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Design of prime-editing guide RNAs with 
deep transfer learning

Feng Liu    1,6, Shuhong Huang2,6, Jiongsong Hu3, Xiaozhou Chen4, Ziguo Song2, 
Junguo Dong3, Yao Liu2, Xingxu Huang    5, Shengqi Wang3  , Xiaolong Wang2   
& Wenjie Shu    3 

Prime editors (PEs) are promising genome-editing tools, but effective 
optimization of prime-editing guide RNA (pegRNA) design remains a 
challenge owing to the lack of accurate and broadly applicable approaches. 
Here we develop Optimized Prime Editing Design (OPED), an interpretable 
nucleotide language model that leverages transfer learning to improve 
its accuracy and generalizability for the efficiency prediction and design 
optimization of pegRNAs. Comprehensive validations on various published 
datasets demonstrate its broad applicability in efficiency prediction across 
diverse scenarios. Notably, pegRNAs with high OPED scores consistently show 
significantly increased editing efficiencies. Furthermore, the versatility and 
efficacy of OPED in design optimization are confirmed by efficiently installing 
various ClinVar pathogenic variants using optimized pegRNAs in the PE2, 
PE3/PE3b and ePE editing systems. OPED consistently outperforms existing 
state-of-the-art approaches. We construct the OPEDVar database of optimized 
designs from over two billion candidates for all pathogenic variants and 
provide a user-friendly web application of OPED for any desired edit.

Prime editing is a versatile and precise genome-editing technology, 
enabling the introduction of insertions, deletions and all 12 possible 
point mutations without DNA double-strand breaks or donor DNA  
templates1,2. The prime editor 2 (PE2), a basic PE version, comprises  
a Cas9 nickase–reverse transcriptase fusion protein, with the Cas9  
nickase inducing DNA single-strand breaks, alongside a prime-editing 
guide RNA (pegRNA). The pegRNA contains three essential sub- 
sequences: a guide sequence (spacer), a primer binding site (PBS) and 
a reverse transcription template (RTT). The spacer guides pegRNA to 
the genomic target site (protospacer) and initiates an nCas9-mediated 
strand nick. The resulting 3′ end hybridizes to the PBS and primes the 
reverse transcription. This results in the formation of two redundant 
single-stranded DNA flaps. The equilibrium between the edited 3′ flap 
and the unedited 5′ flap facilitates the cleavage and ligation, along with 

DNA repair processes, leading to the incorporation of the desired edit 
encoded in the RTT into the genome1. In advanced PE versions such as 
PE3/PE3b and ePE, an additional single guide RNA (sgRNA) is employed 
to induce a nick on the opposite strand1–4. At present, the prime-editing 
technique is undergoing rapid optimization, encompassing modifica-
tions to the sequence and architecture of pegRNA5–8, regulation of the 
associated repair pathway9–11 and utilization of the paired prime-editing 
strategy12,13. Importantly, the prime-editing efficiency is notably influ-
enced by the characteristics of pegRNA1,14,15, underscoring the necessity 
and criticality of pegRNA optimization before final application.

Customizing the pegRNA design for different types of edit and 
different edit positions presents a complex and time-intensive task. 
Recently, several rule-based tools such as pegFinder16, PrimeDesign17  
and PE-Designer18 have emerged to offer recommendations for pegRNA 
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feed-forward network to learn the underlying relationships between  
the DNA–pegRNA pair and the editing efficiency (Extended Data  
Fig. 1c). Collectively, OPED predicts a prime-editing score for each 
DNA–pegRNA pair.

Furthermore, we adopted a pre-training and fine-tuning strategy  
of transfer learning to improve the accuracy and generalizability of  
OPED across diverse edits. Initially, we trained OPED from scratch using 
the published HT-training dataset4 in HEK293T (human embryonic  
kidney 293T) cells, which is a large specific PE2 dataset comprising 
38,692 DNA–pegRNA pairs inducing G-to-C transversion point muta-
tions at position +5 (Fig. 1a and Methods). The pre-trained intermediate 
model effectively captured common features in prime editing, allowing 
the feature learning module to be shared as a rough feature extractor 
for the DNA–pegRNA pair. Subsequently, we retrained the intermedi-
ate model using resampling technologies26,27 and transfer learning28,29 
(Fig. 1b). Specifically, we randomly sampled an equivalent number of 
pegRNAs with replacement from the HT-training dataset and two addi-
tional smaller datasets (Type-training and Position-training4), which 
encompass pegRNAs associated with diverse edit types and positions. 
These three resampled sets were merged into a general dataset, upon 
which the intermediate model was fine-tuned. By leveraging these strat-
egies, OPED aims to predict pegRNA editing efficiency with improved 
accuracy and generalizability, thus expanding its applicability.

Performance evaluation of OPED
We assessed the performance of OPED using three reserved datasets 
(HT-test, Type-test and Position-test4) that were never used for training. 
On the HT-test dataset, OPED achieved a Pearson correlation coef-
ficient (r) of 0.769, a Spearman correlation coefficient (R) of 0.798, 
a mean absolute error (MAE) of 4.28% and a root mean squared error 
(RMSE) of 6.01% (Fig. 2a). Similarly, OPED attained r = 0.612, R = 0.624, 
MAE = 5.32% and RMSE = 6.91% and r = 0.628, R = 0.562, MAE = 4.14% and 
RMSE = 5.17% on the Type-test and Position-test datasets, respectively 
(Fig. 2b,c), demonstrating its accuracy and generalizability across vari-
ous edit types and positions. Importantly, we observed that pegRNAs 
with higher predicted editing scores consistently exhibited substan-
tially higher measured editing efficiency compared with those with 
lower editing scores (8.0-fold, 3.1-fold and 2.2-fold increase for the 
HT-test, Type-test and Position-test datasets, respectively; Fig. 2d), 
underlining the benefit of OPED for pegRNA designs. We compared 
OPED with three machine leaning-based models using the three test 
datasets. Remarkably, OPED consistently outperformed these models 
across all datasets (Fig. 2e). In addition, we developed and evaluated 
nine different machine learning approaches using the same datasets, 
further reaffirming the superior performance of OPED (Supplemen-
tary Table 1). When tested in 6 replicates of PE2 efficiencies at 33 
endogenous sites4, OPED achieved r = 0.561–0.668, R = 0.663–0.756, 
MAE = 7.21–8.07% and RMSE = 9.69–11.05% (Fig. 2f and Extended Data 
Fig. 2a–e) and substantially increased the editing efficiency in all 
replicates (7.8–50.8-fold; Extended Data Fig. 2f). When assessed in 
two additional cell lines4, HCT116 (human colorectal carcinoma) and 
MDA-MB-231 (human breast adenocarcinoma), OPED consistently 
achieved good performance across biological and technical replicates 
in HCT116 cells (r = 0.569–0.611, R = 0.677–0.728, MAE = 8.48–8.99% 
and RMSE = 11.89–12.47%; Fig. 2g and Extended Data Fig. 2g–i) and 
MDA-MB-231 cells (r = 0.636–0.663, R = 0.730–0.766, MAE = 6.36–6.64% 
and RMSE = 9.05–9.56%; Fig. 2h and Extended Data Fig. 2j–l). Compared 
with pegRNAs with lower editing scores, pegRNAs with higher editing 
scores exhibited a substantial increase of editing efficiency in both cell 
lines (39.2–82.9-fold in HCT116 and 37.4–60.7-fold in MDA-MB-231; 
Extended Data Fig. 2m,n).

Furthermore, we tested OPED on another dataset comprising 199 
endogenous sites obtained from different laboratories1. Despite differ-
ences in experimental conditions, OPED yielded r = 0.469, R = 0.510, 
MAE = 6.30% and RMSE = 7.50% (Fig. 2i), and led to a 2.9-fold increase 

designs based on expert-driven design guidelines. Nonetheless, 
their performance remains constrained by the expertise and knowl-
edge of human experts. To address this limitation, three machine 
learning-based models (DeepPE4, Easy-Prime19 and PRIDICT20) have 
been developed for optimizing pegRNA designs. However, these  
models heavily rely on manual feature engineering, involving the  
calculation of numerous predefined pegRNA features such as GC count 
and minimum self-folding free energy. These models may overlook 
critical insights and result in limited accuracy and generalizability. 
Moreover, they inherently lack interpretability, resembling black boxes. 
Consequently, post hoc interpretable approaches such as SHAP21 are 
employed to provide feature importance.

