the pre-trained 
graph encoder to recall the learned molecular property-related knowledge and 
bridging the gap between the pre-training contrastive tasks and the downstream 
tasks. The resulting prompt-enhanced molecular graph is then fed into the 
pre-trained graph encoder for molecular property prediction.
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Given a minibatch of N randomly sampled molecules, we create a set 
of 2N graphs by transforming their molecular graphs {Gi}

N
i=1 into aug-

mented graphs { ̃Gi}
N
i=1  using element-guided graph augmentation. 

Following refs. 12,22, we treat the 2(N − 1) graphs other than the positive 
pair within the same minibatch as negatives, where a positive pair 
consists of the original molecular graph Gi and its augmented molecular 
graph ̃Gi. We apply a graph encoder f(⋅) to extract graph embeddings 
{hhhGi }

N
i=1 and {hhh ̃Gi

}N
i=1

 from the two graph views, and a non-linear projec-

tion network g(⋅) to map these embeddings into a space where the 

contrastive loss is applied, resulting in two new representations {zzzGi }
N
i=1 

and {zzz ̃Gi
}N
i=1

. Finally, a contrastive loss is used to maximize the consist-
ency between positive pairs while minimizing the agreement between 
negative pairs. For further details, refer to Methods.

Prompt-enhanced fine-tuning. After pre-training, the molecular 
graph encoder needs to be fine-tuned for downstream property predic-
tion. Specifically, the input molecular graph G is fed into the pre-trained 
graph encoder f(⋅) to extract the graph embedding hG, which is then 
fed into the predictor to output the property value. To bridge the gap 
between the pre-training contrastive tasks and downstream tasks, we 
propose to use functional group knowledge as prompts to stimulate 
the pre-trained graph encoder.

As shown in Fig. 1c, we generate the functional prompt from 
the functional group knowledge of ElementKG. First, we detect all 

functional groups in the input molecule, retrieve their corresponding 
entity embeddings in ElementKG and construct a mediator with a learn-
able embedding to capture the importance of each functional group. 
We then apply a self-attention mechanism to the embedding of the 
mediator (coloured in red) and the embeddings of the functional group 
entities to comprehensively aggregate their semantics and obtain 
the functional prompt. Finally, the functional prompt is added to the 
original representation of each atom node in the input molecular graph 
with a learnable scale parameter to produce the prompt-enhanced 
molecular graph, which is then fed into the pre-trained graph encoder 
and a predictor for molecular property prediction. The technical details 
of functional prompts are provided in Methods.

KANO boosts the performance of property prediction
Molecular properties of interest can vary widely in scale, ranging from 
macroscopic influences on the human body to microscopic electronic 
properties, such as drug side-effects23, the ability to inhibit human 
immunodeficiency virus (HIV) replication24 and hydration free energy3. 
To assess the effectiveness of KANO, we evaluated its performance on 
datasets in four categories: physiology, biophysics, physical chemistry 
and quantum mechanics. For more information on the datasets and 
baselines, please refer to Supplementary Information.

Tables 1 and 2 present the results of various supervised and SSL meth-
ods. #Molecules represents the number of molecules in each dataset, and 
#Tasks indicates the number of binary prediction tasks in each dataset.
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Fig. 2 | Illustration of ElementKG and its embedding process. a, A snapshot 
of ElementKG. ElementKG contains the class hierarchy, data properties, object 
properties and entities of both elements and functional groups. b, The process 
of ElementKG embedding. We derive a corpus of three documents (structure 
document, lexical document and combined document) from ElementKG, 

considering the structural topology, literal semantics and correspondence between 
entity IDs and literal words in ElementKG, respectively. We then train a language 
model to learn entity and relation embeddings from this corpus. This process 
enables the integration of element and functional group knowledge into a unified 
representation, which facilitates downstream molecular property prediction.
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Table 1 reports the test receiver operating characteristic-area 
under curve (ROC-AUC,%) on classification tasks in physiology 
and biophysics. Key observations include: (1) KANO consistently 
outperforms other methods on all eight datasets, with a significant 
improvement of 3.79%, showcasing its effectiveness. (2) KANO per-
forms well on multiple-task learning datasets such as Tox21, ToxCast, 

SIDER and MUV. In particular, KANO achieves a 3.39% improvement 
on the ToxCast dataset with 617 binary classification tasks. The 
robust performance indicates that its representations cover diverse 
molecular semantics.

