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Abstract

Photonic neural network (PNN) is a remarkable analog artificial intelli-
gence (AI) accelerator that computes with photons instead of electrons to
feature low latency, high energy efficiency, and high parallelism. However,
the existing training approaches cannot address the extensive accumu-
lation of systematic errors in large-scale PNNs, resulting in a significant
decrease in model performance in physical systems. Here, we propose dual
adaptive training (DAT) that allows the PNN model to adapt to substan-
tial systematic errors and preserves its performance during the deploy-
ment. By introducing the systematic error prediction networks with task-
similarity joint optimization, DAT achieves the high similarity mapping
between the PNN numerical models and physical systems and high-
accurate gradient calculations during the dual backpropagation training.
We validated the effectiveness of DAT by using diffractive PNNs and
interference-based PNNs on image classification tasks. DAT successfully
trained large-scale PNNs under major systematic errors and preserved
the model classification accuracies comparable to error-free systems. The
results further demonstrated its superior performance over the state-of-
the-art in situ training approaches. DAT provides critical support for
constructing large-scale PNNs to achieve advanced architectures and can
be generalized to other types of AI systems with analog computing errors.
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1 Main

Artificial intelligence (AI), powered by deep neural networks (DNNs), utilizes brain-
inspired information processing mechanisms to approach human-level performance
in complex tasks [1], which has already achieved major applications ranging from
translating languages [2], image recognition [3], cancer diagnosis [4] to fundamental
science [5]. The vast majority of AI algorithms have been implemented via digital
electronic computing platforms, such as graphics- and tensor-processing units, to
support their major computing power requirement. However, the requirements of
AI for processors’ computing performance have grown rapidly, greatly exceeding the
development of digital electronic computing imposed by Moore’s law and the upper
limit of computing energy efficiency [6, 7, 46]. Constructing the photonic neural
network (PNN) systems for AI tasks with analog photonic computing has attracted
increasing attention and is expected to be the next-generation AI computing modality
with the advantages of low latency, high bandwidth, and low power consumption.
The fundamental characteristic of photons and principle of light-matter interactions,
such as diffraction [18–20] and interference [12, 16, 39] based on free-space optics or
integrated photonic circuits, have been utilized to implement various neuromorphic
photonic computing architectures, including convolutional neural networks [14, 15,
43, 44], spiking neural networks [10, 11, 17], recurrent neural networks [21, 22], and
reservoir computing [23–25].

The effective training approach is one of the most critical aspects for DNNs
to learn the reliable model and guarantee high inference accuracy. The DNNs
constructed using software on a digital electronic computer generally train using
backpropagation algorithm [26]. Such training mechanism provides the basis for the
in silico training of photonic DNNs, which establishes the PNN models in computer
to simulate physical systems, train models through backpropagation, and deploy
the trained model parameters to physical systems. However, the inherent systematic
errors of analog computing from different sources, e.g., geometric error and fabrica-
tion error, causes the deviation between the in silico trained PNN model and physical
system and results in the performance degeneration during the directly deploy-
ing [20, 27, 28]. To address the systematic errors, the in situ training approaches,
training PNNs on the physical systems with experimental measurements, have
drawn increasing attention for optimizing the PNN models for practical applica-
tions [20, 28, 29, 31, 45, 48]. Nevertheless, the existing in situ training methods still
confront great challenges in training large-scale PNNs with major systematic errors,
which hinder the construction of advanced architectures and limit the model perfor-
mance in performing complex AI tasks. The reasons for this are mainly due to the
inaccurate gradient calculations during the backpropagation caused by the imprecise
modeling of PNN physical systems [28, 45, 48], the requirement of extensive system
measurements with layer-by-layer training processes [20], or the additional hardware
configurations for backward optical field propagation [29, 31].

In this work, we propose dual adaptive training (DAT) for the end-to-end dual
backpropagation training of large-scale PNNs, allowing the models to adapt to sig-
nificant systematic errors without additional hardware configurations for backward
optical field propagation. The basic principle of DAT for training PNNs with system-
atic errors is illustrated in Fig. 1. To precisely model the PNN physical system, we
introduce the systematic error prediction networks (SEPNs) in addition to the PNN
physical model and develop the task-similarity joint optimization approach for dual
backpropagation training. The DAT iteratively updates the network parameters of
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Fig. 1 Training PNNs with DAT. The input information is optically and digitally encoded
to feed into the PNN physical system and numerical model, respectively. To adapt to the
systematic errors, each DAT training cycle consists of four steps to perform the dual back-
propagation, which iteratively updates the PNN physical model and SEPN parameters by
optimizing the task and similarity loss functions, respectively.

PNN and SEPNs in an end-to-end form for each input training sample. With the
training of SEPNs to characterize the inherent systematic errors, the DAT establishes
high similarity mapping between the PNN numerical models and physical systems,
leading to high-accurate gradient calculation for PNN training. Each training sam-
ple is optically and digitally encoded as the input to the PNN physical system and
forward numerical model, respectively. The physically measured and the numerically
extracted network outputs are fused to obtain the task loss function and compared
to obtain the similarity loss function. The network’s internal states, if provided, can
be further used to boost the DAT performance. The dual backpropagation training
process of DAT minimizes the task and similarity loss functions to update the net-
work parameters of the physical model and SEPNs, respectively, by calculating the
gradients of the PNN numerical model. After the training, the PNN physical model,
deployed on the physical system, can adapt to significant systematic errors from var-
ious sources. Therefore, DAT supports large-scale PNN training and mitigates the
requirement of high-precision fabrication and system configurations.

The constructed PNN numerical model in a digital computer comprises the ideal
PNN physical model and SEPNs for modeling the photonic computing process and
inherent systematic errors, respectively. To facilitate learning the systematic errors
of PNN layers, SEPNs are incorporated in the manner of residual connections for the
PNN layers (see Fig. 1 and Methods), inspired by the residual neural networks pro-
posed in [32]. In this work, each SEPN module is configured with a complex-valued
mini-UNet [33] to guarantee its learning capacity for fitting the systematic errors
of PNN layers. The target is to eliminate performance degradation while deploying
PNN physical model parameters to the physical system. With the established PNN
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numerical model, the DAT for dual backpropagation training of the PNN numeri-
cal model consists of four main steps for each input training sample, including (1)
the measurement of network outputs and optional internal states from the physical
system; (2) the extraction of corresponding network outputs and optional internal
states from the numerical model; (3) minimizing the similarity loss for backpropa-
gation that updates the network parameters of SEPNs by comparing between the
corresponding physical and numerical network’s outputs and internal states; (4) min-
imizing the task loss for backpropagation that updates the network parameters of
PNN physical model by replacing the numerical network’s outputs and internal states
with the physical measurements. We detail and formulate each of the training steps
in Fig. 1 as follows:

First, each training sample is optically encoded and input to the PNN physical
system to perform the forward inference, with which we obtain the physical network
output PN for a N -layer neural network with input I. To further improve the training
performance, the network internal states {P1,P2, ...,PN−1} can be measured at

each layer’s output. All the observations {Pn}Nn=1 are set to be intensity, i.e., the
absolute square of output complex optical fields, for facilitating the measurement.
The optional internal states can boost the PNN training performance, especially
under more severe systematic errors, but cause the additional cost of measurements.
In practice, we can selectively measure a certain amount of internal states to reduce
the number of measurements.

Second, the same training sample is also digitally encoded and input to the
PNN numerical model to extract the internal states {S1,S2, ...,SN−1} and final
observation SN . Different from the counterpart physical measurements Pn, we set
Sn = |Sn| exp(jΦSn

) to be the complex optical fields with the amplitude |Sn| and
phase ΦSn

for facilitating the formulation of DAT process, which can be easily
obtained during the numerically modeling of PNN forward inference. Ideally, the
|Sn|2 = Pn if the systematic errors can be perfectly characterized with SEPNs.

