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Neural scaling of deep chemical models

Nathan C. Frey    1,6 , Ryan Soklaski1,7, Simon Axelrod2,3, Siddharth Samsi1, 
Rafael Gómez-Bombarelli    2, Connor W. Coley    4,5 & Vijay Gadepally1

Massive scale, in terms of both data availability and computation, enables 
important breakthroughs in key application areas of deep learning such 
as natural language processing and computer vision. There is emerging 
evidence that scale may be a key ingredient in scientific deep learning, but 
the importance of physical priors in scientific domains makes the strategies 
and benefits of scaling uncertain. Here we investigate neural-scaling 
behaviour in large chemical models by varying model and dataset sizes 
over many orders of magnitude, studying models with over one billion 
parameters, pre-trained on datasets of up to ten million datapoints. We 
consider large language models for generative chemistry and graph neural 
networks for machine-learned interatomic potentials. We investigate 
the interplay between physical priors and scale and discover empirical 
neural-scaling relations for language models in chemistry with a scaling 
exponent of 0.17 for the largest dataset size considered, and a scaling 
exponent of 0.26 for equivariant graph neural network interatomic 
potentials.

The ‘unreasonable effectiveness’ of deep learning1 in domains such as 
computer vision and natural language processing (NLP) relies on the 
ability of deep neural networks to leverage ever-increasing amounts 
of compute, data and model capacity. Large-scale models, including 
Bidirectional Encoder Representations from Transformers (BERT)2 and 
DALL-E3, have been so successful at synthesizing information from large 
datasets via self-supervised pre-training and performing a variety of 
downstream tasks with little to no fine-tuning that most state-of-the-art 
models in NLP and computer vision are adapted from a small set of 
large, pre-trained models4. Naturally, we might expect that massive 
model and dataset scaling will be a prerequisite to achieving out-sized 
success for deep learning in science. Recent work such as AlphaFold5, 
the Open Catalyst Project6,7 and ChemBERTa8 indicates that larger 
datasets and models, pre-training and self-supervised learning—all key 
ingredients in computer vision and NLP—unlock new capabilities for 
deep learning in chemistry. However, unlike in computer vision and NLP, 
the path to scaling deep chemical networks and the potential benefits 
are unclear. Chemical deep learning can incorporate physics-based 

priors that may ameliorate the steep resource requirements seen in 
other fields9–12. Moreover, because of the heterogeneity and complexity 
of chemical space13 and molecular machine learning tasks14,15, training 
general and robust models that perform well on a wide variety of down-
stream tasks remains a pressing challenge8,16,17. The enormity of chemi-
cal space and heterogeneity of these tasks motivates investigations of 
large-scale models in chemistry, because such models are well suited 
to unlabelled, multi-modal datasets3,4. Recently, neural-scaling laws18,19 
have emerged as a way to characterize the striking trends of improved 
model performance over many orders of magnitude with respect to 
model size, dataset size and compute; however, these experiments 
require immense computational resources and rely on well-known, 
domain-specific model training procedures that do not apply outside 
of traditional deep learning application areas.

With the inordinate costs of developing and deploying large 
models20, it is difficult to investigate neural-scaling behaviours of 
scientific deep learning models, which require expensive hyperpa-
rameter optimization (HPO) and experimentation. Architectures and 
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settings for a chemical LLM such as ChemGPT are quickly discovered 
using TPE. To enable scaling experiments, we are mainly concerned 
with settings related to the learning dynamics (for example, batch size 
and learning rate), that will impact large-scale training and fluctuate 
depending on the type of model and the characteristics of the dataset. 
To demonstrate the effectiveness of TPE, we initialize ChemGPT with 
the default learning rate and batch size for causal language modelling 
in HuggingFace. We then vary the learning rate and batch size and train 
models with different hyperparameters for 50 epochs. Figure 2 shows 
the true loss after 50 epochs versus the predicted loss using TPE after 
only 10 epochs. R2 = 0.98 for the linear regression (equation (8)), and 
Spearman’s rank correlation ρ = 1.0. With only 20% of the total training 
budget, we are able to identify model configurations that outperform 
the default settings from HuggingFace. The procedure is easily repeat-
able for new datasets and enables accelerated HPO.

While training procedures for LLMs such as ChemGPT are well 
established, scaling neural force fields (NFFs) to larger datasets and 
more expressive models requires new, scalable training procedures17. 
Large-batch training through data parallelism is one method for accel-
erating training, but there are known limitations and correct batch sizes 
vary widely for different domains29. This problem is particularly acute 
for NFFs, where each datapoint actually contains 3N + 1 labels for ener-
gies and atomic forces, where N is the number of atoms, creating a large 
effective batch size with large variance within each mini-batch. Hence, it 
has been observed that small batch sizes (even mini-batches of 1) work 
well across different NFF architectures9,30. TPE provides a method for 
quickly evaluating the speed–accuracy trade off for different combi-
nations of batch size and learning rate, which are interdependent and 
must be varied together to enable large-batch training.

