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Reusability report: Learning the 
transcriptional grammar in single-cell 
RNA-sequencing data using transformers

Sumeer Ahmad Khan1,2,9, Alberto Maillo1,9, Vincenzo Lagani    1,2,3, 
Robert Lehmann    1, Narsis A. Kiani    4,5, David Gomez-Cabrero1,6 & 
Jesper Tegner    1,5,7,8 

The rise of single-cell genomics is an attractive opportunity for data-hungry 
machine learning algorithms. The scBERT method, inspired by the success 
of BERT (‘bidirectional encoder representations from transformers’) 
in natural language processing, was recently introduced by Yang 
et al. as a data-driven tool to annotate cell types in single-cell genomics 
data. Analogous to contextual embedding in BERT, scBERT leverages 
pretraining and self-attention mechanisms to learn the ‘transcriptional 
grammar’ of cells. Here we investigate the reusability beyond the original 
datasets, assessing the generalizability of natural language techniques in 
single-cell genomics. The degree of imbalance in the cell-type distribution 
substantially influences the performance of scBERT. Anticipating an 
increased utilization of transformers, we highlight the necessity to consider 
data distribution carefully and introduce a subsampling technique to 
mitigate the influence of an imbalanced distribution. Our analysis serves 
as a stepping stone towards understanding and optimizing the use of 
transformers in single-cell genomics.

Convolutional neural networks (CNNs), generative adversarial net-
works (GANs), variational autoencoders (VAEs) and graph neural net-
works (GNNs) have been successful in addressing various data analyses 
in biomedicine, and genomics in particular. Single-cell genomics data, 
comprising data from thousands of individual cells, have particularly 
benefited from the use of neural networks1,2. However, one critical 
open problem in single-cell data analysis is labelling and discover-
ing individual cell types, which is a non-local problem as the cellular 
context is important. Yang and colleagues3 have recently proposed 
the application of ‘transformers’, a state-of-the-art natural language 

neural-network architecture, for cell-type annotation. By ‘drawing 
parallels between natural language processing and genomics’ and 
‘utilizing self-attention mechanisms’4, transformers can effectively 
capture long-range dependencies within single-cell genomics data. The 
scBERT method proposed by Fan Yang et al. can annotate cell types, 
detect novel cell types and is robust to batch effects.

In this Article we assess the reusability of scBERT, reported by 
Yang and colleagues3. Although we could largely reproduce their 
results, our findings indicate that cell-type distribution plays a more 
important role than initially reported. To validate this observation, we 
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as described in the following (Extended Data Table 1 and Extended 
Data Fig. 1).

Reusability
To assess the applicability and generalizability of scBERT across new 
datasets, we investigated its performance on a novel dataset—the Neu-
rIPS dataset—which is a compilation of single-cell multi-omics data 
collected from mobilized peripheral CD34+ haematopoietic stem and 
progenitor cells (HSPCs) for cell-type annotation and the detection of 
novel cell types tasks.

Challenging the scBERT using an additional 
dataset, NeurIPS
To this end, we explored the application of scBERT on the NeurIPS data-
set from the 2022 Kaggle competition, which is accessible via https://
www.kaggle.com/competitions/open-problems-multimodal/data, 
for a cell-type annotation task for predicting seven different cell types 
(GitHub: scbert-reusability). The data comprise single-cell multi-omics 
data from mobilized peripheral CD34+ cells (HSPCs) collected from 
four healthy human donors. This dataset was generated using the 10X 
Chromium Single Cell Multiome ATAC + Gene Expression technology 
(Multiome), which allows for the simultaneous measurement of gene 
expression (RNA) and chromatin accessibility (ATAC) in single cells. 
Accordingly, we used gene expression (RNA) from this multi-omics data 
for our experimentation. Specifically, we focused on the gene expres-
sion (RNA) data from this multi-omics dataset, which encompassed 
seven distinct cell types, namely B-cell progenitor (BP, n_cells = 262), 
erythrocyte progenitor (EryP, n_cells = 3,402), haematopoietic stem 
cell (HSC, n_cells = 10,757), mast cell progenitor (MasP, n_cells = 2,175), 
megakaryocyte progenitor (MkP, n_cells = 3,394), monocyte progenitor 
(MoP, n_cells = 258) and neutrophil progenitor (NeuP, n_cells = 3,663).

