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ABSTRACT11

We present a quantum embedding methodology to resolve the Anderson impurity model in the context of dynamical mean-field12

theory, based on an extended exact diagonalization method. Our method provides a maximally localized quantum impurity13

model, where the non-local components of the correlation potential remain minimal. This comes at a large benefit, as the14

environment used in the quantum embedding approach is described by propagating correlated electrons and hence offers an15

exponentially increasing number of degrees of freedom for the embedding mapping, in contrast to traditional free-electron16

representation where the scaling is linear. We report that quantum impurity models with as few as 3 bath sites can reproduce17

both the Mott transition and the Kondo physics, thus opening a more accessible route to the description of time-dependent18

phenomena. Finally, we obtain excellent agreement for dynamical magnetic susceptibilities, poising this approach as a candidate19

to describe 2-particle excitations such as excitons in correlated systems. We expect that our approach will be highly beneficial20

for the implementation of embedding algorithms on quantum computers, as it allows for a fine description of the correlation in21

materials with a reduced number of required qubits.22

Introduction23

The understanding of materials with strongly correlated electrons is one of the main challenges of modern solid state physics.24

Triggered by the discovery of high-temperature superconductivity in copper-oxides, the study of doped Mott insulators has25

grown in the last decades, building on the development of theoretical tools designed to solve accurately models of strongly26

correlated electrons. Despite that the exact solution of simple correlated theoretical models in two or three dimensions is27

lacking, accurate predictions for the properties of strongly correlated solids are obtained by using approximations1. A central28

role has been played by the dynamical mean field theory (DMFT)2, a non perturbative method which allowed for the first29

complete description of the Mott-Hubbard transition. This method has been extended to a variety of correlated methods and30

combined with density functional theory, leading to remarkable agreement with the properties of many correlated materials.31

DMFT more generally falls within the larger group of quantum embedding theories3, 4 (for a review see Ref.[5] and references32

therein), which have been widely successful at describing transition metal and f -elements into both solids and molecular33

systems. The central idea of DMFT is to self-consistently map the infinite bulk system onto a so-called Anderson impurity34

model (AIM) with only a few interacting impurity sites embedded in an infinite non-interacting bath. The latter Anderson35

impurity models can be solved using high-level many-body methods, with a breadth of approaches for all have their own36

limitations. Indeed, the recent development of CTQMC has generated a strong activity in the field. For single-site DMFT,37

CTQMC yields an exact solution of the AIM problem within the statistical error bars in imaginary time. The main limitation38

of the approach is that the evaluation of real-frequency spectra requires a poorly conditioned analytical continuation, based39

on the maximum entropy method6, 7 (or some alternative strategy), which strongly limits the possibility to study fine details40

of the spectra. For multi-orbital or cluster extensions of DMFT, CTQMC suffers from the fermionic sign-problem as long as41

inter-orbital hybridizations are present, and it is therefore limited to finite temperatures.42

Numerical renormalization group (NRG)8 provides an alternative for real axis calculations and access to Kondo physics,43

but remains challenging to extend for multi-orbital systems.44



Finally, exact diagonalization (ED) solvers are instead based on a finite discretization of the AIM, through the representation45

of the effective bath in terms of a small number of bath-sites. In practical implementations, the bath size (Nb) is severely46

limited because of the growth of the Hilbert space: its dimension scales exponentially with the total number of sites Ns (bath47

sites and impurity orbitals). Nonetheless, the use of Lanczos-based algorithms allows to deal with large Hilbert spaces, and48

the discretization at low temperature9, 10 is fine enough to accurately compute the thermodynamic and static observables. In49

particular, the finite size effects affect the spectral functions, which are slowly converging to the continuous features of the exact50

DMFT solution. Notwithstanding reasonably accurate static phase diagrams obtained with the Lanczos solver for three11, 12 and51

five13 orbitals system, the limitation in the bath size becomes also particularly relevant for multi-orbital AIM models, which are52

necessary to realistically describe transition metal oxides, as the impurity’s orbitals (five for a d-manyfold) contribute to the53

enlargement of the Hilbert space.54

Scaling the precision of the latter approach on classical computers is not feasible due to the exponential increase of the55