TPE performs equally well for GNNs. We repeat the TPE procedure, 
varying the learning rate and batch size, for SchNet, Polarizable Atom 
Interaction Neural Network (PaiNN) and SpookyNet, training on 10,000 
frames (1,000 frames per molecule) from the revised MD-17 (100,000 
structures of molecules are taken from the original MD17 dataset by 
ref. 31, with energies and forces recalculated at the PBE/def2-SVP level 
of theory)32 dataset of 10 small organic molecules. Using only 20% 
of the total training budget, we achieve excellent predictive power  
(Fig. 3) with TPE for SchNet and PaiNN. The variance in model loss using 
the entire training budget is important, indicating the importance of 
proper HPO.

Because SpookyNet is a complex architecture that includes 
non-local interactions and empirical corrections, it shows slow con-
vergence and the training speed is less correlated with the converged 
model loss compared with SchNet and PaiNN. However, the rank order-
ing of model configurations for SpookyNet from TPE is still robust 
(Spearman’s ρ = 0.92), which allows for discarding non-optimal model 
configurations early in training, representing notable computational 
savings. The goodness-of-fit metrics for linear regressions using TPE 
are given in Table 1.

Neural scaling quantifies the improvements in loss
Next, with a strategy in place to efficiently scale up experiments using 
TPE, we investigate neural scaling in ChemGPT and NFFs. For each 
model, we perform TPE to identify good hyperparameter choices that 
are predicted to perform well over a range of model and dataset sizes. 
Then, we systematically vary the dataset size (d) and model size (m) 
and perform exhaustive experiments to determine the converged 
loss, L(m, d). For efficiency and to isolate scaling behaviour, we fix 
hyperparameters from TPE as m and d are varied, but strictly speak-
ing the optimal hyperparameters will change as m and d vary21. Due to 
computational resource limitations, we train ChemGPT models for a 
fixed number of epochs (ten) to determine the loss.

Figure 4 shows the pre-training loss as a function of model and 
dataset size over many orders of magnitude. Models are trained in 
a self-supervised, causal language modelling setting and evaluated 

hyperparameters that work well for small models and small datasets do 
not transfer to larger scales21. This presents a risk that scientific deep 
learning will become increasingly inaccessible as resource demands 
increase. Techniques for accelerating neural architecture search and 
hyperparameter transfer such as training speed estimation (TSE)22 and 
μTransfer21 could accelerate the development of large-scale scientific 
deep learning models, where rapid advances in architecture design and 
complex data manifolds prevent the easy transfer of parameters and 
settings used in computer vision and NLP. To investigate the capabilities 
of deep chemical models across resource scales, practical and princi-
pled approaches are needed to accelerate hyperparameter transfer 
and characterize neural scaling.

In this Article, we develop strategies for scaling deep chemical 
models and investigate neural-scaling behaviour in large language 
models (LLMs) for generative chemical modelling and graph neural 
networks (GNNs) for machine-learned interatomic potentials. We 
introduce ChemGPT, a generative pre-trained transformer for autore-
gressive language modelling of small molecules. We train ChemGPT 
models with over 1 billion parameters, using datasets of up to 10 million 
unique molecules. We also examine large, invariant and equivariant 
GNNs trained on trajectories from molecular dynamics and investi-
gate how physics-based priors affect scaling behaviour. To overcome 
the challenges of hyperparameter tuning at scale in new domains, 
we extend techniques for accelerating neural architecture search to 
reduce total time and compute budgets by up to 90% during HPO and 
neural architecture selection. We identify trends in chemical model 
scaling with respect to model capacity and dataset size, and show the 
pre-training loss performance improvements seen with increasing 
scale. Work concurrent with and following the original appearance of 
this paper has shown a wide range of performance on molecular prop-
erty prediction tasks14 using pre-trained chemical language models23,24, 
from state-of-the-art to negligible or even negative performance. 
New research directions involve understanding the limitations of 
pre-trained representations25 from models including ChemGPT. Simi-
larly, following the original appearance of our work, scaling in GNNs 
has shown immense success for chemical and biological systems26. 
Our core contribution is the discovery of neural-scaling laws across 
extremely diverse domains of chemical deep learning: language models 
and neural interatomic potentials. Our results provide motivation and 
practical guidance for scaling studies in scientific deep learning, as well 
as many fruitful new research directions at the intersection of massive 
scale and physics-informed deep learning.

