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Abstract

Chemical reactions are the fundamental building blocks of drug design
and organic chemistry research. In recent years, there has been a
growing need for a large-scale deep-learning framework that can effi-
ciently capture the basic rules of chemical reactions. In this paper,
we have proposed a unified framework that addresses both the reac-
tion representation learning and molecule generation tasks, which
allows for a more holistic approach. Inspired by the organic chem-
istry mechanism, we develop a novel pretraining framework that enables
us to incorporate inductive biases into the model. Our framework
achieves state-of-the-art results on challenging downstream tasks. By
possessing chemical knowledge, our generative framework overcome
the limitations of current molecule generation models that rely on
a small number of reaction templates. In the extensive experiments,
our model generates synthesizable drug-like structures of high qual-
ity. Overall, our work presents a significant step toward a large-scale
deep-learning framework for a variety of reaction-based applications.
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1 Main

Deep learning models have found applications across a multitude of scientific
research domains [1–3]. Pretraining frameworks [4, 5] facilitate the seamless
integration of new tasks, thereby expediting the modeling process, especially
for scenarios with limited labeled data.

Chemical reactions are the foundation of drug design and organic chem-
istry studies. Currently, data-mining works [6, 7] have enabled deep learning
models to be applied to chemical reactions. Based on these data, there have
been plenty of data-driven works that intend to delve into the representation
learning of chemical reactions. Representation learning refers to automatically
learning useful features from the data, which can then be used for various
downstream tasks [8]. In earlier works, traditional molecular fingerprints were
applied directly for reaction representations[9, 10]. Inspired by natural lan-
guage processing (NLP) methods, researchers also applied attention-based
network[11, 12] or contrastive learning techniques[13, 14] in chemical reaction
pretraining networks. These representations have been tested on classification
tasks[15] or regression tasks[16]. However, these methods ignore the fundamen-
tal theories in organic chemistry, which limits their performance. For example,
electronic effects and inductive effects will be ignored if bonds or atoms outside
the reactive centers are masked [13].

Except for reaction classification tasks, molecule generation based on chem-
ical reactions is also an important application. This branch of models has been
proven to be capable of generating synthetically accessible molecules.[17–20].
Earlier works always applied a step-wise template-based molecule generation
strategy. These template-based methods highly depend on predefined build-
ing blocks and reactions, which narrow down the accessible chemical space.
Similar trends are found in the field of reaction product prediction, in which
template-based methods[21] cannot be extrapolated to complex reactions,
and this problem is solved by using template-free methods[22, 23]. In the
reaction-based molecule generation task, template-free methods[24, 25] have
also demonstrated advantages in generalization over templated-based methods.
Nevertheless, the template-free molecule generative methods are only capable
of generating molecules based on predefined reactants libraries. In addition to
that, it is more favorable to utilize chemical reactions as editing tools to mod-
ify the given structure, regarding the hit-to-lead or lead-optimization phase in
drug design. The generated chemical library will focus on a subset of chemical
space that could be synthesized with fewer reaction steps.

In this paper, we present a novel and comprehensive deep-learning frame-
work for chemical reactions. Our framework is designed to address two
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fundamental tasks: self-supervised representation learning and conditional gen-
erative modeling. Unlike existing approaches, we propose a set of meticulously
crafted self-supervised tasks specifically tailored for chemical reactions. These
tasks include active center prediction, main-reactant sub-reactant pairing, and
reactant-product pairing. Through extensive evaluations of challenging reac-
tion tasks, our method surpasses the state-of-the-art, demonstrating its ability
to effectively capture domain knowledge in chemical reactions. The promising
results obtained pave the way for a wide range of downstream applications.

By efficiently capturing chemical rules, our model is well-suited for gener-
ative tasks. Unlike conventional approaches that rely on selecting fragments
from predefined reactant libraries, our model takes molecular structures as
input conditions and produces representations of corresponding reactants while
preserving permutation invariance within reactions. Leveraging the power of a
dense vector similarity searching package, our model enables efficient retrieval
of reactants from a large reactants/ reagents library. Subsequently, a reac-
tion prediction model is employed to generate product outputs. In comparison
to template-based methods that explore only a limited subset of the chem-
ical space, our approach demonstrates superior performance in generating a
broader range of synthetically accessible drug-like structures. This character-
istic makes our method particularly suitable for virtual library enumeration,
as supported by comprehensive statistical analyses and the case study.

2 Results and Disscusion

2.1 Challenges in Chemical Reaction Modeling

There are several ways to convert chemical reactions into machine-readable
structural data. We define the chemical reactions in the following form:

{Reactanti}, i ∈ m
{Reagentj},j∈n
−−−−−−−−−−→ Product (1)

Chemical reactions involve three main components: reactants, reagents, and
products. Reactants are structures that contribute certain substructures to
form the products, and the reactant whose atoms are maximally matched with
the product is defined as the main reactant. Other reactants are denoted as
sub-reactants. Reagents are chemical entities that do not map to any atoms
in the product structures but are necessary for providing a certain chemical
environment, such as solvents or acids. To jointly model the probability of
reactants, reagents, and products, there are mainly 3 challenges.

Firstly, complicated organic chemical mechanisms are hard to model. How-
ever, we can sum up these mechanisms with a simpler proposition: If we change
the sub-reactants or reagents in an optimized chemical reaction, there is a high
likelihood that the reaction will no longer be optimized. This proposition sum-
marized underlining rules within reaction data and enables us to pretrain our
model using the contrastive object.
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Fig. 1 An overview of the unified framework of Uni-RXN. The atom mapping is utilized
for splitting the reactants into the main reactant and sub-reactants. Then, a multimodal
graph/text-based transformer model is applied for deriving the chemical entity-level represen-
tations. Entity-level representations are further fused into reaction-level representations.

Secondly, it is imperative for the reactants and reagents to exhibit permu-
tation invariance during the modeling process; however, a significant number
of models have disregarded this essential aspect. The final challenge is that
reagents and reactants play different roles in chemical reactions, which makes
the modeling challenging.

In order to address the above challenges, we design a novel unified frame-
work for modeling chemical reactions. The first challenge comes from the
reaction’s complicated underlying mechanism is solved by contrastive learn-
ing and reactive center prediction task, which will be discussed in detail in
Sec. 2.2.1. The second equivariant challenge is solved by shared parameters
in encoding as in Fig. 1 and a permutation invariant generative network in
the generative process. The last challenge is solved by applying a multimodal
network for reactants and reagents, which extract information in different man-
ners. Specifically, a graph-based transformer is applied to process reactants
and products, and a text-based transformer is applied to process reagents. We
will discuss the pretraining and generative models respectively in Sec. 4

2.2 Pretraining Framework and Downstream Tasks

2.2.1 Self-supervised Contrastive Learning

The key components of contrastive learning are the methods of negative data
sampling. Rather than dropping or masking atoms outside the reactive center,
which would result in a loss of information, we adopt a different strategy
illustrated in Fig. 2 a. Our model tends to encode two fundamental aspects of
chemical reactions.