Here we developed Optimized Prime Editing Design (OPED) for 
predicting pegRNA efficiency and optimizing pegRNA design. OPED 
automatically learns a comprehensive and interpretable representa-
tion of the target DNA and pegRNA pair, thereby improving its gen-
eralizability and accuracy without relying on predefined features. 
We demonstrated the versatility and accuracy of OPED in predicting 
pegRNA efficiencies across different edit types, edit positions, endoge-
nous sites, laboratory settings, tevopreQ1 conditions, mismatch repair 
(MMR) inhibition conditions, cell lines in vitro and mouse hepatocytes 
in vivo. Remarkably, pegRNAs with a higher OPED editing score resulted 
in substantially higher editing efficiencies (2.2–82.9-fold) compared 
with pegRNAs with lower OPED scores across the aforementioned  
scenarios. Furthermore, we validated the broad applicability and supe-
rior performance of OPED by efficiently installing various ClinVar22 
pathogenic variants using optimized PE designs (pegRNAs and sgRNAs) 
for the PE2, PE3/PE3b and ePE editing systems. Notably, the PE designs 
recommended by OPED showed substantially higher average editing 
efficiencies compared with those generated by existing PE design  
tools (PE2, 2.1–6.8-fold; PE3/PE3b, 7.9–24.6-fold; ePE, 3.4–47.5-fold). 
OPED consistently outperformed existing PE design tools in all  
comparisons. Moreover, we constructed OPEDVar, a comprehensive 
database comprising optimized PE designs targeting over 77,000  
ClinVar pathogenic variants, and developed a user-friendly web  
application for OPED (http://bicdb.ncpsb.org.cn/OPED/).

Results
Design and development of OPED
To enhance the accuracy and interpretability for pegRNA efficiency 
prediction, we devised OPED, a nucleotide language model inspired by 
the achievements of deep learning-based natural language models23–25 
(Fig. 1, Extended Data Fig. 1 and Methods). OPED comprises three major 
modules: an input module, a feature learning module and a regres-
sion module. The upstream input module performs preprocessing, 
embedding and positional encoding24 of raw nucleotide sequences 
of the target DNA and pegRNA pair (Extended Data Fig. 1a). The core 
feature learning module utilizes specialized custom transformer and 
attention24 networks to automatically learn a comprehensive and 
interpretable representation of the DNA–pegRNA pair (Extended Data 
Fig. 1b). Specifically, a transformer encoder is employed to extract 
features from the target sequence, where self-attention mechanisms 
capture interdependencies between nucleotides within the target 
sequence. A custom transformer decoder is utilized to extract features 
from the PBS sequence, with self-attention mechanisms capturing 
interdependencies between nucleotides within the PBS sequence, and 
encoder–decoder attention capturing interdependencies between 
nucleotides of the PBS sequence and the target sequence. Similarly, 
another transformer decoder is customized to extract features from the 
RTT sequence. Subsequently, a tailored attention network is designed 
for the interpretation of nucleotide contributions and higher-level 
feature learning, generating a sequence description vector. These 
sequence description vectors are then concatenated into a compre-
hensive description vector that represents the DNA–pegRNA pair. The 
downstream regression module employs a multilayer fully connected 

http://www.nature.com/natmachintell
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in the editing efficiency (Extended Data Fig. 3a). We visualized eight 
pegRNA sets targeting genomic loci HEK4, RNF2, HEK3 and EMX1 from 
the 199 endogenous sites (Supplementary Table 2). Specifically, for  
two pegRNA sets targeting HEK4 and RNF2, respectively, we observed 
high correlation between predicted editing scores and measured  
editing efficiencies (Fig. 2j,k and Extended Data Fig. 3b,c). Notably, 
the pegRNA with the highest editing score ranked first in terms of 
efficiency, while the second-highest pegRNA occupied the second  
rank overall. Similar trends were observed for the remaining six pegRNA 
sets targeting the four genomic sites (Extended Data Fig. 3d–o).

In summary, these results convincingly demonstrated the accu-
racy and generalizability of OPED in predicting pegRNA efficiencies 
across diverse scenarios, encompassing different edit types, edit  
positions, endogenous sites, cell lines and laboratory settings.

Intrinsic interpretability of OPED
To elucidate the nucleotide contribution of pegRNA in predicting edit-
ing efficiencies, we extracted the attention weights assigned to each 
nucleotide in the PBS and RTT from OPED’s attention network, and 
then correlated these attention weights with the observed editing 
efficiencies based on data from library 1 of ref. 4. Notably, the first seven 
nucleotides in the PBS, relative to the nick site, exhibited significant 
negative correlations. Conversely, the eighth to thirteenth nucleo-
tides showed significant positive correlations, while the fourteenth 
to fifteenth nucleotides displayed no significant correlation (Fig. 2l). 
These findings support the recommendation of a 13 nt PBS, aligning 
with previous reports1,4. Similarly, in the RTT, the first 12 nucleotides 
from the nick site showed significant positive correlations, whereas 
nucleotides 13 to 20 showed significant negative correlations (Fig. 2m).  

This observation suggests that a 12 nt RTT would be a suitable choice, 
consistent with previous research1,4. The intrinsic interpretability  
of OPED has shed light on the nucleotide-level factors influencing 
pegRNA efficiency.

Validation on PRIDICT datasets
Recent work generated various PE datasets in the PRIDICT study20. To 
assess the generalizability of OPED on these datasets, we retrained 
OPED using the training subset from their library 1 and validated OPED 
on the test subset (Methods). The retrained OPED obtained r = 0.912, 
R = 0.905, MAE = 7.78% and RMSE = 11.50% for predicting editing effi-
ciencies (Fig. 3a), r = 0.810, R = 0.826, MAE = 4.82% and RMSE = 7.76% 
for predicting unintended editing rates (Fig. 3b) and r = 0.925, R = 0.913, 
MAE = 7.87% and RMSE = 11.53% for predicting unedited rates (Extended 
Data Fig. 4a). Furthermore, pegRNAs with higher predicted editing 
scores resulted in a 4.3-fold increase in editing efficiencies (Extended 
Data Fig. 4b), while pegRNAs with lower unintended editing scores 
exhibited a 7.9-fold decrease in unintended editing rates (Extended 
Data Fig. 4c). We compared OPED with other models for predicting 
editing efficiencies (Fig. 3c) and unintended editing rates (Fig. 3d). 
OPED consistently outperformed these models, confirming its gene
ralizability for accurate predictions of both editing efficiencies and 
unintended editing rates. We tested OPED on datasets20 encompassing 
scenarios with or without the tevopreQ1 modification8 and with or with-
out MMR inhibition10 in MMR-deficient HEK293T and MMR-proficient 
K562 (human chronic myelogenous leukaemia) and U2OS (human 
osteosarcoma) cells. We correlated the editing efficiencies of dif-
ferent datasets with each other and with OPED predictions (Fig. 3e). 
Interestingly, OPED showed slightly higher performance on tevopreQ1 
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e, Performance comparison of OPED with DeepPE, Easy-Prime and PRIDICT on 
these datasets. f, Validation of OPED using 6 replicates of PE2 efficiencies at 33 
endogenous sites. Only the Endo-BR3 (biological replicate 3 of these endogenous 
sites) dataset (n = 20) is shown here. g,h, Validation of OPED using datasets 

in HCT116 (g, abbreviated as HCT) and MDA-MB-231 (h, abbreviated as MDA) 
cells. Only BR2 (biological replicate 2) and TR1 (technical replicate 1) of each 
cell line (HCT, n = 75; MDA, n = 74) are shown here. i, Validation of OPED using a 
PE2 dataset (n = 199) encompassing endogenous editing sites in HEK293T cells 
provided by ref. 1. j,k, Line plots showing the trend between the OPED editing 
score (orange) and the measured editing efficiency (black) for two pegRNA 
sets targeting HEK4 (j) and RNF2 (k) sites, respectively. The details of the two 
pegRNA sets can be found in Supplementary Table 2. l,m, Line plots showing 
correlations between the nucleotides in the 3′ extension (PBS (l) and RTT (m)) 
and the measured editing efficiency. The red pentagon represents P for testing 
non-correlation <0.001, while the blue triangle represents P > 0.4.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 5 | November 2023 | 1261–1274 1265

Article https://doi.org/10.1038/s42256-023-00739-w

pegRNAs compared with unmodified pegRNAs. Moreover, the MMR 
pathway inhibition considerably improved OPED performance in K562 
and U2OS cells. OPED consistently outperformed PRIDICT (Fig. 3f) and 
substantially increased editing efficiencies across all scenarios and 
cell lines (2.8–9.4-fold; Extended Data Fig. 4d–g). Furthermore, we 
validated OPED performance in K562 and U2OS cells with PEmax10,20. 
OPED performed comparably to PE2 on PEmax (Extended Data Fig. 4h)  
and substantially increased editing efficiencies across all scenarios 
in both cell lines (4.0–9.0-fold; Extended Data Fig. 4i–l). To further  
explore OPED performance in vivo in living animals, we tested  
OPED in vivo in hepatocytes of the mouse liver (Fig. 3g), and 9.1-fold 
(tevopreQ1 pegRNAs) and 19.2-fold (unmodified pegRNAs) increases 
in the editing efficiencies were observed based on OPED scores  
(Fig. 3h). Overall, these comprehensive validations demonstrated  
the robust generalizability and superior performance of OPED.