Table 2 presents the test performance of regression tasks in 
physical chemistry and quantum mechanics. The key observations 

Table 1 | Test performance of different models on eight classification benchmarks of physiology and biophysics. The first 
five models are supervised learning methods, while the last eight are self-supervised methods. The mean and standard 
deviation of test ROC-AUC (%) on three independent runs are reported

Category Physiology Biophysics

Dataset BBBP Tox21 ToxCast SIDER ClinTox BACE MUV HIV

Number of 
molecules

2,039 7,831 8,575 1,427 1,478 1,513 93,807 41,127

Number of tasks 1 12 617 27 2 1 17 1

GCN47 71.8 ± 0.9 70.9 ± 0.3 65.0 ± 6.1 53.6 ± 0.3 62.5 ± 2.8 71.6 ± 2.0 71.6 ± 4.0 74.0 ± 3.0

GIN48 65.8 ± 4.5 74.0 ± 0.8 66.7 ± 1.5 57.3 ± 1.6 58.0 ± 4.4 70.1 ± 5.4 71.8 ± 2.5 75.3 ± 1.9

MPNN49 91.3 ± 4.1 80.8 ± 2.4 69.1 ± 3.0 59.5 ± 3.0 87.9 ± 5.4 81.5 ± 1.0 75.7 ± 1.3 77.0 ± 1.4

DMPNN50 91.9 ± 3.0 75.9 ± 0.7 63.7 ± 0.2 57.0 ± 0.7 90.6 ± 0.6 85.2 ± 0.6 78.6 ± 1.4 77.1 ± 0.5

CMPNN26 92.7 ± 1.7 80.1 ± 1.6 70.8 ± 1.3 61.6 ± 0.3 89.8 ± 0.8 86.7 ± 0.2 79.0 ± 2.0 78.2 ± 2.2

N-GRAM46 91.2 ± 0.3 76.9 ± 2.7 - 63.2 ± 0.5 87.5 ± 2.7 79.1 ± 1.3 76.9 ± 0.7 78.7 ± 0.4

Hu et.al7 70.8 ± 1.5 78.7 ± 0.4 65.7 ± 0.6 62.7 ± 0.8 72.6 ± 1.5 84.5 ± 0.7 81.3 ± 2.1 79.9 ± 0.7

MGSSL10 70.5 ± 1.1 76.4 ± 0.4 64.1 ± 0.7 61.8 ± 0.8 80.7 ± 2.1 79.7 ± 0.8 78.7 ± 1.5 79.5 ± 1.1

GEM9 88.8 ± 0.4 78.1 ± 0.4 68.6 ± 0.2 63.2 ± 1.5 90.3 ± 0.7 87.9 ± 1.1 75.3 ± 1.5 81.3 ± 0.3

GROVER8 86.8 ± 2.2 80.3 ± 2.0 56.8 ± 3.4 61.2 ± 2.5 70.3 ± 13.7 82.4 ± 3.6 67.3 ± 1.8 68.2 ± 1.1

GraphMVP51 72.4 ± 1.6 75.9 ± 0.5 63.1 ± 0.4 63.9 ± 1.2 79.1 ± 2.8 81.2 ± 0.9 77.7 ± 0.6 77.0 ± 1.2

MolCLR11 73.3 ± 1.0 74.1 ± 5.3 65.9 ± 2.1 61.2 ± 3.6 89.8 ± 2.7 82.8 ± 0.7 78.9 ± 2.3 77.4 ± 0.6

MolCLRCMPNN 72.4 ± 0.7 78.4 ± 2.6 69.1 ± 1.2 59.7 ± 3.4 88.0 ± 4.0 85.0 ± 2.4 74.5 ± 2.1 77.8 ± 5.5

KANO 96.0 ± 1.6 83.7 ± 1.3 73.2 ± 1.6 65.2 ± 0.8 94.4 ± 0.3 93.1 ± 2.1 83.7 ± 2.3 85.1 ± 2.2

*Note that the N-GRAM model on ToxCast is too time consuming to finish in time, and its results are not presented. The best-performing results are marked in bold.

Table 2 | Test performance of different models on six regression benchmarks of physical chemistry and quantum 
mechanics. The first five models are supervised learning methods, and the last six are self-supervised methods. The mean 
and standard deviation of test root mean square error (for ESOL, FreeSolv and Lipophilicity) or mean absolute error (for 
QM7, QM8 and QM9) on three independent runs are reported