Firstly, we model the interactivity between the main reactant and the
combination of sub-reactant and reagents (denoted as 2-tuples sub-reactants,
reagents below). It is well-recognized that the dataset of the chemical reactions
is biased. Specifically, only optimized and widely used chemical reactions are
curated in the public patent datasets. Therefore, the model only trained on
the public dataset will fail to capture any information of negative data (i.e.,
invalid reactions). To address this, we apply the contrastive loss on reactants
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Fig. 2 (a) Two contrastive learning tasks we utilized for pretraining. The main reactant,
sub-reactants, and reagents are projected into the embedding space using different attention-
based model architectures. The similarity between the embeddings of {main reactant} and
{sub reactants, reagents} is maximized because of the underlying organic mechanism. The
similarity between the embeddings of {main reactant, sub reactants, reagents} and {product}
is maximized because of the graph-level mapping. (b) An illustration of the reactive center
prediction task. (c) The model architecture for contrastive learning. c stands for the chemical
training signal which is applied in the first contrastive learning objective. While g stands for
the graph training signal which is applied in the second contrastive learning objective.. (d) The
model architecture for reactive center prediction tasks. An additional graph-based transformer
model is applied to identify the place where chemical bonds are broken or newly formed in
chemical reactions.

and reagents where the negative samples are generated by the random permu-
tation of sub-reactants and reagents among the positive reactions (See Sec. 4).
We use Information Noise-Contrastive Estimation (infoNCE) as the training
objective, projecting the embeddings of the main reactant and {sub-reactants,
reagents} into the same embedding space with different MLP projection mod-
els. When there are multiple sub-reactants or reagents a read-out module is
applied. This approach maximizes the similarity between paired main reactants
and {sub-reactants, reagents} in the embedding space. The training objective
is inspired by the powerful generative pretraining model GPT-2/3 [26] where
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the main reactant and sub-reactants, reagents in our model mimic its con-
text and next time-step token, respectively, which enables us to develop the
conditional generative model that is discussed in detail in Sec. 2.3.

Secondly, we seek to model the functional group rearrangement and struc-
ture transformation between the combination of main reactant, sub-reactants,
and reagents (denoted as 3-tuples main reactant, sub-reactants, reagents) and
product. Under the chemical condition provided by the reagents, the functional
group within the main reactant and sub-reactants are rearranged. In order
to learn this transformation process, based on the same encoder, we apply
another set of projection heads to predict the embeddings of {main reactant,
sub reactants, reagents} and product. A similar training process is performed
as the first contrastive learning task, in which the paired similarity between
{main reactant, sub-reactants, reagents} and product in the embedding space
is maximized.

By leveraging these two fundamental aspects of chemical reactions, our
contrastive learning framework is able to learn from biased and unoptimized
data and generate rich representations.

2.2.2 Reactive Center Predition

Aside from contrastive learning, our model is also trained to predict the reac-
tive centers in chemical reactions as in Fig. 2b. In our work, we define atoms as
chemical reactive centers if they undergo chemical state change. The chemical
state is defined as the formal charge, the hybridization, and the neighbor atom
types of a certain atom. We propose to use another graph-based transformer
model instead of MLP as the projection head, which will be discussed in detail
in Section 4. This pretraining task further helps our model to understand the
position effect in chemical reactions, which is always ignored in related works.

Table 1 The accuracy of the chemical reaction classification

Reaction Number
per Class

Rxnrep MolR DRFP Uni-RXN

4 0.169± 0.0227 0.249± 0.0165 0.258± 0.0382 0.587± 0.0229
8 0.225± 0.0080 0.328± 0.0173 0.343± 0.0159 0.680± 0.0256
16 0.305± 0.0106 0.429± 0.0213 0.424± 0.0108 0.754± 0.0170
32 0.375± 0.0159 0.526± 0.0076 0.498± 0.0059 0.806± 0.0101
64 0.439± 0.0078 0.615± 0.0022 0.559± 0.0044 0.841± 0.0050
128 0.489± 0.0036 0.692± 0.0025 0.617± 0.0059 0.865± 0.0030

The accuracy is computed multiple times on different random samples. The Standard Devia-
tion(std) of the accuracy is listed after ±. The higher accuracy indicates better performance.
Trained graph neural network encoder from Rxnrep [13], MolR [13] is applied to compute
the baseline model representation. The package that computes DRFP [10] representation is
downloaded directly from rxn4chemistry
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2.2.3 Reaction Classification

After completing the two pretraining tasks on the USPTO MIT dataset [22], we
use the shared encoder to generate representations for downstream tasks. To
ensure a fair comparison, we do not split the main reactants and sub-reactants
when generating representations. Most previous works evaluated their repre-
sentation on TPL 1k dataset [11] for reaction classification and reach over
90 percent accuracy. Our model provides comparable performance on this
dataset, which the results are provided in the SI Tab. C1. We also chose a more
challenging reaction classification dataset, Schneider [9], which used a com-
prehensive ontology system to classify reactions into superclass and secondary
class. When evaluating our model, we removed the reactions whose templates
can be found in our test set from the pretraining stage. When generating the
representation, we mask the product of the chemical reactions to prevent the
model from relying on simple graph pattern recognition. To make the classi-
fication even harder, we balanced the dataset by randomly drawing the same
number of reactions for each class both in the training and testing dataset,
following previous work [13]. The results on this balanced benchmark dataset
are demonstrated in Tab 1.

Logistic Regression (LR) Classification offered by the cuML package is
applied here as the reaction classification heads based on the chemical reac-
tion representations. We denote our representation as Uni-RXN and compared
it with three baseline models. The accuracy of predicting the correct reaction
class drastically decreases when the number of reactions per class drops from
128 to 4. In the range of dataset sizes we tested, our model has outperformed
the baseline models by a large margin, especially on small training sets. Our
model predicts more than half of the reaction classes with only 4 reactions per
class for training. Notably, we keep the encoder parameter fixed when compar-
ing our model with other baselines. Our model demonstrates impressive results
without finetuning any pretrained parameters. In conclusion, Uni-RXN is a
powerful tool to classify chemical reactions even without product information
which shows great potential in reaction forward prediction applications.

2.2.4 Reaction Retrieval

We evaluate our model’s ability to distinguish optimized reactions from unop-
timized reactions using the reaction retrieval task. This evaluation ensures the
effective implementation of our chemical informative representation in the gen-
erative model, preventing the generation of suboptimal reactions. We curated
a dataset, as described in Section 4, comprising positive examples of successful
reactions and negative examples of noisy or suboptimal reactions. This dataset
serves as a reliable benchmark for assessing our model’s capability to identify
optimized reactions.

We conduct experiments using different positive data sampling ratios rang-
ing from 0.01 to 0.08. These low sampling ratios were chosen to simulate
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Fig. 3 (a)The line charts illustrate the AUROC, EF1% and EF1% of different representations
in the chemical reaction retrieval task. (b)The attention map of the graph-based transformer
encoder. Atoms that belong to the same functional group have high cross-attention which
demonstrates that our model is capable of learning position effect and identifying reactive atoms.

real-world scenarios where only a relatively small proportion of reactions are
optimized. As depicted in Fig. 3a, our model outperforms other baseline mod-
els in most settings. The EF results prove that even if less than 1% of data are
positive results, Uni-RXN is capable of differentiating the optimized reactions
from unoptimized ones. We also provide results on a different template-based
mechanism [27] negative reaction sampling method in the SI Sec. C.2, where
Uni-RXN also outperforms the baseline models. In conclusion, our represen-
tation can be applied to reaction retrieval tasks, even with extremely limited
positive data, and holds the potential to assist chemists in identifying the
correct reagents and sub-reactants for high-yield organic reactions.

2.2.5 Visualization of Attention

The visualization of the Transformer attention sheds light on the model’s pro-
cessing of the input graph, providing insights into its performance on the
above two important downstream tasks. To examine this, we present the atten-
tion weights in Fig. 3b. The attention maps clearly illustrate that our model
learns to focus on the reactive portion of the input main reactant molecules.
Notably, heteroatoms in active groups such as the ester group which play

crucial roles in chemical reactions, exhibit higher attention scores compared
to carbon chains and other heteroatoms. Moreover, our model captures more
intricate rules involving interactions between neighboring functional groups.
For instance, when a benzene ring possesses a strong electron-withdrawing
group, the ortho-position becomes more reactive, and our encoder effectively
captures this fundamental chemical rule by directing attention to the ortho-
position. Furthermore, the attention maps exhibit well-clustered patterns, with
self-attentions between atoms within the same aromatic ring due to their



NATMACHINTELL A23037798A 9

shared electron cloud. Conversely, the attention between neighboring func-
tional groups receives higher scores, as their relationships define the behavior
of reactants in organic chemical reactions.”