Experimental validation on ClinVar pathogenic variants
The prioritization of pegRNAs for intended edits can be determined by 
ranking OPED editing scores. Considering the wide usage of PE3/PE3b 

and ePE editing systems, we integrated a rule-based hierarchical ranking 
of sgRNAs from PrimeDesign17 into OPED to optimize the secondary 
nicking sgRNA (Methods). To evaluate the practical effects of OPED’s 
optimized PE designs (pegRNAs for PE2, pegRNA and sgRNA combina-
tions for PE3/PE3b and ePE), 30 different human pathogenic genetic 
mutations from the ClinVar22 database, including ten single nucleotide 
variants (SNVs), ten insertions and ten deletions, were installed into 
HEK293T cells with the first-ranked PE designs recommended by OPED 
previously trained on datasets from ref. 4 (Supplementary Table 3 and 
Methods). Overall, 28 of the 30 (93.33%) targeted loci showed varying 
editing efficiencies across different editing systems, variant types 
and positions, compared with untreated cells (Fig. 4a–c and Extended 
Data Fig. 5a). Specifically, these optimized PE designs enabled effi-
cient introduction of desired mutations into the genome with editing 
frequencies of up to 29.30%, 82.84% and 90.05% for PE2, PE3/PE3b 
and ePE, respectively. On average, PE3/PE3b and ePE increased the 
editing efficiency 6.9-fold and 11.8-fold, respectively, compared with 
PE2. Among these 30 targeted loci, we observed the installation of 
the desired edit at average editing efficiencies of 10% or more for 8 
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Fig. 3 | Validation of OPED on various PRIDICT datasets. a,b, Validation of 
OPED for predicting editing efficiencies (a) and unintended editing rates (b) 
using the library 1 test dataset (n = 18,485) in HEK293T cells from ref. 20 in the 
PRIDICT study. c, Performance comparison of OPED with DeepPE, Easy-Prime and 
PRIDICT on the test dataset for predicting editing efficiencies. d, Performance 
comparison of OPED with PRIDICT on the test dataset for predicting unintended 
editing rates. e, Correlation between different experimental conditions 
(dominant-negative MLH1 (MLH1dn) and tevopreQ1) and cell lines (HEK293T, 

K562 and U2OS). f, Performance comparison of OPED with PRIDICT across 
different experimental conditions and cell lines. g, Performance of OPED across 
different experimental conditions in mouse liver. h, Comparison of pegRNAs 
with OPED editing score higher or lower than 50 in the mouse liver dataset 
(unmodified pegRNAs, n = 486 (≥50) and n = 383 (<50); tevopreQ1 pegRNAs, 
n = 483 (≥50) and n = 428 (<50)). The bars indicate the minimum, the median and 
the maximum. ***P < 0.001, two-sided Wilcoxon rank-sum test (from left to right, 
1.6 × 10−27, 3.6 × 10−32).
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Fig. 4 | Installation of human pathogenic variants with optimized PE designs 
of OPED. a–c, The measured editing efficiencies for the installation of 30 human 
pathogenic genetic variants, including ten SNVs (a), ten insertions (b) and ten 
deletions (c), from the ClinVar database in HEK293T cells, using the optimized 
PE designs recommended by OPED. Mean ± s.d. of n = 3 independent biological 
replicates are shown. d–f, Editing outcomes with optimized PE designs for 
the PE2 (d), PE3/PE3b (e) and ePE (f) editing systems in installing pathogenic 

SNVs (top), insertions (middle) and deletions (bottom) at example loci. Allele 
frequency tables and corresponding sequencing read counts after merging 
the three biological replicates are shown. Nucleotides are indicated by unique 
colours (A, green; C, orange; G, yellow; T, purple). Substitutions are shown in 
bold font. Red rectangles highlight inserted sequences. Horizontal dashed lines 
indicate deleted sequences. The vertical dashed line indicates the cleavage site 
of pegRNA.
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(26.67%) loci and at average efficiencies of 1–10% for 14 (46.67%) loci for 
PE2 (Extended Data Fig. 5b), at average efficiencies of 20% or more for  
10 (33.33%) loci and at average efficiencies of 1–20% for 18 (60.00%)  
loci for PE3/PE3b (Extended Data Fig. 5c), and at average efficien-
cies of 30% or more for 12 (40.00%) loci and at average efficiencies of 
10–30% for 10 (33.33%) loci for ePE (Extended Data Fig. 5d). We used 
the GATK tool30 for variant calling and discovered desired variants 
with high quality (Extended Data Fig. 5e). We quantified mutations 
and produced intuitive visualizations of experimental outcomes for 
these editing systems (Fig. 4d–f) and observed that the first-ranked 

PE design introduced few by-products across the reference amplicons 
(Extended Data Fig. 6a–c and Extended Data Fig. 7a–i).

For further comparisons and validations, we edited a subset of 
eight targeted loci using the first-ranked PE designs recommended 
by OPED, three machine leaning-based models and rule-based  
PrimeDesign. OPED substantially increased average editing efficien-
cies compared with DeepPE, Easy-Prime, PRIDICT and PrimeDesign 
(PE2, 6.8-fold, 4.5-fold, 2.9-fold and 2.1-fold, respectively; PE3/PE3b, 
24.6-fold, 22.3-fold, 11.7-fold and 7.9-fold, respectively; ePE, 44.2-fold, 
47.5-fold, 16.7-fold and 3.4-fold, respectively; Fig. 5a–c), while attaining 
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Fig. 5 | Experimental validation of optimized PE designs by OPED.  
a–j, The measured editing efficiency. Mean ± s.d. of n = 3 independent biological 
replicates are shown. a–c, Comparative assessments against four state-of-the-
art tools (DeepPE, Easy-Prime, PRIDICT and PrimeDesign) using the optimized 
PE designs for the PE2 (a), PE3/PE3b (b) and ePE (c) editing systems in installing 
eight pathogenic variants. d,e, Comparative assessments using the top-3-
ranked PE designs (top-3-ranked pegRNA and the corresponding first-ranked 
sgRNA) recommended by OPED for the PE3/PE3b (d) and ePE (e) editing 

systems in installing six pathogenic variants. f,g, Comparative assessments 
using combinations of the first-ranked pegRNA and top-3-ranked sgRNAs 
recommended by OPED for the PE3/PE3b (f) and ePE (g) editing systems. h, The 
measured editing efficiencies for the installation of six pathogenic variants using 
the optimized PE designs recommended by OPED for non-canonical NG PAM.  
i,j, Comparative assessments using mpknot epegRNAs recommended by OPED 
and ref. 8 for PE2 (i) and PE3/PE3b (j).
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higher purity (Extended Data Fig. 8a–c). Furthermore, we edited a 
subset of six targeted loci using the top-3-ranked PE designs recom-
mended by OPED. These top-3-ranked PE designs show variations in 
pegRNAs, while most of the sgRNAs remain identical. We observed 
that the first-ranked designs consistently showed comparable purity 
(Extended Data Fig. 8d,e) and higher average editing efficiencies com-
pared with the second-ranked and third-ranked designs (PE3/PE3b, 
2.8-fold and 8.5-fold, respectively; ePE, 1.6-fold and 1.8-fold, respec-
tively; Fig. 5d,e), demonstrating the power of OPED for optimizing 
both pegRNAs and sgRNAs. Similarly, we edited the same six targeted 
loci using combinations of the first-ranked pegRNA and top-3-ranked 
sgRNAs recommended by OPED. It was observed that first-ranked 
sgRNA led to comparable purity (Extended Data Fig. 8f,g) and notably 
increased average efficiency compared with the second-ranked and 
third-ranked sgRNAs (PE3/PE3b, 3.9-fold and 3.7-fold, respectively; 
ePE, 2.9-fold and 3.3-fold, respectively; Fig. 5f,g), demonstrating the 
power of OPED for optimizing sgRNAs.

To experimentally validate the performance of OPED on targets 
with non-canonical NG (N denotes any nucleotide and G represents 
guanine) protospacer adjacent motif (PAM), we edited the same six 
targeted loci using the optimized PE design recommended by OPED for 
NG PAM. Despite the efficiency drop compared with NGG PAM, these 
optimized PE designs continued to demonstrate notable effectiveness 
compared with untreated controls (Fig. 5h and Extended Data Fig. 8h). 
In addition, we employed the OPED-optimized PE designs with mpknot 
modification to edit additional four targeted loci provided by ref. 8 
(Methods). These engineered pegRNAs (epegRNAs) recommended by 
OPED showed comparable or slightly higher average efficiencies com-
pared with those provided by ref. 8 (PE2, 1.0-fold; PE3/PE3b, 1.2-fold; 
Fig. 5i,j), while maintaining comparable purity (Extended Data Fig. 8i,j).