Category Physical chemistry Quantum mechanics

Dataset ESOL FreeSolv Lipophilicity QM7 QM8 QM9

Number of 
molecules

1,128 642 4,200 7,160 21,786 133,885

Number of tasks 1 1 1 1 12 3

GCN47 1.431 ± 0.050 2.870 ± 0.135 0.712 ± 0.049 122.9 ± 2.2 0.0366 ± 0.000 0.00835 ± 0.00001

GIN48 1.452 ± 0.020 2.765 ± 0.180 0.850 ± 0.071 124.8 ± 0.7 0.0371 ± 0.001 0.00824 ± 0.00004

MPNN49 1.167 ± 0.430 1.621 ± 0.952 0.672 ± 0.051 111.4 ± 0.9 0.0148 ± 0.001 0.00522 ± 0.00003

DMPNN50 1.050 ± 0.008 1.673 ± 0.082 0.683 ± 0.016 103.5 ± 8.6 0.0156 ± 0.001 0.00514 ± 0.00001

CMPNN26 0.798 ± 0.112 1.570 ± 0.442 0.614 ± 0.029 75.1 ± 3.1 0.0153 ± 0.002 0.00405 ± 0.00002

N-GRAM46 1.100 ± 0.030 2.510 ± 0.191 0.880 ± 0.121 125.6 ± 1.5 0.0320 ± 0.003 0.00964 ± 0.00031

Hu et.al7 1.100 ± 0.006 2.764 ± 0.002 0.739 ± 0.003 113.2 ± 0.6 0.0215 ± 0.001 0.00922 ± 0.00004

GEM9 0.813 ± 0.028 1.748 ± 0.114 0.674 ± 0.022 60.0 ± 2.7 0.0163 ± 0.001 0.00562 ± 0.00007

GROVER8 1.423 ± 0.288 2.947 ± 0.615 0.823 ± 0.010 91.3 ± 1.9 0.0182 ± 0.001 0.00719 ± 0.00208

MolCLR11 1.113 ± 0.023 2.301 ± 0.247 0.789 ± 0.009 90.9 ± 1.7 0.0185 ± 0.013 0.00480 ± 0.00003

MolCLRCMPNN 0.911 ± 0.082 2.021 ± 0.133 0.875 ± 0.003 89.8 ± 6.3 0.0179 ± 0.001 0.00475 ± 0.00001

KANO 0.670 ± 0.019 1.142 ± 0.258 0.566 ± 0.007 56.4 ± 2.8 0.0123 ± 0.000 0.00320 ± 0.00001

*The best-performing results are marked in bold.
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are as follows: (1) KANO receives top scores among supervised 
and self-supervised models, surpassing previous records by a rel-
ative improvement of 15.8% on all six regression tasks. (2) KANO’s 
fine-grained chemical understanding helps it achieve remarkable accu-
racy on quantum mechanical datasets, even surpassing models that 
incorporate additional 3D information9. (3) KANO greatly helps tasks 
with limited label information, as evidenced by the average improve-
ment of 21.7% on small datasets ESOL and FreeSolv with only 1,128 and 
642 labelled molecules, respectively.

In summary, KANO outperforms other models in all benchmarks, 
demonstrating the effectiveness of integrating ElementKG into the 
pre-training and fine-tuning stages. KANO not only outperforms other 
SSL methods but also demonstrates its superiority over supervised 
methods, providing a competitive advantage for generalization to a 
broader chemical space.

Richer knowledge in KG leads to more robust representations
ElementKG is essential in the KANO framework as it guides molecular 
augmentation and functional prompt generation. To determine the 
contributions of its various components, we evaluate KANO’s perfor-
mance using different KG components, such as class hierarchy, data 
property and functional group knowledge. We only prune ElementKG’s 
components during pre-training and keep the experimental settings 
for fine-tuning consistent with the original KANO approach.

Extended Data Fig. 1a reveals that: (1) KANO with the complete 
ElementKG architecture (‘complete ElementKG’) outperforms the 
other versions across all datasets, highlighting the indispensability of 
each component. (2) Removing class hierarchy (‘w/o class hierarchy’) 
results in performance degradation, accentuating the significance 
of class division and transitive relations between subclasses in refin-
ing and transferring fundamental domain knowledge. (3) Excluding 
functional groups from ElementKG (‘w/o functional group’) causes 
a noticeable drop in performance, underscoring the critical role of 
functional groups. (4) Excluding data properties of entities (‘w/o data 
properties’) almost always perform the worst, emphasizing the impor-
tance of chemical attributes.

To further investigate the impact of data properties, which each 
element contains more than 15 of, we mask a certain proportion of 
them and report the test performance on four categories of tasks. 
Extended Data Fig. 1b shows the test results for varying keeping rates 
of data properties. Notably, the model’s performance consistently 
improves as the proportion of retained properties increases, verifying 
that richer data properties provide more comprehensive fundamen-
tal knowledge and consequently enable the learning of more robust 
molecular representations.

Contrastive learning produces a high-quality feature space
The quality of a representation space can be evaluated by two key 
properties: alignment and uniformity25. The former indicates that 
similar samples should be mapped to nearby embeddings, while the 
latter suggests that feature vectors should be uniformly distributed 
on the unit hypersphere, preserving as much data information as pos-
sible. In Fig. 3, we compare the molecular representations produced 
by our method with those obtained by other methods, including a 
supervised model (CMPNN26), a representative predictive method 
(GROVER8) and a contrastive method with universal augmentation 
strategy (MolCLRCMPNN

11).