2.3 Conditional Generation Framework and Drug-like
library design

Our model not only excels in classification tasks but also offers a valuable
tool for studying Structure-Activity Relationship (SAR) in medicinal chem-
istry research. By leveraging the power of our pretrained encoder, we enable
the generation of multiple synthesizable analogues from a given hit structure.
This streamlined approach provides researchers with a simplified method for
exploring SAR and designing focused chemical libraries. However, generating
analogues through chemical reactions on a seed structure poses a challenge.
Template-based methods simplify conditional molecule generation by confin-
ing sampling in an infinite space to a predefined subspace, reducing the search
space. However, limitations arise when the available subspace becomes limited
or empty, restricting direct template application.

To overcome this challenge, we develop a template-free generative model
that efficiently generates chemical reaction paths. Each path consists of a series
of reactions where the product of the previous reaction is the main reactant
of the subsequent reaction. Such paths simulate human experts who utilize
chemical reactions to expand the chemical space based on the seed molecule.
A conditional variational encoder network, denoted as Uni-RXNGen is trained
to generate reaction paths autoregressively by approximating the likelihood of
sub-reactants and reagents based on the reaction path from previous steps, as
illustrated in Fig. 4a.

The architecture of our model is depicted in Fig. 4b. Instead of generat-
ing the sub-reactants and reagents directly, we generate the representations
of these molecules’ structures. Two separate encoders extract the informa-
tion from the reaction path condition and the target responses. Then the
invariant generator decodes the latent variable to generate the target repre-
sentations. After Uni-RXNGen generates the target representations, a dense
vector retriever is used to search for reactants and reagents in a large com-
mercially accessible molecule library. Based on the input main reactant and
the retrieved sub-reactants and reagents, another network predicts the prod-
uct of the proposed new reactions. In short, Our model provides an efficient
and effective workflow for generating chemical analogues by sampling reactions
and predicting the results sequentially.

To evaluate our model’s capacity of generating similar molecule structures
conditioned on the input seed molecules, we use 2567 structures from the
Drugbank database [28] to derive large drug-like datasets using our generative
model. We compared our model with 4 baseline models, SynNet [19], Lib-
INVENT [29], DINGOS (De novo) and DINGOS (condition) [18].
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Fig. 4 (a) An overview of the generation framework. A sequential process is proposed to
generate the analogues. At each step, the model proposed the sub-reactants and reagents, then
the reaction predictor outputs the product. The product is fed to the model as the input for the
next step until the termination criterion is met.(b) The model architecture of the generative
model. The pre-trained model is utilized here as the encoder for target structures and main
reactant inputs.

2.3.1 Properties Evaluation

To evaluate the quality of the generated structures, we computed several
basic drug-like properties and compared them with real drugs, as illustrated
in Fig. 5a. Our objective is to generate molecules that closely resemble
real drugs in terms of their property data distribution. It is evident that
DINGOS(condition) generates molecules with a shifted chemical property
distribution despite performing only a few steps of reaction modification
on the seed molecules. Regarding the metrics of Molecular Weight and
QED, Uni-RXNGen, SynNet, and DINGOS (De novo) provide comparable
results. However, the baseline methods generate molecules with more lipophilic
structures and an increased number of rotatable bonds, unlike our model.

This paper goes beyond assessing the drug-likeness of molecules gener-
ated by Uni-RXNGen, as we also use synthetic accessibility scores to evaluate
their synthesizability. To accomplish this, we apply two different metrics (SAS-
core [30], and RA [31]), and the results are presented in Tab. 2. Among all the
methods, our model, DINGOS(condition), and Lib-INVENT are able to gen-
erate molecules directly from the input structure, other methods need more
reaction steps to generate from scratch. Unlike DINGOS(condition), which
generates larger molecules due to the lack of decomposition reaction in the
predefined templates, our generated molecules scored favorably on the SAS-
core and RA metrics, indicating that they are easier to synthesize than the
input seed molecules. Template-based de novo methods generate molecules dis-
tanced to the seed molecules and have obvious distribution shifts on SAScore
and RA. In combination with the distance metrics, it could be observed that
DINGOS (De novo) and SynNet sacrifice drug similarity and validity for lower
synthetic accessibility scores, respectively. It indicates that the template-based
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Fig. 5 The properties of the drug-like molecule generated by different reaction-based molecular
generation models. The MMD distribution distances are listed within the ().
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Fig. 6 The docking pose of the top scoring generated COVID-19 3CLPro inhibitors. the gray
poses are the reference poses of the seed molecule derived from the original PDB file. The
scaffold of the Uni-RXN sampled molecule and Lib-invent generated molecule aligned perfectly
with the reference pose and the Uni-RXN sampled molecule has a higher absolute docking score.

methods tend to generate excessively simple molecules, which is undesirable
in drug discovery research. Furthermore, our proposed modifications require
fewer reaction steps to perform than to carry out a from-scratch complicated
route by multiple template reactions. Overall, our approach provides a more
effective way to generate molecules based on available drugs, where (1) fewer
steps of chemical reactions are required and (2) the generated molecules exhibit
a decent balance between drug similarity and synthetic accessibility.

Validity is an important metric in assessing the performance of a model,
as an ideal model should be capable of generating analogues and modify-
ing valid structures based on the seed molecules. However, both SynNet and
DINGOS (condition) demonstrate limitations in generating analogues for a
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Table 2 Evaluation of Synthetic Accessibility Scores, Validity, Chemical Distance and
Scaffold Diversity

SAScore ↓ RA ↑ Valid(%)
Chemical
Distance

Mol
Diversity

Scaffold
Entropy

Seed Molecules 3.631 0.703 – – 0.906 6.23
SynNet 2.941 0.847 66.61 0.450 0.897 5.77

DINGOS (De novo) 3.080 0.788 100.00 0.602 0.899 5.53
DINGOS (condition) 3.845 0.636 45.81 0.824 0.424 5.60

Lib-INVENT (condition) 3.710 0.558 100.00 0.681 0.869 5.37

Uni-RXN 3.643 0.725 100.00 0.362 0.925 6.09

↓ indicates that the lower score means the molecules are easier to synthesize, while ↑ indicates
that the higher score means the molecules are easier to synthesize. Valid indicates the
proportion of drug structures the model is capable of generating valid analogues. Chemical
Distance measures the ECFP4 distance between the generated molecule and the input. Mol
Diversity and Scaffold Entropy measure the diversity on full structure level and scaffold
level.

limited proportion of input molecules, even though they can generate syn-
thesizable molecules. In addition to validity, we further evaluate molecule
diversity and scaffold entropy to assess the models. As a result, there are fewer
dominant scaffolds and similar molecules within the molecules generated by
Uni-RXNGen.

2.3.2 SARS-CoV-2 Main Protease Inhibitor Design Case
Study

Instead of de novo designing inhibitors [32], we intend to optimize existing
ligand structures using our structure conditional generative model. When gen-
erating analogues of drug-like molecules, maintaining a stable 3D binding
conformation is crucial for ensuring that the newly generated molecules can
bind to the same protein pockets.