Assessing interclass similarity among cell types in 
the NeurIPS data
Understanding the similarity among the cell types is key to discerning 
the nuances of cell-type annotation and the detection of novel cell 
types. We visualized the different cell types in low two-dimensional 
uniform manifold approximation and projection (UMAP) plots (Fig. 1a). 
We also conducted a correlation analysis between cell types to assess 
scBERT’s robustness in the NeurIPS dataset for cell-type annotation 
and detection of novel cell types tasks (Fig. 1b), providing both qualita-
tive and quantitative perspectives on the similarity among cell types. 
These findings indicated a substantial correlation between cell types. 
Furthermore, the UMAP plots show that individual clusters correspond-
ing to each cell type are not adequately distinct from one another, as 
depicted in Fig. 1a. However, it is essential to acknowledge that the 
presence of high interclass similarity in the NeurIPS dataset does not 
diminish the overall capabilities of scBERT for cell-type annotation and 
novel cell-type detection, as shown in Fig. 2b,c. scBERT demonstrates 
a robust performance when applied to datasets with diverse and less 
homogeneous cell populations.

scBERT shows good performance with NeurIPS 
data for predicting cell types
The dataset of seven cell types was divided into two subsets, with 70% 
of the data allocated for training and 30% for testing. An additional 
split was performed on the training subset to further refine the model’s 
performance, with 80% of the data utilized for model training and the 
remaining 20% for validation. We observed that scBERT performed 
better on this new dataset, with a validation mean accuracy value 
of 0.8510, compared with Seurat, which achieved a validation mean 
accuracy of 0.8013 (Fig. 3a). We used Seurat for comparison because 
Seurat showed the next best performance after scBERT for the cell-type 
annotation task. However, scBERT showed a slight decrease in mean 
accuracy value, 0.8397 (Table 1), although this was still better than 

evaluated scBERT on a new dataset. We found that scBERT performs 
well in cell-type annotation tasks and performs similarly in detecting 
new cell types, as shown on the datasets reported in the paper. How-
ever, our results indicate that cell-type distribution influences the 
performance of scBERT in annotation and novel cell-type detection 
tasks on the new dataset. In summary, we anticipate that the use of 
transformers will be expanded beyond cell-type annotation to include 
a variety of downstream tasks such as perturbation response predic-
tion, multimodal integration and gene function analysis. On a broader 
note, our analysis suggests that, when engaging in downstream analysis 
using transformers, imbalanced data distributions remain an ongoing 
challenge and should be carefully addressed in each case.

Description of the method and the original 
experimental validation of scBERT
The scBERT model utilizes the advanced capabilities of the BERT 
model, which has demonstrated notable performance in natural 
language-processing tasks. The authors of scBERT have adapted the 
BERT model for single-cell RNA sequencing (scRNA-seq) data by creat-
ing gene embeddings through gene2vec5, which encodes gene embed-
dings within a predefined vector space to capture semantic similarities 
between genes. Additionally, the scBERT model incorporates expres-
sion embeddings generated through term-frequency analysis to discre-
tize continuous expression variables by binning and converting them 
into 200-dimensional vectors. These embeddings are utilized as token 
embeddings within the scBERT model, allowing for consideration of 
transcription levels of individual genes.

The scBERT model is first pretrained (self-supervised learning) 
on large amounts of unlabelled scRNA-seq data, providing a general 
understanding of gene interactions. A fine-tuning process on unseen 
and user-specific scRNA-seq data for supervised cell-type annota-
tion tasks follows this. In self-supervised learning, unlabelled data 
were obtained from PanglaoDB6 and utilized in the fine-tuning stage 
with task-specific data. During the self-supervised pretraining phase, 
masked expression and gene embeddings are integrated as input and 
fed into the performer blocks. A reconstructor is employed to generate 
outputs, with the reconstruction loss being calculated based on the 
output for masked genes. In the subsequent supervised fine-tuning 
stage, task-specific scRNA-seq data are input into the previously pre-
trained encoder.

The performance of scBERT was initially evaluated in comparison 
to other methods using seven scRNA-seq datasets comprising a com-
prehensive representation of 17 major organ/tissue systems, 50 cellular 
subtypes, over 500,000 cells and a variety of mainstream single-cell 
omics technologies (Drop-seq, 10X, SMART-seq and Sanger-Nuclei). 
Overall, the benchmark evaluation in ref. 3 comprehensively consid-
ered diversity in data size and complexity.

Reproducibility
Using the source code of scBERT from https://github.com/TencentAIL-
abHealthcare/scBERT (git commit 8ac7c1e), we repeated the analyses 
described in ref. 3 on the two datasets for which scBERT showed the best 
results, that is, Zheng68k7 and MacParland8. The first is a peripheral 
blood mononuclear cells (PBMC) dataset, widely used for cell-type 
annotation performance assessment, and the MacParland dataset 
profiles 8,444 cells from the human liver (belonging to 20 different 
hepatic cell populations). The Zheng68k data were available in a pre-
processed format (https://github.com/TencentAILabHealthcare/
scBERT), whereas the MacParland data were available as a raw count 
matrix. We used standard preprocessing steps from scanpy9 that the 
authors have reported in the https://github.com/TencentAILabHealth-
care/scBERT repository, that is, (filter, normalize and log1p) to make 
the MacParland format suitable for model training. We replicated the 
majority of the reported results. However, to fully assess the utility and 
efficacy of scBERT, we evaluated its performance on novel datasets, 