Alignment analysis. We visualize representations of the molecules 
with different scaffolds by t-distributed stochastic neighbour embed-
ding (t-SNE)27 to test whether molecules with the same scaffold would 
have similar representations. The scaffold, which represents the core 
structure of a molecule, is a fundamental concept in chemistry and 
provides a basis for systematic investigations of molecular cores and 
building blocks28. Molecules with different scaffolds typically have 
very different chemical properties. We choose the seven most common 
scaffolds from each dataset (Tox21, QM7 and BBBP) and distinguish the 
scaffolds with different colours. As shown in Fig. 3a, the model without 
pre-training cannot distinguish molecules with these scaffolds, and the 
predictive and contrastive methods show only slight improvement. 
In contrast, KANO produces more distinctive clusters with the lowest 
Davies–Bouldin (DB) index.
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Fig. 3 | Alignment and uniformity analysis. a, Alignment analysis. We show 
t-SNE visualization of molecular representations to investigate the similarity of 
molecules with the same scaffold. Different colours represent different scaffolds, 
with a lower DB index indicating better clustering separation. b, Uniformity 

analysis. Molecular feature distributions are plotted with Gaussian KDE in ℝ2 
(darker colours indicate more points fall in the region), along with KDE on angles 
(that is, arctan2(y, x) for each point (x, y) ∈ 𝒮𝒮1) for a clearer presentation.
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Uniformity analysis. To examine the uniformity of the learned molecu-
lar representations, we first map them onto the unit hypersphere 𝒮𝒮1 
using t-SNE27, and then visualize the density distributions of the repre-
sentations on 𝒮𝒮1 using non-parametric Gaussian kernel density estima-
tion (KDE)29 in ℝ2. We also show the density estimations of angles for 
each point on 𝒮𝒮1 to present the results more clearly. Figure 3b illustrates 
the feature and density distributions of the molecular representations 
learned by our model and the three baselines on the Tox21, ToxCast 
and ClinTox datasets. In the first three columns, the distributions of 
the representations are relatively highly clustered with sharp density 
distributions. In the last column, the distribution becomes more uni-
form, and the density estimation curves are markedly less sharp.

From Fig. 3, we observe that our model can map molecules with 
the same scaffold to similar representations, and the pre-trained rep-
resentations have a more uniform distribution than the baselines. Our 
ElementKG and KG-guided contrastive learning framework enable 
KANO to capture globally intrinsic molecular characteristics by nor-
malizing the filtering of knowledge and perceiving global structural 
insights. Supplementary Information provides additional visualiza-
tions of KANO pre-trained representations.

Functional prompts enable explainable predictions
In Extended Data Fig. 2, we compared KANO’s performance with func-
tional prompts with that without prompts and evaluated two alternative 
architectures that integrated functional group knowledge through 
adding and concatenating to each atom. Results show that the model 
with functional prompts performs better than the one without, with 
an 8.41% relative improvement. Furthermore, adding and concatenat-
ing functional group features were proven to be suboptimal choices, 
emphasizing the effectiveness of functional prompts.

Since functional prompts act as a bridge between pre-training 
contrastive tasks and downstream molecular property prediction 
tasks, we are interested in their potential to provide domain-specific 
interpretability. We visualize the attention weights of functional groups 
in molecular graphs from four property categories in Fig. 4. (1) The first 
example is from the Tox21 (ref. 30) public database, which measures 
the toxicity of compounds. We observe higher attention weights for 
pyridyl and azo functional groups, followed closely by primary amine. 
Interestingly, pyridyl and primary amine groups can combine to form 
2,6-diaminopyridine, a major component of secondary hepatotoxins 
and skin sensitizers31. Azo-containing compounds, such as azo dyes, 
exhibit carcinogenic and mutagenic properties, making them highly 
significant32. (2) The second example is a human β-secretase 1 (BACE-1) 
inhibitor from the BACE dataset33. The molecule assigns more atten-
tion to amidine, carboxamide and secondary ketimine, which form 
the imidazole component. In addition, pyridyl and phenyl also receive 
more attention. These findings align with previous research34,35, sug-
gesting that the aromatic heterocycle family inhibits BACE-1. (3) The 
third sample is from FreeSolv36, which focuses on the hydration free 
energy of small molecules in water. Fluoro and hydroxyl groups receive 
higher attention due to fluoro’s strong electron-acquiring ability and 
hydroxyl’s hydrophilicity, affecting the molecule’s interaction force 
with water. Additionally, carboxyl groups with strong polarity receive 
more attention weights. (4) The final molecule is from QM7 (ref. 37), 
recording the atomization energies of molecules. Alkenyl and carboxa-
mide groups receive more attention due to the higher bond energy of 
the carbon–carbon double bond and the stability of the amide bond, 
requiring more energy to break them apart into separate atoms. The 
interpretability exploration illustrates how functional prompts bridge 
the gap between pre-training tasks and downstream tasks by invoking 
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Fig. 4 | Investigation of interpretability of functional prompts. Attention 
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normalized. Darker colours indicate higher attention weights.
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relevant functional group knowledge from the molecular property 
prediction task perspective.