Hilbert space with number of bath sites. In the view of the recent progresses in the implementation of ED on quantum56

computers14, the latter approach has gained interest due to the possibility of scaling linearly on quantum computers. However,57

due to current hardware limitations (noise and decoherence issues), such algorithm are limited to small number of qubits and58

short quantum circuits on the currently available noisy intermediate scale quantum (NISQ) computers. Hence it is of great59

importance to develop an ED based solver that can obtain precise results with a reduced number of bath sites, since the required60

number of qubits is proportional to this.61

In this light, we present here a new quantum embedding methodology to resolve the Anderson impurity model (AIM)62

for DMFT, based on an extended ED method. Our method provides a maximally localized quantum impurity model, where63

the non-local self-energy component of the correlation remains minimal, and hence the AIM minimally breaks locality64

(DMFT is a purely local theory). As reported in this work, this comes at remarkable benefit, as the environment used in the65

quantum embedding approach is described by propagating correlated electrons (instead of free electrons in DMFT), and hence66

offers an exponentially increasing numbers of degrees of freedom for the embedding mapping, in contrast for traditional free67

electron representation where the scaling is linear. This is reminiscent from the representation of correlated electrons by a68

Green’s function embedding approach, where correlations are described by hidden fictitious additional fermionic degrees of69

freedom15, 16.70

This representation has hence the potential to improve dramatically the scope of applicability of the quantum embedding71

approach, whilst limiting the small number of bath sites. We report that quantum impurity models with as few as 3 bath72

sites can reproduce both the Kondo regime and the Mott transition, and obtain excellent agreement for dynamical magnetic73

susceptibilities, poising this approach as a candidate to describe 2-particle excitations such as excitons in correlated systems,74

such as high-Tc superconductor17, 18. Our approach aligns with recent progresses in quantum computing, where a realistic75

number of qubits would achieve a fine description of correlations in materials.76

Results77

From the AIM to MLDE Within DMFT, the lattice model is mapped to an effective Anderson impurity model (AIM) where78

a correlated atom is connected to a non-interacting bath with the hybridization function ∆(ω) as shown in Fig.1.a. In exact79

diagonalization (ED) approximation, the continuum bath is represented with a finite number of effective sites (Fig.1.b).80

Typically, for a fixed set of the Hamiltonian parameters (see Eq.1 Methods section), the AIM is solved (1) by using a Lanczos81

algorithm to converge the ground state and excited states9, 12 which contribute to the thermal average. Once the eigenstates are82

obtained, the dynamical and static observables are computed. As previously stated, the number of bath sites is severely limited83

because of the exponential scaling of the Hilbert space with the number of sites. To improve the performance of the algorithm,84

we enlarge the degrees of freedom of the approach introducing a two-body interaction between the bath electrons (Fig.1.c). The85

resulting approximation is represented by an extended ED solver where the non-local component of the correlation potential86

remain minimal. Thus the exact diagonalization method as been extended to a maximally localised dynamical embedding87

(MLDE) model where same accuracy is obtained with reduced number of bath sites. (see Methods section for the formal88

mathematical definition of the model).89

MLDE and CTQMC90

We now turn to a simple test of the MLDE equations for a typical AIM. The bath hybridisation used as a test case is obtained91

from a typical correlated material 1 and the impurity energy is set to ε f =−U/2 to stay at half-filling. We perform a benchmark92

of the MLDE approach with respect to both a continuous time Monte Carlo and Lanczos solver, which both provide in this case93

the same answer used as a reference. Both the imaginary part (Fig.2.a) and real part ( Fig.2.b) obtained by MLDE with as94

few as Nb = 3 bath sites provide a remarkable agreement with the exact solution. We considered both the nearly free electron95

1The hybridisation function is available in supplementary information, Fig.S1
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(NFE) limit (U < 10) and the atomic limit (U > 10), and in both cases the MLDE solution is consistently in agreement with the96

exact answer. Noteworthy, the strength of correlation and overall physical properties are also well captured by MLDE with97

Nb = 2, whereas the ED solver with the same number of bath sites largely overestimates the strength of correlation (see Fig.3.a).98

