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The advent of strategies that unleash the host immune system 
to battle malignant cells represents one of the largest paradigm 
shifts in treating cancer and has ushered in a new frontier of 

cancer immunotherapy1. Various treatments have emerged, includ-
ing checkpoint blockade therapy2, tumor antigen vaccine develop-
ment3, and the infusion of donor-derived admixtures of immune 
cells4. Successful treatments to date mostly rely on the anti-tumor 
potential of the CD8+ T-cell repertoire, a collection of immune cells 
capable of differentiating between malignant cells and normal tissue 
by recognizing tumor-associated neoantigens (TANs) on the cell 
surface5. Therefore, accurately assessing a T-cell repertoire’s ability 
to identify cancer cells by recognizing their tumor antigens lies at 
the heart of optimizing cancer immunotherapy.

A complete understanding of adaptive immune recognition 
and the tumor–immune interaction has remained a formidable 
task, owing in part to the daunting complexity of the system. For 
example, antigens and self-peptides contained in a space of 209 epit-
opes (recognizable peptide sequences) are presented to ~107 unique 
T-cell clones in each individual6, a small fraction of the upper limit 
of TCR diversity (~1020)7. Moreover, their behavior is tempered via 
an elaborate thymic negative selection process in order to avoid 
auto-recognition8. Here, T-cell clones, each with uniquely generated 
TCRs, interface with numerous (~104) self-peptides presented on 
the major histocompatibility complex (p-MHC) of thymic medul-
lary epithelial cells via TCR complementary-determining region 3 
(CDR3)α and β chains, and survive only if they do not bind too 
strongly9. This process, together with system-level peripheral toler-
ance10, imparts T cells with durable tolerance to major self-peptides 
and influences many of the recognition properties of the resultant 
repertoire. The complexity of the adaptive immune system has 

attracted numerous mathematical modeling efforts quantifying 
the mechanisms underlying T-cell immune response. Collectively, 
the field has made significant progress in understanding the pop-
ulation-level effects of tolerance on T-cell recognition and self ver-
sus non-self discrimination9,11. This includes the T-cell repertoire’s 
effectiveness at discerning tumor from self-antigens12, its ability to 
impart immunity against current and future threats13,14, and the 
extent of selection pressure that it exerts on an evolving cancer 
population15,16.

Any attempt at better understanding these system-scale prop-
erties must start with a reliable method to evaluate the interaction 
between specific TCR–p-MHC pairs. Despite this, a comprehensive, 
biophysical model capable of learning the energy contributions of 
each contact pair in a TCR–p-MHC system and applying them to 
new predictions remains elusive. To date, experimental research 
has integrated solved crystal structures17,18 with peptide sequenc-
ing19,20 to probe the physiochemical hallmarks of epitope-specific 
TCRs. Publicly available crystal structures have enabled research-
ers to identify detailed structural features that influence the binding 
specificity of TCR–p-MHC pairs, and machine learning algorithms 
have made progress on the complementary task of accurately pre-
dicting peptide–MHC binding21–24 as well as TCR–peptide bind-
ing25,26. However, the limited number of available structures relative 
to the diversity in MHC alleles and TCR–peptide combinations 
complicates extrapolation to unsolved systems. Alternate template-
based structural modeling27 and docking28 approaches are limited 
by calculation speeds (at best one structure per minute), thus it is 
unlikely in the foreseeable future that such strategies will be able 
to investigate the number of TCR–peptide interactions necessary  
to study the problem at the immune-repertoire level, as this task 
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easily requires the simultaneous assessment of more than 109 pairs29. 
Prior attempts have approximated binding affinity by implementing 
statistical scores calculated from docking algorithms28. These scores 
are trained using examples of generic protein binding and thus lose 
the specific physicochemical features of the TCR–peptide interface.

To deal with this challenge, we have developed a systematic 
TCR–p-MHC prediction strategy, which we refer to as the Rapid 
Coarse-grained Epitope TCR (RACER) model, for rapid and accu-
rate assessment of TCR specificity capable of differentiating self 
from foreign antigens. This approach can evaluate 109 similarly 
MHC-restricted TCR–peptide pairs. This method employs super-
vised machine learning on known TCR–peptide structures and 
experimental data to derive a coarse-grained, chemically accurate 
energy model governing the TCR–p-MHC interaction. This strat-
egy was adapted from earlier efforts that predict protein folding30–35 
and screen the binding of small molecules36,37. Confining our pre-
dictions to TCRs with a given MHC restriction enables the transfer-
ability of the method to TCRs that are not included in the training 
set, but our approach could possibly be generalized with the use of 
additional training data. This strategy provides a tractable means 
for affinity predictions based on similarly restricted TCR–peptide 
primary sequences. We show that RACER accurately distinguishes 
binding peptides across various TCRs and validation tests. Lastly, 
we simulate thymic selection and show agreement with previously 
established estimates of T-cell binding distributions and peptide 
recognition rates38,39. Our in silico results share several features 
observed in experimental data including the degree to which post-
selection TCRs recognize foreign antigens and TANs, in addition to 
the sequence diversity of epitope-specific TCRs20,40. Taken together, 
our results demonstrate RACER’s utility in learning the interactions 
relevant for high-throughput TCR–epitope binding predictions.

Results
Distinguishing peptides based on binding affinity. The RACER 
optimization protocol (Fig. 1a) utilizes high-throughput deep 
sequencing data on TCR–peptide interactions across a large peptide 
library19, together with known physical contacts between TCRs and 
peptides obtained from deposited crystal structures41. The training 
data come from cases where all the peptides are displayed by the same 
allele of the mouse MHC-II molecule. Binding energies between 
TCRs and peptides, calculated based on a solvent-averaged coarse-
grained pairwise model35, were used as the metric for TCR–peptide 
binding affinity. The interaction parameters for this solvent-averaged 
energy model were re-optimized here for recognizing strong TCR–
peptide interactions. Adapting an approach previously implemented 
for studying protein folding34,42, the RACER optimization strategy 
trains a pairwise energy model that maximizes TCR–peptide bind-
ing specificity. This energy model was optimized by maximizing the 
Z-score defined to separate the affinities of experimentally deter-
mined strong-binding peptides, called ‘strong binders’ hereafter, 
from computationally generated, randomized decoys. (The Z-score 
is defined as the difference between the average binding energies of 
strong binders versus decoys, divided by the standard deviation of the 
decoy energies. Throughout this manuscript, we report the absolute 
value of the calculated Z-score, unless indicated in the correspond-
ing figure caption.) The optimized residue type-dependent energy 
model was then used to evaluate the binding energies of an ensemble 
of new TCR–peptide systems. As will be shown below, we performed 
three different cases (Fig. 1b), and found that predicted binding 
energies can differentiate strong binders from weak ones, provided 
they are displayed by the same MHC allele as that of the training set. 
Crucially, accurate predictions can be made even without knowledge 
of the actual crystal structure, although the predictions are improved 
when this additional information is available.