http://www.nature.com/natmachintell
https://www.kaggle.com/competitions/open-problems-multimodal/data
https://www.kaggle.com/competitions/open-problems-multimodal/data
https://github.com/TranslationalBioinformaticsUnit/scbert-reusability
https://github.com/TencentAILabHealthcare/scBERT
https://github.com/TencentAILabHealthcare/scBERT
https://github.com/TencentAILabHealthcare/scBERT
https://github.com/TencentAILabHealthcare/scBERT
https://github.com/TencentAILabHealthcare/scBERT
https://github.com/TencentAILabHealthcare/scBERT


Nature Machine Intelligence | Volume 5 | December 2023 | 1437–1446 1439

Article https://doi.org/10.1038/s42256-023-00757-8

Seurat, which achieved a mean accuracy value of 0.8160 and F1 score 
of 0.6395 (Fig. 2b) when applied to the 30% test data. Compared to 
Seurat, scBERT demonstrated improved performance, as reflected in 
the mean accuracy values. The P value obtained from a paired t-test 
was 0.0004, indicating that the performance improvement of scBERT 
over Seurat is statistically significant. These results demonstrate the 
potential utility of using pretrained language models such as scBERT 
for cell-type annotation tasks. Leveraging the pretrained knowledge 
embedded in these models can improve their performance compared to 
models trained from scratch. This is consistent with findings reported 
in the original scBERT paper, where the authors conducted an ablation 
study. The study demonstrated the value of pretraining in enhancing 
the model’s downstream performance on cell-type annotation tasks.

scBERT can detect only part of the novel cell types 
within NeurIPS data
To evaluate the ability of scBERT to detect novel cell types, we per-
formed leave-one-out experiments in which scBERT was trained on all 
but one cell type and then evaluated on its ability to identify the held-out 
cell type as a novel type. To this end, we followed the same steps as 

reported in the original paper of applying a threshold of probability of 
<0.5 such that cells with a value less than 0.5 be treated as unassigned 
or novel cell types. We observed that scBERT was only able to detect 
the neutrophil progenitor (NeuP) cell type as a novel cell type, and it 
still did not perform well on detecting other cell types as novel cell 
types (Fig. 2c), with a mean accuracy score of 0.087. It is worth noting 
that continued work is needed to develop scBERT representations and 
training procedures using scRNA-seq data to increase the efficacy of 
detecting novel cell types.

Subsampling improves scBERT’s performance in 
cell type annotation by balancing the cell-type 
distribution
As shown in Figs. 2c and 3b,c, scBERT showed poor performance on 
cell types with fewer cells (that is, with an imbalance in the number 
of cells). We were thus curious to see how the distribution of cells 
by cell type affected cell-type annotation. The distribution of cells 
per cell type is shown in Fig. 2a. In the NeurIPS dataset, we observed 
that the BP and MoP cells comprised 262 and 258 cells, respectively. 
We thus subsampled other cell types at 300 cells per type, resulting 
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Fig. 1 | NeurIPS dataset. a, UMAP plot of single-cell expression data, coloured by cell types (ground truth), for the NeurIPS dataset. b, Spearman correlation matrix of 
single-cell expression data between cell types in NeurIPS.
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Fig. 2 | Performance of scBERT on the NeurIPS dataset. a, Distribution of 
cells in the NeurIPS dataset: (1) original dataset (left); (2) subsampling (middle): 
reduced number of cells (300 cells); (3) oversampling (right): augmented 
number of cells (4,600 cells) of BP and MoP cell types. b, Heatmaps for the 
confusion matrices of the prediction results on the NeurIPS dataset (test data, 
30%): (1) original dataset (left); (2) subsampling (middle): reduced number of 
cells (300 cells); (3) oversampling (right): augmented number of cells (4,600 
cells) of BP and MoP cell types. c, Performance of scBERT on the discovery 

of novel n = 7 cell types on the NeurIPS dataset (original, subsampling and 
oversampling). Process: we removed one cell type in the training process and 
added it to the predicted dataset. This process was iterated on each cell type. 
The box plots show the median (centre lines), interquartile range (hinges) and 
1.5 times the interquartile range (whiskers). d, Threshold analysis for prediction 
accuracy in the NeurIPS dataset: (1) original dataset (left), (2) subsampling 
(middle): reduced number of cells (300 cells), (3) oversampling (right): 
augmented number of cells (4,600 cells) of BP and MoP cell types.
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in a relatively even cell distribution (Fig. 2a). We observed that a 
balanced distribution of cells by cell type influences the F1 scores. 
For the original data, the F1 score was 0.6395 (Table 1). In contrast, 
subsampling enhanced the F1 score to 0.7041 (Fig. 2b and Table 1). 
Specifically, cells that were previously poorly predicted due to their 
smaller proportions, such as BP cells, saw an increase in F1 score from 