OPEDVar database and OPED web application
To illustrate the utility of OPED, we filtered 77,738 human pathogenic 
genetic variants from ClinVar and designed candidate pegRNAs and 
sgRNAs to correct or install these pathogenic mutations. For correction 
with NG PAM, a total of 778,791,772 candidate pegRNAs were identified 
with an average of 10,018 candidate pegRNAs per pathogenic vari-
ant (Fig. 6a), reflecting the complexity of pegRNA selection. Similar 
outcomes were observed when installing mutations with NG PAM  
or correcting/installing mutations with NGG PAM (Extended Data  
Fig. 9a–c and Supplementary Table 4). A comprehensive collection of 
2 billion candidate pegRNAs was predicted and ranked by OPED, and the 
top-10 optimized PE designs of each event were selected to construct 
the OPEDVar database (http://bicdb.ncpsb.org.cn/OPED/OPEDVar/) 
(Fig. 6b). Analysis of all first-ranked pegRNAs from OPEDVar revealed 
significant distinctions between their characteristics and those of all 
the candidates (Fig. 6c–e). Specifically, when correcting 51,473 SNVs 
with NG PAM, the median lengths of PBS, RTT and edit-to-nick dis-
tance of the corresponding first-ranked pegRNAs were 9 nt, 12 nt and 
5 nt, respectively (Fig. 6c), consistent with previous reports1,4. Similar 
results were obtained across other conditions, including correction/
installation with NG/NGG PAM (Fig. 6d,e and Extended Data Fig. 9d–l). 
To enhance accessibility and user-friendliness of OPED, we developed 
an intuitive web application (http://bicdb.ncpsb.org.cn/OPED/) to 
facilitate the design of pegRNAs and sgRNAs for intended edits (Fig. 6f).

Discussion
PE substantially expands the scope and capabilities of genome editing 
and can correct most human pathogenic variants. The comprehension 
of its editing specificity is paramount to potential therapeutic applica-
tions31,32. However, the optimization of pegRNAs for the desired edit 
presents challenges. Inspired by the natural language processing tech-
niques, we developed a customized transformer-and-attention-based 
OPED model (Fig. 1) for the efficiency prediction and design optimiza-
tion of pegRNAs. To improve its accuracy and generalizability, we intro-
duced transfer learning to pre-train and fine-tune OPED. By working 
directly with raw nucleotide sequences, OPED automatically learns a 
comprehensive and interpretable representation of the DNA–pegRNA 
pair, thereby eliminating the need for predefined features. The tailored 
transformer adeptly handles variable-length sequences and effectively 
characterizes the spatial interdependencies between nucleotides and 
the complementary base pairing characteristics between the target 
DNA and pegRNA. The tailored attention network calculates an atten-
tion weight for each nucleotide and subsequently consolidates perti-
nent information based on these weights (Extended Data Fig. 1). The 
intrinsic interpretability of OPED provided nucleotide-level insights 
into the factors influencing pegRNA efficiency (Fig. 2l,m). Compre-
hensive validations on various published datasets demonstrated the 
accuracy and generalizability of OPED in predicting pegRNA efficien-
cies across diverse scenarios, encompassing different edit types, edit 
positions, endogenous sites, laboratory settings, tevopreQ1 conditions, 
MMR inhibition conditions, cell lines in vitro and mouse hepatocytes 
in vivo (Figs. 2 and 3). OPED consistently leads to a substantial effi-
ciency increase based on the predicted editing scores and outperforms 
previous state-of-the-art models in these scenarios. After integrat-
ing a rule-based ranking strategy into OPED for the prioritization of 
sgRNAs, we tested OPED by installing a variety of ClinVar pathogenic 
variants into the human genome using three different editing systems. 
Experimental outcomes revealed that first-ranked PE designs suggested 
by OPED efficiently installed the desired variants, highlighting the 
versatility and efficacy of OPED across diverse edit types and editing 
systems (Fig. 4). Comparative analyses against four PE design tools, 
along with additional optimized designs produced by OPED, further 
underscored the superior performance and optimization capabilities 
of OPED for both pegRNAs and sgRNAs (Fig. 5a–g). In addition, we 
experimentally confirmed the effectiveness of OPED on targets with 
NG PAM and mpknot epegRNAs (Fig. 5h–j). To facilitate the utiliza-
tion of OPED, we constructed the OPEDVar database of optimized PE 
designs for correcting or installing over 77,000 ClinVar pathogenic 
variants (Fig. 6b) and developed a web version of OPED to streamline 
the process of designing pegRNAs and sgRNAs for desired edits (Fig. 6f).  
It is important to note that OPED is trained solely on PE2 datasets 
with canonical NGG PAM. Therefore, although OPED has undergone 
experimental validations demonstrating its capacity to optimize both 
pegRNAs and sgRNAs across diverse scenarios including NG PAM, its 
ability to predict efficiencies for other PE versions is limited and its 
performance for NG PAM needs more experimental validation. In future 
studies, we propose the comprehensive and systematic optimization of 
pegRNA and additional sequences such as scaffold sequence, nicking 
sgRNA, 3′ structured RNA motif and linker sequence8 using artificial 
intelligence techniques, provided sufficient data become available. 

Fig. 6 | OPEDVar database and OPED web application. a, Distribution of the 
number of candidate pegRNAs per pathogenic variant with an NG PAM for 
correction. Horizontal black lines indicate the averages. b, Home page, query 
page and query result of the OPEDVar database. c–e, Distribution of PBS length, 
RTT length and edit-to-nick distance of all candidate pegRNAs (blue) and 
first-ranked pegRNAs predicted by OPED (green) for each variant to correct 
pathogenic SNVs (c), insertions (d) and deletions (e) with an NG PAM. Horizontal 
black lines indicate the medians. ***P < 0.001, two-sided Wilcoxon rank-sum  
test. c, Distribution of n = 527,326,019 candidate pegRNAs and n = 51,473  

first-ranked pegRNAs (P < 1.0 × 10−308, P< 1.0 × 10−308, P < 1.0 × 10−308, respectively). 
d, Distribution of n = 18,269,053 candidate pegRNAs and n = 1,833 first-ranked 
pegRNAs (P = 1.2 × 10−221, P < 1.0 × 10−308, P < 1.0 × 10−308, respectively). e, Distri
bution of n = 233,196,700 candidate pegRNAs and n = 24,432 first-ranked 
pegRNAs (P < 1.0 × 10−308, P < 1.0 × 10−308, P < 1.0 × 10−308, respectively). f, Home 
page, parameter set-up, workflow and optimized PE designs of OPED web 
application. OPED takes a single sequence encoding both the original reference 
and desired edited sequences as input and outputs the recommended optimized 
PE designs to introduce the edit of interest.
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Strand Spacer PAM PBS RTT EditToNickDistance sgRNASpacer sgRNAPAM NickToNickDistance Editing score

+ GCCGGGGGGGCGCTGGCGCG AGG GCCAGCGCC AGGCGGCCACGC 4 GTAGTAGTCGCAGAGTTGCC AGG 1 5 1 6.90

+ GCCGGGGGGGCGCTGGCGCG AGG GCCAGCGCCC AGGCGGCCACGC 4 GTAGTAGTCGCAGAGTTGCC AGG 1 5 1 6.59

– GTAGTCGCAGAGTTGCCAGG CGG GGCAACTCTGC GGCGCGTGGCCGCCT 9 GGCGCTGGCGCGTGGCCGCC TGG 4 1 6.40
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– GTAGTCGCAGAGTTGCCAGG CGG GGCAACTCTGCG GGCGCGTGGCCGCCT 9 GGCGCTGGCGCGTGGCCGCC TGG 4 1 6.1 8
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Moreover, the effector of PE containing a Cas9 nickase fused to an 
engineered reverse transcriptase can be improved by new artificial 
intelligence-based techniques33–35.

Methods
Design of the OPED network
For the pegRNA structure, we designed OPED, a nucleotide language 
model to predict the pegRNA editing efficiency and design the opti-
mized pegRNA. Only the raw nucleotide sequences of the target DNA 
(including 20 nt protospacer), variable-length PBS and RTT were used 
as the input of OPED, and the reverse complements of PBS and RTT 
were extracted in the input module. Subsequently, K-mer (K = 1,2,3) 
sequences of these sequences could be easily extracted. Thus, for an 
M nt sequence, a K-mer sequence of length M − K + 1 was obtained. 
Then, we used learned word embeddings to convert each K-mer to a 
vector of dimension dmodel. Furthermore, to incorporate the positional 
order of the K-mer sequence, we added positional encoding24 to the 
embeddings with sine and cosine functions of different frequencies:

PEpos,2i = sin ( pos
10,0002i/dmodel

)

PEpos,2i+1 = cos ( pos
10,0002i/dmodel

)

where pos is the position and i is the dimension. To learn general 
high-level features, one transformer encoder was employed to 
extract features of the target sequence, and two transformer decoders  
were specifically tailored to extract features of PBS and RTT by  
aligning them to the target sequence, respectively. Multihead  
attention in the transformer was calculated as follows:

MultiHead (Q,K,V) = Concat (head1,… ,headh)WO

where headi = Attention (QWQ
i ,KW

K
i ,VW

V
i ) = SoftMax ( QWQ

i (KW
K
i )

T

√dk
)VWV

i , 

parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , 

WO ∈ Rhdv×dmodel  and dk = dv = dmodel/h . Q, K and V matrices symbolize  
the repositories of queries, keys and values associated with the  
input, respectively. The matrix W represents the pertinent parameter 
matrix responsible for these projections. The superscript O indi
cates the output, and T denotes matrix transposition. The symbol R  
denotes the set of real numbers. The variables dk and dv refer to  
the dimensions of keys and values, respectively, while h signifies the 
number of parallel attention heads. Layer normalization36 in the 
transformer was applied as:

y = x − E[x]
√Var [x] + ε

× γ + β

where γ and β are learnable parameters and ε is a small constant. The 
variable x represents the input of the layer normalization, while E[x] 
denotes the expected value or mean of the variable x. Position-wise 
feed-forward network (FFN) in the transformer is applied as the 
following:

FFN (x) = max (0, xW1 + b1)W2 + b2

where W1, W2, b1 and b2 are learnable parameters. After obtaining the 
hidden vector hi(i = 1, 2,… ,M − K + 1)  of each K-mer in the sequence 
through the customized transformer, we customized an additional 
attention network containing a feed-forward layer to map the  
hidden vector of each K-mer into a scalar score, and then applied a 
SoftMax function to calculate the attention weight of each K-mer in 

the sequence based on the score. The attention weight was calculated 
as follows:

ai = SoftMax (si) =
esi

∑M−K+1
j=1 esj

si = MLP(hi)

where MLP is a feed-forward multilayer perceptron. The attention 
weight ai explains the importance of ith K-mer in the sequence. By 
calculating the weighted summation of the hidden vector of each 
K-mer and the corresponding attention weight, a sequence description 
vector was obtained:

c =
M−K+1
∑
i=1

aihi

The sequence description vector is the feature extraction and 
generalization of the whole sub-sequence. All sequence description 
vectors corresponding to the target sequence, PBS and RTT were con-
catenated into a comprehensive description vector representing the 
target DNA and pegRNA pair. Finally, we used a multilayer fully con-
nected feed-forward network to perform a nonlinear transformation on 
the comprehensive description vector to output the predicted editing 
score of the pegRNA. As experimental conditions strongly influence 
the absolute editing levels, the OPED editing score was set to a score 
between 0 and 100 rather than the percentual editing rate. The rectified 
linear unit function serves as the chosen nonlinear activation function 
and dropout37 was used to prevent overfitting.

Public datasets for training and validation
The OPED model was trained and evaluated using HEK293T cell data-
sets previously published by ref. 4. These datasets encompass two 
PE2 libraries denoted as library 1 and library 2. Library 1 encompasses 
43,149 different pairs of target sequences and pegRNAs that induced 
a transversion mutation from G to C at position +5 from the nicking 
site. Ref. 4 randomly divided library 1 into two subsets: HT-training 
(38,692 pegRNAs) and HT-test (4,457 pegRNAs). Library 2 encompasses 
5,752 different pairs of pegRNA-encoding sequences and correspond-
ing target sequences for various edit types and positions and was 
randomly split into Type-training (3,375 pegRNAs), Type-test (403 
pegRNAs), Position-training (1,774 pegRNAs) and Position-test (200 
pegRNAs). Both library 1 and library 2 datasets comprise 47-nt-wide 
target sequences, 17–37 nt 3′ extension (RTT and PBS) sequences and 20 
predefined pegRNA features computed from the nucleotide sequences, 
including melting temperature, GC counts and minimum self-folding 
free energy. While ref. 4 used both the nucleotide sequences and  
predefined features to predict PE2 efficiency, OPED solely utilized  
the nucleotide sequences (47 nt target sequences, RTT sequences 
and PBS sequences) as inputs to predict PE2 efficiency. To train 
the OPED model, we employed the HT-training, Type-training and 
Position-training datasets as training sets. To evaluate the performance 
of OPED, we employed independent test sets, namely, HT-test, Type-test 
and Position-test datasets. Furthermore, additional datasets from ref. 4  
containing 6 replicates at 33 endogenous sites and 4 replicates in two 
additional cell types (HCT116 and MDA-MB-231) were also utilized  
to validate OPED.

For further validation, we used PE2 datasets encompassing 199 
endogenous editing sites in HEK293T cells provided by ref. 1. These data-
sets consist of pegRNAs with a 20 nt spacer sequence, variable-length 
RTT sequence and PBS sequence. We employed BLAT38 to align the 
20 nt spacer sequence to assembly hg38 and extracted the 350 nt target 
sequence (165 nt neighbouring sequence + 20 nt protospacer + 165 nt 
neighbouring sequence). Subsequently, the 350-nt target sequence, 
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RTT sequence and PBS sequence were used as inputs of OPED to predict 
editing scores. The editing values of ref. 1 were analysed and formatted 
by ref. 19 and downloaded from their GitHub repository.

A recent work generated a comprehensive lentiviral library (library 1)  
in HEK293T cells in the PRIDICT study20. Library 1 encompasses a 
total of 92,423 pegRNA–target site pairs, comprising 57,920 single  
base replacements, 28,420 insertions and 6,083 deletions. Similar to 
the approach undertaken in ref. 20, library 1 was randomly split into 
80% training (73,938 pegRNAs) and 20% test (18,485 pegRNAs) subsets. 
The library 2 consists of 1,938 pegRNAs with or without the tevopreQ1 
modification and with or without MMR inhibition in HEK293T, K562 
and U2OS cells, as well as in vivo in hepatocytes of the mouse liver. 
In addition, ref. 20 provided a library 2 screen in K562 and U2OS cells  
with PEmax. All datasets from ref. 20 contain the 99 nt target sequence, 
RTT sequence, PBS sequence, and dozens of predefined features  
such as melting temperature and minimum free energy. Only the 
nucleotide sequences (99 nt target sequences, RTT sequences and 
PBS sequences) of all these datasets were used by OPED to predict a 
probability distribution on three outcomes associated with edited, 
unedited and unintended edit proportions.

Training of the OPED model
Due to the absence of a sufficiently large prime-editing dataset encom-
passing diverse edit types and positions during the development of 
OPED, we employed a transfer learning approach to pre-train and 
subsequently fine-tune the OPED model, enhancing its accuracy, gene
ralizability and interpretability in predicting pegRNA efficiency.

Given the abundance of data in the library 1 dataset from ref. 4, 
OPED was initially trained on the HT-training set of library 1. The selec-
tion of optimal hyperparameters was achieved by employing fivefold 
cross-validation, leading to the determination of the following hyperpa-
rameter values. The number of epochs, batch size and embedding size 
were set to 200, 512 and 64, respectively. In the transformer encoder 
and decoder, the dimension of the feed-forward network was set to 
2,048, while a single sub-encoder layer was employed in the encoder 
and a single sub-decoder layer in the decoder. The multihead-attention 
models comprised 64 heads, and a dropout value of 0.1 was applied. 
For the regression module, a multilayer fully connected feed-forward 
network was employed, comprising three hidden layers with 512, 64 
and 512 hidden units, respectively. The mean squared error (squared 
L2 norm) was employed as the loss function, and the Adam optimiza-
tion algorithm39 was utilized with a learning rate of 0.001 and weight 
decay (L2 penalty) of 0.1. Using the aforementioned optimal hyperpara
meters, we trained the OPED model on the HT-training set with random 
initialization from scratch. Evaluation on the independent HT-test  
set yielded a Pearson correlation coefficient (r) of 0.793, Spearman 
correlation coefficient (R) of 0.820, MAE of 3.95% and RMSE of 5.59%. 
The MAE and RMSE were defined as follows:

MAE = 1
n

n
∑
i=1

|| yi − ̄yi|| ,RMSE =
√√√
√

1
n

n
∑
i=1

( yi − ̄yi)
2

where yi is the measured editing efficiency of the ith pegRNA and  
̄yi is calculated by dividing the predicted editing score by 100.

However, the performance of the aforementioned intermediate 
model was considerably lacking when applied to the Type-test and 
Position-test sets from library 2, which consists of target sequences 
and pegRNAs encompassing various edit types and edit positions. 
To improve its generalization capability, we further fine-tuned the 
intermediate model using resampling and transfer learning tech-
nologies. Specifically, we randomly sampled 5,000 pegRNAs with 
replacement from HT-training, Type-training and Position-training 
sets, respectively, and then merged them into a comprehensive train-
ing set containing diverse edit types and positions. Instead of ran-
dom initialization, we initialized the OPED model with the pre-trained 

parameters of the intermediate model. Moreover, we altered the down-
stream fully connected feed-forward regression network to 6 hidden 
layers, each containing 1,024, 2,048, 2,048, 1,024, 1,024 and 256 hidden 
units, respectively. Subsequently, we fine-tuned the OPED model on 
the merged general training set. The fine-tuned OPED model was then 
preserved for all subsequent validations and applications, excluding 
its utilization in the evaluation of PRIDICT datasets.

Furthermore, we retrained the OPED model using the recently pub-
lished training dataset (73,938 pegRNAs) by ref. 20. In this retraining 
process, we used the Kullback–Leibler divergence as the loss function 
and modified the output layer of the regression module to accom-
modate three simultaneous outcomes: edited, unedited and unin-
tended edit proportions. To determine optimal hyperparameters, we 
performed fivefold cross-validation and adjusted the fully connected 
feed-forward regression network to include 3 hidden layers comprising 
1,024, 512 and 2,048 hidden units, respectively. The retrained OPED 
model was exclusively utilized to assess its performance across diverse 
PRIDICT datasets.