Figure 2 summarizes RACER’s predictive performance for a 
specific TCR (case I in Fig. 1b). For this fixed TCR, pre-identified  

strong-binding peptides and decoy peptides with randomized 
sequences were used to train the energy model (Methods). Another 
set of peptides independently verified experimentally as weak 
binders constitutes the testing set. The resulting energy model was 
then applied to calculate binding energies for the strong binders 
in the training set as well as the peptides in the testing set. This 
approach was repeated on three independent TCRs that are associ-
ated with the I-Ek MHC-II allele: 2B4, 5cc7 and 226 (TCR details 
in Supplementary Table 1). Although the experimentally identified 
weak binders were omitted from the training set, RACER effectively 
resolves binding-energy differences between experimentally deter-
mined strong and weak binders having Z-scores, calculated in an 
analogous way as above by replacing decoys with experimentally 
determined poor binders, larger than 3.5 in all cases (Fig. 2a), thus 
highlighting the predictive power of this approach.

Despite their relative sparsity in antigen space, strong bind-
ers play a central role in T-cell epitope recognition. It is more  
difficult to predict strong binders than weak binders. To test 
RACER’s ability to identify strong binders, we performed a leave-
one-out cross-validation (LOOCV) test, using data from TCR 
2B4 as an example. For each test iteration, 1 known strong binder  
was withheld from the training set of 44 strong binders. Our  
optimization protocol was applied to train the energy model by 
using the remaining 43 peptides and then predicting the binding 
energy of the withheld peptide. This prediction was then compared 
to predicted binding energies of known weak binders, and the  
procedure was repeated for each of the 44 peptides. Our model is 
able to accurately distinguish the withheld strong binder in 43 cases 
(Fig. 2b). This is in contrast to a cluster-based attempt at strong-
binder identification based on peptide sequences alone, which at 
best correctly identifies 19 out of 44 strong binders (Supplementary 
Note 1). The same LOOCV test was performed for TCRs 5cc7 
and 226, which correctly identified 120 out of 126 strong binders 
of 5cc7, and 267 out of 274 strong binders of 226. To further test 
the limits of RACER in detecting strong binders that have a more 
diverse sequence coverage, we performed a more demanding set 
of hold-out tests on an extended data set from ref. 19. RACER can 
recognize peptides sharing little sequence identity (~0.3) with the 
native peptide (Supplementary Figs. 1 and 2), and is still able to 
recognize strong binders when a substantial portion of the training 
data is withheld (Supplementary Notes 2 and 3 and Supplementary 
Figs. 3 and 4).

In order to further characterize RACER’s predictive power, an 
independent set of dissociation constant (KD) values measured by 
surface plasmon resonance (SPR)19 was compared with predicted 
affinities. The SPR experiments were performed on nine indepen-
dent peptides for each of the aforementioned three TCRs. RACER 
was used to predict the binding energies of each of those TCR–pep-
tide pairs, each modeled with the structure of the corresponding 
TCR as the template. The free energies, kBTlog(KD), were compared 
to calculated binding energies from RACER as a quantitative test of 
binding affinity prediction accuracy. Lower binding energies indi-
cate stronger binding affinity so that a positive correlation between 
the kBTlog(KD) values and calculated binding energies implies a 
successful prediction. As shown in Fig. 2c, RACER’s prediction of 
binding affinities for these nine peptides correlates well with the 
experimental measurements, with an average Pearson correla-
tion coefficient of 0.74. The predicted order of binding affinities 
is also consistent with those from the experiment, with an average 
Spearman’s rank correlation coefficient of 0.65.

Optimized specific interactions for TCR–peptide recognition. 
The data utilized by RACER includes strong binders and an input 
crystal structure, as well as TCR and peptide primary sequences, 
which determine an interaction pattern that was then used to con-
struct a system-specific force field. To illustrate this, we focus on 
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Fig. 1 | Summary of the modeling approach employed in this study. a, The protocol of RACER optimization (Methods). The color scale is presented 
with a reduced unit as described in the Methods. b, Three tests were conducted to evaluate RACER’s performance. Case I: the training set includes one 
TCR–p-MHC structure and multiple peptide sequences. The test set includes the same TCR structure and a separate set of peptide sequences. Case II: the 
training set includes one TCR–p-MHC structure and multiple peptide sequences. The test set includes two different TCR structures (restricted to the same 
MHC allele) and two separate sets of peptide sequences. Structures for the two additional test TCRs are included in predictions. Case III: The training set 
includes one TCR–p-MHC structure and multiple peptide sequences. The test set includes only the sequences of two different TCRs (restricted on the 
same MHC allele) and two separate sets of peptides. Only the structure from the original training TCR was used in prediction. (The interactions of interest 
are indicated by double-sided arrows between TCR and p-MHC.)
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TCR 2B4 as an example (Fig. 3). The crystal structure of TCR 2B4 
(Fig. 3a) reveals that there can be many threonine (T) and aspara-
gine (N) residues contained in the CDR loops region of the TCR. 
In the strong-binder set, these residues tend to interact with spe-
cific peptide residues such as alanine (A), as seen for the specific 
peptide given in Fig. 3. This notion can be formalized by showing 
the set of observed probabilities of close proximity of specific res-
idue pairs. Thus, we see that certain pairs such as A–T and A–N 
are significantly enriched in the strong binders, while much less so 
in the decoy binders (Fig. 3b). This leads to strongest attractions 
between the A–T, A–N residue pairs in the optimized energy model  
(Fig. 3c). By contrast, the TCR tryptophan (W) residue frequently 
interacts with alanine (A) in both strong binders and decoy pep-
tides. As a result, the optimized energy model does not favor the 
A–W interaction.