0.0964 to 0.6879 (Fig. 2b), compared to other cell types. We also 
assessed the robustness of scBERT across various subsampling levels 
(150, 200, 250 and 350). We found that scBERT still exhibits better 
performance in terms of F1 score (Fig. 4a), even when we change the 
subsampling levels and maintain the distribution of the cells by cell 
type close to each other.
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accuracy using fivefold cross-validation (n = 5) on the NeurIPS dataset (training 
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(300 cells); (3) oversampling: augmented number of cells (4,600 cells) of BP 
and MoP cell types. The dotted line represents the random accuracy result 
(1/7 = 0.143). Right: zoomed plot of the accuracy using the original dataset.  
b, Performance of scBERT, scBERT (focal loss) and Seurat measured by F1 score 
using fivefold cross-validation (n = 5) on the NeurIPS dataset (training data, 70%): 

(1) original dataset; (2) subsampling: reduced number of cells (300 cells); (3) 
oversampling: augmented number of cells (4,600 cells) of BP and MoP cell types. 
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Balanced cell distribution across various 
subsampling levels enhances scBERT’s novel 
cell-type detection performance using NeurIPS 
data
One possible effect of cell distribution on detecting novel cell types is 
that it can influence the likelihood of detecting them. We thus asked 
whether the distribution of cells affects the ability to detect novel cell 
types using scBERT. We used the same set-up when detecting novel 
cell types as used in the original NeurIPS dataset, but we used subsam-
pled data, that is, 300 cells per cell type (BP = 262 cells and MoP = 258 
cells). We discovered that an even distribution of cells improves the 
detection of novel cell types. The mean accuracy score improved from 
0.087 to 0.3187 (Fig. 2c). This suggests that cell distribution is essen-
tial for scBERT when detecting novel cell types. We also evaluated the 
robustness of scBERT with different subsampling levels (that is, 150, 
200 250 and 350). We observed that scBERT still exhibits better per-
formance with different subsampling levels when the distribution of 
cells is roughly equal across different cell types, as shown in Fig. 4b.

Improved scBERT performance in cell-type 
annotation and detection of novel cell types 
across varied oversampling levels using NeurIPS 
data
Next, we asked whether balancing the cell-type representation by 
increasing the count of cell types with the fewest cells improves or 
degrades the performance of scBERT for annotation and detecting 
novel cell types. To this end, we performed data oversampling utiliz-
ing the ‘synthetic minority oversampling technique’ (SMOTE)10. We 
oversampled the cell types with a low number of cells and increased 
the mean of the cells with the maximum number of cells (4,600 cells 
for the BP and MoP cell types). We observed that oversampling slightly 
improved the F1 score from 0.7041 to 0.7353 (Fig. 4a) compared to 
when we subsampled to a lower number of samples per cell type (300 
cells). Moreover, we examined the robustness of scBERT with different 
oversampling levels (that is, 1,000, 2,000, 3,000, 4.000 and 5,000 
samples) and observed that scBERT consistently performs well for 
cell-type annotation tasks, even when the sampling levels are changed, 
as shown in Fig. 4a and Extended Data Fig. 2.

However, scBERT shows a slight improvement in novel cell-type 
detection compared to when there is a reasonable amount of imbalance 
in the data (0.087 to 0.181), but not as well as when we subsampled to 
300 cells per cell type (0.3187) (Fig. 2c). The rationale for this is that, 
unlike when we subsampled 300 cells per cell type, which had compara-
tive F1 scores across all cell types, the oversampling raises the F1 score 
of the enhanced cells and influences the F1 score across other cell types. 
We further evaluated the efficacy of scBERT across increasing oversam-
pling levels (that is, 1,000, 2,000, 3,000, 4,000 and 5,000 samples). 
Our observations reveal that scBERT maintains its performance across 
these different oversampling levels when compared to the performance 

seen with the original and various subsampled distributions across cell 
types, as demonstrated in Fig. 4a. These results suggest that scBERT 
exhibits effective performance across a range of sample sizes.

We also investigated the impact of random oversampling, a type 
of resampling used for assessing the robustness of scBERT in cell-type 
annotation and the detection of novel cell types, in addition to SMOTE 
oversampling. For this purpose, cells from minority classes, BP and 
MoP, were randomly duplicated with replacements to create a more 
balanced dataset. This procedure was iteratively executed to aug-
ment the BP and MoP cell counts to 1,000, 2,000, 3,000, 4,000 and 
5,000, respectively. We examined scBERT’s robustness using random 
oversampling levels of 1,000, 2,000, 3,000, 4,000 and 5,000. Our 
observations indicate that scBERT maintains strong performance 
with an increase in sample size in both cell-type annotation and novel 
cell-type detection, as depicted in Fig. 4a and Extended Data Fig. 2. 
These results suggest that scBERT demonstrates substantial robustness 
across various oversampling levels, indicating its effective handling of 
increased sample sizes.