Results
In this section, we describe our main results and the workflow devel-
oped in this paper, summarized graphically in Fig. 1.

Accelerated hyperparameter optimization
To conduct extensive scaling experiments, we first need to find reason-
able hyperparameters and training settings. Unlike for NLP and com-
puter vision, there are no default model architectures, datasets, tasks, 
hyperparameter settings or training settings for large-scale chemical 
deep learning. Simply transferring empirical results from other deep 
learning domains or smaller-scale experiments will lead to suboptimal 
results21. Whereas large models and datasets are standard in traditional 
deep learning application areas, to investigate scaling in deep chemi-
cal models we must lay the groundwork for large-scale experiments. 
To this end, we first tackle the problem of accelerating HPO in general 
settings, for new model architectures, heterogeneous datasets and at 
scales that have not been previously investigated.

Figure 2 shows the results of training performance estimation 
(TPE) for ChemGPT models trained on 2 million molecules from the 
Molecular Sets (MOSES)27 dataset. MOSES is smaller than PubChem and 
is representative of datasets on which chemical generative models are 
typically trained27,28. Here we use MOSES to demonstrate how optimal 
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on next-token prediction for a fixed validation set. Surprisingly, no 
limitations in loss improvement are seen with increasing scale. The 
pre-training loss monotonically improves with increasing dataset 
size up to nearly 10 million molecules. Furthermore, for a fixed data 
budget, increasing model size provides monotonic improvements to 
the pre-training loss until the model reaches 1 billion+ non-embedding 
parameters. This indicates that even for small datasets, much larger 
models than were previously considered for deep generative model-
ling28,33 may be useful for pre-training. For the largest dataset con-
sidered here, diminishing returns to loss improvements are seen for 
models above 100 million non-embedding parameters. Interestingly, 
greater loss improvements are seen with increasing model sizes for 
smaller datasets than larger ones. For the largest dataset considered, 

model loss saturates quickly beyond 100 million parameters. How-
ever, for the smallest dataset considered, the loss plateaus for model 
sizes between 10 and 107 parameters and then improves considerably. 
This indicates that for a fixed, small pre-training data budget, notable 
improvements in the pre-training loss are possible simply by scaling 
up the model size. Irrespective of model size, increasing dataset size 
provides continuous improvements to the loss with no evidence of 
diminishing returns for the dataset sizes considered here.

Depending on the dataset size, regimes of power-law-like scal-
ing behaviour are seen for different ranges of model sizes. Power-law 
scaling is graphically identifiable as an approximately straight line 
fit of loss versus model size on a log–log plot. For larger datasets, 
power-law scaling is observed for smaller model sizes. For example, 
the largest dataset shows approximate power-law scaling for models 
between 105 and 107 non-embedding parameters (Supplementary  
Fig. 1). Conversely, for smaller datasets, power-law scaling is observed 
for larger models and over a more limited range of model sizes. The 
smallest dataset shows approximate power-law scaling for models 
between 107 and 108 non-embedding parameters (not shown).

The breakdown in power-law scaling is indicative of ‘resolution 
limited’ neural scaling34, where the model is sufficiently large but 
the dataset is not, or vice versa. Identifying these resolution-limited 
regimes from the neural-scaling relations allows us to understand 
in general terms whether model loss improvements are limited by 
data availability or model capacity. The scaling exponent β is equal to 
0.17 ± 0.01 for the largest dataset (Supplementary Fig. 1), after discard-
ing the three largest models from the power-law fit. β = 0.30 ± 0.01 for 
the next largest dataset (Supplementary Fig. 2). The scaling exponent 
quantifies the loss improvements due to increasing model size, for a 
fixed data budget. A larger value of β corresponds to a steeper slope and 
better performance with increasing data/model size. The breakdown in 
power-law scaling is reflective of so-called broken neural-scaling laws35, 
which indicate that smoothly broken power-law functional forms are 
more general descriptions of neural-scaling behaviour.