Third, we optimize the SEPNs’ parameters of the PNN numerical model by
minimizing the similarity loss function Ls as follows:

min
Λ

{
Ls(P, |S|2) =

N∑
n=1

αnlmse(Pn, |Sn|2) =

N∑
n=1

αn‖Pn − |Sn|2‖22

}
, (1)

where P = {Pn}Nn=1; S = {Sn}Nn=1; Λ refers to the learnable parameters of SEPNs;
lmse(·) denotes a mean square error (MSE) function; αn is the coefficient to weight
the n-th MSE function. For each training sample, the parameters of the PNN phys-
ical model are fixed, and the gradients of Ls with respect to Λ are calculated during
the backpropagation to update SEPNs’ parameters for one step. The optimization in
Eq. (1) aims to train SEPNs to minimize the deviation between the physically mea-
sured and numerically extracted network output and internal states for accurately
modeling the PNN physical system. We term the aforementioned training step for
SEPNs as unitary mode since all SEPNs’ parameters are optimized with a unitary
loss function. In addition, the gradient calculation for SEPN modules can be imple-
mented with separable mode (see Methods) when measuring internal states, where
all SEPN modules are separated into several groups and optimized independently
from each other.

Fourth, we optimize the physical parameters of the PNN numerical model and
deploy them to the physical system by minimizing the following task loss Lt:

min
Ω

{
Lt(|FN (PN ,SN )|2,T)

}
, (2)
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where Ω refers to the learnable parameters of the physical model; T denotes the
desired output; Lt is defined based on the target task implemented by PNNs,
which is set to be the cross-entropy loss [1] for classification tasks in this work;
and FN (PN ,SN ) represents the output of the fusion function FN that replaces the
amplitude of the numerically extracted network output with the physically measured
counterpart. Furthermore, such fusion processes are applied for not only the net-
work output but also the network internal states to maintain the interactions with
the physical system; therefore, we have {Fn(Pn,Sn) =

√
Pn exp(jΦSn

)}Nn=1. Dur-
ing the backpropagation for updating physical parameters with one step for each
training sample, the parameters of SEPNs are fixed, and the fused network output
and internal states are used for calculating the gradients of Lt with respect to the
physical system parameters Ω. The optimization in Eq. (2) aims to train the PNN
physical model under systematic errors so that the PNN physical system deployed
with physical parameters Ω can perform the target tasks.

The above training steps are repeated over all training samples to minimize the
loss functions until convergence for obtaining the PNN numerical model and physical
parameters Ω for the physical system. We term the training process as dual back-
propagation training since the gradient calculation for updating the parameters of
the PNN physical model and SEPNs rely on each other. Furthermore, the training
of the PNN physical model promotes the training of SEPNs and vice versa. On the
one hand, the optimization of physical parameters facilitates characterizing inher-
ent systematic errors with SEPNs for task-specific physical models. On the other
hand, the optimization of SEPNs’ parameters facilitates performing the inference
tasks with physical models under practical systematic errors. Besides, the state and
output fusion processes allow the PNN physical model to further adapt the sys-
tematic errors and accelerate the convergence, especially when the SEPNs haven’t
fully characterized the systematic errors during the optimization. These underlying
mechanisms guarantee the effectiveness and convergence of the proposed DAT.

We validate the effectiveness of DAT by applying it for training large-scale diffrac-
tive PNNs (DPNNs) [18, 20] and interference-based PNNs (MPNNs) [12, 39] under
various systematic errors. The network settings and training processes for two types
of models are detailed in the Methods section. Two benchmark datasets, i.e., the
Modified National Institute of Standards and Technology (MNIST) [26] and Fashion-
MNIST (FMNIST) [42], were utilized for the performance evaluations. The results
demonstrate the superior performance of DAT over the in silico training with direct
deployment and the state-of-the-art in situ training method using physics-aware
training (PAT) [28, 45].

2 Results

2.1 Training DPNN with DAT

We built two types of DPNN architectures, i.e., the DPNN-S and DPNN-M, as
illustrated in Fig. 2a and Fig. 2b, respectively. DPNN-S in Fig. 2a was constructed
using a single PNN block, where the block comprised the cascading of two phase
modulation layers with transformation matrices M11,M12, followed by an opto-
electronic intensity measurement layer at the output plane. The output layer of
DPNN-S records the intensity P1 of output optical fields for the input I. Specif-
ically, the diffractive elements on a phase modulation layer are able to modulate
the phase of input optical fields, and the secondary wave sources are generated via
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Fig. 2 Training DPNNs under three types of systematic errors for the MNIST
classification. a, DPNN-S with a single block. The block consists of two phase modula-
tion layers and one intensity measurement layer, where the optical diffraction for weighted
matrices occurs between adjacent layers. b, DPNN-M with seven hierarchically intercon-
nected blocks, where each block is the same as the counterpart in a. The evaluations of DAT
performance with DPNN-S (c) and DPNN-M (d). The performances of DAT are compared
with the PAT and direct deployment of in silico trained models under different amounts of
systematic errors. The DPNN-S and DPNN-M are trained without and with the internal
states (IS), respectively.

optical diffraction to interconnect to the next phase modulation layer or the output
plane for intensity measurements. The forward propagation of a single PNN block
has three free-space diffraction processes with three diffractive matrices W11,W12,
and W13. Therefore, the mathematical forward model of DPNN-S can be defined
as: P1 = |W13M12W12M11W11I|2. To further demonstrate the effectiveness of
the proposed method on DPNNs with larger network scales, we constructed DPNN-
M [20] that was designed with multiple PNN blocks to constitute multi-channel
diffractive hidden layers with hierarchically interconnected structures. Each PNN
block of DPNN-M is the same as the counterpart in DPNN-S, but their parameters
are independent and not shared. DPNN-M has been demonstrated to achieve higher
model performance yet inevitably accumulates more extensive systematic errors layer
by layer with more complicated network structures.

For both DPNN-S and DPNN-M, the phase modulation coefficients are set as
the learnable parameters and thus be optimized via end-to-end network training. In
addition to recording intensity, the optoelectronic detectors on the output plane can
be regarded as complex activation functions to accomplish the nonlinearity. The final
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output intensity is used for approximating the desired target by minimizing the spe-
cific task loss Lt. We detail the DPNN settings and its training process with DAT in
Methods. We further provide the pseudo-code of DAT in Supplementary Appendix
A and Supplementary Algorithm S1, and elaborate on the standard training pro-
cess in Supplementary Appendix B. For simplicity, all SEPN modules share the
same network architecture for DPNN-S and DPNN-M (see Methods and Extended
Data Fig. 1). Each SEPN was constructed as a complex-valued mini-UNet [33] to
extract hierarchical features, which is much simpler and lighter than a standard UNet.
The trainable parameters of a SEPN module and UNet are 26,800 and 7,765,442,
respectively, with a parameter ratio of 0.345%.

We trained DPNN-S and DPNN-M with DAT for the MNIST and FMNIST
classification tasks and compared their performance with PAT and direct deployment
by considering four types of systematic errors in practical systems, i.e., Z-Axis shift
error, X-Axis shift error, XY-Plane rotation error, and phase shift error (see Methods
for detail description). The first three errors are geometric errors mainly due to the
imprecision of alignments, which are included in a layer-by-layer manner, each with
the same amount of errors. For example, a single pixel X-Axis shift error between
successive layers in Fig. 2 results in the X-Axis shift of three pixels in DPNN-S with
a single block and nine pixels in DPNN-M. The phase shift error, modeled with a
normal distribution with zero mean and standard deviation σ, is mainly caused by
the imperfection of phase modulation devices that leads to the deviation of phase
modulations. The classification performances of DPNN models were evaluated under
individual and joint systematic errors to validate the effectiveness of DAT in various
scenarios with different systematic error configurations.