No significant improvement in scBERT 
performance with focal loss for cell-type 
annotation using NeurIPS data across varied cell 
distributions
We also assessed the impact of using a focal loss function11 instead of 
the cross-entropy loss, as utilized in the original publication during the 
fine-tuning phase. The focal loss function is designed to handle class 
imbalance issues in classification tasks. It introduces two additional 
parameters to the traditional cross-entropy loss: alpha, a class balancing 
weight, and gamma, a factor that adjusts the rate of down-weighting 
for easy examples. To this end, we trained the models using the focal 
loss function and observed a slightly inferior performance compared to 
models trained with cross-entropy loss. The mean validation accuracy 
was 0.8488 for the focal loss, compared to 0.8510 for the cross-entropy 
loss in the original dataset, which exhibits an imbalance in the distribu-
tion of cells per cell type. Furthermore, in scenarios of subsampling 
and oversampling, where there is an even distribution of cells per cell 
type, scBERT with the default loss function (cross-entropy) still out-
performed the scBERT trained with the focal loss function (Fig. 3a,b 
and Extended Data Fig. 2): 0.7646 versus 0.7540. These results sug-
gest that changing the loss function does not substantially improve 
scBERT’s performance in tackling the uneven distribution of cells per 
cell-type problem.

Impact of probability threshold on scBERT’s 
detection of novel cell types on NeurIPS data
To understand the impact of the chosen probability threshold on 
scBERT’s performance in detecting novel cell types, we conducted a 
systematic analysis using various sampling strategies (subsampling of 
300 cells and oversampling of 4,600 cells) and probability threshold 

Table 1 | Performance analysis of scBERT on the NeurIPS dataset

Original Subsampling Oversampling

Accuracy F1 score Accuracy F1 score Accuracy F1 score

Split1 0.8465 0.6158 0.8057 0.7949 0.7642 0.7493

Split2 0.8489 0.6453 0.7456 0.7176 0.7506 0.7295

Split3 0.8504 0.6133 0.7491 0.7204 0.7458 0.7196

Split4 0.8593 0.6594 0.7774 0.7573 0.7611 0.7476

Split5 0.8501 0.6389 0.7456 0.741 0.7563 0.7209

Prediction (data size 30%) 0.8397 0.6395 0.7145 0.7041 0.7572 0.7353

A summary is shown of the performance of scBERT in the NeurIPS (original, subsampling (300 cells) and oversampling (4,600 cells)) dataset using fivefold cross-validation and the prediction 
results for the test data (size 30%). The best model accuracies and F1 scores across all settings are marked in bold.
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values ranging from 0.0 to 0.9. For novel cells, the accuracy metric was 
computed as the ratio of cells aptly classified as ‘unassigned’ to the 
total count of novel cells. In contrast, we used a multi-class accuracy 
approach for known cells after removing the ‘unassigned’ cells. This 
calculated accuracy was further adjusted by subtracting the propor-
tion of ‘unassigned’ cells discarded in the previous step, introducing a 
penalization for misclassification. Figure 2d depicts the mean accuracy 
for different cell types, both known and novel, across varying probabil-
ity thresholds. As the threshold increases, we observe a corresponding 
decrease in the detection accuracy for known cells, while the accuracy 
for novel cells improves. This trade-off underscores the critical role 
that threshold settings play in balancing the accurate classification of 
known cells and the discovery of novel cell types. Notably, when using 
the default threshold of 0.5, the subsampled dataset outperforms the 
others, achieving the highest accuracy in novel cell detection (0.3189), 
closely followed by the oversampled dataset (0.1804), and finally, the 
original dataset (0.0878). As illustrated in Fig. 2d, we recommend 
adjusting the threshold upwards to ~0.7 or 0.8 in the original dataset 
to substantially enhance the detection accuracy of novel cells.

Subsampling with balanced cell distribution 
improves scBERT’s performance on cell-type 
annotation on the Zheng68k data
We repeated the same steps for the Zheng68k dataset as used in our 
analysis using NeurIPS data to validate the observation of the effect of 

cell distribution per cell type on cell-type annotation. We divided the 
cell types into subsamples of 2,000 cells each (Fig. 5a). We excluded 
CD4+ T Helper2 (n = 97) and CD34+ (n = 242) cells. The reason for exclud-
ing these two cell types is that the other cell types have over 2,000 cells, 
and subsampling them to a much smaller number will remove infor-
mation about the cell types. Using the Zheng68k dataset, we trained 
the model (fine-tuning the pretrained model) on this equally distrib-
uted dataset per cell type and then used this fine-tuned model for the 
cell-type annotation task. We observed that the distribution impacts the 
annotation of cell type. We improved the F1 score to 0.6683 and boosted 
the prediction scores of the cell types for which scBERT demonstrated 
poor performance when these cell types (CD4+/CD45RA+/CD25− naïve 
T, dendritic) have a lower proportion of cells than the other cell types.

