
299

editorial

Theorists and experimentalists must join forces
Science can advance at a faster pace when taking advantage of the synergy between theory and experimentation.

This might not come as a shock to the 
computational science community, 
but computational and mathematical 

modeling have been extremely powerful tools 
in science. Take the ongoing pandemic as a 
timely example. Epidemiologists and disease 
modeling experts have been working together 
to build mathematical models and run 
simulations to better understand how SARS-
CoV-2 impacts populations. This, in turn, has 
helped governments with devising policies 
and non-pharmaceutical interventions to 
help slow the spread of the virus1. Physics- 
and machine learning-based models have 
also been used by the research community 
to study the virus and to find potential drug-
related solutions to the disease2, as described 
in a Perspective in this issue. Needless to 
say, COVID-19 is just an example (albeit 
an important one): other areas of science, 
ranging from the physical sciences to the life 
sciences, have vastly benefited from in silico 
experiments to address various scientific 
problems. The increasing availability of high-
performance computing resources, coupled 
with the development of new, efficient 
hardware architectures, has made it possible 
to perform more computationally expensive, 
detailed simulations in unprecedented ways, 
deepening our understanding of the world 
around us.

As these modeling capabilities become 
more comprehensive and quantitative, 
comparing this level of detail with 
experimental data (whenever possible) is 
a must, not only to validate the models, 
but also to motivate further development 
in science by making more reliable model 
predictions. In other words, collaborations 
between theorists and experimentalists are 
crucial for accelerating research.

Experiments can help theorists (who 
work with theoretical, mathematical 
and/or computational modeling) by 
providing a ‘reality check’ to their models. 
Designing detailed, realistic models 
requires experimental data in order to take 
into account precise information about 
the behavior of a system. Advances in 
experimental instrumentation in different 
fields have made it possible to collect an 
impressive amount of high-fidelity data 
that can be used to develop powerful 
models. The developmental biology field, 
for instance, has been able to implement 
incredibly detailed and insightful models 
thanks to advances in molecular biology and 
genome sequencing3. In materials science, 
multiscale modeling has flourished with the 
development of microscopy techniques that 
allow the imaging of the crystallographic 
structure of materials at an atomic scale4.

But theorists are not the only ones 
who can benefit from this synergy. 
Experimentalists can take advantage of the 
simplicity, efficiency and insights gained 
from the models to perform what-if analyses 
and narrow down the design of new studies. 
Computational screenings using physics-
based simulations and machine learning can 
be used, for example, to guide the design 
of sustainable energy technologies5 and 
to examine drug repurposing candidates 
to guide clinical trials in response to 
new diseases2. Models can also be used 
when experiments are too dangerous6 or 
too expensive and time-consuming (for 
instance, addressing the protein folding 
problem) to be conducted.

Of course, this synergy might come 
with challenges, since each side has its 
own technical limitations. Theoretical 

predictions and experimental observations 
don’t always match, and this necessitates a 
careful evaluation from both sides through 
collaboration — and not through assigning 
blame! In addition, computational and 
mathematical modeling can advance 
substantially faster than experimentation, 
since, in the latter, researchers might need 
instruments not yet available to make 
their observations. At the same time, 
modeling can also take time to develop if 
more computational power is necessary 
to run comprehensive simulations. 
These challenges, however, can become 
opportunities. For example, theorists can 
build models for which experimental data 
are not available or are too noisy, and this 
can help experimentalists obtain insights 
into future developments.

While these collaborations might  
not be common, be it for lack of 
communication or lack of funding, the 
computational science community should 
champion them and strive for their 
establishment. We believe that this synergy 
has the power to advance research in a more 
streamlined fashion and, consequently, at a 
faster pace. The research community, and 
the world as a whole, can certainly benefit 
from this. ❐
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