The MNIST classification results of DPNN-S and DPNN-M under the different
amounts of individual geometric errors are shown in Fig. 2c and 2d, respectively. As
the phase shift errors have a minor effect on the classification performance of DPNN,
we only evaluate the phase shift error in joint systematic errors (See Fig. 3c). The
MNIST classification accuracy of the baseline model for an error-free system is 96.0%
for DPNN-S and 98.6% for DPNN-M. We implemented DAT without measuring
internal states (DAT w/o IS) for DPNN-S and DAT with measuring internal states
(DAT w/ IS) for DPNN-M. Here, DAT with internal states for updating SEPNs was
conducted in a separable mode. For both DPNN-S and DPNN-M, the test accuracy
decreases rapidly when directly deploying the in silico trained model to the physical
system, where DPNN-M has a larger decrease in classification accuracy than DPNN-
S due to the accumulation of more systematic errors. The PAT method [28, 45] can
correct the errors to some extent but is not effective when the errors become severe
and accumulate layer by layer, especially for the DPNN-M with a larger network
scale. For example, one can see from Fig. 2d that PAT only improves the accuracy
from 25.5% obtained by direct deployment to 66.9% when Z-Axis shift error is set
to 1 cm and fails when XY-Plane shift error is set to 5 degrees as it only improves
the accuracy from 22.6% to 26.3%. By contrast, DAT outperforms PAT and dramat-
ically eliminates the performance degradation caused by different systematic errors,
making the classification accuracies comparable with and even slightly higher, e.g.,
for the DPNN-S model with Z-Axis shift error, than the error-free systems. These
results validate the effectiveness and robustness of DAT for training DPNN physical
systems, especially demonstrating its powerful capacity to adapt to significant sys-
tematic errors from various sources in large-scale DPNN-M. Moreover, the results for
FMNIST classification shown in Extended Data Fig. 2 justify the same conclusion.



8

DPNN
Model

Error Configurations MNIST Classification Accuracy FMNIST Classification Accuracy

Z-Axis
Shift
(cm)

X-Axis
Shift

(pixel)

XY-Plane
Rotation
(degree)

Phase
Shift
(std)

Directly
Deploy PAT

DAT Directly
Deploy

PAT
DAT

w/o IS w/ IS w/o IS w/ IS

DPNN
-S

1.0 4 5 0.2 56.1% 89.1% 94.5% / 31.2% 75.2% 80.2% /

1.0 6 4 0.3 55.6% 91.2% 94.2% / 32.9% 75.8% 80.3% /

1.0 10 2 0.2 55.9% 91.8% 95.3% / 33.6% 73.7% 82.2% /

DPNN
-M

0.2 1 1 0.1 65.4% 90.7% / 96.6% 47.2% 77.1% / 81.3%

0.4 2 2 0.2 35.5% 50.4% / 94.9% 14.9% 25.5% / 78.7%

0.6 2 1 0.3 37.5% 16.4% / 92.3% 14.8% 30.0% / 79.1%

PAT (90.7%) DAT w/ IS (96.6%)c

Phase
−𝜋

𝜋

In Silico Trained PAT

Input Digit

a

Intensity
0

1

d

Digit 0-9
After Block 1

OutputAfter Block 5

After Block 3 After Block 1

After Block 5

After Block 3

Output

DAT w/ IS

After Block 1

After Block 5

After Block 3

Output

M11

M12

M41

M42

M71

M72

M11

M12

M41

M42

M71

M72

M11

M12

M41

M42

M71

M72

In Silico Trained PAT DAT w/ ISb

True Labels

Pr
ed

ic
te

d 
La

be
ls

Pr
ed

ic
te

d 
La

be
ls

True Labels

Fig. 3 Training DPNN under joint systematic errors for the MNIST and
FMNIST classification. The performance of DAT is evaluated on the DPNN-S and
DPNN-M architectures and compared with the PAT and direct deployment of in silico
trained model under different joint systematic error configurations, as shown in Table c.
The first configuration of DPNN-M listed in Table c was selected for the visualization of
the network internal states, phase modulation layers, and confusion matrices on the MNIST
classification in a, b, and d, respectively.

We further evaluated the performance of DAT for training DPNN-S and DPNN-
M under joint systematic errors, as illustrated in Fig. 3. The table in Fig. 3c lists the
results of six joint systematic error configurations, where both DPNN-S and DPNN-
M are assigned three configurations. We took the experimental MNIST classification
accuracies of 63.9% with the direct deployment to a physical system in [20] as a
reference to design these error configurations, with comparable or larger systematic
errors as reflected in the accuracies of direct deployment in Fig. 3c. Notice that the
FMNIST classification accuracy of the baseline model for an error-free system is
83.8% for DPNN-S and 85.8% for DPNN-M. In the joint systematic errors, DAT also
achieves superior classification accuracies over PAT and restores the model perfor-
mance, especially in the large-scale DPNN-M with more significant joint systematic
error. PAT fails to train DPNN-M with the last joint systematic error configuration
for MNIST classification, as the accuracies are even lower than the direct deploy-
ment of in silico trained model. By contrast, DAT successfully trains the DPNN-M,
which significantly outperforms PAT and improves the classification accuracy by an
average of 42.1% for MNIST and 35.5% for FMNIST. Besides, DAT has a larger
improvement over the direct deployment method with an average accuracy of 48.5%
than 32.1% in [20] for MNIST classification. We further showed the convergence plots
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during the training stage in Extended Data Fig. 3, demonstrating that DAT was
more robust than PAT, especially for DPNN-M.

Fig. 3a, 3b, and 3d illustrate the results for DPNN-M in the task of MNIST clas-
sification with the first joint systematic configuration in Fig. 3c. Fig. 3a visualizes the
network internal states of the first, third, and fifth PNN blocks and final output with
the example input digit ‘7’ from the test set. The output intensities are distributed
throughout the plane for in silico trained model and around detection regions for
PAT, thus leading to an incorrect recognition category. By contrast, the intensities
are concentrated in the correct detector region (the bottom left one) for DAT, and
thus the example testing digit ‘7’ can be correctly categorized. Fig. 3b illustrates
the phase modulation layers Mn1 and Mn2 of the n-th PNN block for n = 1, 4, 7.
The phase modulation layers obtained by PAT and DAT are dramatically different.
Different from PAT, which generates phase modulation layers with a relatively flat
distribution of values, DAT tends to generate a drastically uneven distribution to
adapt to systematic errors, according to the contrast between the yellow (near π)
and blue (near −π) areas. The confusion matrices in Fig. 3d summarize the classi-
fication results of 10,000 digits in the test set and further reveal the effectiveness of
DAT as it concentrates the matched pairs of predicted labels and true labels on the
main diagonal.