To demonstrate that Uni-RXNGen generates molecules that fit into the tar-
get protein pocket, we conducted a case study on 3CLPro inhibitor design. In
our experiment, we generate analogues based on the seed molecule derive from
the original complex (PDB id: 8ACL) with our method and other reaction-
based generative model [18, 19] and a library design model, Lib-INVENT [29]
as shown in Tab. 3 and Fig C3(c). Our method outperforms other methods
on average docking scores and top docking scores when the same number
of molecules are kept. Besides, Uni-RXNGen and Lib-INVENT generate top-
scored analogues with similar binding conformations and similar topologies,
as suggested by the docking results and the fingerprint distances. However,
our model still generates molecules of high diversity which outperforms DIN-
GOS(condition) and Lib-INVENT, which proves that our model is able to
explore the chemical space adjacent to the input seed molecule effectively. We
also found out that template-based method, e.g. DINGOS (condition) is only
able to generate 42 valid molecules with the template reactions which proves

http://doi.org/10.2210/pdb8ACL/pdb
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that reaction templates harm the ML model’s ability to explore constrained
chemical space.

These findings demonstrate that our model can aid medicinal chemists in
discovering SAR in a more efficient manner by providing a large number of
analogues with higher binding affinity.

Table 3 The similarity between seed molecules and generated molecules. The docking
scores and diversity of the generated analogues

DINGOS
De novo
(100)

DINGOS
condition

(42)

Lib-INVENT
(100)

Uni-RXNGen

(100)

Similaritymean 0.2977 0.6548 0.6942 0.7748
Similaritytop 0.3816 0.7155 0.8163 0.8854
Diversity 0.7913 0.3184 0.3455 0.3949

Docking Scoremean -6.5068 -7.7953 -7.5420 -7.8301

The number of the generated molecules we docked with the protein pocket is listed in the
(). We kept the 100 analogues that have the closest Jaccard distance to the input molecules
for docking. However, the DINGOS (condition) model is only able to generate 42 valid
molecules.

3 Conclusion

In this paper, we have presented a novel approach to bridging the gap between
reaction-based molecule pretraining and generation tasks. Our approach offers
several advantages, including the ability to derive rich representations for
challenging chemical reaction classification tasks. Uni-RXN outperforms other
baseline models by a significant margin and achieved 58.7% accuracy with only
4 data points per class provided. The transformer model can be also applied to
differentiate optimized reactions and unoptimized reactions in chemical reac-
tion data. Additionally, the encoder can be effortlessly applied to structure
conditional generation. The experimental results highlight the favorable prop-
erties of the molecules generated by our model, making them well-suited for
drug discovery tasks. Our model is capable of generating molecules with more
drug-like properties and synthesizable accessibility. Combined with virtual
screening methods, such as molecule docking, this generative model enables
efficient SAR studies. The vast synthesizable drug-like chemical space that our
model generates can improve the true positive rate in drug repurposing or hit
molecule searching.
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4 Methods

4.1 Model Architecture

4.1.1 Pretraining Model

Transformer Model

Our pretraining network utilizes two attention-based models as encoders to
handle the multimodal nature of chemical reaction data. The reactants and
products are encoded by a graph-based transformer model, while the reagents
are translated to sequence representation SELFIES [33] and then encoded by
a text-based transformer model. The projection heads in contrastive learning
tasks are simple MLPs with 2-layers of hidden parameters to train. We provide
a detailed discussion of the two types of transformer models we have designed
in the following paragraph.

For the text-based transformer, we base it on the vanilla transformer [34].
However, directly applying the transformer to reagents poses challenges
because the tokens within chemical entities follow a sequential order, while
the entities themselves are order-agnostic. To address this, we develop a hier-
archical transformer to model reagents. In the first step, the sequential tokens
are encoded by a vanilla transformer, and the embeddings of the CLS tokens
are utilized to represent the entities respectively. Then, a transformer without
positional encoding is applied as the readout module from the CLS embeddings
of multiple reagents.

The graph-based transformer is inspired by previous work [35]. Since
molecule graphs are permutation invariant, we discard node positional encod-
ing and apply edge encodings to embed the topological structure of the
molecules. The edge feature inputs consist of the bond type and an indicator
token that signifies whether the bond belongs to a ring. Similarly, for the node
feature, we incorporate the Atom element type, the number of formal charges,
the hybridization type, and a ring indicator. The edge features are applied in
our model to get the attention map as follows:

Aij =
(hiWQ) (hjWK)

T

√
d

+ bϕ (eij) + cϕSP (ij) (2)

The hi and hj denote the node embeddings of node i and node j. d is the
dimension of the edge features. eij is the one-hot edge feature (all zeros indicate
that there are no edges between them), and SP is a function that returns the
shortest path from node i to node j. bϕ and cϕ are all learnable neural networks.
With this modification in attention mechanism, the model is able to capture
and encode local structure while maintaining long-range interactions which are
always hard to encode with traditional message-passing neural networks [36].
This function enables our model to learn the interaction between functional
groups and understand more complicated organic chemistry. The model can
take multiple graphs as input, so we set the shortest path distance between
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atoms that do not belong to the same reactant molecules as infinity. In this
way, the model automatically aggregates information within this hypergraph,
where both local and global interactions are enabled.

When this graph-based transformer model is applied, we add an auxiliary
node, the virtual node. It is connected to all atoms even if they belong to
different molecules, the embeddings of the virtual token can be used as the
results of a full graph-level readout. In the reactive center prediction task, we
apply sum pooling to the token level representations from the graph-based
transformer and appended the CLS token from the text-based transformer as
the additional input to the prediction model, which is illustrated in Fig. 2d.
This design maintains permutation invariance and allows efficient information
exchange between models.

Training Objective

In this section, we discuss the training objective of pretraining. In the first
contrastive learning task, we want to model the interaction between reactants.
Hence, the InfoNCE Loss is employed here to maximize the similarity between
the representation of main reactants x = cmain and their chemical reaction
environment(the sub-reactants and reagents) v = csub + creagent. If we use X
to represent all possible reactants and V to represent all possible chemical
reaction environments.

LInfoNCE = −EX

[
log

f (xi, vi)∑
xj∈X f (xj , vi)

]
− EV

[
log

f (xi, vi)∑
vj∈V f (xi, vj)

]
(3)

We apply the inner product here as the similarity function f . In the second
contrastive learning task, the transformation from reactants to products is
modeled by our probabilistic model. The same LInfoNCE function is applied
when x = gmain + gsub + greagent stands for chemical reaction inputs(reactants,
reagents) and v = gproduct stands for chemical reaction outputs(products). To
estimate the loss efficiently, the X and V are approximated by in-batch sam-
pled embeddings. For training the reactive center prediction task, we employ
the binary cross entropy loss as our objective function. We apply this to pre-
dict multiple reactive centers defined by atoms whose chemical environments
have changed.

4.1.2 Generative Model

Conditional Variational Auto-encoder

We build a conditional variational auto-encoder(CVAE) based on the pre-
trained encoder to generate the representation of the responses (sub-reactants
and reagents). As illustrated in Fig. 4b, we first use a long short-term memory
network(LSTM) to collect the embeddings along the reaction paths we sample
from the chemical reaction network [37]. Two MLP networks are designed for
variational inferencing. The recognition network takes both the target repre-
sentation and the embeddings of the previous reaction path as inputs, while the
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prior network processes only the latter. By minimizing the Kullback-Leibler
(KL) divergence between these dual latent variables, akin to classic varia-
tional auto-encoder models, we obtain the latent variable z. By minimizing the
Kullback-Leibler (KL) divergence between these dual latent variables, akin to
classic variational auto-encoder models, we approximate the recognition dis-
tribution by our prior network and get latent variable zprior. Subsequently, the
Invariant Set Generator utilizes this latent variable to generate the target rep-
resentations. During training, the prior network is trained to approximate the
distribution generated from the recognition network. During the generation
phase, only the latent variable from the prior network is passed forward to the
generator.