This energy model is rather distinct from those typically used for 
studying protein folding. In order to compare the RACER-derived 
energy model to well-established force fields described in the pro-
tein-folding literature, we substitute for our energy model either the 
standard AWSEM35 (optimized on deposited folded proteins) force 
field or the Miyazawa–Jernigan (MJ) statistical potential43 (con-
structed using the probability distribution of contacting residues 
from deposited proteins) and calculate the corresponding binding 
energy predictions for the TCR 2B4 peptides. We find that neither 
of them effectively resolves these groups, with Z-scores of 0.69 
and 1.28, respectively (Supplementary Note 4 and Supplementary  
Fig. 5). Similar trends were observed utilizing the peptides cor-
responding to TCRs 5cc7 and 226, demonstrating the necessity of 

RACER’s de novo identification of pertinent structural information 
for studying the TCR–peptide system.

Predicting TCR–peptide binding affinity for fixed MHC allele. 
Given RACER’s accuracy in resolving test peptides presented to the 
specific TCR used for training, we next explored the feasibility of 
extending predictions to additional TCR–peptide pairs albeit with 
the same MHC restriction. To this end, we assessed whether the 
physical contacts implicitly encoded in RACER’s optimized force 
field were conserved within I-Ek-restricted TCR–peptide pairs. The 
three I-Ek-restricted TCRs considered in our analysis have all been 
tested with peptides bound to the I-Ek mouse MHC molecule. The 
available crystal structures have a significant degree of structural 
similarity at the TCR CDR3–peptide binding interface (figure 5 in 
ref. 19). We further quantified the TCR CDR3–peptide contacts for 
each pair, constructing a contact map based on their crystal struc-
tures (Fig. 4, Methods). Our results suggest that, despite differences 
in TCR and peptide primary sequences, similarly MHC-restricted 
TCR–peptide pairs share common structural features. By contrast, 
these contact maps are not preserved across different MHC alleles 
(Supplementary Fig. 6).

We next examined RACER’s ability to predict binding peptides of 
TCRs restricted to the same MHC alleles. Toward this end, we apply 
the energy model optimized using binding data for one of the three 
TCRs to predict the TCR–peptide binding energies of the remain-
ing two holdout TCRs (case II in Fig. 1b). To do this, we initially use 
a known structure for each of the holdouts, and the energy model 
learned from the training TCR to predict the binding energies of the 
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Fig. 2 | RACER identification of TCR-specific strong and weak binders. a, Probability density distributions of the predicted binding energies of 
experimentally determined strong (brown, with mean depicted in red) and weak (gray, with mean depicted in black) binders of three TCRs (2B4, 5cc7 and 
226). b, Summary of the predicted binding energies from the leave-one-out cross-validation tests using TCR 2B4. Each test case represents one example 
using 1 of the 44 strong binders (green or black), as well as the experimentally determined weak binders (brown) as the test set and the other 43 strong 
binders as the training set (blue). Each box plot represents the lower (Q1) to upper (Q3) quartiles of the predicted binding energies, with a horizontal 
line at the median. Withheld strong binders are depicted as green circles when successfully recognized (binding energy lower than the median of the 
experimentally determined weak binders), and as black squares otherwise. The whiskers are placed at the first and last data points that fall within (m, M), 
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calculated binding energies of test peptides were compared with the binding affinity converted from their experimentally determined dissociation constant 
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experimentally determined strong and weak binders of those hold-
out TCRs. Although the Z-scores measured for these alternate TCRs 
are lower than those found previously (section ‘Distinguishing pep-
tides based on binding affinity’), RACER still successfully distin-
guishes a majority of strong binders from weak binders, with an 
average Z-score of 1.8 (Fig. 5a). Further incorporation of target TCR 
structural information in the optimization step improves RACER’s 
predictive accuracy (Supplementary Note 5; Supplementary Fig. 7).

To provide an additional test and to quantify our discrimination 
capability, we used an independent dataset from ref. 44. Four inde-
pendent TCRs (Protein Data Bank (PDB) IDs: 3QIB, 3QIU, 4P2Q, 
4P2R) from their curated benchmark dataset are associated with 
the I-Ek allele; note that three of these overlap with the TCRs in 

ref. 19. To test the performance of RACER for different TCR–pep-
tide pairs, we used the energy model trained on 2B4 (3QIB) to 
predict the binding energies of both strong and weak binders for 
the three remaining TCRs. This calculation again uses the struc-
ture found for the one strong binding peptide for each of the three 
TCRs. Our calculation re-emphasizes that RACER can success-
fully distinguish strong binders even when it is trained based on 
a different TCR (Fig. 5c), with an area under the curve (AUC) of 
0.89. As a more comprehensive test of RACER’s transferability, we 
included other TCR–peptide pairs from ref. 44. RACER capably rec-
ognizes most strong binders across the same MHC allele-restricted 
TCRs with different Vα and Vβ genes, and does so more effectively  
when there are multiple copies of TCR–peptide pairs available for 
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training (Supplementary Note 6; Supplementary Fig. 8). Of note, 
when we tested data from the same study involving TCR–p-MHCs 
with different MHC alleles, RACER could not isolate strong bind-
ers, presumably due to the substantially different TCR–peptide 
interacting patterns (Supplementary Fig. 6).

Next we examine the need to have at least one TCR–p-MHC 
crystal structure in order to use the optimized energy model for 
identifying other strong binders (case III in Fig. 1b). Of course to 
evaluate the binding energy we must have a structure; the alter-
native to having a measured structure for a new sequence is to 
thread that new CDR3 sequence into the crystal structure used 
for the training data, which potentially introduces an uncertainty 
in registration. For the cases at hand, this issue arises only for the 
CDR3α chain as the β chains for all three TCRs have 12 residues 
and there is no residual ambiguity. We tested the simplest possible 
assumption, where all three α chains are aligned to the left45. Figure 
5b shows that this procedure again leads to successful discrimina-
tion between strong and weak binders, with an average Z-score of 
2.36. As a comparison, the best performance of a recent sequence-
based predictor trained by using artificial neural networks26 can 
recognize the strong binders of TCR 5cc7, but not TCR 2B4 and 
226 (Supplementary Note 7; Supplementary Fig. 10). Similar tests 
were also performed for the TCR–peptide pairs from ref. 44. RACER 
still capably recognizes the strong binders across TCRs with dif-
ferent Vα and Vβ genes (Supplementary Note 6; Supplementary  
Fig. 9). Thus, we conclude that the MHC-restricted TCR structures 

are sufficiently similar so that not only can we use the energy model 
derived from a single TCR training set for other TCRs but we can 
also use the same structure. This then allows us to make estimates 
at the repertoire scale without creating extremely large numbers of 
TCR–p-MHC structures.