Balanced cell distribution through subsampling 
improves scBERT’s performance in detecting 
novel cell types on the Zheng68k dataset
We have demonstrated how scBERT’s efficacy in identifying novel cell 
types on NeurIPS data is impacted by the distribution of cells across 
cell types. To further validate this observation, we applied scBERT to 
the subsampled Zheng68k dataset, for which there is an equal distri-
bution of cells per cell type. scBERT showed improved performance 
in the mean accuracy value in detecting novel cell types compared to 
when we have a relatively smaller number of cells in specific cell types 
(Fig. 5b). This demonstrates that the performance of scBERT relies on 
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Fig. 4 | Performance of scBERT on the NeurIPS dataset with varied 
subsampling and oversampling. a, Accuracy and F1 score of the prediction 
performance on the NeurIPS dataset: original, subsampling and oversampling 
(using SMOTE and random oversampling). b, Performance of scBERT discovery 
of novel cell types (n = 7) on the NeurIPS dataset: original, subsampling and 

oversampling (using SMOTE and random oversampling). Process: we removed 
one cell type in the training process and added it to the predicted dataset. This 
process was iterated on each cell type (using a probability threshold of 0.5). In 
the box plots, lower and upper hinges represent the first and third quartiles, the 
centre lines the median, and whiskers the range of 1.5 times the interquartile.
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the distribution of cells for detecting novel cell types and cell-type 
annotation.

Discussion
In this study we have demonstrated that reusing the code and data 
provided by Yang and colleagues3 is sufficient to reproduce the main 
published results in the cell-type annotation task. However, it was chal-
lenging to identify the novel cell types in the MacParland dataset. Ide-
ally, scBERT should have detected all the cell types that were excluded 
in the training data and included during prediction as novel ones, but 
we found that it did not perform well in this scenario.

In addition to reproducing the results of ref. 3, we found that the 
distribution of cells per cell type affects the effectiveness of scBERT 
in cell-type annotation and detecting novel cell types. This is because, 
in both the cell-type annotation and the task of recognizing novel cell 
types, scBERT performs poorly on cell types with fewer cells than other 
cell types. In our analysis, we conducted two studies, subsampling 
the number of cells per cell type around the cell type with fewer cells 
than the other cell types, and, in the second set, augmenting the cell 
types with fewer cells to see how the distribution affects scBERT’s 
performance on cell-type annotation and detecting novel cell types. 
The empirical results show that the distribution affects scBERT’s per-
formance when the cell types are evenly distributed; that is, it improves 

its performance across cell-type annotation and novel cell-type detec-
tion. Furthermore, the performance of scBERT appears sensitive to 
the degree of skewness of the distributions, an effect that becomes 
abundantly clear when detecting novel cell types.

For future directions in part based on our analysis, further work 
is needed to understand the reasons for this distributional sensitivity 
of transformers in single-cell genomics and to develop methods to 
mitigate it. Possible directions include examining the effects of class 
imbalance on the training of transformer models and developing objec-
tive functions and training procedures tailored to uneven cell-type 
distributions. Furthermore, including domain knowledge and appro-
priate regularizations, which could guide the model towards learning 
biologically plausible predictions, could potentially aid in detecting 
novel cell types. Nevertheless, our reusability analysis demonstrates 
the potential of scBERT in detecting novel cell types and provides 
insights for future improvements.

More broadly, we envision that transformer models could be applied 
to various downstream single-cell analysis tasks, such as differential 
expression analysis, multimodal data integration, gene function 
analysis and drug-response prediction. With the comprehensive 
understanding of cellular transcriptional contexts that scBERT learns 
during pretraining, it can be used for perturbation response prediction. 
In this scenario, the model will be fine-tuned on perturbation data.  
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Fig. 5 | Performance of scBERT on the subsampled Zheng68k dataset.  
a, Distribution of cells in the Zheng68k dataset: (1) original dataset (left) and 
(2) subsampling (right), where we reduce the number of cells (2,000 cells) and 
remove CD34+ and CD4+ T helper2 cells. b, Performance of scBERT discovery 
of n = 9 novel cell types on the Zheng68k dataset (original and subsampling). 