Conclusion
In this study, we presented KANO, a novel approach that enhances 
molecular property prediction tasks by incorporating chemical domain 
knowledge. KANO achieved superior performance on 14 molecular 
benchmarks by leveraging ElementKG, a KG that organizes the knowl-
edge of elements and functional groups. KG-guided pre-training 
allowed KANO to obtain a high-quality molecular representation space, 
while functional prompts captured meaningful chemical substructures 
relevant to downstream tasks.

While KANO has shown promising performance, it may still have 
some limitations. For instance, ElementKG may not fully capture 
molecular system complexity, and the current functional prompts 
may not be able to capture long-range interactions between substruc-
tures. To address these limitations, we suggest several interesting 
future directions. Firstly, extending ElementKG to cover other areas 
of chemistry and integrating it with other existing KGs could provide a 
more comprehensive understanding of molecular systems. Secondly, 
studying the interpretability of KANO’s learned representations and the 
chemical knowledge captured by the functional prompts could provide 
insights for molecular design and optimization. Finally, exploring the 
possibility of combining KANO with other techniques to improve its 
performance on small datasets and accelerate drug discovery could 
be a promising direction to pursue.

Methods
ElementKG construction and representation
We constructed ElementKG by integrating knowledge from the Periodic 
Table and Wikipedia pages, providing a holistic view of the element 
class hierarchy, the chemical attributes of elements and functional 
groups, and the relations between them. The detailed construction 
process is shown in Fig. 2 and described below.

First, we extracted the class hierarchy from the collected knowl-
edge of elements and functional groups, which serves as the back-
bone of ElementKG. As shown in the upper part of Fig. 2, blue blocks 
represent different classes and blue arrows reflect the containment 
or disjoint relations between them. For example, the rdfs:subClassOf 
construct between the class ReactiveNonmetals and the class Nonmet-
als means that the set of entities in ReactiveNonmetals is a subset of 
entities in Nonmetals. Also, every entity in the Ester class is a member 
of its parent class, GroupContainingOxygen. It is important to note that 
the subclass relations are transitive, implying that the ReactiveNonmet-
als class is also a subclass of the Element class. However, since literal 
names can be insufficient to differentiate between different classes, 
we defined disjointness for the classes and added disjointness axioms 
using owl:disjointWith. For example, the disjointness between the 
Metals and Nonmetals classes indicates that an element entity in the 
Metals class cannot be a member of the Nonmetals class at the same 
time. Using the class hierarchy, we assigned corresponding entities to 
each class via rdf:type, with both C and O elements in red blocks being 
members of the ReactiveNonmetals class.

Second, we compile a list of chemical attributes sourced from 
the Periodic Table and assign them as data properties to each entity 
in ElementKG (the dotted block). Over 15 data properties, including 
hasName, hasAtomic, hasDensity and hasIonization, are associated 
with each element. On the other hand, for functional groups, we record 
the type of bonds they contain. For instance, CarboxylhasBondType 
contains single and double bonds, while Phenyl contains both single 
and aromatic bonds.

Third, we use object properties (red directional arrows) to model 
the relationships between entities in ElementKG. To achieve this, we 
discretize the continuous chemical attribute values of elements and 
use them as object properties (for example, inRadiusGroup1 and 

inWeightGroup2) to connect element entities to each other. For 
instance, the triple (C, inRadiusGroup1, O) indicates that the entities 
C and O are both in Radius Group 1, while (C, hasStateGas, O) means that 
they are both in the gaseous state. We add symmetric characteristics 
to these object properties, which means that (O, hasStateGas, C) also 
holds when given (C, hasStateGas, O). Since ElementKG is primarily 
element oriented, we do not directly add object properties to func-
tional groups. Instead, we establish the connection between element 
and functional group entities through the isPartOf object property, 
which indicates that the element is involved in the formation of the 
functional group.