MLDE captures well the delocalisation-localisation transition (see Fig.3.b), where the MLDE with Nb = 2 only differs near the99

transition while MLDE with Nb = 3 is exact.100

Kondo physics101

We extend further the application of MLDE to a realistic study case of the deposition of a correlated Kondo molecule on a gold102

surface (see Fig.4.a). Stable organic radical molecules exhibit a Kondo peak in the low temperature experimental conductance,103

which is due to the presence of a single unpaired electron in the highest occupied molecular orbital19–21. In the gas phase104

these molecules are paramagnetic. Due to their low spin-orbit interaction and small hyperfine splitting they are expected to105

exhibit long spin-coherence times, and therefore have potential as building blocks of molecular spintronics applications21.106

When brought in contact to a metal surface the system corresponds to a single impurity Anderson model (SIAM), and has been107

modelled in the past using CTQMC or NRG as impurity solvers22, 23. To demonstrate the capability of MLDE to describe108

Kondo physics we choose the 1,3,5-triphenyl-6-oxoverdazyl (TOV) organic radical molecule, which when deposited on a109

Au substrate has been shown experimentally to exhibit a Kondo temperature of about ≈ 37K19. Compared to other radical110

molecules on surfaces this molecule has the advantage to have a well defined contact geometry, where the molecule lies flat111

on the surface. We use the same simulation setup and parameters as in Ref. [22], so that also the hybridization function of112

the SIAM is the same. Describing Kondo physics at low temperature is a notoriously difficult problem for quantum impurity113

solvers. In particular, the collapse of energy scales in the Kondo limit prevents typical Lanczos or ED solvers from capturing the114

Kondo resonance, as the finite discretization tends to introduce fictitious gaped states at very low temperature. We performed115

calculation at T = 5K. In the Kondo regime (see Fig.4.b) the hybridisation remains constant up to the lowest frequency. We116

note that ∆1(iωn) = ∆2(iωn), which confirms that the embedding source field δ∆(iωn) remains negligible. Furthermore, MLDE117

fares better with Nb = 4 than the best possible fit obtained by the usual discretized Lanczos approach (Nb = 12, triangles in118

Fig.4.b), as the hybridisation vanishes at small frequency (in the molecule it remains constant). The imaginary part of the119

self-energy obtained by MLDE shows a Fermi liquid type behaviour at small frequency (see Fig.4.c), whereas the self-energy120

obtained by ED shows an artificial Mott singularity, due to the bath discretization. We note that this low temperature was121

beyond the reach of our CTQMC solver (β = 35000). Below the Kondo temperature, we recover the Fermi liquid behavior of122

the self-energy (see Fig.4.d). As the MLDE representation is compact, it opens a large degree of possible manipulation once the123

AIM is established. In particular, we extended the calculation to the time dynamics of the Kondo molecule with the Keldysh124

formalism24 after a magnetic quench, where at time t = 0 the molecule is magnetically polarized along the ez axis, and the125

external magnetic field released for t > t0. The magnetic moment enters in a precession dynamics with frequency equal to126

the Kondo temperature (see Fig.4.e). The dynamics can also be resolved below TK , where we observe additional harmonics,127

reminiscent from the Kondo Zeeman splitting at t = t0 (see Ref.25).128

Mott transition129

We have so far focused on simple AIM systems in absence of mean-field corrections to the hybridisation. We now turn to the130

dynamical mean-field MLDE approach, applied to the Mott transition of the two-dimensional square-lattice Hubbard model131

(see Fig.5.a). Using the MLDE as a solver for DMFT, we recover the well known metal-insulator transition (MIT) associated132

with the charge localization induced by the local Hubbard repulsion U . We recover with a simple MLDE and Nb = 3 bath sites133

the spectral function of the Hubbard model, with the usual features (lower and upper Hubbard bands, quasi-particle peak below134

the transition Uc ≈ 9, Mott gap for U >Uc). We note that interestingly the spectral function obtained by MLDE also shows the135

satellite peaks at the gap edge for U >Uc. The MLDE charge gap ∆ reproduces the known trend ∆ =U −W , which provides a136

further test of the theory. The benchmark with the converged solution obtained by CTQMC is remarkable (see Fig.5.b), and137