GNNs exhibit robust neural-scaling behaviour
The potential benefits of large-scale GNNs are less clear than for LLMs, 
as are the relevant parameters to vary, due to the inequivalence of 
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a,b, Over a domain of model candidates (a), final, converged model loss is 
predicted from only a few initial epochs of training for large-scale models 
(b). c, Non-optimal model architectures and hyperparameter configurations 

are identified early in training, allowing for efficient selection of the ideal 
architecture and hyperparameters. The model with the best hyperparameters 
is then trained with varying model and dataset sizes to discover neural-scaling 
relations.
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ChemGPT final validation loss (cross-entropy for causal language modelling) 
predicted from 20% of training budget using TPE. Model configurations are 
determined through a grid search of different batch sizes and learning rates. 
Models are trained on two million molecules from MOSES.
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depth and width for GNNs36 and additional parameters beyond notions 
of model size that impact performance, for example, nearest-neighbour 
cut-off in graph construction. To simplify GNN scaling experiments, 
here we vary GNN capacity (depth × width) by systematically chang-
ing network width and the number of convolutions (depth). We train 
GNNs to predict atomic forces from the ANI-1x dataset (5 million den-
sity functional theory calculations of small organic molecules)37, the 
largest publicly available dataset of energies and forces for small 
molecules. NFF models are trained with a learning rate scheduler that 
reduces the learning rate every 50 epochs without improvement in the 
validation loss, until the learning rate reaches 10−7. The loss is an L1 loss  
(equation (5)), shown in Fig. 5 over four orders of magnitude of dataset size.

The neural-scaling results for the equivariant GNN, PaiNN (Fig. 5), 
show monotonic improvements to the loss with increasing dataset size. 
For a fixed dataset size, the converged loss is strongly correlated with 
the total training time (compute) and model capacity. Other than for 103 
datapoints (for which some small models reach convergence quickly), 
the converged loss has a Spearman correlation coefficient ρ ≥ 0.88 with 
the model capacity and ρ ≥ 0.75 with the total training time. This means 
that the best models are those with optimal capacity that are able to 
train the longest without the validation loss plateauing. The optimal 
capacity and depth versus width change with the dataset size, that is, 
the ideal GNN capacity is dataset-size dependent, and these choices 
can impact the converged loss. These effects may also be artefacts of 
random initialization that would diminish with repeated trials. Interest-
ingly, there is a stark change at 104 datapoints—the converged loss is 
then nearly perfectly rank correlated with model capacity (Spearman’s 
ρ ≥ 0.93). This might indicate that substantial overlap exists between 
the training and validation sets, such that higher capacity models are 
merely exhibiting better memorization than lower-capacity models. In 
these experiments, the validation set is constructed from unseen geom-
etries and seen species (chemical species are the same in the training 
and validation sets). Repeating these experiments with a hold-out set 
of unseen chemical species will reveal whether the same trend holds, 
which would indicate that rather than memorizing, the network is 
achieving generalization to new chemistries.

We observe similar trends in neural scaling for the invariant GNN, 
SchNet (Supplementary Fig. 3), although the equivariant GNNs, PaiNN 
and Allegro (Supplementary Fig. 4), show better scaling efficiency. A 
comparison of neural scaling between SchNet, PaiNN and Allegro for 
models with fixed capacity (equation (6)), c = 64 (4 layers, width 16), 
is shown in Supplementary Fig. 5. Over many orders of magnitude of 
dataset size, PaiNN and Allegro show greater sample efficiency, quanti-
fied by the calculated scaling exponents (Supplementary Table 1). That 
is, not only do the equivariant GNNs achieve better performance for 
a given data budget but also they exhibit larger β scaling parameter 
values, meaning that the loss improves more quickly with increasing 
amounts of training data. This is due to the models’ equivariance, which 
is known to produce greater sample efficiency9,10,38, but it is interesting 
to note that this trend persists to much larger and more chemically 
diverse datasets than were previously considered, which typically 
include only 102−103 molecular geometries from a single molecular 
species. We observe the same trends for calculated scaling exponents 
when the smallest (102) and largest (105) datasets are excluded from the 
power-law fits (Supplementary Table 1). Our results and recent work39 
on hierarchical learning in equivariant GNNs suggest that the tensor 
order of features has an important role in the sample efficiency of these 
models. Future theoretical and empirical work is needed to untangle 
the competition between equivariance that is enforced via architec-
tures and features and ‘learned’ equivariance40 achieved through data 
augmentation and training data.

Neural scaling enables substantial improvements to loss
Next, we briefly highlight the practical outcomes and usages of TPE 
and neural scaling as enabling technologies for scalable scientific deep 
learning. On the basis of the results presented above, TPE can be used 
in conjunction with any HPO routine to enable aggressive early stop-
ping and accelerate HPO without sacrificing improvements to the loss. 
Clearly, the benefits of this approach become more pronounced in 
chemical and biological applications, where new network architec-
tures must be continuously retrained, optimized and evaluated on 
heterogeneous datasets.