RACER-optimized representation of thymic selection. We then 
applied RACER’s ability to reasonably assess binding strengths using 
a single crystal structure and associated energy model to study sta-
tistical properties of the high-throughput TCR–p-MHC binding 
observed in thymic negative selection. Using the 2B4 TCR–peptide 
crystal structure, we simulated 105 TCRs and 104 self-peptides by 
uniform randomization of the CDR3 and peptide sequences over 
amino acid space. To avoid registration issues, simulated TCRs were 
chosen to have the same number of α and β chain residues as TCR 
2B4. This was repeated with 2,000 TCRs and 104 self-peptides, this 
time weighing CDR3–peptide interactions by each of the the three 
contact maps in Fig. 4. The same approach was applied to a model 
that assumes a strictly diagonal contact map (motivated by previous 
analytical work12) with randomization of the TCR sequence taken 
over each non-null position in the contact map.

Using this framework, a given TCR survives only if it binds every 
self-peptide below a fixed activation threshold. The maximum 
binding interaction over all self-peptides for each TCR defines a 
selection curve (Fig. 6a), which describes the percentage of nega-
tively selected T cells as a function of the cutoff activation threshold. 
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Fig. 4 | Contact maps for MHC-II I-Ek-restricted TCR–peptide pairs. Contact maps are calculated using distances from each pairwise TCR–peptide 
amino acid combination using equation (6) for the following MHC-II I-Ek-restricted TCR–peptide pairs. a,b, 3QIB peptide ADLIAYLKQATK with TCR 2B4 
CDR3α (AALRATGGNNKLT, a) and CDR3β (ASSLNWSQDTQY, b) chains. c,d, 3QIU peptide ADLIAYLKQATK with TCR 226 CDR3α (AAEPSSGQKLV, c) 
and CDR3β (ASSLNNANSDYT, d) chains. 4P2R peptide ADGVAFFLTPFKA with TCR 5cc7 CDR3α (AAEASNTNKVV, e) and CDR3β (ASSLNNANSDYT, 
f) chains. Similarity in interaction topology across TCR–peptide pairs is observed by comparing the contact silhouette of interacting coordinates for the α 
(top row) and β (bottom row) TCR sequences.
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Selection curves for the three TCR sets using Fig. 4 contact maps 
and the RACER energy model compare reasonably to the diagonal 
contact map motivated by previous analytical work (Fig. 6b red 
curve). Here, variances are similar in each case with mean-shifts 
correlated directly with the number of peptide–CDR3 contacts (Fig. 
4). These findings reinforce the relevance of TCR–p-MHC-specific 
structural interactions encoded in the RACER-derived energy 
potential for binding prediction and T-cell repertoire generation. 
Although empirical estimates of TCR thymic selection survival 
rates vary (20–50%)46,47, we assess recognition across all survival 
rates, restricting our analysis to 50%, when applicable. Given these 
assumptions, we demonstrate that RACER-generated thymic selec-
tion makes reasonable use of available self-peptides (Supplementary 
Note 8; Supplementary Fig. 11a) and generates a sensible regime 
of optimal selection, consistent with previous analytical estimates12 
(Supplementary Note 8; Supplementary Fig. 11c).

One key issue influencing adaptive immune recognition of 
tumor-associated neoantigens (TANs) is the recognition of pep-
tides closely related to self (for example, point-mutants) relative to 
foreign peptide recognition. The fact that T cells can in fact rec-
ognize tumors suggests that thymic selection leaves intact the abil-
ity to strongly bind TANs. Post-selection individual TCRs exhibit 
minor recognition differences between foreign peptides and TANs 
(Fig. 6b) with overlapping variances in line with previous theoreti-
cal estimates (Supplementary Fig. 11b). Moreover, the recognition 
capacity of the MHC-restricted post-selection T-cell repertoire 
demonstrates that this minimal difference is maintained at the 
aggregate immune level (Fig. 6c). These findings explain the ability 
of the immune system to target cancers in a manner dependent on 
their mutational load. Moreover, comparisons of RACER-derived 
post-selection T-cell maximal binding energy to the immunoge-
nicity scores for empirically observed thymic self-peptides, foreign 
peptides, and TANs 40 demonstrates RACER’s ability to capably  

classify TANs having immunogenicity intermediary to those of 
foreign and self-peptides with their distribution closer to the for-
eign group (Fig. 6d). Additional assessments of RACER-derived 
TCR repertoire CDR3 sequence similarity recapitulate key features 
observed in experimentally studied repertoires20 (Supplementary 
Note 8; Supplementary Fig. 12). Collectively, our results reinforce 
RACER’s utility for performing realistic post-selection T-cell-
repertoire-level analyses.

Discussion
TCR–p-MHC structures encode a system-specific energy model, 
whose identification can uncover the rules underlying TCR–antigen 
specificity. The preserved sequence and structural features of TCR–
peptide systems18–20 limit the physicochemical space explorable by 
TCR–peptide interface. When optimized on TCR–peptide pairs, the 
arrangement of the residue contacts between TCR and its cognate 
peptide (Fig. 4) leads to an energy model (Fig. 3) distinct from the 
traditional hydrophobic–hydrophilic interaction patterns48 used for 
studying protein folding, such as the MJ potential43. This system-
specifc energy model enables RACER to identify strong binders of 
corresponding TCRs (Fig. 2) while standard protein-folding energy 
models fall short (Supplementary Fig. 5).