the MLDE solution essentially within the error bars of the CTQMC for U/t = 12. Across the Mott transition, the agreement138

between the Green’s functions remains good (see Fig.5.c).139

Bethe-Salpeter Equation140

We extended the calculations to the Bethe-Salpeter Equation (BSE) formalism, applied to the MLDE solution. In particular141

we calculate the local irreducible vertex Γ (see supplementary information), which enables the calculation of the non-local142

dynamical magnetic susceptibility χmag(ω) within MLDE. We performed calculations for U/t = 12 at various temperatures,143

to explore the behaviour of magnetic excitations across the Mott gap melting. Within the Mott gap phase at temperature144

T/t = 0.025 (Fig.6.a), the Neel fluctuations are local in momentum at QNeel = (π,π). As expected, the spin fluctuations are145

largely located at QNeel in the Mott phase (T = 0.025t). Interestingly, the spin-fluctuations survive for temperature as high as146

the melting temperature (Fig.6.b). At very large temperature (Fig.6.c), the fluctuations are fully incoherent and the spectrum147

uniform across the Brillouin zone.148
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We note that a known challenge for the BSE approach is the extraction of the local irreducible vertex Γ, which is obtained149

by calculating the two electron response function G(2). Such a quantity requires traditionally computationally demanding150

collection of statistics by CTQMC, and few other alternatives exist. The vertex can be calculated in the Lehman representation151

(see supplementary information), but requires a sampling over the whole Hilbert space, which is not possible for AIM with more152

than few bath sites. In MLDE this task is largely simplified as the Hilbert space remains compact. We provide a benchmark of153

the local vertex Γ with CTQMC for both U/t = 6 and U/t = 12 (see respectively Figs.6.e and 6.g), in both cases the agreement154

is quantitative. This agreement is also obtained in the fermionic representation of the local magnetic susceptibility χiν ,iν (see155

Figs.6.d and 6.f).156

Discussion157

In conclusion we introduced a novel quantum many-body embedding techniques, the so-called Maximally Localized Dynamical158

Embedding approach (MLDE), which offers a robust and efficient methodology to describe electronic correlations in quantum159

materials. This approach generalizes the local dynamical mean field theory to minimally non-local Anderson impurity model,160

remarkably opening up the resolving power of the discretized impurity model. In particular, when the number of poles described161

by a canonical DMFT hybridisation scales linearly with the number of quantum impurity sites, the latter increases exponentially162

in MLDE. This opens new avenues in the realm of quantum computing, where with a realistic number of qubits (typically163

10-20), MLDE would allow to describe transition metal systems on a quantum computer, with minor errors induced by the bath164

discretization. As the MLDE hamiltonian is minimal (typically 4 sites in total), we have shown that time evolutions (Keldysh)165

and vertex calculations become routinely possible at minimal cost. Finally, the correlated bath sites of MLDE also allows166

to describe Kondo physics at very low temperature, which is a known limitation of standard exact diagonalization DMFT167

approaches and it lays foundations for future works on time-dependent non-equilibrium phenomena.168

Methods169

Within DMFT, the effective AIM is subject to a self-consistency condition which relates the Green’s function of the impurity170

model G(iωn) to the so-called Weiss-field G
−1
0 (iωn), which completely characterises the AIM. For the single band case, the171

Hamiltonian of the AIM reads:172

H = ∑
i jσ

εi jσ d̂
†
iσ d̂ jσ +∑

iσ

Vi(d̂
†
iσ f̂σ +hc)+Un̂ f↑n̂ f↓+∑

σ

ε f f̂ †
σ f̂σ (1)

where d
†
pσ (dpσ ) creates (destroys) a particle with spin σ in the d-orbitals of the uncorrelated bath (p ∈ [1,Nb]) and f

†
σ ( fσ )173

creates (destroys) a spin σ particle on the impurity, U is the static Coulomb repulsion on the impurity and V is the tunnelling174

amplitude between the impurity and the bath.175

In the maximally localized dynamical embedding approach (MLDE) we add an additional general two-electron interaction to176

the bath sites, and the interaction vertex reads:177

Hint = ∑
σ1,σ2

∑
i, j,k,l

U
(2)
i, j,k,l d̂

†
iσ1

d̂
†
jσ2

d̂kσ2 d̂lσ1 (2)