Process: we removed one cell type in the training process and added this to the 
predicted dataset. This process was iterated on each cell type. Box plots show the 
median (centre lines), interquartile range (hinges) and 1.5 times the interquartile 
range (whiskers).
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The data should consist of paired observations of each cell’s initial state 
and the state after perturbation, allowing scBERT to learn the relationship 
between these states. In the context of multimodal data integration, 
as scBERT is originally pretrained on scRNA-seq data, applying it to 
multimodal data would require incorporating the additional data 
modalities into the model’s input. One possible approach might be to 
concatenate the normalized representations of each data type into a 
single vector for each cell. The model would then be fine-tuned on the 
combined data, allowing it to learn correlations between the different data 
types and thereby enhance the richness of its cell-state representations. 
Moreover, for gene function analysis, scBERT’s architecture could be 
used with a change in the output layer to predict the functional category 
or categories associated with each gene. The model would need to be 
fine-tuned on gene annotation data, where each gene is associated with 
one or more functional categories. However, our reusability analysis 
stresses the need to consider the specific characteristics of the task and 
data distribution balance when applying a transformer architecture. 
As with novel cell-type detection, it will be essential to understand and 
address the effects of potential data imbalances. In general, it appears 
to be a delicate balance between the power of transformers to detect 
subtle correlations in datasets versus their sensitivity to skewed data 
distributions and class imbalances. How this plays out for different tasks 
in single-cell genomics and biomedicine remains to be investigated.

Methods
Reproducibility experiments
We found a few errors in the syntax of the command line arguments 
as they were included before the scripts (fine-tuning the pretrained 
model, predicting using a fine-tuned model, and detecting novel cell 
types) as stated in the ‘Usage’ section of scBERT’s GitHub repository. 
However, after rectifying these minor issues, the code was easy to 
execute to reproduce the results.

Cell-type annotation
Our reproducibility experiments on cell-type annotation followed the 
steps outlined by the authors3 in the GitHub repository, where they 
used 100% of the data for training and the same dataset for testing. 
We ran the experiment in exactly the same way as the original authors, 
including using the same random seeds specified in the code. We dis-
covered that on the Zheng68k dataset7, our F1 score of 0.677 (Extended 
Data Table 1) and theirs of 0.691 deviated by 0.014; furthermore, we 
obtained a mean accuracy value of 0.7802 on the Zheng68k dataset, 
whereas the original publication reports 0.7590 (0.021 difference). On 
the MacParland dataset, we obtained an F1 score of 0.9602 as compared 
to the F1 score reported in the paper of 0.9588, deviating by 0.0014, 
while our respective mean accuracy value deviated by 0.020 (ours, 
0.9558, Fig. 1a; theirs, 0.9760; Extended Data Table 1). Our analysis 
revealed a slight deviation in the mean accuracy score and F1 score, 
probably due to excluding a specific immune cell type, CD4+ T Helper2, 
from the original study. On further investigation, it was observed that 
this cell type—CD4+ T Helper2—has a lower abundance of cells (n = 97) 
than the other cell types, resulting in a relatively lower accuracy than 
the results reported in the original study (Extended Data Fig. 1b).

We also divided the datasets into two subsets, with 70% allocated 
for training and 30% for testing. An additional split was performed on 
the training subset to further refine the model’s performance, with 
80% of the data utilized for model training and the remaining 20% for 
validation. To this end, we observed that the prediction accuracy of 
scBERT decreased in mean accuracy (0.7802 to 0.7551; Extended Data 
Fig. 1a). However, we found that scBERT continued to perform well 
in the second phase of this set-up, where we used 70% of the data for 
training and the remaining 30% for testing, with a mean accuracy score 
of 0.7533 (Extended Data Fig. 1b) and F1 score of 0.6523.

We performed the same experiments on the MacParland dataset 
and divided it into 70% for training scBERT and 30% as test data for the 

prediction. We discovered little difference in mean accuracy values 
when training and testing scBERT with 70% MacParland data versus 
100% MacParland data (0.9532 and 0.9558, respectively; Extended 
Data Fig. 1a). However, with 30% test data, the mean accuracy score was 
0.9372 and the F1 score 0.9400 (Extended Data Fig. 1b).

Detecting novel cell types
In many scenarios, the reference dataset may not include all the dif-
ferent types of cells in the query dataset. This can be a problem for 
marker-based methods, which rely on pre-selected markers for known 
cell types and may struggle to identify new, unseen cell types. On the 
other hand, correlation-based methods often assign novel cell types 
to the closest available class, which may not always be accurate. In 
contrast, machine learning-based methods can supposedly automati-
cally detect novel cell types by evaluating the predicted probabilities. 
This allows for a more precise and flexible classification of cell types.

To this end, as reported in this paper, we tested the reproducibility 
of scBERT in detecting novel cell types on the MacParland dataset. The 
cell types excluded for reproducibility were plasma cells, alpha-beta 
T cells, gamma-delta T cells and mature B cells. We discovered that 
scBERT predicts only plasma cells as novel cell types. It cannot detect 
the other cell types (alpha-beta T cells, gamma-delta T cells and mature 
B cells) as novel cell types (Extended Data Fig. 1c).