Invariant Set Generator

Generating a permutation invariant set presents a challenge, as discussed in
prior research [38]. In this study, we propose a similarity-based approach to
generate varying numbers of reactant/reagent representations from the latent
variable. To accomplish this, we maintain a reference parameter set and employ
its angle to determine the selection of data points for representation genera-
tion. Let Θ and R denote the angle and latent variable of the reference set,
respectively. The formulation of the model is as follows:

a = MLP1(z)

c = Θa/ vec ((∥θi∥2))

s = argsort↓(c[: nmax])

c̃ = softmax(c[s])

X = R[s]⊙ c̃W1 + c̃W2

X = MLP2(X, z)

Y = X[i1, · · · , in], s.t. ∀ix,MLP3(X[ix] > δ)

The W1, W2 are trainable weight matrices, and MLP1, MLP2, MLP3 are
simple trainable MLP networks. nmax is the maximum number of responses
set in the training set. θ is the threshold that we apply to decide whether
to select the data points. If we use m to represent the dimension of target
representations, the output Y will be the n×m matrix that we need. Instead
of using First-N or Top-N set generation methods, we apply a scoring network
MLP3 to determine the size of the set we generate, which helps us to generate
more diverse results and update more latent variables during training.

4.1.3 Implementation of Forward Reaction Predictor

We applied the LocalTransformer [39] as our predictor, since it is now the
state-of-the-art model for forward reaction prediction. However, any forward
reaction prediction model can be plugged into our method without much effort.
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4.2 Experiment Setups

4.2.1 Negative Data Construction

To construct negative samples, we develop a workflow to sample unsuccessful
chemical reactions from classified Schneider dataset [9]. Recognizing that dif-
ferent classes of chemical reactions employ distinct sub-reactants and reagents,
we employ various techniques to generate negative samples, namely adding,
deleting, and switching operations.

In the adding operation, we randomly sample sub-reactants and reagents
from reactions belonging to other reaction classes and append them to the reac-
tions to be perturbed. Conversely, in the deleting operation, random numbers
of sub-reactants and reagents are removed. As for the switching operation, it
involves replacing random numbers of sub-reactants and reagents with chem-
ical entities from other reaction classes. Subsequently, we apply a filtering
process to refine these perturbed reactions. If the forward reaction product
predictor succeeds in generating exactly the same valid product for our per-
turbed reactions, they are excluded from the negative sample dataset. At last,
all remaining perturbed reactions are kept and reatain as the negative data
points.

In addition to our approach, we have also adopted the ’random template’
negative sampling strategy from a previous work[27] where reaction templates
are applied to select sub-reactants. The results of this strategy are presented
in the Supplement Information C.2.

4.2.2 Property Evaluation

We examine some important drug-like properties and synthetic accessibility
scores to prove that our generative model is able to derive drug-like molecules
based on drug structures. Note that for DINGOS, Lib-INVENT and Uni-
RXNGen, multiple structures are generated for the same input. To ensure
quantity consistency, we retained the most similar structure within the first 8
sampled structures, as measured by ECFP4.

Molecule weights determine the pharmacokinetics and solubility, which is
really important for drug-likeness. The number of rotatable bonds describes
the flexibility of 3D molecule conformations which is important when bind-
ing to the target protein. QED [40] is a popular drug-likeness quantized
scoring function. LogP stands for partition coefficient which is an important
physicochemical property when designing drugs. All these property scores are
computed by the RDKit package.

SAScore [30]and RA [31] are the synthetic accessibility scores we apply
here. SAScore is a rule-based method, in which rare substructures are given a
penalty for accessing the synthesizability. It also takes the topological complex-
ity of structures into account. RAscore is a scoring function based on neural
networks. There is plenty of synthetic route planning AI models developed
these years, however, they are always time-consuming for larger datasets. RAs-
core is a classification model trained upon retrosynthetic models. It predicts
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the probability of a specific structure having a successful route planned by AI
agents.

The validity in Tab. 2 stands for the proportion of seed molecules the model
is able to generate valid analogues. The maximum depths of tree searching are
set to 15 as in the original code repository for SynNet. For the DINGOS (con-
dition) model, we regard the generation process as invalid when the input seed
molecules do not match with any template reactions for further modifications.
In template-free models, the invalid generations represent that the predictor
cannot output valid molecule smiles or one of the reactants is output as the
predicted results.

In addition to validity, the distance in Tab. 2 is applied to measure the
similarity between generated analogues and input seed molecules. The distance
is measured by the mean Jaccard distance on the ECFP4 fingerprint of the
analogues and the input seed molecules.

We also use the scaffold diversity to measure the generated molecules, which
is defined as the information entropy as follows:

H(S) = −
n∑

i=1

P (Si) logP (Si) (4)

where H(S) represents the entropy of a random molecule S with possible
scaffold S1, S2, ..., Sn, and P (Si) is the probability of a molecule having certain
scaffold Si. Intuitively, a high entropy indicates that the scaffolds are evenly
distributed, while a low entropy indicates that there are one or a few dominant
scaffolds.

We further evaluate the molecule diversity of the generated molecules from
different ML models. The diversity is defined as follows:

Div =
2

n(n− 1)

∑
x ̸=x′∈G

1− sim (x, x′) (5)

Where G is defined as the set of all generated molecules and sim is defined as
the ECFP4 Tanimoto similarity.

4.2.3 Metrics for Reaction Retrieval

Enrichment Factor(EF) is also a widely used metric, which is calculated as

EFα =
NPα

NPt × α
(6)

Where NPα stands for the positive samples in the top α predictions and NPt

stands for the positive samples in the whole test set. This metric does not rely
on the choice of threshold. EFα is a measurement of the enrichment of positive
samples in the top α predictions.
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AUROC, or Area Under the Receiver Operating Characteristic Curve, is
a widely used metric in binary classification. It quantifies the model’s ability
to distinguish between positive and negative samples by calculating the area
under the ROC curve. The AUROC value ranges from 0 to 1, with higher
values indicating better classification performance.

4.2.4 Case Study

We conduct molecule docking on all generated or screened molecules to the
3CLPro protein pocket using Glide [41]. At first, the protein structure is pro-
cessed by Protein Preparation Wizard. Bond orders and missing side chains
are fixed using Prime in the preparation workflow. Waters with less than three
H-bonds to amino acids are removed. The docking grid of size 10Å×10Å×10Å
in which the center is defined by the co-crystal ligand is saved based on the
processed protein. On the other hand, the ligands’ conformations and possi-
ble tautomers and protonation states are generated by the LigPrep module.
The ligand conformations are docked into the pocket using Glide [41]. In the
meantime, default settings are applied to other parameters. The Glide docking
scores are used to rank the results.
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Supplement A Related Works Discussion

In this section, we discussed two related branches of related work, chemical
reaction pretraining and reaction-based molecule generation.

There has been plenty of works that address the task of representing the
chemical reaction. Studies have addressed the task of representing chemical
reactions, focusing on the differences between traditional molecule finger-
prints like Morgan Fingerprint and Atom Pair Fingerprint, which capture
subgraph changes in reactions [9]. Later, based on the hypothesis that chem-
ical reaction is the rearrangement of different functional groups, rule-based
representations [10] are developed, and they can be applied to the classi-
fication of reactions. To further improve the performance on some harder
downstream tasks, deep learning based representations are proposed. At first,
a large language model [12] that pretrained on individual molecule structures
was introduced to enhance the performance of reaction prediction. Rxnfp [11] is
the first pretraining framework on reactions in which a BERT-like [1] mask lan-
guage learning method is applied directly to build models on chemical reaction
smiles sequence from a commercial reaction database. With the help of large-
scale hand-curated data, the model achieves impressive outcomes. However,
molecule graph provides more detailed and explicit representations than smiles,
such as connectivity and stereochemistry. Therefore, a few research [13, 14]
adapted graph neural networks to chemical reactions using contrastive learn-
ing. In our approach, we utilize multimodal representations for reactants and
reagents and train both graph-based and text-based transformers to derive
comprehensive representations of chemical reactions.