The U (2) tensor is a fictitious two-body interaction between bath electrons introduced to enlarge the degrees of freedom of178

the approach. Although the free electron propagator takes a simple polynomial form, e.g. G−1
0 = iωn − ε f −∑i V

2
i /(iωn − εi),179

a correlated green’s function is instead described by a mapping to an exponentially long one dimensional chain within the180

Kryvlov space26. In particular, when the bath is correlated, the Weiss field incorporates the dressed propagator of the bath181

electrons G
(1)
d :182

G−1
0 = iωn − ε f −V †G

(1)
d V

︸ ︷︷ ︸

∆(1)

, (3)

where the hybridisation to the bath is denoted as ∆(1). We emphasise that at this level of the theory, the self energy of183

the impurity Σ f remains nought, and hence we have a fully local theory from the perspective of the impurity. However, as184

we introduce a local correlation U on the impurity, two effects occur: i) the propagator of the bath G
(1)
d is dependent on the185
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correlation on the impurity, and hence changes to G
(2)
d and ii) a non-local part of the self-energy Σ f d between the impurity and186

the bath emerges:187

G−1 = iωn − ε f − (V † +Σ
†
f d)G

(2)
d (V +Σ f d)

︸ ︷︷ ︸

∆(2)

−Σ f (4)

We have now a set of embedding equations, which leads to a generalised Dyson equation G−1(z)−G−1
0 (z) = Σ f (z)−δ∆(z),188

where the δ∆(z) is a source field that stems from the non-local correlations. Indeed, the latter term can be rationalised following189

a simple argument via the Migdal energy functional which in MLDE reads190

U〈n̂↑n̂↓〉=
1
2




Tr

(
Σ f G f

)
+Tr

(
Σ f dG f d

)

︸ ︷︷ ︸

Z̄




 (5)

Part of the correlation energy spills effectively on the bath27, leading to a correlation leakage term Z̄. The DMFT equations191

can be recovered when the leakage potential δ∆(z) and leakage correlation energy are small. As the tuning of the bath192

propagator allows for a very large set of parameters, these constraints can be successfully enforced via Lagrange parameters in193

the fit of the DMFT hybridisation, to maximise the locality of the embedding, with a concomitant exponential improvement of194

the bath discretization errors. It is however known that in high dimension, or when a system is strongly correlated, the electron195

self-energy is well separable into a local dynamical part and a static non-local contribution28. In this respect, we reabsorb the196