Data availability
The NeurIPS data used in our study are available in the figshare reposi-
tory at https://figshare.com/projects/scbert-reusability/157203. 
The Zheng68K dataset was downloaded from GitHub, and the Mac-
Parland data from https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE115469. Source data are provided with this paper.

Code availability
The original scBERT code is available at https://github.com/TencentAIL-
abHealthcare/scBERT. Our GitHub content, with detailed instructions, 
is available at https://github.com/TranslationalBioinformaticsUnit/
scbert-reusability. The code can also be accessed via Zenodo at https://
doi.org/10.5281/zenodo.8191571 ref. 12.
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Extended Data Fig. 1 | Reproducible performance of scBERT on Zheng68k 
and MacParland datasets. a) Performance of scBERT measured by accuracy on 
Zheng68k and MacParland dataset (size 70% and 100%) using fivefold cross-
validation (n = 5). b) Heatmap for the confusion matrices of the prediction results 
on the Zheng68k and MacParland datasets (test data, 30%). Left side: Zheng68k 
(accuracy = 0.7533 and F1 score = 0.6523) Right side: MacParland (accuracy = 
0.9372 and F1 score = 0.9400) c) Performance of scBERT discovery novel cell 

types on the MacParland dataset by removing alpha-beta T cell, gamma-delta 
T cell (gamma-delta_T_Cells_1 and gamma-delta_T_Cells_2), mature B cell, and 
plasma cell population (denominated as novel) during the training process. 
Accuracy of detecting n = 15 known and n = 5 novel cell types. In box plots, the 
lower and upper hinges represent the first and third quartiles, the center lines the 
median, with whiskers in the range of 1.5-times the interquartile.
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Extended Data Fig. 2 | Confusion matrices. Heatmap for the confusion 
matrices of the prediction results. 1) Subsampling sizes: 150, 200, 250 and 350. 
2) SMOTE oversampling sizes: 1000, 2000, 3000, 4000 and 5000. 3) Random-

oversampling sizes: 1000, 2000, 3000, 4000 and 5000. 4) Focal-loss: original, 
subsampling (size = 300) and oversampling using SMOTE (size = 4600). 5) Seurat: 
original, subsampling (size = 300) and oversampling using SMOTE (size = 4600).
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Extended Data Table 1 | Results of performance of scBERT in Zheng68k and MacParland

Summary table of performance of scBERT in Zheng68k and MacParland (size 70% and 100%) using fivefold cross-validation and the prediction results in test data (size 30%). The prediction 
analysis was not performed when the whole dataset was used for training.

http://www.nature.com/natmachintell

	Reusability report: Learning the transcriptional grammar in single-cell RNA-sequencing data using transformers

	Description of the method and the original experimental validation of scBERT

	Reproducibility

	Reusability

	Challenging the scBERT using an additional dataset, NeurIPS

	Assessing interclass similarity among cell types in the NeurIPS data

	scBERT shows good performance with NeurIPS data for predicting cell types

	scBERT can detect only part of the novel cell types within NeurIPS data

	Subsampling improves scBERT’s performance in cell type annotation by balancing the cell-type distribution

	Balanced cell distribution across various subsampling levels enhances scBERT’s novel cell-type detection performance using  ...
	Improved scBERT performance in cell-type annotation and detection of novel cell types across varied oversampling levels usi ...
	No significant improvement in scBERT performance with focal loss for cell-type annotation using NeurIPS data across varied  ...
	Impact of probability threshold on scBERT’s detection of novel cell types on NeurIPS data

	Subsampling with balanced cell distribution improves scBERT’s performance on cell-type annotation on the Zheng68k data

	Balanced cell distribution through subsampling improves scBERT’s performance in detecting novel cell types on the Zheng68k  ...
	Discussion

	Methods

	Reproducibility experiments

	Cell-type annotation

	Detecting novel cell types


	Acknowledgements

	Fig. 1 NeurIPS dataset.
	Fig. 2 Performance of scBERT on the NeurIPS dataset.
	Fig. 3 Benchmarking across scBERT, scBERT (focal loss) and Seurat.
	Fig. 4 Performance of scBERT on the NeurIPS dataset with varied subsampling and oversampling.
	Fig. 5 Performance of scBERT on the subsampled Zheng68k dataset.
	Extended Data Fig. 1 Reproducible performance of scBERT on Zheng68k and MacParland datasets.
	Extended Data Fig. 2 Confusion matrices.
	Table 1 Performance analysis of scBERT on the NeurIPS dataset.
	Extended Data Table 1 Results of performance of scBERT in Zheng68k and MacParland.