2.2 Training MPNN with DAT

As shown in Fig. 4a, the N -layer MPNN consists of N photonic meshes and N − 1
optoelectronic units between adjacent photonic meshes for implementing nonlinear
activation functions. Each photonic mesh is constructed with the array of MZIs
formed as the rectangular grid [38]. Each MZI is a two-port optical component made
of two 50 : 50 beamsplitters B1,B2 and two tunable single-mode phase shifters
with parameters φ, θ. In the n-th photonic mesh, the input optical field encoded in
single-mode waveguides is multiplied with a unitary matrix M̂n realized by the n-th
photonic mesh. The result is further processed with an optoelectronic unit with the
function fEO(·) for nonlinear processing, except for the final photonic mesh, to gen-
erate the output optical fields for the next layer. The fEO(·) is the optoelectronic
nonlinear activation function introduced in [39] (see Methods for the formulation).
The output intensity at the last photonic mesh is measured by photodetectors and
used for obtaining the inference result of a task. The mathematical forward model
and the training process of DAT for the MPNN are elaborated in Methods. Similar
to DPNNs, all SEPN modules for MPNNs share the same complex-valued mini-
UNet architecture yet are lighter than the counterparts utilized in DPNN training.
Specifically, we constructed each SEPN module with two different numbers of learn-
able parameters, i.e., 9,648 and 3,960 parameters, to evaluate the influence of the
SEPN scale on the classification performance. Compared with the standard UNet
with 7,765,442 parameters, the parameter ratios of the two SEPNs are 0.124% and
0.051%, respectively.

The input data are pre-processed to facilitate the on-chip implementation of
MPNNs with a limited number of input ports (see Methods and Fig. 5a). Similar
to [39], we extracted 64 Fourier coefficients in the center region of the Fourier-space
representations as the input for MNIST and FMNIST classification. To match the
input dimension, each photonic mesh consists of 64× 63/2 = 2016 MZIs (see Meth-
ods and Supplementary Appendix C) that contains 4032 beamsplitters, 2016 phase
shifters with parameters φ, and 2016 phase shifters with parameters θ. We built the
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Fig. 4 Training MPNNs under two types of systematic errors for the MNIST
and FMNIST classification. a, Schematic illustration of the N -layer MPNN consisting of
N photonic meshes and N−1 optoelectronic activation units. Each photonic mesh comprises
an array of MZIs with a rectangular grid (top subgraph), where each MZI consists of two
beamsplitters and two phase shifters. The bottom subgraph describes the forward inference
of the MPNN architecture, where ISn denotes the location to obtain internal states. b,c,
Comparing the performances of DAT with and without internal states (IS), PAT, and direct
deployment of in silico trained model on training three-layer MPNNs under beamsplitter
and phase shift errors for the MNIST and FMNIST classifications. d, Comparisons between
DAT with and without internal states under different SEPN scales. e, Comparisons between
separable and unitary training modes for optimizing SEPNs under different SEPN scales
when adopting DAT with internal states.

MPNN with N = 3 for MNIST and FMINST classification, where the MPNN settings
and training process are detailed in Methods. We considered two kinds of system-
atic errors occurring in MZIs, i.e., beamsplitter error and phase shifter error [36, 40],
caused by the imperfection of fabrications and inaccuracy of optical modulations.
The beamsplitter error and phase shifter error are modeled with a normal distribu-
tion with zero mean and standard deviation of σbs and σps, respectively. Besides,
the errors are included in all devices and share the same strengths. For example,
σps = 0.1 means that the error corrupts all the 4032 phase shifters following a normal
distribution with zero mean and standard deviation of 0.1.

We compare the DAT with PAT and direct deployment of in silico trained model
for the MNIST and FMNIST classification under two types of systematic errors in
Fig. 4b and 4c, respectively. The legends marked with ‘∼10k Params’ or ‘∼4k Params’
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Fig. 5 Training MPNN under joint systematic errors for the MNIST and
FMNIST classification. The performances of DAT with and without using internal states
are evaluated on the MPNN architectures and compared with the PAT and direct deploy-
ment of in silico trained model under different joint systematic error configurations, as
shown in Table c. The last configuration of MPNN listed in Table c was selected for the
visualizations of an example result of fashion product ‘ankle boot’, phase shifter values, and
confusion matrices on the FMNIST classification in a, b, and d, respectively.

denote implementing DAT with the learnable parameters of 9,648 or 3,960 for each
SEPN. All the internal states of intensities measured at the output of photonic
meshes are utilized for DAT with internal states (IS), and the performance of DAT
with partially measured internal states is discussed in Extended Data Fig. 4. The
classification accuracy of the baseline MPNN model in an error-free system is 96.8%
for MNIST and 86.0% for FMNIST. As shown in Fig. 4b and 4c, DAT outperforms
PAT and direct deployment even without measuring internal states and with the
relatively small SEPN scale. By contrast, PAT confronts the difficulty of training,
especially under large systematic errors. For example, the accuracy is 71.1% when
using PAT for FMNIST classification under σbs = 0.08, while the accuracy for direct
deployment is 72.1% with the same error. At the same time, DAT with and without
internal states achieve classification accuracies of 83.7% and 82.3%, respectively,
indicating the effectiveness of SEPNs for characterizing systematic errors during the
DAT training. In the individual error configurations with the largest stds listed in
Fig. 4b and 4c, DAT with internal states exceeds PAT by 16.0% (MNIST, σbs = 0.1),
8.2% (MNIST, σps = 0.1), 9.2% (FMNIST, σbs = 0.1), 9.3% (FMNIST, σps = 0.1),
and the data for DAT with internal states increase to 18.5%, 14.0%, 16.7%, and
25.7%. The results demonstrate the superior performance and robustness of DAT for
training MPNN with significant systematic errors.

We further evaluated the influence of the SEPN scale on the performance of
MNIST classification under different amounts of systematic errors with the std range
from 0.06 to 0.11 in Fig 4d. The accuracies are close with relatively small errors
(from 0.06 to 0.08), while the gap becomes evident as the std increases (from 0.09 to
0.11). With the same SEPN scale, DAT with internal states outperforms DAT with-
out internal states, especially under larger systematic errors. Although a large SEPN
scale facilitates the classification, one can find that it is not evident for beamsplitter
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error yet effective for phase shifter error. Compared with the SEPN with about 4k
parameters, the larger one with about 10k parameters improves the test accuracy
by 0.7% and 7.17% on average for beamsplitter and phase shifter error, respectively.
Furthermore, Fig 4e compares the performances between unitary and separable mode
(denoted by the term ‘Sp’ in the legends) of DAT with internal states for the MNIST
classification. The separable mode surpasses the unitary mode significantly with the
same SEPN scale, especially with increased std. Besides, DAT with the larger scale
SEPNs improves the accuracy trivially for beamsplitter errors no matter which train-
ing mode is chosen, but it has a relatively significant improvement on performance
for phase shifter errors.

The classification results of MPNN under five joint systematic error configura-
tions with different error strengths are listed in Fig. 5c. Here, DAT was implemented
with and without internal states and configured the SEPN with ∼10k parameters in
a unitary optimization mode. DAT without internal states can adapt moderate sys-
tematic errors, e.g., it can improve the MNIST/FMNIST classification accuracy from
72.6%/60.9% of direct deployment to 94.3%/82.3% when σbs = 0.06 and σps = 0.04.
When corrupted by severe errors, measuring internal states can obviously improve the
test accuracy, e.g., DAT with internal states exceeded DAT without internal states
by 2.7%/4.4% for MNIST/FMNIST classification when σbs = 0.06 and σps = 0.06.
Meanwhile, DAT outperforms PAT by a large margin, especially under severe errors.
Fig. 5a, 5b, and 5d visualize the results for FMNIST classification when σbs = 0.06
and σps = 0.06. Fig. 3a depicts the visualization of the intensities of input and output
of the example product ‘ankle boot’. The input is the 64-pixel values in the center
region of the Fourier-space representations, and the output is the intensities on 10
photodetectors corresponding to 10 categories. The classification results demonstrate
that in silico trained model and PAT fail to classify the example to the true category
(the last detector), whereas DAT suppresses the errors and successfully obtains the
true classification result. Fig. 3b illustrates the phase shift values Φ1,Φ2,Φ3 consist-
ing of all phase shifter values of φ ranging from 0 to 2π and Θ1,Θ2,Θ3 consisting of
all phase shifter values of θ within (0, π). Fig. 5d further plots the confusion matri-
ces representing the classification results of 10,000 products in the FMNIST test set,
showing that DAT can effectively optimize the MPNN to extract the characteristics
of some products that are hard to identify for PAT. For example, only 5.4% products
of ‘pullover’ (category No.2) were correctly categorized for PAT, and the accuracies
soared to 73.1% for DAT with internal states.