Comparison of OPED with alternative methods
To facilitate comprehensive comparisons, we developed other nine 
different machine learning approaches using the same features as 
DeepPE. These approaches include a customized deep learning model 
integrating bidirectional gated recurrent unit40 in conjunction with an 
attention mechanism24, support vector regression41, MLP42, K-nearest 
neighbours43, decision tree44, random forest45, AdaBoost46, gradient 
boosted decision trees47 and XGBoost48. We trained each of these nine 
methods on HT-training, Type-training and Position-training datasets, 
respectively, and then evaluated them on the corresponding HT-test, 
Type-test and Position-test dataset.

Extension of OPED to optimize the secondary nicking sgRNA
The lack of sufficiently large PE3/PE3b datasets has limited the 
training of state-of-the-art machine leaning-based models, includ-
ing DeepPE and PRIDICT, to PE2 datasets. As a result, these models 
have been restricted to the pegRNA efficiency prediction and design 
optimization, without supporting PE3/PE3b and ePE systems. To 
address this limitation and enable OPED to optimize both pegRNA 
and sgRNA, we have integrated the rule-based hierarchical ranking of 
sgRNAs from PrimeDesign17 into the OPED framework, targeting the 
optimization of the secondary nicking sgRNA. Specifically, when a 
candidate pegRNA is designed by OPED for the intended edit, all can-
didate nicking sgRNAs are searched on the non-edited strand within a 
user-defined range determined by two hyperparameters: the minimum 
sgRNA-nick-to-pegRNA-nick distance (default 0 bp) and the maximum 
sgRNA-nick-to-pegRNA-nick distance (default 100 bp). Subsequently, 
the hierarchical ranking of sgRNAs from PrimeDesign is performed 
by first using the sgRNA annotations (PE3b seed -> PE3b non-seed -> 
PE3), and then using deviations from the sgRNA-nick-to-pegRNA-nick 
distance hyperparameter (default 75 bp). The prioritization of pegR-
NAs for the intended edit is determined by ranking the editing scores 
predicted by OPED. Similarly, the prioritization of sgRNAs for the 
corresponding pegRNA is determined by the integrated hierarchical 
ranking in OPED. Ultimately, OPED recommends the combination of 
the first-ranked pegRNA and its corresponding first-ranked sgRNA 
as the first-ranked PE design. This extension empowers OPED with 
the capability to design optimized sgRNAs in addition to optimized 
pegRNAs, expanding its utility in the field of genome-editing research.

Optimized PE designs by other tools
Comparative experiments were conducted by introducing eight  
ClinVar pathogenic variants using the recommended optimized PE 
designs provided by OPED, three machine learning-based models 
(DeepPE, Easy-Prime and PRIDICT) and the rule-based PrimeDesign 
in different editing systems (PE2, PE3/PE3b and ePE). In the case of  
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DeepPE, it was employed to predict the efficiencies of candidate  
pegRNAs designed by OPED for the desired variant. Subsequently, all 
candidate pegRNAs were ranked based on DeepPE’s predicted efficien-
cies, and the first-ranked pegRNA was selected. However, considering 
that DeepPE solely focuses on pegRNA prediction, we employed the 
integrated hierarchical ranking in OPED to optimize the corresponding 
sgRNA for the DeepPE-selected pegRNA. For Easy-Prime, it supports 
the optimization of both pegRNAs and sgRNAs. Upon inputting the 
desired variant, the first-ranked pegRNAs and sgRNAs predicted by 
Easy-Prime were directly used. Regarding PRIDICT, although it is limited 
to pegRNA optimization, its program and website list optional sgRNAs 
for the PE3 system. The authors clarify that nicking sgRNAs are not part 
of the PRIDICT score or their paper but are listed for increased user 
experience. Therefore, we directly used the first-ranked pegRNAs and 
sgRNAs predicted by PRIDICT upon inputting the desired variant. As 
for PrimeDesign, the first-ranked pegRNAs and sgRNAs predicted by 
PrimeDesign were directly used when inputting the desired variant. 
After obtaining measured editing efficiencies of optimized PE designs 
recommended by various PE design tool for installing these ClinVar 
variants, we proceeded to calculate the editing-efficiency fold-change 
achieved by OPED compared with each benchmark PE tool (DeepPE, 
Easy-Prime, PRIDICT and PrimeDesign) for each individual variant. 
Subsequently, we conducted a mean aggregation of these fold-change  
values across these ClinVar variants, thus furnishing an averaged  
representation of the editing-efficiency fold-change.

Experimental validation of epegRNAs designed by OPED
A previous study developed epegRNAs to improve prime-editing effi-
ciency8. The epegRNAs were constructed by incorporating one of 
two structured RNA motifs (tevopreQ1 or mpknot) to the 3′ terminus 
of pegRNAs to enhance pegRNA stabilization. The performance of 
OPED on epegRNAs with tevopreQ1 was validated in HEK293T, K562 
and U2OS cells using the published datasets from ref. 20. To assess 
the performance of OPED on epegRNAs with mpknot, we edited four 
targeted loci (EMX1, FANCF, VEGFA and PRNP) provided by ref. 8 using 
the optimized PE designs recommended by OPED and ref. 8.

Plasmid construction
The pCMV-PE2 plasmid was purchased from Addgene (132775). The 
pGL3-U6-sgRNA-EGFP (Enhanced Green Fluorescent Protein) plasmid 
was purchased from Addgene (107721). The pCMV-PE2-P2A-hMLH1dn 
plasmid was purchased from Addgene (174827). The pCMV-NG-PE plas-
mid was constructed based on SpCas9-NG, which was purchased from 
Addgene (138566). The pegRNA plasmid was constructed according 
to a previous report15. To construct pegRNA expression plasmids, the 
plasmid backbone was amplified from pGL3-U6-sgRNA-EGFP using 
KOD OneTM PCR Master Mix -Blue- (TOYOBO) (Supplementary Table 5). 
The amplicon was then cut by BsaI-HFv2 (NEB) for overhangs. Scaffold 
sequences were synthesized as long oligos directly. For spacer oligos, 
the top strand oligo includes 5′ ACCG and 3′ GTTTT overhangs, while 
the bottom strand oligo comprises a 5′ CTCTGAAAA overhang (Sup-
plementary Table 6). Canonical pegRNA 3′ extension, including PBS 
and RTT sequences, was synthesized on an oligo (the top strand oligo 
included 5′ GTGC overhang while the bottom strand oligo included 
5′ AAAC overhang). The pegRNAs of ePE were produced according 
to our previous study3. The epegRNAs were produced according to  
a previous report8.

Cell culture, transfection and collection
HEK293T (ATCC CRL-3216) cells were cultured with Dulbecco’s modi-
fied Eagle medium (Hyclone) supplemented with 10% fetal calf serum 
(Bi) and incubated at 37 °C with 5% CO2. Cells were routinely passaged 
at a ratio of 1:3 at 90% confluency by digesting with 0.25% pancreatin 
(add EDTA). For plasmid transfection, cells were seeded in 24-well 
plates and transfected with 1.3 μg (900 ng pCMV-PE2 plasmid, 300 ng 

pegRNA plasmid and 100 ng nicking sgRNA plasmid) plasmids per well 
at approximate 70% confluency using EZ Trans (Shanghai Life iLab 
Biotech) according to the manufacturer’s protocols. After 72 h of trans-
fection, cells were collected for EGFP+ cells by fluorescence-activated 
cell sorting.

Genomic DNA extraction and targeted deep sequencing
The genomic DNA of EGFP+ cells was extracted using QuickExtract 
DNA Extraction Solution (Lucigen) according to the manufacturer’s 
protocols. Then, the sequences around the target sites were amplified 
from the isolated DNA with Phanta Max Super-Fidelity DNA Polymerase 
(Vazyme) and primers (Supplementary Table 7). The amplicons with dif-
ferent barcodes were subjected to deep sequencing on an Illumina HiSeq 
X Ten platform (2 × 150 PE) by Annoroad Gene Technology. To evaluate 
the prime-editing efficiency, CRIPResso2 (V2.0.43)49 was used to analyse 
the sequenced amplicons. All values are presented as mean ± s.d.

OPEDVar database
The ClinVar22 variant summary was accessed on 29 September 2021. We 
chose Homo sapiens genome assembly GRCh38/hg38 and filtered all 
variants by allele ID to remove duplicates and by clinical significance 
to focus on pathogenic variants. The total number of filtered ClinVar 
variants was 77,738, and then we separated the variants into SNV, inser-
tion and deletion by their variant type. For both the installation and 
correction of these pathogenic variants, all candidate pegRNAs and 
sgRNAs of each variant were enumerated with the following criteria: 
(1) maximum distance of 50 nt from the editing site to the pegRNA 
nicking site, (2) NGG PAM or NG PAM, (3) minimum homology of 5 nt 
downstream of the edit, (4) minimum PBS length of 8 nt and maximum 
PBS length of 18 nt, (5) minimum RTT length of 8 nt and maximum RTT 
length of 68 nt, (6) minimum sgRNA-nick-to-pegRNA-nick distance  
of 0 nt and maximum sgRNA-nick-to-pegRNA-nick distance of  
100 nt. Then, OPED previously trained on datasets from ref. 4 was used 
to predict the editing scores of all candidate pegRNAs and rank all  
candidate pegRNAs for each variant. The top-10 optimized pegRNAs  
and sgRNAs (top-10-ranked pegRNAs and the corresponding 
first-ranked sgRNAs) for the installation or correction of each patho-
genic variant were stored in a database named OPEDVar. OPEDVar is a 
comprehensive and searchable database for more than 77,000 patho-
genic human genetic variants, making the optimized PE designs recom-
mended by OPED for all ClinVar pathogenic variants more accessible. 
In OPEDVar, using the ClinVar allele ID, gene ID, gene symbol or HUGO 
Gene Nomenclature Committee ID, the top-10 optimized PE designs for 
the corresponding pathogenic mutations were readily available across 
a range of PBS (8–18 nt) and RTT (8–68 nt) lengths and distance from 
the edit site to the pegRNA nick site (1–50 nt) on both DNA strands.