Besides representation learning, the molecule generative model based on
chemical reactions is also an important application of deep learning in the
chemical reaction space. Generative models aim to sample similar but differ-
ent data points from the original data distribution, which can be applied to
develop large-scale drug-like molecule vocabulary. In order to make the gen-
erated structure accessible, the chemical reactions-based method is designed
to generate molecules with desired properties [17, 24, 25]. For example,
ChemBO [17] applied Bayesian optimization in the latent space to find the
desirable molecules. However, in most cases which property is directly related
to drug likeness is unclear. Hence, models [18–20] have been proposed to gen-
erate analogues based on the input target structure for ligand-based drug
design. For example, C-RSVAE [20] is developed to generate synthetic routes
for molecule generation using reaction templates and fragment building blocks,
which generate large numbers of molecules with desirable properties. However,
template reactions introduce undesirable factors. Extensive manual extrac-
tion are required to derive high-quality reactions [42] In addition, template
reactions limit the model’s capacity to generate directly based on the seed
structure, which will be discussed in Sec. 2.3 To solve the above problems,
we propose our generative framework that is able to directly generate novel
molecules similar to the seed molecule in a template-free fashion.
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Supplement B More Implementation Details

B.1 Reaction Network and Reaction Path Dataset

Reactants
Products

Reaction Network 
with 215,2k nodes

Starting nodes

Random Walk

Reaction Paths

Fig. B1 An illustration of the workflow to extract reaction paths dataset to train our condi-
tional generation model

Inspired by previous work on the reaction network [37], we first construct
a chemical reaction network that consists of 2,152k nodes. Each pair of con-
nected nodes corresponds to a chemical reaction from the USPTO STEREO
dataset. The original data provides atom mapping information, so we extract
the main reactants that possess the most atom mapping with the product from
all reactants as the starting points of the edges. The endpoints of edges are the
products of reactions. The sub-reactants and reagents are used as representa-
tions of the edges between the main reactants and products. In other words,
every path in the graph represents a series of reactions that travels from one
structure to another structure. All the paths derived from our reaction network
are guaranteed to be valid and can be produced in wet labs.

Then, we sample paths in the graph to build our training / valid / test
datasets. We select all the nodes that have a QED score higher than 0.5 to
be our starting points to filter unstable reactive structures. From these nodes,
we apply random walk sampling with depths from 1 to 3 in order to obtain
diverse paths. Finally, we derived 49039 valid chemical paths. The whole data
processing procedure is shown in Fig .B1. The orders of the sampled paths are
reversed to train the model. All the chemical paths are split as pairs of the
former path and next step response (sub-reactants/ regents), so these pairs
can be used for teacher force training. The inputs are the former sequences
in the chemical paths, while our target is to imitate the real reactants for the
coming chemical reaction editing.

B.2 Detailed Implementation of Generative Model

Our generative model is designed to approximate the representations of tar-
get responses and predict the termination of reaction paths. To achieve this,
we employ four loss terms during training using gradient descent. The first
loss term measures the distance between the representations of the responses
generated by the Set Generator and the target representations. We utilize the
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inner product between representations as a distance metric and train on the in-
batch contrastive objective. The second loss term involves binary cross-entropy
loss, which compares the predicted selected index of X with the ground truth
number of responses. These two loss term is denoted as the reconstruct-loss in
our Algorithm B.2. In addition, we incorporate a loss term to guide the model
in learning the termination of reaction editing paths. An MLP is used to pre-
dict whether the current set of responses is the final one. Binary cross-entropy
is employed to train this termination network. The final loss term is the KL
divergence between zp and zr, as illustrated in Fig. 4b.

During the inference phase, our model generates complete reaction paths
using the following steps, as in Algorithm B.2. Firstly, the input molecule
structure is encoded into a representation using our pre-trained encoder and
processed by the LSTM network. The prior network then outputs zp, which is
used for generating the response set. Conditioned on zp, n representations are
generated. We employ the fiass package [43] developed by Facebook to search
within our precomputed reactant/reagent representation library, which con-
sists of millions of entries. The forward product predictor takes the generated
reactants/reagents as input and predicts the intermediate structure. If the net-
work predicts that it is time to terminate the generation, the final product is
output. Notably, our model allows users to define their own termination cri-
teria, such as keeping the molecule weight below a specified threshold. If our
network does not predict termination, the intermediate structure is appended
to the reaction path for the next-step generation.

Algorithm 1 Training Algorithm for Our Conditional Variational Auto-
Encoder
Input: Reaction Paths Queue P , Pretrained Encoder ϕr

Output: Path LSTM Network ϕlstm, Recognition Network ϕrec, Prior Net-
work ϕpri, Generator G

1: for i in epochs do
2: for path in P do
3: Sample random number l < length of path
4: input path = path[ :l], target response = path[l]
5: former context = ϕlstm(ϕr(input path))
6: target representation = ϕr(target response)
7: zpri = ϕpri(former context)
8: zrec = ϕrec(former context, target representation)
9: predicted representation = G(zrec, former context)

10: Loss = Reconstruct-loss(predicted representation, target represen-
tation) + KL-divergence(zpri, zrec)

11: Update ϕlstm, ϕrec, ϕpri, G ← Optimize Loss
12: end for
13: end for
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Algorithm 2 Sampling Algorithm for Our Conditional Variational Auto-
Encoder
Input: Seed Structure m, Pretrained Encoder ϕr, Path LSTM Network ϕlstm,

Prior Network ϕpri, Generator G, Reaction Predictor RP, Sub-reactants/
Reagents Library L, max length, termination criterion

Output: Analogue a
1: path = {m}
2: Lib = {ϕr(l) | l ∈ L}
3: while path length < max length do
4: former context = ϕlstm(ϕr(path))
5: zpri = ϕpri(former context)
6: generated representation = G(zpri, former context)
7: generated responses ← Search within Lib
8: path = {path, RP(path[-1], generated responses)}
9: if termination criterion satisified then

10: Break
11: end if
12: end while
13: a = path[-1]

B.3 Hyperparameters

The hyperparameters of our model are chosen through a combination of man-
ual tuning and automated searching. The hyperparameters for the model
architecture are set manually. For both the graph-based transformer and text-
based transformer that we employ in the shared encoders, we apply a 4-head
network with a width of 512 dimensions. The transformer model we apply in
the reactive center prediction task is reduced to a 2-layer model with the same
number of attention heads and width dimensions. In all graph-based trans-
former models, we set the multi-hop edge model with a maximum distance
cut-off of 6. The hidden sizes of all projection heads are 512. In the invariant
generator, we set the channels of reference set to 512 and the dimension of
the latent variable to 1024. The z dimension for the recognition network and
prior network is set to 512. The hidden dimension of MLPs we employed in
the invariant generator is also set to 512. The threshold δ for selecting data
points is set to 0.5.

The batch size and learning rate are tuned by the automatic optimum finder
from Pytorch Lightning. A learning rate scheduler that shrinks the learning
rate to half of its value at the end of every 20 epochs is adopted too. We apply
an early stopping strategy based on the loss curve of loss on the validation set.