3 Discussion

In this work, we propose DAT for effectively training large-scale PNNs under signif-
icant systematic errors. The PNN numerical model, comprising the physical model
and SEPNs, of the physical system, is optimized through dual backpropagation train-
ing in an end-to-end form that iteratively updates the parameters for each input
training sample. Compared with the existing in situ training methods, e.g., using
extensive system measurements with layer-by-layer training process [20] or additional
hardware configurations for backward optical field propagation [29, 31], the DAT is
a more general approach and cost-efficient for training large-scale analog PNN sys-
tems. It only requires forward inference to record output intensity with the optional
internal states. For example, for the MPNN with L-dimensional input vector and N
photonic meshes in Fig. 4a, the in situ training method in [29] requires 3NL(L−1)/2
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intensity measurements of phase shifters, i.e., three times of measures for each phase
shifter, to generate of backward optical fields for each training sample in addition to
the output intensity. In contrast, DAT with internal states only needs to measure N
output intensities of photonic meshes, and DAT without internal states only requires
the final network output without generating backward optical fields. Meanwhile, we
have validated that DAT achieves more accurate gradient calculations than PAT for
the more robust optimization of large-scale PNNs under various inherent systematic
errors of varying strengths. More comparisons of the proposed DAT with the existing
PNN training methods are provided in Supplementary Appendix D.

The underlying principle of DAT for high-precision in situ training is to transfer
the additional hardware complexity to scalable algorithm complexity by introducing
SEPNs during the numerical modeling. Intuitively, the parameters of SEPNs need to
be proportional to the error strengths. Empirically, we found that the total param-
eters of the SEPN setting at the same scale with respect to the physical model can
create enough fitting capacity for systematic errors. In this work, the parameter ratio
between the SEPNs and physical model is approximately 1.0 for training the DPNN
and MPNN with ‘∼4k’ parameters. Besides, we found that increasing the SEPN scale
with the parameter ratio to approximate 2.4 for training MPNN with ‘∼10k’ param-
eters has considerably less influence on the performance than the training strategies,
including whether measuring the internal states or not and using unitary or separable
training mode. Furthermore, the learnable parameters of SEPNs with the complex-
valued mini-UNet are significantly lighter than standard UNet (even 0.051% for the
ratio of parameters) is enough to dramatically eliminate the performance degra-
dation under various errors. For the connectivity, we incorporate SEPNs into the
physical model with residual connections [32], which is demonstrated to be effective
in independently modeling the inherent systematic errors. Suppose the SEPNs are
connected directly from the input to the output for each PNN physical layer. In that
case, the SEPN needs to share the responsibility for modeling the physical computing
process, resulting in the requirement of large ESPN scale and inefficiency of learning.

DAT has significant advantages in training PNNs under larger systematic errors
compared with the state-of-the-art in situ training approaches, which facilitates the
training of larger network scale and mitigates the system and fabrication precision,
such as the translation stages for alignments in DPNNs and the on-chip fabrications
of beamsplitter and phase shifter in MPNNs. Besides, we propose the unitary and
separable mode of DAT for training PNNs with or without internal states to deal
with different scenarios. Generally, the separable mode is more robust with higher
performance, especially for large-scale PNNs, as it refines the optimization of SEPNs
without apparently increasing the computational complexity. Furthermore, although
the DAT only be examined on DPNN and MPNN in this work, it’s a general in situ
training paradigm that can be applied for universal PNN training or other types of
AI systems with analog computing errors.

4 Methods

4.1 Preprocessing of benchmarks

The two benchmark datasets for classification, i.e., MNIST and FMNIST, consist of
70,000 grayscale 28× 28 pixel images of 10 handwritten digits and fashion products
of 10 classes, respectively. Specifically, the MNIST dataset contains digit categories
from 0 to 9, while the FMNIST dataset contains product types of t-shirt, trousers,
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pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boots. In addition, both
datasets consist of a training set of 60,000 examples and a test set of 10,000 examples.

For the DAT training of DPNNs, the images were first upscaled to the size of
100 × 100 using bilinear interpolation to facilitate the physical fabrication and the
network optimization. Then, to further satisfy the boundary condition of free-space
propagation numerically implemented with the angular spectrum method [18, 22, 31],
the images were further padded with zeros to the size of 200 × 200. Following
previous works [18, 31], we adopted coherent illumination to encode the input infor-
mation. Specifically, these preprocessed images were encoded into the amplitude of
the complex optical fields with zero phases under a working wavelength of 1550 nm.

For the DAT training of MPNNs, we cropped the data to reduce the input size
following the steps in [39]. Specifically, the images with an original size of 28 × 28
were first converted into two-dimensional Fourier-space representations, then 64 pix-
els in the center region of the representations, i.e., 8 × 8 Fourier coefficients closest
to the center point, were extracted as input since the Fourier-space energy is mostly
concentrated in the low-frequency domain located in the center region. This process
is illustrated in Fig. 5a. After the date preprocessing, the 64-dimensional signals were
input to the MPNNs through 64 input strip optical waveguides. The input informa-
tion was compressed with the compression ratio of 64/282 ≈ 8.16% in comparison
to the original data. Higher compression ratios can achieve better classification
performance but require more input ports and raise costs.

4.2 DPNN settings

We built DPNN-S and DPNN-M as shown in Fig. 2a and 2b, and evaluated the
DAT training performance with two models. Following previous works [20], the phase
modulation layers can be implemented using programmable spatial light modulators
(SLMs). In our DPNNs, the pixel size of SLMs was set to 17 µm under the working
wavelength of 1550 nm during the training and testing. Each phase modulation layer
was well configured by packing up 200×200 neurons, i.e., there are 40, 000 learnable
parameters for each layer covering an area of 3.4 mm × 3.4 mm on the SLM. The total
number of input nodes and neurons determined by the phase modulation layers is 0.12
million and 0.84 million for the DPNN-S and DPNN-M, respectively. The periphery
of the phase modulation layer was zero-padded to guarantee the boundary condition
of free-space diffraction during the numerical modeling with the angular spectrum
method [18, 22, 31]. Besides, the distances between successive layers were fixed to 30
cm for the DPNN-S and 10 cm for the DPNN-M. Both distances for optical diffraction
enable a fully connected structure according to the Huygens–Fresnel principle for
calculating the maximum diffractive angle [18]. The sigmoid function was used to
limit the phase modulation range of each element to 0 ∼ 2π [18, 31], which facilitates
DPNN training and makes full use of the full-range phase modulation of SLM. All
the phase modulation parameters were randomly initialized before network training.