RACER offers an approach for developing models that incor-
porate available protein structural information. Prior investiga-
tions have applied artificial neural networks for predicting strong 
binders of TCR25,26 and MHC49 molecules based only on the pri-
mary sequences. Although deep learning can implicitly account 
for higher-order interactions, such approaches may still be lim-
ited by available sequences. RACER alleviates the high demands 
for sequences by including existing crystal structures in a pairwise 
potential. To comprehensively characterize RACER’s predictive 
power, our training set was limited to cases that had pre-identified 
TCR–peptide pairs given their known crystal structure19,44. While 
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Fig. 5 | RACER predictive transferability across distinct TCRs. a, Probability density distributions of the predicted binding energies of experimentally 
determined strong (brown, with mean depicted in red) and weak (gray, with mean depicted in black) binders of each of the three TCRs (2B4, 5cc7 and 
226), using another TCR for training. The title of each figure follows the format of `target_training TCRs’, for example, `2B4_5cc7’ utilizes the energy 
model trained on TCR 5cc7 for predicting peptide binding affinities of TCR 2B4. b, Probability density distributions of the predicted binding energies of the 
same cases as in a, but without utilizing any new structure for the new TCR. The panel is formatted in the same way as a. c, Top: the energy model trained 
on TCR 2B4 is used to predict the binding energies of sequences from the other I-Ek-associated TCRs44. Z-scores of known strong binders (gray) and weak 
binders (orange) provided by ref. 44 were calculated relative to a set of 1,000 decoy peptides with randomized sequences (blue violin plot), with lower (not 
absolute) Z-scores indicating better predictive performance. Bottom: the calculated Z-scores of each TCR were used to depict the corresponding ROC 
curve and AUC score (0.89).
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limited by the diversity of experimentally determined strong bind-
ers, RACER correctly resolves most of the strong binders even in 
the most challenging training scenario (Fig. 5b, Supplementary  
Fig. 9). While the pairwise potential of RACER maintains rea-
sonably high predictive accuracy, it might be further improved 
by including additional contributions to peptide binding affinity 
(Supplementary Note 9).

RACER’s application to CDR3α, β chains obtained from T-cell 
sequencing, together with possible TAN lists generated by cancer 
deep sequencing could provide a rapid and reliable method of gen-
erating clinically actionable information for cancer-specific TCRs 
in the form of putative TCR–TAN pairs, provided those TANs are 
similarly presented on the original MHC38,39. While we focused 
our analysis on a single MHC restriction, our approach could also 
be applied to the crystal structure of another TCR–p-MHC pair, 
together with several known strong and weak binder candidates. 
Analysis of the crystal structure associated with the I-Ek MHC-II 
allele reveal largely conserved interaction patterns (Fig. 4), and their 
differences may have broader implications for preferential selection 
and recognition behavior of T cells (Supplementary Note 10). In the 
future, RACER’s predictive accuracy can be further improved by 

incorporating additional strong binders and structural data as they 
become available (Supplementary Fig. 7).

The relative efficacy of targeting TANs remains an impor-
tant question with significant clinical implications. Our findings  
suggest that thymic selection affords little-to-no recognition  
protection of peptides closely related to self, thus supporting the 
notion that T cells undergoing central tolerance to thymic self-pep-
tides are essentially memorizing a list of antigens to avoid. Given 
that a large class of TANs is generated via point-mutations in self-
peptides, our results provide a quantitative argument for the effi-
cacy of immunotherapies that target point-mutated neoantigens. 
We expect that RACER’s ability to identify a diverse set of antigen-
specific TCRs within high-dimensional CDR3 sequence space will 
accelerate therapeutic T-cell discovery by providing a quick and 
inexpensive screening tool that can then inform more costly confir-
matory TCR repertoire sequencing and affinity tests. Currently, we 
have focused on predicting binding affinities of TCR–peptide pairs 
restricted to a particular MHC allele, offering a proof-of-principle 
for epitope identification. This procedure can in general be repeated 
for other MHC alleles and could be applied to a broad set of clini-
cal scenarios by training on a relatively small number of the most 
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common MHC class-I alleles, each having ample available crystal 
structure data.

While important, TCR–p-MHC pairwise interactions are only 
one factor influencing adaptive immune system recognition. 
Signaling between other adaptive immune elements and intracel-
lular factors influences antigen generation and abundance, and 
availability also affects recognition rates. We propose our opti-
mized framework as a tool for understanding general questions  
regarding the interactions between the T-cell repertoire and rel-
evant antigen landscape. Although we calculate static antigen rec-
ognition probabilities, the temporal tumor–immune interaction 
leads to dynamic co-evolution16 reliant on the quality, abundance 
and systems-level signaling of antigens50. The availability of time-
series assessments of immune-cell repertoires, self-peptides and 
tumor antigens will enable the development of optimized immu-
notherapeutic treatments by uncovering the T-cell–tumor-antigen 
specificity map.

Methods
RACER model. The optimization of RACER (Fig. 1a) starts from a series of 
TCR binders obtained from the deep-sequencing experiments19, as well as the 
corresponding TCR–p-MHC crystal structures deposited in the database41. The 
sequences of the strong binders, as well as the generated decoy binders from 
randomizing the non-anchoring sequences of the strong binders, are collected 
for parameterizing a pairwise energy model, which maximizes the energetic gap 
between the strong binders and a randomized set of decoys. The resulting energy 
model can be used to quickly evaluate the binding affinities of an ensemble of 
TCR–peptide interactions at the population level. The calculated binding affinities 
can be used for simulating the negative selection process in the thymus, as well as 
measuring the recognition probability of the post-selection TCRs. Finally, this kind 
of ensemble study can be used for immunogenic applications that require input 
from an entire T-cell repertoire.

Energy model. To evaluate the binding energies on the basis of a structurally 
motivated molecular energy model, the framework of a coarse-grained protein 
energy model, AWSEM force field35, was utilized for calculating the binding 
energies between the T-cell receptors (TCRs) and the peptide displayed on top of 
an MHC molecule. AWSEM is a coarse-grained model with each residue described 
by the positions of its three atoms—Cα, Cβ and O atoms (except for glycine, which 
does not have Cβ atoms)35. We used the Cβ atom (except for glycine, where we used 
Cα) of each residue to calculate inter-residue interactions. The original AWSEM 
energy includes both bonded and non-bonded interactions.