embedding potential into a shift of the static part of the MLDE self energy, which insures that the Migdal energy remains exact.197
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Figure 1. From AIM to MLDE. (a) Mapping of the lattice model (with inter-site hopping parameter t and on-site correlation
U) onto a local impurity model, with a correlated atom (yellow sphere) embedded in a non-interacting bath (blue shaded area)
with energy ε as for the Anderson impurity model (AIM). The four possible configurations describe the quantum evolution of
the atom. Electrons may hop from the atom to the bath via the frequency dependent hybridization function ∆(ω), which plays
the role of a dynamical mean field. b) Discretization of the continuum bath in non-interacting bath sites coupled to the
interacting impurity through the hopping function Vi. This is the picture related to the Exact Diagonalization (ED) impurity
solver. c) Cartoon related to the Maximally Localised Dynamical Embedding (MLDE) solver where an interacting impurity is
coupled to interacting bath sites.
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Figure 2. MLDE benchmark. (a) Imaginary and (b) real part of the MLDE with Nb = 3 self-energy (dashed lines) obtained
from on-site correlation U in range 2−15 for a test hybridisation function for a half-filled impurity (units are arbitrary) and
compared with continuous time Monte Carlo (continuous line). The scales are in arbitrary units.
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Figure 3. Strength of correlations. (a) Imaginary part of the self-energy obtained by ED for Nb = 2 (dashed lines) compared
to the exact solution (continuous line). (b) Quasi-particle weight obtained by MLDE with Nb = 2 and Nb = 3 compared to the
continuous time Monte Carlo. The MLDE remains close to the exact solution with Nb = 2, whereas for the same number of
bath sites ED vastly overestimates the strength of correlations (see panel (a)). The scales are in arbitrary units.
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Figure 4. Kondo physics. (a) TOV organic molecule deposited on a gold substrate at T = 5K. (b) Imaginary parts of the
molecule’s hybridisation function (AIM), represented by MLDE ∆1,2(iωn), and as obtained by the ED solver with Nb = 12. In
the Kondo regime, the hybridisation remains constant up to the lowest frequency, which is not captured in ED (c) Imaginary
part of the self-energy obtained by MLDE shows a Fermi liquid type behaviour at small frequency (circles), whereas the
self-energy shows an artificial Mott singularity, due to the bath discretization (squares). We note that this low temperature was
beyond the reach of our CTQMC solver (β = 35000). (d) Imaginary part of the self-energy in real axis frequencies, MLDE
shows a small dip near the Fermi level, which is associated with the Kondo scale, whereas ED shows an artificial peak instead.
(e) Time dynamics of the magnetically quenched system: at time t = 0 the system is polarised along the z-axis, upon relaxation
we report the time dependence of the magnetic precession at a temperature T = 100K (T = 20K) above (below) the Kondo
temperature (TK ≈ 30K). The Fourier transform of the dynamics at T = 100K shows a peak at ω = 0.0029eV, near the Kondo
energy TK = 0.0027eV. The dynamics at T = 20K shows sub-harmonics reminiscent from the Zeeman splitting at time t = 0.
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Figure 5. Mott transition. (a) Spectral function obtained for the square lattice Hubbard model solved by MLDE (Nb = 3 for
all calculations) with increasing values of the on-site dimensionless correlation ratio U/t. For U smaller than the critical value
Uc ≈ 9, the system remains metallic, with a quasi-particle weight (sharp peak at zero), Hubbard lower and upper bands, and
band edge satellites that develop near U/t ≈ 6. In the Mott phase (U/t > 10) we obtain a Mott charge gap ∆ ≈U −W , where
W/t = 8 is the bandwidth for the square lattice. (b) Imaginary part of the self-energy obtained for U/t = 12 at different MLDE
iteration of the self-consistent cycle. At iteration 14, the self-energy is converged, and within the error bar or the converged
CTQMC solution. (c) Converged imaginary part of the MLDE Green’s function for different values of U/t (symbols)
compared with the DMFT CTQMC solution (dashed lines). Note the real part of the Green’s function is zero in a particle-hole
symmetric system.
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Figure 6. Dynamical susceptibility. Momentum resolved spin susceptibility obtained by Bethe Salpeter with the vertex
calculated with MLDE in the Hubbard model with U/t = 12, at increasing temperature T/t = 0.025 (a), T/t = 1 (b), T/t = 10
(c). We report that the magnetic susceptibility at (π,π) is enhanced as the system reaches the meltdown of the Mott gap (b),
and then at very high temperature (c) becomes uniform. As the MLDE calculations only involves Nb = 3 bath sites, the vertex
is fully tractable at any temperature. d) Magnetic susceptibility χ and e) irreducible vertex Γ resolved in fermionic frequency iν
obtained by MLDE (continuous line) and compared with the exact vertex (dashed line) at temperature T/t = 0.025 and
U/t = 6. Respectively χ (f) and Γ (g) obtained in the Mott phase for U/t = 12. The agreement is remarkable.
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Figure 1

From AIM to MLDE. (a) Mapping of the lattice model (with inter-site hopping parameter t and on-site
correlation U) onto a local impurity model, with a correlated atom (yellow sphere) embedded in a non-
interacting bath (blue shaded area) with energy ε as for the Anderson impurity model (AIM). The four
possible con�gurations describe the quantum evolution of the atom. Electrons may hop from the atom to
the bath via the frequency dependent hybridization function ∆(ω), which plays the role of a dynamical
mean �eld. b) Discretization of the continuum bath in non-interacting bath sites coupled to the interacting
impurity through the hopping function Vi . This is the picture related to the Exact Diagonalization (ED)
impurity solver. c) Cartoon related to the Maximally Localised Dynamical Embedding (MLDE) solver
where an interacting impurity is coupled to interacting bath sites.