The output plane after each PNN block utilized an optoelectronic sensor to mea-
sure the intensity of the whole optical field and also served as a nonlinear activation
function between adjacent PNN blocks to provide a powerful capacity for feature
extraction. In the last PNN block, the output plane contains 10 detector regions cor-
responding to 10 classes of digits in MNIST or products in FMNIST. Each detector
region covers 22 × 22 pixels with detector width 0.374 mm. The classification cri-
terion is to find the detector region with the maximal intensity by optimizing the
DPNNs with a cross-entropy loss function. During the training, the intensities of
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the pixels in each detector region were summed up and normalized by the softmax
function to generate a 10-dimensional vector. Then, the cross-entropy loss function
was introduced as the task loss Lt to minimize the deviation between the generated
vector and the ground truth T.

4.3 MPNN settings

We built the MPNNs as shown in Fig. 4a with N = 3 as used in [36, 39, 40]. We
chose Clements scheme [38] to construct MPNNs, which was discussed detailed in
[36]. Each photonic mesh was connected with 64 input and output optical waveguides
to match the input and output dimensions, where the 64 input optical waveguides
were used to input the preprocessed data, and the other 64 output optical waveguides
were used to transfer the internal states to the following optoelectronic unit except
for the last photonic mesh. In the last mesh, we adopted a drop-mask to reduce the
final output to 10 components to match the classification categories; thus, only 10
waveguide ports were utilized. The intensities of the 10 outputs were normalized by
the softmax function and then compared with the one-hot encoding of the target
vector. We utilized the cross-entropy loss function as the task loss Lt to minimize
the deviation between the normalized output intensities and the correct one-hot
vector and optimize the numerical model. In addition, each photonic mesh consisted
of 64 × 63/2 = 2016 MZIs (see Supplementary Appendix C for more details) that
contained 4032 beamsplitters, 2016 phase shifters with parameters φ, and 2016 phase
shifters with parameters θ. At the start of the training process, each φ was initialized
to a random value in [0, 2π] following a uniform distribution, i.e., φ ∼ U [0, 2π], and
each θ was initialized following θ ∼ U [0, π].

4.4 Training details of DPNN

Both the DPNN-S and DPNN-M were trained using a stochastic gradient descent
algorithm, i.e., the adaptive moment estimation (Adam) optimizer [47] with β1 = 0.9
and β2 = 0.999, during the in silico training, PAT and DAT processes. With in
silico training to obtain the baseline accuracy in an error-free system, the physical
model of DPNN-S was optimized for 10 epochs with a batch size of 32 and an initial
learning rate 0.01 decayed by 0.5 every epoch, while DPNN-M was trained for 50
epochs with a batch size of 128 and an initial learning rate 0.01 decayed by 0.5 every
10 epoch due to the large scale. Besides, DPNN-S were trained for both 5 epochs
with PAT and DAT, while DPNN-M were trained for 50 and 10 epochs with PAT
and DAT, respectively. Except for the optimization of the physical model, there is
another gradient descent step to update SEPNs for each training sample during the
DAT process. The same Adam optimizer was utilized with a constant learning rate
0.001 to minimize Ls and optimize all the SEPNs in a unitary or separable mode.
All the experiments were performed on a desktop computer with Intel Xeon Gold
6226R CPU at 2.90GHz with 16 cores and an Nvidia GTX-3090Ti GPU of 24 GB
graphics card memory.

4.5 Training details of MPNN

We adopted the same Adam optimizer as the experiments of DPNNs to train the
MPNN with in silico training, PAT, and DAT. Specifically, the physical model of
the MPNN as in Fig 4(a) with N = 3 was trained for 50 epochs with a batch size
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of 32 and an initial learning rate 0.001 decayed by 0.5 every 10 epochs during the
in silico training, PAT and DAT processes. The extra gradient descent step in DAT
for optimizing SEPNs was implemented with an initial learning rate of 0.001 that
was decayed by 0.5 every 20 epochs. In addition, during the first 20 epochs of DAT
w/o IS, SEPNs were optimized to predict the systematic errors, but the connection
with the physical model was cut off during the optimization of the physical model,
which meant that SEPNs did not participate in the backpropagation process and the
calculation of gradients. Since the SEPNs haven’t fully characterized the systematic
errors in the first few epochs, it may cause unstable optimization when involved in
updating the physical model. After the first 20 epochs, SEPNs were roughly trained
and then reconnected with the physical model to implement a standard optimization
in the last 30 epochs.

4.6 Architecture of SEPNs

All SEPNs shared the same architecture as illustrated in Extended Data Fig. 1 in this
work. Inspired by UNet [33], each SEPN was designed as a complex mini-UNet with
hierarchically interconnected structures to extract multiscale features, while it was
much simpler and lighter than UNet. To match the complex-valued computation of
DPNNs and MPNNs, We adopted complex-valued weights similar to [41] to construct
the SEPNs. As shown in Extended Data Fig. 1, each complex-valued convolution
layer (CConv) is set to a size of 5×5 in the DPNN and 3×3 in the MPNN, followed
by a complex-valued ReLU (CReLU) except for the last convolution layer, where
the CReLU is defined as: CReLU(x) = ReLU(Re{x})+j ·ReLU(Im{x}). With input
size of H × W , successive CConvs with stride 2 (green blocks) are introduced to
downscale the size to H

2 ×
W
2 and H

4 ×
W
4 , while two complex-valued transposed

convolution layers (CTConvs) with stride 2 (yellow blocks) are utilized to upsample
the size from H

4 ×
W
4 to H

2 ×
W
2 , and from H

2 ×
W
2 to H×W . Other CConvs plotted

within blue blocks convolute input with stride 1 to maintain the scale yet may change
the feature channel numbers.

The total number of learnable parameters for a SEPN can be calculated as:
k2(4F1 +2F 2

1 +4F1F2 +2F 2
2 +2F2F3 +2F 2

3 ), where F1, F2, F3 denote the numbers of
feature channels, and k represents the convolutional kernel size. In the experiments
for DPNN-S and DPNN-M, we set F1 = 4, F2 = 8, F3 = 16, and k = 5; thus,
the parameter number is 26,800. As for the MPNN, we construct two SEPNs with
different scales. The lighter one was configured with F1 = 4, F2 = 6, F3 = 8 and k = 3
with a parameter number of 3,960, and F1, F2, F3, k for the other were set to 4, 8,
16, 3 with a parameter number of 9,648. Compared with UNet [33] with a parameter
number of 7,765,442, the SEPNs are lighter and can be efficiently optimized.

4.7 Description of systematic errors

We considered four types of errors that occurred in DPNN practical systems, includ-
ing the phase shift error that causes biased phase modulations and the geometric
errors containing Z-Axis shift error, X-Axis shift error, and XY-Plane rotation error.
Z-Axis shift error denotes the propagation distance error of optical diffraction, X-
Axis shift error denotes the upper shift error of the phase modulation layers and
the output plane, and XY-Plane rotation error represents the rotation deviation of
the phase modulation layers and the output plane, described using angles. In addi-
tion, we modeled the phase shift error values to be independently sampled from a
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normal distribution with zero mean and std σ. We include the geometric errors in
a layer-by-layer manner, each with the same amount of errors. For example, setting
Z-Axis shift error to 1 cm in DPNN-S means that each of W11,W12,W13 deviates
with an extra propagation distance 1 cm. Thus, the holistic emphZ-Axis shift error
is 3 cm. Setting XY-Plane shift error to 1 degree in DPNN-M means that the two-
phase modulation layers and the output plane rotate with 1 degree relative to the
previous layer or plane for every PNN block. Thus, the holistic XY-Plane shift error
accumulates to 9 degrees.

