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Editorial

Seeking a quantum advantage for machine  
learning

Machine learning and quantum 
computing approaches are 
converging, fuelling considerable 
excitement over quantum devices 
and their capabilities. However, 
given the current hardware 
limitations, it is important to push 
the technology forward while being 
realistic about what quantum 
computers can do, now and in the 
near future.

A 
recent phase of excitement 
in quantum computing and 
quantum machine learning has 
attracted substantial funding 
to develop the technology, with 

big tech companies such as NVIDIA, Amazon, 
Microsoft, Google and IBM conducting funda-
mental and applied research in this emerging 
field, in addition to start-ups and academic 
labs. The excitement is undoubtedly caused 
at least partly by several experimental dem-
onstrations in recent years that have provided 
evidence of a quantum computational advan-
tage in specific tasks — examples in which clas-
sical computers would be able to complete the 
same task only in a substantially, impractically 
longer time1,2.

Could a revolution in quantum computing 
indeed be underway as advances in quantum 
algorithms and device technology are con-
tinuing apace? Realizing suitable hardware 
remains a hurdle. There is no shortage of 
approaches to building qubits — the build-
ing blocks of a quantum computer — with 
some of the most common ones being based 
on trapped ions, superconducting circuits 
and quantum optical systems, although 
silicon-based options3 and phonon-based 
options4 are also currently under investiga-
tion. However, a general challenge is that qubit 
quantum states are easily disturbed during 
interaction with other qubits and the rest of 
the environment. Errors in qubit operation can 
be corrected with well-developed protocols, 

but these require large amounts of qubits5. 
The reality is that the fabrication of quan-
tum chips with sufficient numbers of qubits 
and sufficiently low error rates for full-scale 
fault-tolerant quantum computing is cur-
rently out of reach.

Resigned to this state of affairs, the present 
phase of quantum computing is called the 
‘noisy intermediate-scale quantum’ (NISQ) 
era, which refers to devices that operate with 
noisy qubits that are not error corrected and, 
therefore, have limited, imperfect computa-
tional capabilities. Currently, the most power-
ful quantum processor, made by IBM, has 433 
qubits, and the company says it will release 
a quantum processor with more than 1,000 
qubits later this year6.

NISQ devices usually consist of hybrid archi-
tectures, wherein parts of the computations 
are carried out by quantum systems while 
other tasks are performed by classical proces-
sors. Some of these devices can be accessed 
and manipulated via internet-based cloud ser-
vices and are often used in proof-of-principle 
experiments. NISQ devices have a limited 
promise for the sort of full-scale quantum 
computing applications that were originally 
envisioned (for example, in factoring large 
numbers). However, recent research shows 
that many specialized but still useful tasks can 
be identified that are realistically feasible with 
current NISQ devices.

An area of active research is speeding up 
machine learning with NISQ devices7. One 
of the first experimental implementations 
of quantum supervised machine learning 
used a chip of five qubits made from super-
conducting circuits and employed two types 
of algorithms: quantum kernel estimation 
and quantum variational classifier8. Another 
application is in quantum reinforcement 
learning, for which quantum speed-up has 
been experimentally demonstrated on 
a nano-photonic processor by means of a 
quantum communication channel between 
the learning agent and the environment9. 
Adversarial quantum machine learning 
is also attracting increasing interest, as 

discussed by West et al. in a recent Perspec-
tive article10. Taking a different angle on the 
near-term use of NISQ devices, an active 
research direction is to harness machine 
learning for the control of quantum states 
in simulations of complex quantum systems, 
as shown by Metz and Bukov in this issue of 
Nature Machine Intelligence.

Although the field of quantum machine 
learning is clearly progressing, researchers 
are venturing into largely uncharted terri-
tory, with many roadblocks that need to be 
overcome before the technology can become 
practically useful. One technical bottleneck 
consists of representing classical data as quan-
tum states. Quantum algorithms therefore 
seem especially likely to offer quantum com-
putational advantage in applications in which 
the data handled and processed are natively 
quantum, as is the case for simulations of 
quantum chemistry and quantum solid state 
systems in regimes that are difficult to repre-
sent on classical computers.

It is key to be honest about what quantum 
computers can do, now and in the near future, 
and whether they present an advantage over 
classical computing approaches — the latter 
are also advancing, constantly raising the bar. 
Claims about current and imminent advances 
in quantum devices need to be made with a 
clear understanding of the inherent limita-
tions of the current quantum hardware. At 
the same time, the field should be encouraged 
to broaden the range of problems for which 
quantum computing and quantum machine 
learning can be used.
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