B.4 Implementations of baselines

We evaluate our model compared to the baseline models. We include 3 methods
that focused on pretraining or representation learning.
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Rxnrep Inspire by contrastive learning in computer visions [44], a graph
neural network model is pre-trained using a self-supervised training objec-
tive [13]. The embedding similarity between positive samples is maximized,
while the ones between negative samples are minimized. The positive samples
are drawn by masking atoms/ bonds/ subgraphs.

MolR Instead of contrastive learning on positive/ negative samples,
MolR [14] applied training objective that maximized the embeddings between
the input of the reaction (reactants/ reagents) and the output of the reaction
(products). Multiple graph neural network backbones were tested in the orig-
inal article. We chose the graph attention networks(GAT) backbone since it
outperforms other backbones in multiple experiments.

DRFP This fingerprint is a model-free representation [10], which used
a combination of two kinds of chemical fingerprints ECFP and MHFP. The
circular substructures and the subsequent hashing are used to represent each
molecule structure within the chemical reactions.

We include the following generative models to evaluate our generative
model’s performance.

SynNet A tree generation model is proposed by previous work [19]. The
model is trained on artificial pathways generated from purchasable compounds
and templates. We apply this model to structural analogs. However, the
model is not capable to generate analogs for all drug structures. The tree-
searching algorithm cannot construct any similar valid structure within the
max searching depth.

DINGOS The code of DINGOS model is derived from the original arti-
cle [18]. Two versions of the DINGOS model are proposed. The DINGOS (De
novo) model chooses the starting material based on a similarity function to
search for the most suitable purchasable molecule. The DINGOS (condition)
takes our input drug structure as the starting material and generates one step
of reaction modification based on the neural network predicted template reac-
tion and building blocks. The product of the template reaction is collected as
the structure analog.

Lib-INVENT The model of this library enumeration tool is derived from
a previous work [29]. Instead of based on chemical reactions, Lib-INVENT
decomposed the molecule structures from the training set using BRICS rules
and approximate the distribution of the masked fragments. Following the Lib-
INVENT paper, we used BRICS rules to cut the drug structures and keep
the largest fragment as the input scaffolds for the model. To conduct a fair
comparison, we do not apply the reinforcement learning techniques and only
use the prior model which is an unbiased molecule generative model.

Supplement C Additional Experiments

C.1 TPL 1k Classification Task

Following previous work [11], we test our model on the TPL 1k reaction classi-
fication dataset. This is a rule-based classification system and the benchmark
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dataset is unbalanced. In addition to accuracy, we also evaluate the confusion
entropy of the CEN metric which provides a fair comparison of multi-class
classification tasks. When we denote Matrix as the confusion matrix, the CEN
can be derived as follows:

P j
i,j =

Matrix(i, j)∑C
k=1( Matrix (j, k) + Matrix(k, j))

P i
i,j =

Matrix(i, j)∑C
k=1( Matrix (i, k) + Matrix(k, i))

CENj = −
C∑

k=1,k ̸=j

(
P j
j,k log

2(C−1)

(
P j
j,k

)
+ P j

k,j log
2(C−1)

(
P j
k,j

))

Pj =

∑C
k=1(Matrix(j, k) + Matrix(k, j))

2
∑C

k,l=1 Matrix(k, l)

CEN =

C∑
j=1

PjCENj

The results are shown in Table. C1. Our model shows comparable accuracy
with other methods and outperforms other baseline methods on the CEN met-
rics. These results illustrate that our model not only performs well on small
datasets but also is able to provide comparable performance on large datasets.
rxnfp[11] outperforms our model by 6.2%, when pretraining on a commercial
dataset that possesses 2 million hand-curated data instead of an openly acces-
sible database that possesses 500k noisy data. DRFP outperforms our model
by using a rule-based fingerprint, which takes short-cut when benchmarking
on a rule-based classification task.

Table C1 The experimental results on the
TPL 1k dataset

Methods Accuracy CEN

AP3 256 (MLP) 0.809 0.101
AP3 256 (5-NN) 0.295 0.242
DRFP (5-NN) 0.917 0.041
DRFP (MLP) 0.977 0.011

rxnfp 0.989 0.006
hypergraph 0.928 –1

Uni-RXN 0.927 0.003

1The CEN results are missing because the
original paper does not provide the code to
reproduce the predictions.
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Fig. C2 The line charts illustrate the AUROC, EF1% and EF1% of different representations
in the chemical reaction retrieval task.

C.2 Evaluation on Different Negative Data Sampling
Mechanisms

In addition to our proposed approach discussed in Section 4.2.1, various other
methods have been proposed to generate unoptimized chemical reactions. One
such method was introduced in a previous work [27], which presented three
different mechanisms based on template enumeration. Among these mecha-
nisms, we specifically opted for the ’random’ mechanism as discussed in the
original paper, as it not only generates perturbed products but also perturbed
sub-reactants.

To further investigate the performance of our model in enriching positive
data among the top-ranked reactions, we sampled different ratios of positive
data and conducted experiments. The results are depicted in Fig C2. It is evi-
dent that compared to our method, the template-based mechanism employed
in this study makes it considerably easier for the model to differentiate between
optimized and unoptimized reactions. Despite this, Uni-RXN continues to
outperform other reaction representations even in this different setting.

C.3 Molecule Docking Protocol Validation

At first, we redocked the co-crystal molecule from a previous study [45],
and we also performed docking for all molecules with reported IC50 values
towards the target protein (PDB id: 8ACL) where the data are collected from
ChEMBL [46]. The redocked conformation is depicted in Fig C3(a) and the
correlation between pIC50 and docking scores is presented in Fig C3(b). The
RMSD result demonstrates that molecule docking can provide high-quality
binding conformations, while the correlation validates the suitability of docking
scores in representing potential binding affinity.

Besides deep learning models we evaluated in the main text, we also com-
pared our model with other virtual screening methods. The ChemDiv 3CLPro

Library is a commercial dataset that is designed particularly for this protein
target, we choose the 100 molecules according to the ECFP4 similarity scores
to the reference molecule. We further use two ligand-based methods to carry
out virtual screening on the full ChEMBL dataset. 2D screening is also based

http://doi.org/10.2210/pdb8ACL/pdb
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Fig. C3 (a) The conformation of experimental co-crystal conformation and the redocked
conformation (b) The correlation between the experimental binding affinity with the docking
score. Most assay data points are close to the red line indicating that the structures with higher
docking score absolute value are much more likely to bind to the protein target pocket. (c) The
docking pose of the top scoring screened COVID-19 3CLPro inhibitors.

on the ECFP4 Jaccard distance, the top 100 most topological similar structures
are selected. The 3D screening method is based on the 3D pharmacophore, in
which the Develop Pharmacophore Model module was used to generate phar-
macophore hypotheses based on the reference structure, and the Phase Ligand
Screening module was used to perform pharmacophore screening. Both mod-
ules are provided by Schrodinger 2018 suite. As a result, 15249 molecules hit
all pharmacophore features, and the top 100 molecules were selected for virtual
screening.

The results have shown that compared to the top-scoring molecules
searched by these virtual screening approaches, our model is still able to find
the structure with the highest potential binding affinity.

C.4 De novo Generation

Furthermore, our model exhibits versatility beyond its primary focus on struc-
ture conditional molecule generation, as it can also be effectively applied to
de novo molecule generation. In the case of de novo generation, our model
takes a different approach by randomly selecting small fragments from the
ZINC fragment-like library [47] as initial seeds. An additional MLP was trained
to predict the molecule weight of the final output. With this auxiliary mod-
ule, our model terminates the generation once the intermediate products have
reached the predicted molecule weight. We evaluate the quality of the gener-
ated molecules using the well-established MOSES metric[48] and compare the
results with two other reaction-based generative models trained on the USPTO



NATMACHINTELL A23037798A 33

dataset. To ensure a fair comparison, we employ the same reaction predic-
tor [23] used by these baseline models. The results, presented in Table C2,
demonstrate that our model outperforms the baseline models in terms of Nov-
elty and scaffold int-Div metrics. This indicates that our model has the ability
to generate diverse scaffolds and novel structures, solidifying its strength in
De novo molecule generation.