To fully explore the structural and semantic information and 
obtain meaningful representations of all entities, relations and other 
components in ElementKG, we employ a KG embedding approach 
based on OWL2Vec* (ref. 21). As illustrated in Fig. 2b, this approach 
involves two steps: (1) extracting a corpus from ElementKG, including 
a structure document, a lexical document and a combined document, 
and (2) training a language model on the corpus to obtain high-quality 
KG embeddings38. The structure document captures the graph struc-
ture and the logical constructors by computing random walks for each 
target entity and combining the traversed relations and entities into 
sentences. For example, a random walk of depth 3 starting from the 
element C would result in the sentence (C, inRadiusGroup1, O, rdf:type, 
ReactiveNonmetals). The lexical document includes sentences parsed 
from the structure document. For example, the sentence above can be 
parsed as (‘C’, ‘in’, ‘radius’, ‘group1’, ‘O’, ‘type’, ‘reactive’, ‘nonmetals’). To 
establish the correspondence between entities and their literal names, 
we replace each word in the lexical document with the corresponding 
entity in the structure document, resulting in a combined document. 
That is, the example above can be converted to a set of sentences:  
(C, ‘in’, ‘radius’, ‘group1’, ‘O’, ‘type’, ‘reactive’, ‘nonmetals’), (‘C’, inRa-
diusGroup1, ‘O’, ‘type’, ‘reactive’, ‘nonmetals’) and so on. These three 
documents are merged into a single document, which is then used to 
train a word2vec39 model with the skip-gram architecture. Finally, we 
obtain embeddings for each entity and relation in ElementKG, which we 
use for input feature initialization of the augmented molecular graph 
and functional prompt generation.

Contrastive learning framework
We employ a contrastive learning framework to learn the representa-
tions of molecular graphs. Given a minibatch of size N, we generate 2N 
graphs by transforming the N original molecular graphs into N aug-
mented molecular graphs. The original molecular graph Gi and its 
augmented version G̃i constitute a positive pair (Gi, G̃i), while (Gi, Gj)j≠1 
and (Gi, ̃Gj)j≠1 form negative pairs.

After capturing the graph representations using the graph encod-
ers f(⋅), a non-linear transformation g(⋅) called the projection network 
maps both the original and augmented graph representations to a 
latent space where the contrastive loss is calculated, as proposed in 
simCLR40. We adopt a two-layer perceptron (MLP) to perform the pro-
jection. Then, we use the normalized temperature-scaled cross-entropy 
(NT-Xent) loss function40 to train the graph encoders to maximize 
the agreement between positive pairs and the discrepancy between 
negative pairs.

Let sim(z1, z2) =
z⊤1 z2

‖z1‖⋅‖z2‖  denote the cosine similarity between ℓ2 
normalized z1 and z2. The loss function for a positive pair (Gi, G̃i)  is 
defined as

ℓi =

− log e
sim(zGi ,zG̃i

)/τ

∑N
k=1 [k≠i](e

sim(zGi ,zGk )/τ+e
sim(zG̃i

,zG̃k
)/τ
)+(e

sim(zGi ,zG̃k
)/τ
+e

sim(zG̃i
,zGk )/τ)

, (1)

where [k≠i] is an indicator function that evaluates to 1 if k ≠ i, τ is a 
temperature parameter and z represents the latent representation. 
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The numerator of the contrastive loss measures the agreement between 
the positive pair, while the denominator calculates the sum of the 
agreement between each graph and the other 2N − 1 graphs. This means 
that the latent representation zzzGi of the original graph should consider 
the similarity with not only other original graph latent vectors {zzzGk }k≠i 
but also all augmented graphs {zzzG̃k

}N
k=1. The latent representation of the 

augmented graph zzzG̃i
 also follows the same calculation process. Finally, 

the loss is computed across all positive pairs in the minibatch.

Prompt generator
To stimulate the pre-trained model to recall the relevant knowledge 
learned before, we design a prompt generator fprompt to produce a 
prompt xprompt based on ElementKG and the input molecular graph G, 
that is, xprompt = fprompt(G, ElementKG). We detect all functional groups 
contained in G using the open-source package RDKit41 and retrieve the 
corresponding functional group entities in ElementKG on the basis 
of their names. Then we obtain the embeddings of functional group 
entities {x1, …, xm} using the KG embedding method, where m is the 
number of detected functional groups. To capture the importance 
of functional groups, we construct a learnable vector as the media-
tor (denoted as x0) and then apply the self-attention mechanism42 
on both the embeddings of the mediator and functional groups.  
Specifically, the input X = {x0, x1, …, xm} is first projected into the 
query/key/value vector:

Q = XWQ,K = XWK,V = XWV, (2)

where WQ, WK, WV ∈ ℝd×d  and d is the hidden dimension. The 
self-attention mechanism calculates the attention weight between 
queries and keys, and then multiplies by the value. The output embed-
ding is formulated as

X′ = softmax (QK
T

√d
)V. (3)

We implement two self-attention layers and obtain the embedding 
of the mediator x′0 = X′[∶,0], which reflects the combined contributions 
of functional groups with varying importance. We then feed it into a 
fully connected layer followed by layer normalization43 to obtain the 
functional prompt

xprompt = LayerNorm(W ⋅ x′0). (4)

Finally, we add the prompt xprompt to the original representation of 
each atom node in G with a learnable scale parameter α, resulting in the 
new input feature of a node v in G expressed as xnewv = xv + α ⋅ xprompt. We 
then feed this prompt-enhanced molecular graph into the pre-trained 
graph encoder, followed by a prediction network for downstream 
molecular properties.