Similarly, neural scaling provides practical ways to improve model 
pre-training loss and efficiency. Given an unlimited data and compu-
tation budget, the minimum loss in the neural-scaling plot and corre-
sponding model can be used. For example, the 300 million parameter 
ChemGPT model trained on 300 million tokens minimizes the loss 
in Fig. 4. Likewise, the PaiNN model with capacity ~1,000 trained on  
105 frames minimizes the loss in Fig. 5. This may be valuable for 
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Table 1 | Goodness-of-fit metrics for GNN model 
performance using linear regression from TPE

Model R2 Spearman’s ρ

SchNet 0.99 0.99

PaiNN 0.91 0.97

SpookyNet 0.86 0.92
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Fig. 4 | Neural scaling of ChemGPT model performance (validation loss) 
as a function of model (number of non-embedding parameters) and 
dataset (number of tokens) size. ChemGPT is pre-trained on up to 10 million 
molecules (300 million tokens) from PubChem. Performance improvements 
are seen for models up to 1 billion non-embedding parameters and continuous 
improvements are observed with increasing pre-training dataset size.
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pre-trained models that are designed to be reused and fine-tuned, where 
the training cost is amortized over many downstream applications. 
However, for many scientific applications, greedily optimizing for the 
minimum loss is not practical or even necessary. From the neural-scaling 
results, identifying regions with the steepest slope allows for optimal 
and efficient allocation of resources. For example, for large chemical 
language models, the greatest loss improvements (Fig. 4) are seen for 
large data budgets when scaling up small models (105 parameters). For 
small data budgets, more rapid loss improvements are seen when scaling 
up medium-sized models (107 parameters). For NFFs, there are dimin-
ishing returns with increasing dataset sizes for low-capacity models, 
while high-capacity models show rapid improvements with increasing 
dataset size (Fig. 5). The benefits from scaling model and dataset sizes 
should therefore be balanced against the increased computational 
costs to find the most computationally and data-efficient opportunities 
for improvement. Beyond optimizing resource allocation, the grand 
challenge for large pre-trained models is to achieve new capabilities 
and superior performance on downstream tasks.

Discussion
In this paper, we developed and applied strategies for scaling large 
chemical language models and GNN interatomic potentials. To enable 
the efficient scaling of deep chemical models under computational 
resource constraints, we introduced TPE, a generalization of TSE that 
reduces the computational costs of HPO and model selection for chemi-
cal language models and GNN interatomic potentials. The use of TPE 
enabled large-scale experiments, training GPT-style chemical models 
with over 1 billion non-embedding parameters on nearly 10 million 
molecules. It also made training tractable for invariant and equiv-
ariant GNNs with a wide range of model capacities on up to 100,000 
three-dimensional molecular geometries (~4.5 million force labels). 
We discovered empirical power-law ‘neural scaling’ behaviour that 
quantifies how model loss depends on the scale of model and dataset 
size over many orders of magnitude. These results enable optimal 
allocation of computational and data budgets for maximally efficient 
model loss improvements, and make scalable scientific deep learning 
more accessible to a broader community of researchers. A key finding 
in our work is that for both large chemical language models and NFFs, 
we have not saturated model loss with respect to model size, dataset 
size or compute. Much further work remains to be done in investi-
gating the limitations of scaling for chemistry. Finally, the effects of 
physics-based priors on scaling behaviour give a rich description of 
how the incorporation of physics, known empirical relationships and 
other forms of knowledge into machine learning frameworks impact 

both learning quality and efficiency. Future work in this area is well 
poised to yield fundamental advances in scientific machine learning.

Methods
In this section, we report details of the models considered in the paper 
and settings for the experiments performed in this paper. We define 
neural scaling and the model architectures considered here, which are 
chosen specifically for their likelihood to exhibit interesting scaling 
behaviour. Then we introduce strategies to enable scaling large chemi-
cal models and investigations of scaling behaviour.

Neural scaling
For large language and computer vision models trained to conver-
gence with sufficient model parameters and/or data, performance 
is characterized by empirical scaling laws where the loss scales as a 
power law18 of the form

L(R) = αR−β (1)

for coefficient α, scaling exponent β and resource R. R is the number 
of model parameters, dataset size or compute. β measures the slope 
of the power law and indicates the scaling efficiency of the model 
with respect to a scaling factor, R. The power-law trends break down 
in ‘resolution limited’ regimes34, indicating that the model (dataset) 
size is insufficient for the given amount of data (model parameters).