Vtotal = Vbonded + Vnonbonded (1)

Since those residue pairs that contribute to the TCR–peptide binding energy, 
specifically those from the CDR loops and peptides, are in separate protein chains, 
only non-bonded interactions are considered. Vnonbonded is composed of three terms:

Vnonbonded = Vpairwise + Vburial + Vdatabase (2)

Among them, Vburial is a one-body term describing the propensity of residues to 
be buried in or exposed on the surface of proteins. Vdatabase is a protein-sequence-
specific term that uses information from the existing protein database, such as 
secondary and tertiary interactions, to ensure locally accurate chemistry of protein 
structure. Since the TCR–p-MHC system features pairwise interactions between a 
TCR and its corresponding peptide, only the term Vpairwise is used for this study.

The pairwise energy of AWSEM potential describes the interactions between 
any two non-bonded residues and can be further separated into two terms:

Vpairwise = Vdirect + Vmediated (3)

Vdirect captures the direct protein–protein interaction of residues that are in between 
4.5 and 6.5 Å. The functional form of Vdirect is

Vdirect =
∑

i ∈ TCR

j ∈ peptide

γij(ai, aj)Θ
I
ij (4)

in which ΘI
ij =

1
4 (1 + tanh[5.0 × (rij − rImin)])(1 + tanh[5.0 × (rImax − rij)]) 

is a switching function capturing the effective range of interactions between two 
residues (here taken between rImin= 4.5 Å and rImax= 6.5 Å). Thus, two residues are 
defined to be ‘in contact’ if their distance falls between 4.5 Å and 6.5 Å. γij(ai, aj) 
describes the residue-type-dependent interaction strength, and is the most 
important parameter that enters the optimization of RACER. Vmediated describes the 
longer range interactions of two residues and is not used in this study.

Maximizing specificity of TCR–peptide recognition. For each interaction type, 
the γij(ai, aj) parameters constitute a 20-by-20 matrix of parameters that describes 
the pairwise interaction between any two residues i, j, each with one of the 20 
residue types, ai, aj. Guided by the principle of minimum frustration32, γij(ai, aj) was 
previously optimized self-consistently to best separate the folded states from the 
misfolded states of proteins. Distilled into mathematical details, the energy model 
was optimized to maximize the functional δE/ΔE, where δE is the energy gap 
between folded and misfolded proteins, and ΔE measures the standard deviation 
of the energies of the misfolded states. An energy model was optimized based 
on a pool of selected protein structures51, where a series of decoy structures were 
generated by either threading the sequences along the existing crystal structures, or 
by biasing the proteins into molten globule structures using MD simulations34. The 
resultant γ parameter thus determines an energy model that facilitates the folding 
of proteins with given sequences.

Motivated by this idea, RACER was parameterized to maximize the Z-scores 
for fully separating TCR strong binders from weak ones. Strong binders were 
chosen to be those top peptides that survive and were amplified to contain to at 
least 50 copies after 4 rounds of experimental deep-sequencing processes (details of 
input data are provided in Section Data input)19, together with the peptides present 
in the deposited crystal structures41. In the experiment in ref. 19, to ensure the 
correct display of peptides on the MHC, limited diversity was introduced for most 
distal residues and anchoring residues of peptides. The decoy binder sequences 
were generated by randomizing the non-anchoring residues of each strong binder 
thereby generating 1,000 copies, and excludes the strong-binder sequences. The γ 
parameters were then optimized to maximize the stability gap between strong and 
randomized set of decoy binders, δE = ATγ, and the standard deviation of decoy 
energies, ΔE2 = γTBγ, where the vector A and matrix B are defined as:

A = ⟨⟨ϕdirect⟩
db

− ϕsb
direct⟩

B = ⟨⟨ϕdirectϕdirect⟩
db

− ⟨ϕdirect⟩
db
⟨ϕdirect⟩

db
⟩

(5)

In equation (5), direct stands for the interaction type, Vdirect. ϕdirect is the 
functional form for Vdirect. ϕdirect also summarizes the probability of contacts 
formation (interaction set) between pairs of amino acids in a specific TCR–peptide 
system. The superscript db stands for decoy binders and sb for strong binders. The 
first average is over the 1,000 decoy binders generated from one specific strong 
binder. The second average is over all the strong binders. The maximization of 
δE/ΔE = ATγ/

√

γTBγ  can be performed effectively by maximizing the functional 
objective R(γ) = ATγ − λ1Δ, where Δ2 = γTBγ. The solution of this optimization gives 
γ ∝ B−1A. A is a vector containing the difference in the number of interactions 
of each type in the strong and decoy binders. B is a covariance matrix, which 
contains information about which types of interactions tend to co-occur in the 
decoy binders. Finally, γ is a vector that encodes the optimized strengths of the 
interactions. The dimension of the vector A is (1, 210), that of the matrix B is 
(210, 210) and that of the vector γ is (210, 1). To aid visual presentation, we 
reshape the γ vector into a symmetric 20-by-20 matrix in Fig. 3c. Finite sampling 
of decoy binders introduces noise in the optimization process, particularly in B. 
As such, a filter is applied to reduce the effects of the noise. The filtering scheme 
was performed by first diagonalizing the B matrix such that B−1 = PΛ−1P−1, where 
P is composed of the eigenvectors of B and Λ is made up of B’s eigenvalues. The 
first N modes of B (sorted in descending order by eigenvalue) are retained and 
the other (210 – N) eigenvalues in Λ are replaced with the Nth eigenvalue of 
B. The final result is robust to the choice of N. In practice, N is chosen so that 
no eigenvalue is close to zero. The Wolynes group performed this optimization 
in an iterative way where the optimized parameters were used for generating a 
new set of decoy protein structures52. In this study, since different peptides are 
structurally degenerate on top of MHC as observed from experiments19, only one 
round of optimization was performed. Since the optimization leaves a scaling 
factor as a free parameter, throughout this manuscript, the binding energies are 
presented with reduced units, which is kcal mol–1 multiplied by this scaling factor. 
The value of this scaling factor affects neither the calculation of Z-scores for 
identifying strong binders of a specific TCR nor the subsequent ensemble study of 
peptide recognition, where only the order of binding affinities among individual 
TCR-p-MHC pairs matters for our results. To obtain binding energies that have 
physical units, the scaling factor can be further calibrated to fit the experimentally 
determined binding affinities, such as the KD values measured by SPR experiments 
(Fig. 2c).