As for the MPNN, there are mainly two types of systematic errors, i.e., beamsplit-
ter error and phase shifter error [36, 40]. Beamsplitter error is caused by imperfect
beamsplitters with split ratio errors that change the behavior of the perfect 50 : 50
coupling regions, the formulation of which is described in Supplementary Eq. C5. The
phase shifter error can affect the value of φ and θ, leading to uncertainties of phase
modulation. Various error sources may result in the slight performance deviance of
phase shifters in the photonic meshes, such as thermal crosstalk or environmental
drift [36]. Following the same assumptions made for DPNN, the beamsplitter and
phase shifter error values were independently sampled from a normal distribution
with zero mean and std σbs/σps, and the errors are included in all devices and share
the same strength. For example, setting σps = 0.1 means that all the 4,032 phase
shifters are corrupted by such a phase shifter error for the MPNN with N = 3.

4.8 Separable mode for training SEPNs

For a N -layer PNN with input I, we can obtain the observations {Pn}Nn=1 from
the physical system by measuring internal states and final output, with which the
counterparts {S̄n}Nn=1 from the numerical model can be extracted. Here, {S̄n}Nn=1

are not equal to the {Sn}Nn=1 obtained by unitary inference of the numerical model
with the same initial input I. The {Sn}Nn=1 obtained by unitary inference are not
appropriate to be the extracted internal states and output to approximate the targets
{Pn}Nn=1 in the separable training mode, as the inputs of the n-th group for obtaining
Sn and Pn are mismatched. To address this issue, we propose to extract {S̄n}Nn=1

with a separable inference of the numerical model. Specifically, for the n-th group,
the input is replaced by the corresponding practical intensity, then S̄n is generated by
the inference of the group with the replaced input. This process is repeated N times
to produce {S̄n}Nn=1. The extraction of {S̄n}Nn=1 for the DPNN-M is illustrated in
Supplementary Appendix E and Supplementary Fig. S1. Nevertheless, {Sn}Nn=1 is
still indispensable for the optimization of the physical model, although it is not used
for the separable training of SEPNs. In addition, although the process is based on
the assumption that all the internal states are measured, it can be easily extended
to the scenario with partial intensity measurements.

For optimizing the SEPNs in a separable mode, the PNN numerical model can
be separated into N groups, where the n-th group corresponds to the paired data
(Pn, S̄n) and governs SEPNs within the group. For example, the DPNN-M can be
divided into seven groups where the n-th group governs three SEPNs within the n-
th PNN block. We denote the parameters of SEPNs in the n-th group by Λn and
the similarity loss function for the n-th group by Ls,n, we have: Ls,n(Pn, |S̄n|2) =
lmse(Pn, |S̄n|2) = ‖Pn − |S̄n|2‖22. For each training sample, the parameters of the
PNN physical model are fixed, and the gradients of Ls,n with respect to Λn are cal-
culated during the backpropagation to iteratively and separably optimize the SEPNs
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within the n-th group for n ∈ [1, N ]. The pseudo-code of training DPNN in the
separable mode is provided in Supplementary Algorithm S2.

4.9 DAT with internal states for DPNN

We elaborate on DAT with internal states for training DPNN by cascading mul-
tiple blocks in Fig. 2a, termed DPNN-C, to show the principle, which could be
easily extended to DPNN-S and DPNN-M. The standard backpropagation process
for DPNN-C is established in Supplementary Appendix B. Extended Data Fig. 5
depicts the procedure of DAT with internal states for training the n-th PNN block,
where SEPNnk for k = 1, 2, 3 represents the SEPN attached to corresponding diffrac-
tive propagation layers, W′

ni and Wni for i = 1, 2, 3 denote the ideal and practical
diffractive weight matrices, Sn and Pn denote the simulated and practical output
intensity of the n-the block, M′n1,M

′
n2 and Mn1,Mn2 represent the ideal and prac-

tical phase modulation matrices, respectively. Specifically, M′nk = diag(e2πjΦnk ) for
k = 1, 2 denotes the diagonalization of the vectorized phase modulation layer with
coefficient Φnk, and Mnk = diag(e2πj(Φnk+εnk)), where j denotes the imaginary
unit and εnk denotes the phase shift error. Mathematically, the forward propagation
of the n-th block for DPNN-C physical system with N blocks can be formulated as
follows based on the Rayleigh-Sommerfeld diffraction principle,

Un = Wn3Mn2Wn2Mn1Wn1Pn−1,

Pn = |Un|2,
(3)

and the corresponding forward numerical model with SEPNs can be formulated as:

U′n1 = M′n1

[
Nn1(W′

n1On−1) + W′
n1On−1

]
,

U′n2 = M′n2

[
Nn2(W′

n2U′n1) + W′
n2U′n1

]
,

Sn = Nn3(W′
n3U′n2) + W′

n3U′n3,

On = |Sn|2,

(4)

where Un,U
′
n1,U

′
n2 represent the vectorized complex optical fields; On denotes

the intensity of Sn; Nn1,Nn2,Nn3 denote the functions expressed by the SEPNs;
P0 = O0 = I denote the initial input. The formulation is based on the residual
connections [32] for incorporating SEPNs into the physical model.

Four steps of DAT are repeated over all training samples to minimize the loss
functions until convergence for obtaining the numerical model and physical parame-
ters, i.e., the phase modulation matrices Mni for i = 1, 2, 3, 1 ≤ n ≤ N . We elaborate
on the steps with one training sample as follows:

First, the optically encoded I is input to the physical system to perform the
forward inference. In this pass, we obtain the internal states Pn for n ∈ [1, N−1] and
final output intensity PN . The blue dotted arrows in Extended Data Fig. 5 describe
this step for the n-the PNN block, corresponding to Eq. (3).

Second, the same training sample I is digitally encoded and input to the numer-
ical model to extract the internal states and final observation Sn for n ∈ [1, N ]. The
yellow dotted arrows in Extended Data Fig. 5 describe this step for the n-the PNN
block, corresponding to Eq. (4).

Third, we optimize the SEPNs’ parameters Λ by minimizing the similarity loss
function in the unitary mode as Eq. (1) or separable mode described in Methods 4.8
and Supplementary Appendix E. By the way, the similarity loss function simplifies
to Ls(P, |S|2) = ‖PN −|SN |2‖22 for DAT if without internal states. The gradients of



19

the similarity loss function with respect to Λ are calculated via the backpropagation
to optimize the SEPNs, while the parameters of the physical model are fixed. The red
dotted arrows in Extended Data Fig. 5 describe this step for the n-the PNN block.

Fourth, we implement state fusion to obtain new internal states and the final
observation for generating the new gradients of the task loss with respect to the
phase modulation matrices. Specifically, for any n ∈ [1, N ], Pn can contribute to the
replacement of |Sn|2 with Pn, and the fusion of Sn and Pn using the fusion function
Fn(Pn,Sn) =

√
Pn exp(jΦSn

)}Nn=1. The new internal states and observation are
utilized to calculate the gradients to optimize the physical parameters of the PNN
numerical model by minimizing the task loss Lt as Eq. (2). Therefore, the gradients
of Lt with respect to Φnk for k = 1, 2 are derived as:

∂Lt

∂Φn1
= 2Re{ ∂Lt

∂Sn

∂Sn
∂M′n1

∂M′n1

∂Φn1
}, ∂Lt

∂Φn2
= 2Re{ ∂Lt

∂Sn

∂Sn
∂M′n2

∂M′n2

∂Φn2
}, (5)

where

∂Lt

∂Sn
=

{
∂Lt
∂ON

� (SN )∗, n = N,

2Re{ ∂Lt
∂Sn+1

∂Sn+1

∂On
} � (Sn)∗, 1 ≤ n ≤ N − 1;

(6)

� is element-wise multiplication; ∗ is conjugation of the optical field; Re{·} means
reserving the real part of the optical field; the form of ∂Lt/∂ON is related to the task

loss function. We omit the detailed formulations of ∂Sn
∂Φnk

and
∂Sn+1

∂On
as the forms are

complicated when adopting SEPNs. Nevertheless, they can be easily deduced with
reference to the standard propagation of DPNN-C in Supplementary Appendix B.
Then, one gradient descent step is performed to optimize the phase modulation
coefficients using the calculated gradients while the parameters of SEPNs are fixed.
The green dotted arrows in Extended Data Fig. 5 describe this step for the n-the
PNN block.