Neural scaling presents a best-case scenario for model pre-training 
loss improvements with increasing resources, and allows for optimal 
allocation of fixed budgets, for example, to decide whether longer 
training, more data or larger models will be most efficient for improving 
pre-training loss. Comparing neural-scaling exponents also provides 
a fundamental metric for measuring resource efficiency across model 
architectures. Investigations into neural scaling in the NLP domain have 
revealed general conclusions about overfitting, sensitivity to architec-
tural choices, transfer learning and sample efficiency18. These factors 
are equally or more important in scientific deep learning applica-
tions, where rapid advances are being made in specialized architecture 
development, and it is often unclear how architectures will perform 
beyond the small benchmark datasets that are commonly available in 
scientific settings.

Large chemical language models
Strings are a simple representation for molecular graphs41, thereby 
making sequence-based machine learning models a natural choice for 
working with chemical data. Following the demonstrated pre-training 
loss improvements of transformer-based models with increasing model 
and dataset sizes8,18,34, we designed a large generative language model 
for chemistry called ChemGPT to investigate the impact of dataset and 
model size on pre-training loss. ChemGPT is a generative pre-trained 
transformer 3 (GPT3)-style model42,43 based on GPT-Neo44,45 with a 
tokenizer for self-referencing embedded strings (SELFIES)41,46 repre-
sentations of molecules. SELFIES enforce chemical validity and are 
straightforward to tokenize, but ChemGPT can easily be used with 
simplified molecular-input line-entry system (SMILES) strings as well28. 
For chemical language modelling, a set of molecules (x1, x2, …, xn) is 
represented with each molecule as a sequence of symbols (s1, s2, …, sn). 
The probability of a sequence, p(x) is factorized as the product of con-
ditional probabilities47:

p(x) =
n
∏
i=1

p(si|s1,… , si−1). (2)

ChemGPT uses the transformer48 architecture with a self-attention 
mechanism to compute conditional probabilities, estimate p(x), and 
sample from it to generate new molecules. ChemGPT is pre-trained 
on molecules from PubChem49 with a causal language modelling task, 
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Fig. 5 | Neural scaling of PaiNN model performance (validation loss) as a 
function of model capacity (depth × width) and dataset size (number of 
geometries). PaiNN is trained to predict atomic forces from density functional 
theory calculations on small organic molecules from the ANI-1x dataset. 
Improvements to the loss are seen for models with greater capacity and 
continuous improvements are observed with increasing dataset size.
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where the model must predict the next token in a sequence, given the 
previous tokens. ChemGPT models of up to 1 billion non-embedding 
parameters are trained on up to 10 million molecules, whereas typical 
chemical generative models have less than 1 million parameters and 
are trained on less than one million samples28,33.

GNN force fields
For many tasks in chemistry, molecular geometry and three- 
dimensional structure are essential and string-based representations 
of the chemical graph are not sufficient. NFFs are GNNs that take molec-
ular geometries as inputs, described by a set of atomic numbers 
(Z1,… ,Zn|Zi ∈ ℕ) and Cartesian coordinates (r1,… , rn|ri ∈ ℝ3). The NFF 
with parameters θ, fθ, predicts a real-valued energy ̂E = fθ(X)  for an 
atomistic configuration X. The NFF produces energy-conserving 
atomic forces by differentiating the energies with respect to the atomic 
coordinates

̂Fij = − ∂ ̂E
∂rij

(3)

for atom i and Cartesian coordinate j. Typically, the network is trained 
by minimizing the loss ℒ computed from the average mean squared 
error for a mini-batch of size N

ℒ = 1
N

N
∑
i=1

[αE ∥ Ei − ̂Ei∥
2 + αF ∥ Fi − F̂i∥

2] (4)

where αE and αF are coefficients that determine the relative weight-
ing of energy and force predictions during training50. For scaling  
experiments we use the L1 loss or mean absolute error

ℒ = 1
N

N
∑
i=1

[αE ∥ Ei − ̂Ei ∥ +αF ∥ Fi − F̂i ∥] (5)

which we empirically find to show more robust convergence behaviour.
In this work, we consider four flavours of NFFs: SchNet51, PaiNN52, 

Allegro10 and SpookyNet30. This series of models represents increas-
ingly physics-informed model architectures, from models with inter-
nal layers that manipulate only E(3) invariant quantities (SchNet) to 
those that use E(3) equivariant quantities (PaiNN, Allegro, SpookyNet), 
strictly local models with learned many-body functions and no message 
passing (Allegro), and physically informed via empirical corrections 
(SpookyNet). The power and expressivity of these GNNs can be defined 
in terms of their capacity36

c = d ×w (6)

where d is depth (number of layers or convolutions51) and w is width 
(the embedding dimension or number of basis functions employed 
by each convolution). Capacity is a simple parameter to vary during 
neural-scaling experiments, because model size is not a strictly useful 
scaling parameter for GNNs36. Typical evaluations of NFFs consider 
training dataset sizes of less than 1,000 three-dimensional geometries 
of a single chemical species, which leads to insensitivity to model capac-
ity because of the simplicity of the learning task17. Here, we consider 
up to 100,000 training geometries (corresponding to 4.5 million force 
labels) and GNNs with millions of trainable parameters.