Table C2 MOSES metrics for De novo generation

Model Validity Unique Novelty int-Div Scaffold int-Div

Molecule Chef [24] 98.9% 99.0% 90.0% 0.888 0.850
DAG-Gen [25] 100% 99.0% 88.4% 0.880 0.843

Uni-RXNGen 100% 97.6% 100.0% 0.875 0.902

C.5 Ablation Study

Pretrained Model

Our pretrained model has undergone rigorous training on an extensive dataset
encompassing a diverse array of chemical reactions. To ascertain its ability to
generalize and maintain robustness when faced with previously unseen classes
of chemical reactions, we conducted a meticulous ablation study. In this study,
we performed various modifications, such as removing specific pretraining
tasks or randomly subsampling a smaller pretraining dataset, and subsequently
evaluated the model’s performance on the same Schneider test set. The com-
prehensive results of these ablation experiments are meticulously documented
in Tab. C3, providing valuable insights into the model’s adaptability and
resilience in diverse scenarios.

Furthermore, we sought to gauge the model’s proficiency in a more specific
context by selectively excluding all reactions belonging to the heteroatom alky-
lation and arylation superclass from the pretraining dataset. Subsequently, we
exclusively utilized reactions from this particular superclass for testing pur-
poses. By doing so, we were able to assess the model’s accuracy in predicting
the correct secondary classification for these restricted reactions. The corre-
sponding accuracy values, captured in Tab. C3, shed light on the model’s
performance and reliability when confronted with a distinct chemical reaction
category.

By conducting these meticulous evaluations and ablations, we aim to pro-
vide comprehensive insights into the generalization capabilities and robustness
of our pretrained model. These findings not only contribute to a deeper under-
standing of the model’s performance characteristics but also highlight its
potential applicability in handling novel chemical reaction classes encountered
in real-world scenarios.
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Table C3 Ablation study results of the pretraining tasks and size of dataset

MS Loss RP Loss Center Loss dataset size Ex Overlap Accuracy

✓ ✓ ✓ 100% - 0.600± 0.0293

✓ ✓ ✓ 100% ✓ 0.587± 0.0229

✓ ✓ ✓ 10% ✓ 0.468± 0.0242

✓ ✓ - 100% ✓ 0.540± 0.0145

✓ - - 100% ✓ 0.485± 0.0243

MS stands for ’Main Reactant-(sub-reactant reagents) Pairing’ and RP stands for ’(Reac-
tants, reagents)-product Pairing’. Ex Overlap stands for the pretraining dataset in which
all the reactions whose templates can be found in our test set are removed. The accuracy
results are evaluated when only 4 reactions are kept per reaction class for both the finetun-
ing dataset and the test dataset.

Table C4 The accuracy of the heteroatom alkylation and arylation superclass reaction
classification

Reaction Number
per Class

Rxnrep MolR DRFP Uni-RXN

4 0.150± 0.0214 0.243± 0.0513 0.193± 0.0497 0.450± 0.0653
8 0.282± 0.0578 0.314± 0.0497 0.258± 0.0407 0.629± 0.0230
16 0.352± 0.0148 0.390± 0.0245 0.337± 0.0252 0.710± 0.0411
Full 0.626± 0.0015 0.829± 0.0009 0.675± 0.0011 0.901± 0.0013

The accuracy is computed multiple times on different random samples. The Standard Devia-
tion(std) of the accuracy is listed after ±. The higher accuracy indicates better performance.
Trained graph neural network encoder from Rxnrep [13], MolR [13] is applied to compute
the baseline model representation. The package that computes DRFP [10] representation is
downloaded directly from rxn4chemistry

Generative Model

In order to verify the function of our pre-trained encoder in the generative
model, we carry out an ablation study to prove that these pretraining tasks aid
our generative model in generating sub-reactants and reagents accurately. We
removed the shared encoder in different stages and replaced it with encoders
that are trained from scratch or other fingerprint encoding. Because differ-
ent representation is used to encode the target structure, it is not suitable
to measure the quality using representation distances. Therefore, we ran-
domly select a batch of other reactants/ reagents with different representations
encoded and rank the ground truth target representation among this batch
of representations. A Low ranking number indicates that our model gener-
ates representations that are more likely to retrieve the plausible reactants/
reagents from the library. The results are listed in Table. C5.

The results illustrate that without the pre-trained encoder, the generative
model is not able to approximate the data distribution of the corresponding
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Table C5 Ablation study results of the model with different encodings of target and
input structures

Uni-RXN Input Uni-RXN Target Pretrained Encoder Ranking scores

- - - 0.3474

✓ - - 0.2451

- ✓ ✓ 0.2304

✓ ✓ - 0.3486

✓ ✓ ✓ 0.1243

The lower ranking scores indicate better performance. We used ECFP4 as the encodings for
molecule structures if we remove the pre-trained encoders.

sub-reactants/ reagents. When we use ECFP4 as the fingerprints to encode
our molecule structure, our model’s ranking scores increase which means the
fingerprint-based model fail to differentiate molecules that play different roles
in chemical reactions. However, this encoding strategy is applied in a few
related works [18, 19]. In conclusion, the ablation study shows that our Uni-
RXN embedding is a good representation of chemical entities in the reactions.
The trained encoders help our model generate responses that maintain the
consistency of the input structures.

C.6 Yield Regression Experiment

First, we design a weighted K-Neighbor method to predict the yield of the
chemical reactions. It is hard to predict the chemical reaction yields for the
open patent dataset because the dataset is noisy and has an unsmooth yield
landscape [16]. We use a weighted K-neighbor method to predict the yield.
Specifically, we search for the K nearest neighbors in the chemical reaction
space encoded by Uni-RXN encoders. If we denote the K nearest distances as
D and the yield of these K reactions as L. The predicted yield y can be derived
as:

y =

∑
i∈1···K(1/Di ∗ Li)∑

i∈1···K(1/Di)
(C1)

When we exclude 1000 data from the USPTO dataset to test our method’s
ability. The result is illustrated in Fig. C4(a). In the only previous work [16]
that tested its performance to predict yield on the USPTO dataset, they
achieved results of R2 less than 0.2 on the gram and sub-gram dataset. Our
model clearly outperforms their methods by a large margin and is suitable for
predicting the approximation of the reaction yield. The visualization results in
Fig. C4(b) demonstrate that though the landscape is still unsmooth, the well-
optimized reactions with high yields ranging from 90% to 100% are clearly
well clustered in our chemical reaction space.
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a b

c

Fig. C4 (a) The relation between our model predicted K-Neighbor yield and ground truth
yield. (b) The T-SNE visualization of the Uni-RXN chemical reaction space colored with yield
data. (c) The distribution of the chemical reactions’ predicted yields proposed by different
methods.

Based on this K-neighbor method, we predict the yield for the reactions
generated by the template-based method and the template-free method. The
results are plotted in Fig. C4(c). We can see that the template reactions with
the green color in Fig. C4(c) are not well-optimized. However, the template-
free methods (Uni-RXN, MolChef) generate more high-yield reactions. The
average predicted yield for the reactions generated by our model is 57.68%. For
MolChef model [24], the predicted yield is 57.02%. Our method outperforms
both another template-free model and the template-based method.
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