Data input. A deep-sequencing technique was developed to assess the binding 
affinity of a diverse repertoire of MHC-II-presented peptides towards a certain 
type of TCR19. Specifically, three types of TCR: 2B4, 5cc7 and 226, were used for 
selecting peptides upon four rounds of purification. The peptides that survived 
and enriched with multiple copies bind strongly with the corresponding TCR. 
By contrast, the peptides that are present initially but become extinct during 
purification represent experimentally determined weak binders. For each of 
the three TCRs, the peptides that end up with more than 50 copies after the 
purification process, together with the peptides presented in the crystal structures, 
were selected as strong binders. 1,000 decoy sequences were generated for 
each of the strong binders by randomizing the non-anchoring residues. Both 
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strong binders and decoys were included in the training set. In addition, to 
test the performance of RACER, peptides with at least eight copies initially but 
disappearing during purification were selected as experimentally determined weak 
binders and were assigned to the test set for each TCR. To test the transferability 
of the model, we used weak-binding peptides of two different TCRs (for example, 
5cc7 and 226) as additional test sets distinct from the TCR used in training (for 
example, 2B4).

When structural data for a specific TCR–peptide pair of interest were 
unavailable, we built the structure by homology modeling45, based on a known 
TCR–peptide crystal structure. Since potential steric clashes after switching 
peptide sequences may disfavor the strong binders used in our training set, we 
used Modeller45 to refine the structures located at the TCR–peptide interface 
of strong binders before including them in the training process. Likewise, the 
binding energies of the experimentally determined weak binders were also 
evaluated after structural relaxation. The structural relaxation adds several seconds 
of computational time for each TCR–peptide pair, and thus poses a challenge 
for large-scale repertoire analysis. However, the coarse-grained nature of the 
RACER framework may significantly reduce the probability of side-chain clashes 
after switching peptide sequences. To test the accuracy of our model prediction 
without structural relaxation, we calculated the binding energies of strong and 
weak binders of TCR 2B4 by only switching the peptide sequences, omitting any 
structural adjustment. Our result (Supplementary Fig. 13) shows comparable 
accuracy in separating strong from weak binders, similar to that reported in Fig. 
2a. In the same vein, the transferability of RACER was also maintained without 
structural relaxation (Fig. 5b). Encouraged by the accuracy of our coarse-grained 
model without relaxation, we modeled large pairwise collections of TCR–peptide 
interactions by only altering their corresponding sequences.

For an additional independent test of the transferability of RACER under 
the same MHC allele, we used the benchmark set reported in ref. 44. Four crystal 
structures (three TCRs) are curated in their benchmark set: 3QIB (2B4), 3QIU 
(226), 4P2Q (5cc7) and 4P2R (5cc7). Each of them have one strong-binding 
peptide presented in the crystal structure, and four weakly binding peptides. All 
the TCR–peptide pairs are associated with MHC-II allele I-Ek, and three of them 
overlap with the main dataset reported in ref. 19. We therefore used the energy 
model previously trained from TCR 2B4 to test its transferability for the other 
three TCR–peptide pairs. The calculated binding energies were converted into a Z 
score by referencing to a set of 1,000 randomized peptides of corresponding TCRs: 
Z =

Ebinding−Edecoys
σ(Edecoys) , with σ(Edecoys) being the standard deviation of Edecoys. The ROC 

curve and AUC score were calculated by scanning through different thresholds of 
the Z score. A further test by including more examples from ref. 44 is available in 
Supplementary Note 6 and Supplementary Figs. 8 and 9.

Transferability without target TCR–peptide structure. To test the transferability 
of RACER without requiring any measured structure for a new TCR, we threaded 
the sequences of the CDR3 loops of the new TCR on the TCR structure used 
in our training. The length of the CDR3β chain is the same among three TCRs 
(2B4: ASSLNWSQDTQY; 5cc7: ASSLNNANSDYT; 226: ASSLNNANSDYT), 
but the length of the CDR3α chain varies (2B4: AALRATGGNNKLT; 5cc7: 
AAEASNTNKVV; 226: AAEPSSGQKLV). To accommodate the difference when 
threading the CDR3α sequences, we used a simple approach: aligning them based 
on the first two AA residues, leaving two gaps for TCR 5cc7 and 226. Modeller45 
was used to build the new loop structure based on these aligned new sequence, 
using the single structure in the training set as the template. These homology-
modeled structures were then used for calculating the binding energies of the 
strong and weak binders of the new TCRs, using the trained energy model. We also 
omitted the step of structural relaxation when replacing a new peptide sequence on 
the built structure. Such an approach is unlikely to reduce RACER’s performance, 
as demonstrated in Supplementary Fig. 13.

Leave-one-out cross validation. Leave-one-out cross validation (LOOCV) was 
used to test the predictive power of RACER to identify strong binders. Specifically, 
1 of the 44 strong binders of TCR 2B4 was removed from the training set, and its 
predicted binding energy Epred was compared with the experimentally determined 
weak binders. If the median of the weak binders’ binding energies is larger than 
Epred (a larger binding energy is associated with a smaller affinity), the testing strong 
binder is successfully identified. Similar tests were performed for TCR 5cc7 and 
TCR 226. The performance of RACER is compared with that from the clustering of 
peptide sequences using the algorithm from CD-Hit 53 (Supplementary Note 1).

Comparing results from surface plasmon resonance experiments. Surface 
plasmon resonance (SPR) was performed to assess the binding affinities of the 
three TCRs towards nine selected peptides19. The correlation between the predicted 
binding energies from RACER and the dissociation constant KD evaluated from the 
SPR experiments thus constitutes a separate set of tests for the accuracy of RACER. 
We first built a relaxed structure with Modeller45 for each of those TCR–peptide 
pairs, using the corresponding TCR structure as the template. We then used 
the optimized energy model of the corresponding TCR to evaluate the binding 
energy of each of those TCR–peptide pairs. The KD values were obtained from 
fitting the SPR titration curves (supplementary figure 4f of ref. 19) using equation 

Req = C×Rmax
C+Kd

 with C, KD and Rmax as free parameters. The Pearson correlation 
coefficient and the Spearman’s rank correlation coefficient between kBTlog (Kd) 
and predicted binding energies were used to quantify this correlation.