4.10 DAT without internal states for MPNN

We elaborate on DAT without internal states for the MPNN illustrated in Fig. 4a.
The standard backpropagation was established in Supplementary Appendix C.
Extended Data Fig. 6 illustrates the procedure of DAT without internal states for

training the MPNN, where I ∈ CL denotes the input complex optical filed, M̂
′
n and

M̂n represent the ideal and practical transformation matrix of the n-th photonic
mesh that consisting of L(L− 1)/2 embedded MZIs, and Z′n and Zn for 1 ≤ n ≤ N
represent the simulated and practical output of the n-th photonic mesh, respec-
tively. Mathematically, the forward propagation of the MPNN physical system can
be described as:

Z1 = M̂1I,

Zn = M̂nfEO(Zn−1), 2 ≤ n ≤ N,
(7)

where fEO(·) is the optoelectronic nonlinear activation function introduced in [39]
that can be formulated as fEO(Z) = j

√
1− α exp[−j(β|Z|2 + γ)] cos(β|Z|2 + γ)Z,

and α, β, γ are constants related to configurations of the optoelectronic unit. The
corresponding forward numerical model of the MPNN can be formulated as:

Z′1 = N1(M̂
′
1I) + M̂

′
1I,

Z′n = Nn(M̂
′
nfEO(Z′n−1)) + M̂

′
nfEO(Z′n−1), 2 ≤ n ≤ N,

(8)

where Nn denotes the function expressed by SEPNn incorporated into the physical
model with residual connections [32].
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Four steps for DAT without internal states are repeated over all training samples
to minimize the loss functions and optimize the physical model, i.e., the phase coef-
ficients Θn and Φn of the n-th photonic mesh for 1 ≤ n ≤ N , where each Θn or Φn

contain L(L−1)/2 coefficients. We detail the steps for one training sample as follows:
First, I is optically encoded and inputted to the physical system through waveg-

uide ports to implement a forward inference, with which we measure the final output
intensity PN = |ZN |2. The blue dotted arrows in Extended Data Fig. 6 describe this
step.

Second, I is digitally encoded and input to the numerical model for inference.
To be consistent with PN , we only extract the complex optical field SN = Z′N . The
yellow dotted arrows in Extended Data Fig. 6 describe this step.

Third, we simultaneously optimize all the SEPNs by minimizing the similarity
loss function Ls(P, |S|2) = ‖PN − |SN |2‖22. The gradients of Ls with respect to
the parameters of SEPNs are calculated during the backpropagation to optimize the
SEPNs in the unitary mode for one step, while the parameters of the physical model
are fixed. The red dotted arrows in Extended Data Fig. 6 describe this step.

Fourth, we fuse PN and SN to obtain
√

PN exp(jΦSN
) to replace SN , and

directly replace the simulated intensity |SN |2 by PN . The new states and the
replaced output are utilized to calculate the gradients of the task loss Lt as Eq. (2)
with respect to the phase coefficients Θ,Φ of all MZIs via backpropagation through
the numerical model. Specifically, we have for n ∈ [1, N ] that

∂Lt

∂Θn
= 2Re

{(
∂Lt

∂|Z′N |2
� (Z′N )∗

)T
∂Z′N

∂M̂
′
n

∂M̂
′
n

∂Θn

}
, (9)

where �, ∗ and Re{·} are defined in Eq (6); the forms of ∂Lt/∂|Z′N |
2 and ∂M̂

′
n/∂Θn

are related to the task loss function and the scheme to construct MPNN, respectively.
Similarly, the gradient of Lt with respect to Φn can be easily deduced. The detail

form of
∂Z′

N

∂M̂
′
n

is omitted due to the complexity of its formulation with SEPNs but

can be deduced with reference to the standard propagation of the MPNN in Supple-
mentary Appendix C. Then, one gradient descent step is implemented to optimize
the phase coefficients, while the parameters of SEPNs are fixed. The green dotted
arrows in Extended Data Fig. 6 describe this step.

Data availability All data needed to evaluate the conclusions in the paper are
present in the paper and/or the Supplementary Materials.

Code availability The code for the construction of MPNN is available at https:
//github.com/solgaardlab/neurophox and the code for training MPNN with DAT
will be released soon.
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with the internal states (IS), respectively.
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Extended Data Fig. 3 Convergence plots of the DPNN-M evaluated on the
MNIST blind-test dataset during the training process. Each subfigure consists of
convergence plots with 50 (total training epochs for PAT, left) and 10 (total training epochs
for DAT, right) epochs, where a,b,c represent the training process under the individual
errors and d under the joint errors, with the error configurations shown above the subfig-
ures. DAT outperforms PAT with a more robust training process for the optimization of the
DPNN-M.
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Extended Data Fig. 4 Comparisons of DAT performances with all, partial, and
without internal states for the 3-layer MPNN in the task of MNIST classifica-
tion. The DAT methods are implemented with each SEPN parameter of 9,648 in the unitary
mode. The performance of DAT with all internal states P1,P2 (2 IS), one internal state P2

(1 IS), and without internal states are evaluated. The classification accuracy improves with
more measurements of internal states, especially under severe systematic errors.
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Extended Data Fig. 5 Procedure of DAT with internal states for DPNN in the
n-th PNN block. The flow charts with blue and yellow backgrounds denote the forward
inferences in the physical system and the numerical model, respectively. Four steps of DAT
with internal states, labeled using dotted arrows with four different colors, are repeated
over all training samples to minimize the loss functions until convergence for obtaining the
numerical model and physical parameters for the system, i.e., the phase modulation matrices
Mni for i = 1, 2, 3, 1 ≤ n ≤ N . See Methods for the detailed description.



32

!𝑴𝟏
" 𝒇𝑬𝑶 !𝑴𝟐

" 𝒇𝑬𝑶 !𝑴𝑵
"𝑰 |𝒁𝑵" |𝟐

!𝑴𝟏 𝒇𝑬𝑶 !𝑴𝟐 𝒇𝑬𝑶 !𝑴𝑵𝑰 |𝒁𝑵|𝟐

𝑺𝑵 = 𝒁𝑵"
(𝑷𝑵)

𝟏
𝟐𝒆𝒋𝚽𝑺𝑵 ①

②③

④
④

…

…

MZI-based PNN Physical System

MZI-based PNN Numerical Model

𝑷𝑵 = |𝒁𝑵|𝟐

③ ③

④
Backpropagation𝑺𝑬𝑷𝑵𝟏 𝑺𝑬𝑷𝑵𝟐 𝑺𝑬𝑷𝑵𝑵

!𝑴𝟏
" !𝑴𝟐

" !𝑴𝑵
"

Gradient Gradient Gradient

Extended Data Fig. 6 Procedure of DAT without internal states for the MPNN.
The flow charts with blue and yellow backgrounds denote the forward inferences in the
physical system and the numerical model, respectively. Four steps of DAT without internal
states, labeled using dotted arrows with four different colors, are repeated over all training
samples to minimize the loss functions and optimize the physical model, i.e., the phase
coefficients Θn and Φn of the n-th photonic mesh for 1 ≤ n ≤ N . See Methods for the
detailed description.
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