Figure 2

MLDE benchmark. (a) Imaginary and (b) real part of the MLDE with Nb = 3 self-energy (dashed lines)
obtained from on-site correlation U in range 2−15 for a test hybridisation function for a half-�lled impurity
(units are arbitrary) and compared with continuous time Monte Carlo (continuous line). The scales are in
arbitrary units.



Figure 3

Strength of correlations. (a) Imaginary part of the self-energy obtained by ED for Nb = 2 (dashed lines)
compared to the exact solution (continuous line). (b) Quasi-particle weight obtained by MLDE with Nb = 2
and Nb = 3 compared to the continuous time Monte Carlo. The MLDE remains close to the exact solution
with Nb = 2, whereas for the same number of bath sites ED vastly overestimates the strength of
correlations (see panel (a)). The scales are in arbitrary units.



Figure 4

Kondo physics. (a) TOV organic molecule deposited on a gold substrate at T = 5K. (b) Imaginary parts of
the molecule’s hybridisation function (AIM), represented by MLDE ∆1,2(iωn), and as obtained by the ED
solver with Nb = 12. In the Kondo regime, the hybridisation remains constant up to the lowest frequency,
which is not captured in ED (c) Imaginary part of the self-energy obtained by MLDE shows a Fermi liquid
type behaviour at small frequency (circles), whereas the self-energy shows an arti�cial Mott singularity,
due to the bath discretization (squares). We note that this low temperature was beyond the reach of our
CTQMC solver (β = 35000). (d) Imaginary part of the self-energy in real axis frequencies, MLDE shows a
small dip near the Fermi level, which is associated with the Kondo scale, whereas ED shows an arti�cial
peak instead. (e) Time dynamics of the magnetically quenched system: at time t = 0 the system is
polarised along the z-axis, upon relaxation we report the time dependence of the magnetic precession at a
temperature T = 100K (T = 20K) above (below) the Kondo temperature (TK ≈ 30K). The Fourier transform
of the dynamics at T = 100K shows a peak at ω = 0.0029eV, near the Kondo energy TK = 0.0027eV. The
dynamics at T = 20K shows sub-harmonics reminiscent from the Zeeman splitting at time t = 0.



Figure 5

Mott transition. (a) Spectral function obtained for the square lattice Hubbard model solved by MLDE (Nb
= 3 for all calculations) with increasing values of the on-site dimensionless correlation ratio U/t. For U
smaller than the critical value Uc ≈ 9, the system remains metallic, with a quasi-particle weight (sharp
peak at zero), Hubbard lower and upper bands, and band edge satellites that develop near U/t ≈ 6. In the
Mott phase (U/t > 10) we obtain a Mott charge gap ∆ ≈ U −W, where W/t = 8 is the bandwidth for the
square lattice. (b) Imaginary part of the self-energy obtained for U/t = 12 at different MLDE iteration of
the self-consistent cycle. At iteration 14, the self-energy is converged, and within the error bar or the
converged CTQMC solution. (c) Converged imaginary part of the MLDE Green’s function for different
values of U/t (symbols) compared with the DMFT CTQMC solution (dashed lines). Note the real part of
the Green’s function is zero in a particle-hole symmetric system.



Figure 6

Dynamical susceptibility. Momentum resolved spin susceptibility obtained by Bethe Salpeter with the
vertex calculated with MLDE in the Hubbard model with U/t = 12, at increasing temperature T/t = 0.025
(a), T/t = 1 (b), T/t = 10 (c). We report that the magnetic susceptibility at (π,π) is enhanced as the system
reaches the meltdown of the Mott gap (b), and then at very high temperature (c) becomes uniform. As the
MLDE calculations only involves Nb = 3 bath sites, the vertex is fully tractable at any temperature. d)
Magnetic susceptibility χ and e) irreducible vertex Γ resolved in fermionic frequency iν obtained by MLDE
(continuous line) and compared with the exact vertex (dashed line) at temperature T/t = 0.025 and U/t =
6. Respectively χ (f) and Γ (g) obtained in the Mott phase for U/t = 12. The agreement is remarkable.
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