Accelerating HPO with TPE
Because model hyperparameters, including learning rates and batch 
sizes, are essential for achieving optimal losses and are non-transferable 
between different domains and model/dataset sizes21, we need efficient 
strategies for scalable HPO in deep chemical models. We adapt TSE22, 
a simple technique for ranking computer vision architectures during 
neural architecture searches, to accelerate HPO and model selection 

for ChemGPT and GNNs. We call this method TPE, as it uses training 
speed to more generally enable performance estimation across a wide 
range of applications. TPE generalizes TSE to HPO for new deep learning 
domains (LLMs, GNNs) and can be used to directly predict converged 
loss, in addition to rank ordering different architectures. While not the 
main contribution of this work, TPE is an effective strategy for acceler-
ating scaling studies under resource constraints. TPE is used for rapid 
experimentation and to discover which hyperparameters are most 
important in new domain applications, as well as what hyperparameter 
regimes to investigate. Similar methods including Hyberband53 acceler-
ate HPO by automating early stopping during training. The technical 
details of TPE are provided in the ‘Training performance estimation’ 
section in Methods.

Experimental settings
All experiments described in this paper were conducted on NVIDIA 
Volta V100 graphics processing units (GPUs) with 32 GB of memory per 
node and 2 GPUs per node. All models were implemented in PyTorch54 
and trained with the distributed data parallel accelerator55, the NVIDIA 
Collective Communication Library, PyTorch Lightning56 and LitMatter57 
for multi-GPU, multi-node training.

Large language models
The ChemGPT model architecture is based on the GPT-Neo44,45 trans-
former implementation in HuggingFace58. The model has 24 layers, 
with variable width, w, where w ∈ (16, 32, 64, 128, 256, 512, 1,024, 2,0
48) and w determines the model size. Model sizes range from 77,600 
to 1,208,455,168 non-embedding parameters. The model is trained 
via stochastic gradient descent with the AdamW59 optimizer, using a 
learning rate of 2 × 10−5, a per-GPU batch size of 8 and a constant learn-
ing rate schedule with 100 warm-up steps for scaling experiments. 
Models were trained for 10 epochs in a self-supervised manner, with 
a cross-entropy loss for causal language modelling. The number of 
epochs for training was chosen due to computational limitations, 
but importantly it is large enough to clearly distinguish differences in 
model performance from the empirical scaling results. As the initial 
publication of this work, new ‘compute optimal’ scaling laws60 have 
been discovered for general LLMs. Our results and this recent work 
clearly suggest that with increased compute and engineering time, 
larger chemical models could be trained.

The training dataset for scaling experiments is PubChem10M8, a 
set of 10 million SMILES strings. Five percent of the data is randomly 
sampled and held out as a fixed validation set of size 500,000 mol-
ecules. Variable training datasets with sizes 10n, where n ∈ (2, 3, 4, 5, 6), 
were used. The largest training dataset includes all molecules in 
PubChem10M, excluding the validation set. The maximum vocabulary 
size was 10,000 and the maximum sequence length was 512 tokens. 
SMILES strings were converted to SELFIES using version 1.0.4 of the 
SELFIES library46. SELFIES were tokenized by splitting individual strings 
into minimally semantically meaningful tokens denoted by brackets, 
including start-of-string, end-of-string and padding tokens. Dataset 
sizes range from 51,200 to 304,656,384 tokens.

Graph neural networks
We train GNNs to predict the forces of molecular geometries. Force-only 
training (αE = 0 in equation (5)) was used for neural-scaling experiments 
to improve convergence and avoid issues with systematic drift in pre-
dicted energies, which we identified during the course of this work and 
plan to address in future work. We use the SchNet61, PaiNN52, Allegro10 
and SpookyNet30 models. Model implementations are from the Neu-
ralForceField repository50,62,63 and the Allegro repository10. Model sizes  
(w in equation (6)) were varied between 16, 64 and 256, while the num-
ber of layers/convolutions (d in equation (6)) was chosen to be 2, 3 or 
4. A 5 Å nearest-neighbour cut-off was used. All other model hyperpa-
rameters were set to default values from the original implementations. 
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GNN models were trained with stochastic gradient descent using the  
Adam64 optimizer. For Allegro, l = 1 internal features were used.