OPED web application
To make OPED available and user-friendly, we developed a web applica-
tion of OPED for any intended edit and provided the results of OPED 
for a given target sequence or a given position of a target site. After 
entering a target sequence or the position of a target site along with 
the intended edit, this web tool identified all candidate pegRNAs and 
sgRNAs for the intended edit on both DNA strands with the user-set 
hyperparameters including the maximum edit-to-nick distance, 
PAM type, maximum PBS length, minimum PBS length, maximum 
RTT length, minimum RTT length, number of optimized pegRNAs, 
minimum sgRNA-nick-to-pegRNA-nick distance and maximum 
sgRNA-nick-to-pegRNA-nick distance, and then provided a correspond-
ing number of optimized PE designs by the predicted pegRNA editing 
score ranking of OPED that was previously trained on datasets from ref. 4.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
The public datasets we used were from refs. 1,4,20, and the usages are 
fully illustrated in Methods. Editing values of ref. 1 were analysed and 
formatted by ref. 19 and downloaded from their GitHub repository 
(https://github.com/YichaoOU/easy_prime). The deep-sequencing 
data from this study have been submitted to the National Center for 
Biotechnology Information Sequence Read Archive database under 
accession number PRJNA882795.

Code availability
The web portal of OPED is accessible at http://bicdb.ncpsb.org.cn/
OPED/. The source codes of OPED are freely available on GitHub (https://
github.com/wenjiegroup/OPED), Zenodo (https://doi.org/10.5281/
zenodo.8133309) and Code Ocean (https://doi.org/10.24433/
CO.9224036.v1)50. Deep-sequencing data were analysed with CRIS-
PResso2 with prime-editing mode (https://github.com/pinellolab/
CRISPResso2) and GATK4 (https://github.com/broadinstitute/gatk/).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Details of three major modules in OPED. a, Input 
module. Only the target sequence (including 20-nt protospacer), PBS sequence 
and RTT sequence of variable length are used as input, and the input module 
performs preprocessing, embedding and positional encoding of these raw 
nucleotide sequences. b, Feature learning module employing customized 

transformer and attention networks to learn the comprehensive and 
interpretable features of the target sequence and pegRNA pair. c, Regression 
module outputting the predicted editing score through a multilayer fully-
connected feedforward network.
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Extended Data Fig. 2 | Validation of OPED on datasets from Kim et al.  
a-e, Validation of OPED using six replicates of PE2 efficiencies at 33 endogenous 
sites in HEK293T cells. Except Endo-BR3 dataset, the others are shown. The 
pegRNA number is n = 31, 30, 28, 28, and 28 for datasets Endo-BR1-TR1 (a), 
Endo-BR1-TR2 (b), Endo-BR2-TR1 (c), Endo-BR2-TR2 (d), and Endo-BR2-TR3 (e), 
respectively. f, Comparison of pegRNAs with OPED editing score higher or lower 
than 10 on Endo-BR1-TR1 (n = 14 ( ≥ 10) and n = 17 ( < 10)), Endo-BR1-TR2 (n = 14 
( ≥ 10) and n = 16 ( < 10)), Endo-BR2-TR1 (n = 13 ( ≥ 10) and n = 15 ( < 10)), Endo-BR2-
TR2 (n = 14 ( ≥ 10) and n = 14 ( < 10)), Endo-BR2-TR3 (n = 14 ( ≥ 10) and n = 14 ( < 10)), 
and Endo-BR3 datasets (n = 8 ( ≥ 10) and n = 12 ( < 10)). Whiskers indicate the 
minimum, the median, and the maximum. ***, **, and * represent the P value of 
two-sided Wilcoxon rank-sum test <0.001, <0.01, and <0.05, respectively 
(4.8× 10−4, 5.6× 10−4, 1.9× 10−3, 1.8× 10−3, 1.8× 10−3, 2.5× 10−2, from left  
to right). g-l, Validation of OPED using datasets in HCT116 (abbreviated as HCT, 

n = 72, 75, and 75 for HCT-BR1-TR1, HCT-BR1-TR2, and HCT-BR2-TR2, respectively) 
and MDA-MB-231 (abbreviated as MDA, n = 71, 73, and 75 for MDA-BR1-TR1, 
MDA-BR1-TR2, and MDA-BR2-TR2, respectively) cells. Except BR2 and TR1 of each 
cell line, the others are shown. m-n, Comparison of pegRNAs with OPED editing 
score higher or lower than 10 on HCT-BR1-TR1 (n = 33 ( ≥ 10) and n = 39 ( < 10)), 
HCT-BR1-TR2 (n = 34 ( ≥ 10) and n = 41 ( < 10)), HCT-BR2-TR1 (n = 34 ( ≥ 10) and 
n = 41 ( < 10)), HCT-BR2-TR2 (n = 34 ( ≥ 10) and n = 41 ( < 10)), MDA-BR1-TR1  
(n = 33 ( ≥ 10) and n = 38 ( < 10)), MDA-BR1-TR2 (n = 34 ( ≥ 10) and n = 39 ( < 10)), 
MDA-BR2-TR1 (n = 34 ( ≥ 10) and n = 40 ( < 10)), and MDA-BR2-TR2 datasets  
(n = 34 ( ≥ 10) and n = 41 ( < 10)). Whiskers indicate the minimum, the  
median, and the maximum. *** represents the P value of two-sided Wilcoxon 
rank-sum test <0.001 (m, 1.8× 10−7,6.2× 10−8,6.4× 10−9, 3.5× 10−8; n, 
8.3× 10−8, 1.6× 10−8, 1.2× 10−8, 1.2× 10−8 (from left to right)).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Validation of OPED on datasets from Anzalone et al. a, 
Comparison of pegRNAs with OPED editing score higher or lower than 13 on a PE2 
dataset encompassing 199 endogenous sites in HEK293T cells provided by 
Anzalone et al. (n = 127 ( ≥ 13) and n = 72 ( < 13)). Violin plots show the efficiency 
distributions of corresponding pegRNAs. Whiskers indicate the minimum, the 
median, and the maximum. *** represents the P value of two-sided Wilcoxon 
rank-sum test <0.001 (1.1× 10−13). b-c, Validation of OPED using two pegRNA sets 

targeting HEK4 (b, referred as HEK4_2a, n = 9) and RNF2 (c, referred as RNF2_2b, 
n = 11) sites. d-i, Line plots showing the trend between the OPED editing score 
(orange) and the measured editing efficiency (black) for six pegRNA sets 
targeting HEK4, RNF2, HEK3, and EMX1. j-o, Validation of OPED using six pegRNA 
sets targeting HEK4 (j, referred as HEK4_2b, n = 14), RNF2 (k, referred as RNF2_2a, 
n = 9), HEK3 (l, referred as HEK3_2a, n = 10; m, referred as HEK3_2b, n = 11) and 
EMX1 (n, referred as EMX1_2a, n = 9; o, referred as EMX1_2b, n = 11) sites.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Validation of OPED on datasets from Mathis et al.  
a, Validation of OPED for predicting unedited rates using the library 1 test dataset 
(n = 18,485) in HEK293T cells from Mathis et al. b-g and i-l, Violin plots showing 
pegRNAs with score higher or lower than 50. Whiskers indicate the minimum, the 
median, and the maximum. *** represents the P value of two-sided Wilcoxon 
rank-sum test <0.001. b, Comparison on the library 1 test dataset (n = 8,634 ( ≥ 50) 
and n = 9,851 ( < 50), P < 1.0× 10−308). c, Comparison of unintended editing  
rates on the test dataset (n = 273 ( ≥ 50) and n = 18,212 ( < 50), P = 7.7× 10−157). 
d-g, Comparison on datasets in different experimental conditions and cell lines. 
d, unmodified pegRNAs without MMR inhibition (HEK293T, n = 523 ( ≥ 50) and 
n = 392 ( < 50), P = 5.0× 10−119; K562, n = 503 ( ≥ 50) and n = 373 ( < 50), 
P = 1.4× 10−41; U2OS, n = 499 ( ≥ 50) and n = 366 ( < 50), P = 2.0× 10−46).  
e, tevopreQ1 pegRNAs without MMR inhibition (HEK293T, n = 487 ( ≥ 50) and 
n = 421 ( < 50), P = 1.5× 10−107; K562, n = 472 ( ≥ 50) and n = 400 ( < 50), 
P = 6.0× 10−45; U2OS, n = 468 ( ≥ 50) and n = 384 ( < 50), P = 1.6× 10−41).  
f, unmodified pegRNAs with MMR inhibition (HEK293T, n = 521 ( ≥ 50) and n = 392 