Graph encoder architecture
A molecular graph can be represented as G = (𝒱𝒱, 𝒱), where 𝒱𝒱  denotes a 
set of nodes and 𝒱 denotes a set of edges. Each edge is bidirectional. 
Let xv denote the initial features of node v, and xe(u,v) as the initial features 
of edge e(u, v). In particular, for atoms and bonds in the original molecular 
graph, we extract different initial features for them following specific 
chemical rules, as detailed in Supplementary Information.

Taking Fig. 1b as an example, for the augmented graph, we take 
the element entity embeddings obtained above as the initial features 
of element nodes. The initial feature of an edge between every two ele-
ment nodes is obtained by mean pooling of the embeddings of multiple 
relations between the corresponding element entities in ElementKG. 
Following the same feature extraction method in the original molecular 
graph, we obtain the initial features of atoms and bonds. The edges 
between elements and their corresponding atoms are distinguished 

by different random initialization features, that is, the dashed edges 
with the same colour represent the same initial features while different 
colours indicate different representations.

Given the graph structure, node features and edge features, our 
goal is to learn a graph encoder f(⋅) that maps the input graph to a vec-
tor representation. In our case, we implement CMPNN26 as the graph 
encoder, which improves graph embeddings by strengthening the 
message interactions between edges and nodes.

Firstly, to update the node hidden states, each node v ∈ 𝒱𝒱  aggre-
gates representations of their incoming edges instead of its neighbour-
ing nodes in G. The intermediate message vector is obtained as

mk(v) = AGGREGATE ({hk−1 (e(u,v)) , ∀u ∈ 𝒩𝒩v})

= ∑
u∈N(v)

hk−1 (eu,v) ⊙ pooling ( ∑
u∈N(v)

hk−1 (eu,v)) ,
(5)

where k denotes the current depth of the message passing, the pooling 
operator is a max pooling function and ⊙ is an element-wise multipli-
cation operator. Here we apply max pooling to highlight the edges 
with the highest information intensity, as the hidden state of a node is 
mainly based on the strongest message from incoming edges. Then, the 
node’s current hidden state hk−1(v) is concatenated with the message 
vector mk(v) and fed through a communicative function to update the 
node’s hidden state hk(v):

hk(v) = COMMUNICATE (mk(v),hk−1(v))

= σ (Wk ⋅ CONCAT (hk−1(v),mk(v))) ,
(6)

where the hidden state hk(v) acts as a message transfer station that 
receives incoming messages, integrates them and sends them to the 
next station. The specific communication function is implemented 
by feeding both the node and edge features into an MLP followed by a 
rectified linear unit (ReLU) activation.

Secondly, we extract message of the edge e(v, w) by subtracting its 
inverse edge information from the hk(v):

mk (e(v,w)) = hk(v) − hk−1 (e(w,v)) , (7)

where e(w, v) is the inverse edge of e(v, w). To update the edge hidden states, 
we first feed the edge intermediate message mk (e(v,w)) into a fully con-
nected layer and add it with the initial edge feature xe(u,v). We apply a 
ReLU activation function to the output and use it as the intermediate 
message vector for the next iteration. This procedure can be mathe-
matically expressed as

hk (e(v,w)) = σ (xe(u,v) +W ⋅mk (e(v,w))) . (8)

Thirdly, after K iterations, one more round of interaction is applied:

m(v) = AGGREGATE ({hK (e(u,v)) , ∀u ∈ N(v)}) , (9)

then the final node representation h(v) of the graph is obtained by 
gathering the message from incoming edges, the current node repre-
sentation and the initial node feature:

h(v) = COMMUNICATE (m(v),hK(v), xv) . (10)

Finally, a readout operator is applied to get the whole graph 
representation:

hG = ∑
v∈𝒱𝒱

GRU(h(v)), (11)

where GRU is the gated recurrent unit introduced in ref. 44.
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Experimental setup
Pre-training and downstream dataset. In the pre-training phase, 
we pre-train KANO using 250,000 unlabelled molecules sampled 
from ZINC15 (ref. 4), a public access database containing purchasable 
drug-like compounds. In the fine-tuning phase, we use 14 benchmark 
datasets from MoleculeNet5, comprising 678 binary classification 
tasks and 19 regression tasks. The datasets cover molecular data from 
a wide range of domains, such as drugs, biology, physics and chem-
istry. We perform three independent runs on three random-seeded 
scaffold splitting for all datasets, except QM9, with a train/validation/
test ratio of 8:1:1. Scaffold splitting45 is a more challenging splitting 
method that splits molecules according to their scaffolds (molecular 
substructures) and can better evaluate the generalization ability of 
the models on out-of-distribution data samples. For the QM9 data-
set, we follow the random splitting setting of most related works11,46 
for comparison. Supplementary Information contains more details 
about the datasets.