A learning rate scheduler reduced the learning rate by 0.5× after 
30 epochs without improvement in the validation loss, with a mini-
mum learning rate of 10−7. Early stopping was applied after 50 epochs 
without improvement in the validation loss, and training was capped 
at 1,000 epochs. Initial learning rates of 10−3, 10−4 and 10−5, and per-GPU 
batch sizes of 4, 8, 16, 32 and 64 were used during HPO experiments, 
while keeping the network architecture hyperparameters fixed. Models 
were trained for 50 epochs during HPO to approximate a full training 
budget, with a limited percentage of the total training budget used to 
calculate TSE.

The training dataset was assembled from ANI-1x37,65, which con-
tains energies and forces from 5 million density functional theory calcu-
lations for small molecules. A fixed validation dataset of 50,000 frames 
was held out by random sampling. Different splits of training were 
taken with sizes 10n where n ∈ (2, 3, 4, 5, 6). Training datasets for TPE 
were assembled by randomly sampling 1,000 structures from molecu-
lar dynamics trajectories for each of the 10 molecules available in 
the revised MD-1732 dataset, for a total of 10,000 training samples.  
A validation dataset of equal size was constructed from the remaining 
geometries. Revised MD-17 is an updated version of the MD-1731 dataset, 
recomputed at the PBE/def2-SVP level of theory with strict convergence 
criteria to remove noise found in the original MD-17 dataset.

Training performance estimation
HPO typically involves training tens or hundreds of networks and using 
random search and/or Bayesian optimization to identify optimal hyper-
parameters. For optimal performance, the process must be repeated 
when considering new datasets or distribution shift.

By calculating the ‘training speed’ from only the first few epochs 
of training, the converged model performance is predicted and opti-
mal hyperparameters are identified using only a small fraction of 
the total training budget. For example, networks that require 100 
epochs to train to convergence are trained for only 10–20 epochs, 
and the final performance is predicted using TPE to identify the 
best performing networks, thereby saving 80–90% of the total  
training budget.

Training speed is estimated by summing the training losses of 
each mini-batch during the first T epochs of training. After training the 
network for T epochs with B training steps per epoch, TSE is defined as

TSE =
T
∑
t=1

( 1
B

B
∑
i=1

ℒ( fθ(t,i)(Xi),yi)) , (7)

for a loss function ℒ and a neural network fθ(t,i), with parameters θ at 
epoch t and mini-batch i. (Xi, yi) is a tuple of inputs and labels in the ith 
mini-batch. TSE is correlated with the converged performance of the 
network and can be used to rank networks early in training to yield 
substantial compute savings. Given a sufficient number of networks 
(5–10) that are trained to convergence, a linear regression of the form

L = m × TSE + b (8)

is fit with parameters m and b and the calculated TSE values to predict 
the converged loss, L. This allows predictions of converged network 
loss for partially trained networks evaluated during HPO based on its 
TSE values. Optimal hyperparameters are chosen to minimize TSE. In 
our experiments, we noted that L is monotonic in TSE, meaning that 
equation (8) is not needed to simply choose the best hyperparam-
eters. The TSE values computed after a small number of epochs are 
sufficient for ranking model configurations and finding the optimal 
ones. Although leveraging equation (8) requires training some small 
number of networks to convergence to fit the parameters, it provides 
the benefit of being able to predict the expected performance of new 

hyperparameter choices. In particular, this may provide guidance if a 
particular target loss value is desired, as equation (8) can be used to 
predict the performance gains potentially accessible through HPO. We 
find that TPE is robust over multiple orders of magnitude of learning 
rate for the networks and training regimes considered here.

Data availability
PubChem data for pre-training large language models are available 
through DeepChem66. The Molecular Sets (MOSES) data are avail-
able through GitHub27. The Enamine HTS Collection is available here. 
The ANI-1x data for training neural force fields is available through  
Figshare37. The revised MD-17 dataset was accessed here. The FreeSolv67 
and Tox2168 datasets are available through the Therapeutics Data Com-
mons15 and MoleculeNet14.

Code availability
The code used to perform the experiments and TPE reported in this 
paper is available via GitHub in the LitMatter repository57. ChemGPT is 
also available through the MolFeat library69 and the ROGI-XD library25. 
Neural force field model code is available here and Allegro model code 
is available here. The GPT-Neo model that ChemGPT is based on is avail-
able here. PubChem10M tokenizers using SELFIES versions 1.0.4 and 
2.0.0 are available through the LitMatter repository and the Hugging-
Face Hub. Because of the substantial computational resources required 
to train large models and the value of those models, pre-trained model 
checkpoints for ChemGPT are available via the HuggingFace Hub. 
Pre-trained model checkpoints for PaiNN and Allegro are available 
through Figshare70.
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