( < 50), P = 3.8× 10−120; K562, n = 515 ( ≥ 50) and n = 391 ( < 50), P = 2.7× 10−102; 
U2OS, n = 499 ( ≥ 50) and n = 365 ( < 50), P = 8.1× 10−75). g, tevopreQ1  
pegRNAs with MMR inhibition (HEK293T, n = 487 ( ≥ 50) and n = 422 ( < 50), 
P = 2.5× 10−106; K562, n = 483 ( ≥ 50) and n = 427 ( < 50), P = 2.3× 10−96; U2OS, 
n = 468 ( ≥ 50) and n = 384 ( < 50), P = 1.3× 10−65). h, Correlation between 
different experimental conditions and cell lines when using PEmax.  
i-l, Comparison on datasets in different experimental conditions and cell lines 
when using PEmax. i, unmodified pegRNAs without MMR inhibition (K562, n = 511 
( ≥ 50) and n = 393 ( < 50), P = 6.6× 10−36; U2OS, n = 501 ( ≥ 50) and n = 368 
( < 50), P = 7.8× 10−48). j, tevopreQ1 pegRNAs without MMR inhibition (K562, 
n = 480 ( ≥ 50) and n = 426 ( < 50), P = 8.8× 10−42; U2OS, n = 470 ( ≥ 50) and 
n = 386 ( < 50), P = 6.9× 10−40). k, unmodified pegRNAs with MMR inhibition 
(K562, n = 514 ( ≥ 50) and n = 392 ( < 50), P = 9.1× 10−95; U2OS, n = 500 ( ≥ 50) and 
n = 367 ( < 50), P = 5.1× 10−72). l, tevopreQ1 pegRNAs with MMR inhibition 
(K562, n = 482 ( ≥ 50) and n = 427 ( < 50), P = 8.5× 10−86; U2OS, n = 470 ( ≥ 50) 
and n = 382 ( < 50), P = 6.8× 10−59).
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Extended Data Fig. 5 | Statistics and quality of 30 pathogenic variants after 
installation. a, Distribution of editing efficiencies (mean of three biological 
replicates) with optimized PE designs of OPED for PE2, PE3/PE3b and ePE 
editing systems to install 30 human pathogenic genetic variants (n = 30) from 
the ClinVar database in HEK293T cells. Boxplots represent the 25th, 50th and 
75th percentiles. The upper whisker extends from the hinge to the largest value 
no further than 1.5 × IQR from the hinge (where IQR is the inter-quartile range, 
or distance between the first and third quartiles). The lower whisker extends 

from the hinge to the smallest value at most 1.5 × IQR of the hinge. b-d, Bar plots 
showing the detail of mean editing efficiencies with optimized PE designs of 
OPED for PE2 (b), PE3/PE3b (c) and ePE (d) editing systems at the 30 target sites. 
e, Heatmap showing the Phred-scaled quality score of each pathogenic variant 
called by the GATK tool. The quality is calculated as -10×log10 Probability(the 
called variant is wrong), and high-quality scores indicate high-confidence calls. 
Each column indicates a pathogenic variant, and each row indicates an editing 
system (PE2, PE3/PE3b and ePE) with a biological replicate.
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Extended Data Fig. 6 | Frequency of mutations across the entire amplicon 
through the installation of pathogenic variants. a-c, Frequency of 
substitutions (green), insertions (red), and deletions (purple) across the entire 
amplicon after editing with optimized PE designs for PE2 (a), PE3/PE3b (b) and 
ePE (c) editing systems in installing pathogenic SNVs (left), insertions (middle) 

and deletions (right). The vertical dashed line indicates the cleavage site of 
pegRNA. The orange box indicates the spacer of pegRNA. The grey box indicates 
the quantification window, and only modifications that overlap with the 
quantification window are considered.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Frequency distribution of sequence modifications 
through the installation of 30 pathogenic variants. a-i, Frequency distribution 
of alleles after editing with optimized PE designs for PE2 (a-c), PE3/PE3b (d-f)  
and ePE (g-i) editing systems to install pathogenic SNVs (a, d, g), insertions  
(b, e, h) and deletions (c, f, i). Left panel, the frequency distribution of sequence 
modifications that increase read length with respect to the reference amplicon, 

classified as insertions (positive indel size). Middle panel, the frequency 
distribution of sequence modifications that reduce read length with respect 
to the reference amplicon, classified as deletions (negative indel size). Right 
panel, the frequency distribution of sequence modifications that do not alter 
read length with respect to the reference amplicon, which are classified as 
substitutions (number of substituted positions shown).
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Extended Data Fig. 8 | Purity of optimized PE designs by OPED. a-j, Bar 
plots showing the percentage of total edited reads with unintended indels 
(number of unintended indel reads / number of total edited reads). Mean ± 
s.d. of n = 3 independent biological replicates are shown. a-c, Comparative 
assessments against four state-of-the-art tools (DeepPE, Easy-Prime, PRIDICT, 
and PrimeDesign) using the optimized PE designs for PE2 (a), PE3/PE3b (b) and 
ePE (c) editing systems in installing eight pathogenic variants. d-e, Comparative 
assessments using the top-3-ranked PE designs (top-3-ranked pegRNA and the 

corresponding first-ranked sgRNA) recommended by OPED for PE3/PE3b (d) and 
ePE (e) editing systems in installing six pathogenic variants. f-g, Comparative 
assessments using combinations of the first-ranked pegRNA and top-3-ranked 
sgRNAs recommended by OPED for PE3/PE3b (f) and ePE (g) editing systems. 
h, Installation of six pathogenic variants using the optimized PE designs 
recommended by OPED for noncanonical NG PAM. i-j, Comparative assessments 
using mpknot epegRNAs recommended by OPED and Nelson et al. for PE2 (i) and 
PE3/PE3b (j).
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Extended Data Fig. 9 | Analysis of optimized pegRNAs for correcting/
installing pathogenic variants with an NG/NGG PAM. a-c, Distribution  
of the number of candidate pegRNAs per pathogenic variant with an NG PAM  
for installation (a), with an NGG PAM for correction (b) and installation (c). 
Horizontal black lines indicate the averages. d-l, Distribution of PBS length,  
RTT length and edit-to-nick distance of all candidate pegRNAs (blue) and 
first-ranked pegRNAs predicted by OPED (green) for each variant. Horizontal 
black lines indicate the medians. *** indicates the P value of the two- 
sided Wilcoxon rank-sum test <0.001. d-f, Installing pathogenic SNVs (d), 
insertions (e) and deletions (f) with an NG PAM. d, Distribution of  
n = 542,781,954 candidate pegRNAs and n = 51,473 first-ranked pegRNAs 
(P < 1.0× 10−308,P < 1.0× 10−308,P < 1.0× 10−308, respectively). e, 
Distribution of n = 16,815,216 candidate pegRNAs and n = 1,833 first-ranked 
pegRNAs (P = 1.1× 10−178,P < 1.0× 10−308,P < 1.0× 10−308, respectively).  
f, Distribution of n = 253,831,281 candidate pegRNAs and n = 24,432 first-ranked 
pegRNAs (P < 1.0× 10−308,P < 1.0× 10−308,P < 1.0× 10−308, respectively).  

g-i, Correcting pathogenic SNVs (g), insertions (h) and deletions (i) with an NGG 
PAM. g, Distribution of n = 144,531,827 candidate pegRNAs and n = 50,761 
first-ranked pegRNAs (P < 1.0× 10−308,P < 1.0× 10−308,P < 1.0× 10−308, 
respectively). h, Distribution of n = 4,660,997 candidate pegRNAs and n = 1,773 
first-ranked pegRNAs (P = 7.2× 10−51,P < 1.0× 10−308,P = 1.6× 10−59, 
respectively). i, Distribution of n = 64,266,906 candidate pegRNAs and n = 23,936 
first-ranked pegRNAs (P < 1.0× 10−308,P < 1.0× 10−308,P < 1.0× 10−308, 
respectively). j-l, Installing pathogenic SNVs (j), insertions (k) and deletions (l) with 
an NGG PAM. j, Distribution of n = 152,685,709 candidate pegRNAs and n = 50,924 
first-ranked pegRNAs (P < 1.0× 10−308,P < 1.0× 10−308,P < 1.0× 10−308, 
respectively). k, Distribution of n = 4,399,142 candidate pegRNAs and n = 1,780 
first-ranked pegRNAs (P = 7.4× 10−39,P < 1.0× 10−308,P = 9.1× 10−47, 
respectively). l, Distribution of n = 71,950,692 candidate pegRNAs and n = 23,946 
first-ranked pegRNAs (P < 1.0× 10−308,P < 1.0× 10−308,P < 1.0× 10−308, 
respectively).
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