Evaluating contact residues of TCR–peptide pairs. The contact map of a given 
TCR–peptide structure was constructed by measuring the proximity Wi,j between 
each residue of peptide (residue i) and CDR loops (residue j) based on their mutual 
distance, using a smoothed step function:

Wij =
1 − tanh (d − dmax)

2 (6)

Where dmax = 6.5 Å. Only Cβ atoms were included in our calculation (except for 
glycine, where the Cα atom was used). The CDR3 loops were utilized as defined in 
the IEDB database54. The constructed contact map represents those residues that 
are spatially close to each other in the given crystal structure.

Evaluating repertoire-level TCR–p-MHC interactions. To assess the statistical 
behavior of the inferential model, we calculated the pairwise binding interactions 
between a simulated T-cell population of size Nt and collection of Nn = 104 thymic 
self-peptides. For this proof-of-principle study, we used TCR 2B4 as an example, 
uniformly varying the 104 amino acids of the peptides, as well as those residues from 
the TCR that are in spatial contact with the peptide. TCR–peptide pairwise energies 
were calculated for Nt = 105 randomized TCR sequences using the RACER energy 
model optimized for TCR 2B4, and Nt = 2,000 for each of the TCR–p-I-Ek systems 
given in Fig. 4 using energies weighted according to their contact maps, along with a 
model using a contact map with diagonal interactions (Fig. 6a). Substitution of TCR–
peptide sequences with the newly generated ensemble yielded a total of Nt × Nn (109 
in the 2B4 case; 2 × 107 for each of the cases involving the TCR–p-I-Ek and diagonal 
contact maps) TCR–peptide pairs representing interactions occurring during 
thymic selection. Given our previous results (Supplementary Fig. 13), we avoid 
the computationally expensive task of structural relaxation, and instead calculate 
pairwise interactions with the original structure, requiring 5,000 CPU hours on an 
Intel Xeon CPU E5-2650 v2 for the large-scale 2B4-optimized simulation.

Thymic selection. Each T cell survives if the maximal interaction over all self-
peptides does not exceed some upper threshold. Selection thresholds were chosen 
to achieve 50% (ref. 7). In all cases, the RACER-optimized energy model was used 
for energy assignment. Thymic selection was performed for each of the TCR–p-
I-Ek examples and their corresponding contact maps given in Fig. 4 (Fig. 6a). 
For each TCR–p-I-Ek example, Nt = 2,000 pre-selection TCRs were created by 
uniformly varying the original TCR CDR3α and β sequences over the amino acid 
space, keeping the sequence lengths unchanged. A similar randomization yielded 
Nn = 104 randomized peptide sequences representing self-peptides. For each of 
the 2,000 randomized TCRs, binding energies were calculated against the 104 self-
peptides by selecting the corresponding entries in the RACER-optimized energy 
model weighted by the original TCR–p-I-Ek contact maps, and the maximum 
energy was recorded. The fraction of TCRs whose maximal binding energy 
exceeded the selection threshold En traces the survival curves. This procedure, 
utilizing the RACER-optimized energy model, was repeated for a simplified model 
that utilizes only adjacent contacts (that is a strictly diagonal contact map with each 
entry having weight one) in the TCR–peptide interaction. The number of diagonal 
elements in the diagonal contact model was taken to be 20 (10 for each of the 
CDR3α–peptide and CDR3β–peptide pairs).

Self-peptide potency. Most self-peptides present in thymic selection are expected 
to participate in the deletion of self-reactive T cells. Thus, a reasonable model 
of thymic selection would feature a majority of self-peptides contributing to the 
selection of immature T cells. A rank order of these self-peptides based on their 
ability to recognize unique T cells, or potency, characterizes the extent to which 
each self-peptide is utilized in thymic selection. The rank order of potency was 
created for the RACER model utilizing the crystal structure of the 2B4 TCR 
(PDB ID: 3QIB) and its corresponding energy model derived from the set of 
experimentally determined strong binders. The thymic selection process using 
104 self-peptides and 105 TCRs for the 2B4-optimized RACER model described 
above generates a total of 109 pairwise binding energies. The negative selection 
threshold En was selected to yield 50% selection, resulting in ~5 × 104 deleted TCRs. 
The number of TCRs deleted by each self-peptide was recorded. The peptide 
deleting the most TCRs defines the most potent self-peptide. TCRs recognized 
by this peptide are removed from the list of total TCRs, and this peptide is 
similarly removed from the list of self-peptides. This process is repeated on the 
smaller TCR and self-peptide list to determine the second most potent peptide. 
Additional iteration until no TCRs remain provides the rank order of self-peptides 
in decreasing order of potency. The cumulative fraction of deleted relative to total 
TCRs is plotted in decreasing order of peptide potency.

T-cell antigen recognition probability. Utilizing the same post-selection T-cell 
repertoire from the previous section, post-selection T cells were quantified for 
their ability to recognize random non-self antigens and tumor neoantigens that 
differ from the Nn thymic self peptides by one residue. 50% selection of TCRs result 
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in approximately 5 × 104 surviving, for which pairwise interactions are generated 
against 103 random and 103 point-mutated self-peptides, representing foreign and 
tumor-associated neoantigens, respectively (randomly generated peptides were 
checked to ensure non-membership in the set of thymic self-peptides). Estimates 
of individual TCR recognition probability were calculated by averaging the 5 × 104-
by-103 indicator matrix, having values of 1 (0) corresponding to recognition (no 
recognition). Estimates of the corresponding recognition probability for the entire 
post-selection MHC-restricted T-cell repertoire was calculated by assessing the 
1-by-103 vector indicating the presence or absence of at least one recognizing TCR. 
The post-selection individual and repertoire T-cell recognition probabilities of 
random and point-mutant antigens were then compared with previously derived 
analytic results for two random energy models12.

Data availability
The data comprising the peptides recognized by the three TCRs, used for RACER 
training and testing, are available in ref. 19. An extended data set of these three TCRs 
was uploaded at Zenodo56. The additional data used for training and testing on 
different MHC-II TCRs can be found in ref. 44.

Code availability
The full code, along with a demo for predicting TCR–peptide interaction, as well 
as being applied to a collection of randomly generated TCRs and peptides, have 
been deposited to Code Ocean57 and can also be found at https://github.com/
XingchengLin/RACER.git.
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