Implementation details. Since the raw data are in the form of molecu-
lar SMILES, which is a line notation for describing the structure of 
chemical species using short ASCII strings, we utilize the open-source 
chemical analysis tool RDKit to convert them into 2D molecular graphs 
and extract the atom and bond features. The initial features of atoms are 
determined by their associated eight attributes (for example, chirality, 
hybridization and atomic mass), and the bonds are embedded by their 
four related attributes (for example, bond type and conjugated), as 
detailed in Supplementary Information.

In contrastive pre-training, we utilize the Adam optimizer with a 
learning rate of 3 × 10−5 to optimize the NT-Xent loss and set the tem-
perature parameter τ to 0.1. We apply an MLP with a ReLU activation 
function as the projection network. The model is trained with a batch 
size of 1,024 and 50 epochs.

In prompt-enhanced fine-tuning, we use RDKit to detect the 
functional groups in each molecule. We apply two self-attention 
layers on all functional groups and the mediator. The output is 
fed into a fully connected layer, which is then layer normalized. 
We adopt a two-layer MLP as the property prediction network. For 
classification tasks, we utilize the binary cross-entropy (BCE) loss  
combined with the sigmoid layer (BCEWithLogits loss) when train-
ing the graph encoder and the property prediction network, while 
for regression tasks, we apply the mean squared error loss. The 
Adam optimizer is applied to the graph encoder with a learning 
rate ranging from 1 × 10−4 to 1 × 10−3 for all datasets, and the learning 
rate of the prompt generator is five times that of the graph encoder.  
We train the model on the training set and search hyper-parameters 
on the validation set for the best results. The training is set to 100 
epochs. We implement fine-tuning of the pre-trained model three 
times with a batch size of 256 to report the average and standard 
deviation of performance on the testing set, using ROC-AUC for 
classification tasks and mean absolute error/root mean square 
error for regression tasks. KANO is implemented using Pytorch and 
runs on a Ubuntu Server with NVIDIA GeForce RTX 3090Ti graphics 
processing units.

Data availability
The ElementKG, pre-training data and molecular property prediction 
benchmarks used in this work are available in the Code Ocean capsule 
at https://doi.org/10.24433/CO.5629517.v1 and the GitHub repository 
at https://github.com/HICAI-ZJU/KANO. Source data are provided 
with this paper.

Code availability
The source code of this work is freely available in the Code Ocean 
capsule at https://doi.org/10.24433/CO.5629517.v1 and the GitHub 
repository https://github.com/HICAI-ZJU/KANO.
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Extended Data Fig. 1 | Exploration of knowledge abundance in ElementKG. 
a, Performance of KANO with different ElementKG components. Green denotes 
the removal of class hierarchy from ElementKG, which removes various classes 
(except for the lowest-level classes directly connected with entities), as well 
as axioms rdfs:subClassOf and owl:disjointWith. It consists only of entities, 
lowest-level classes, data properties, and object properties. Purple denotes the 
deletion of data properties of each entity. Yellow represents the removal of the 
entire functional group component, including class hierarchy and entities of 
functional groups, and their relations with element entities. Red indicates the 
complete ElementKG with all components. The results are reported as mean 
values +/- SD on three independent runs. The error bars represent the SD, while 

the dots represent three individual data points. b, Performance of KANO with 
different keeping rates of data properties in ElementKG. We vary the proportion 
of data properties of element entities retained in ElementKG and report the 
corresponding performance trends across datasets in various domains, 
represented by different colors. The horizontal axis represents the keeping 
rate, which refers to the proportion of knowledge introduced. The vertical axis 
represents the performance measured by ROC-AUC on classification tasks 
(higher is better) and RMSE and MAE on regression tasks (lower is better). The 
results are reported as mean values +/- SD on three independent runs. The mean 
is represented by the lines, the SD is depicted by the error bars, and individual 
data points are marked with dots.
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Extended Data Fig. 2 | A closer look at functional prompts. Performance 
comparison of KANO with or without functional prompts, as well as architectures 
that incorporate functional group knowledge in different ways (addition or 
concatenation). The yellow bars indicate the addition of functional group 
knowledge to each atom, while the green bars signify the concatenation of 
this knowledge to the atom. The blue bars represent KANO without functional 

prompts, where the input molecules do not contain functional group knowledge 
from ElementKG. The pink bars represent injecting functional group knowledge 
to each atom using functional prompts. The results are reported as mean values 
+/- SD on three independent runs. The error bars represent the SD, while the dots 
represent three individual data points.
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