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Inflammatory bowel disease (IBD) is a class of chronic dis-
orders whose etiogenesis is still unknown. Despite the high 
number of IBD-related omics studies, the RNA-sequencing 
data produced results that are hard to compare because 
of the experimental variability and different data analysis 
approaches. We here introduce the IBD Transcriptome and 
Metatranscriptome Meta-Analysis (TaMMA) framework, 
a comprehensive survey of publicly available IBD RNA-
sequencing datasets. IBD TaMMA is an open-source platform 
where scientists can explore simultaneously the freely avail-
able IBD-associated transcriptomics and microbial profiles 
thanks to its interactive interface, resulting in a useful tool to 
the IBD community.

Inflammatory bowel disease (IBD), including ulcerative colitis 
(UC) and Crohn’s disease (CD), is a class of multifaceted chronic 
inflammatory gut disorders characterized by an uncontrolled, res-
olution-failing inflammation that leads to bowel damage1. In recent 
decades, numerous omics studies have focused on understanding 
IBD pathogenesis. Despite the high amount of RNA-sequencing 
(RNA-seq) data produced to help preclinical and clinical research, 
such studies are hard to integrate due to their experimental vari-
ability and different analytic approaches2. To exploit the efforts 
made over the years by IBD experts in the field of next-generation 
sequencing (NGS), we here introduce a meta-analysis web app, 
the IBD Transcriptome and Metatranscriptome Meta-Analysis 
(TaMMA) platform. IBD TaMMA is a comprehensive survey of 
publicly available RNA-seq datasets from IBD-derived and control 
samples across different tissues, all analyzed with the same pipe-
line and batch-corrected for data harmonization and simultaneous  
comparison among the different studies. This tool, featuring 
increased statistical power due to its augmented sample size,  
provides to the scientific community a user-friendly, open-source 
platform where data-mining of the IBD-associated transcriptome 
and metatranscriptome can be faster and statistically more powerful  
than each single study alone, resulting in a useful tool for the  
IBD community.

Results
Various meta-analyses of gene expression profiles of patients with 
IBD from microarray datasets have already identified dysregulation 
of the expression of genes encoding for several inflammatory factors 
and RNA-binding proteins3–5. However, these studies focused on a 

limited number of genes and lacked not only whole-transcriptome  
but also metatranscriptome profiling. The latter has recently 
emerged as a successful approach to uncover novel gut-populating 
microbial entities6.

To provide a wider picture of the whole transcriptome and meta-
transcriptome at different tissue and cell levels in patients with both 
UC and CD, we collected and analyzed publicly available RNA-seq 
datasets. As this involved 26 independent studies, we predicted an 
experiment-dependent bias, which we counteracted with ComBat7, 
a batch-correction algorithm that is well established in transcrip-
tomics for adjusting unwanted sources of variation in the context 
of high-throughput experiments8, following the source and tissue of 
origin. We also tried to batch-correct the different library construc-
tion strategies, but their variance was already fully explained by  
the source study. The meta-analysis performed was used as the 
core to design the IBD TaMMA web app (Supplementary Fig. 1a), 
intended as a set of analyses displayed in a web browser, which 
allows quick access to differential gene expression and Gene 
Ontology functional enrichment results for the different conditions. 
Sample dispersion within the Uniform Manifold Approximation 
and Projection (UMAP), easily accessible through the IBD TaMMA 
platform, shows clustering following the tissue of origin but not 
the source study (Fig. 1a,b), indicating successful data harmoni-
zation. Consistently, housekeeping gene expression levels were 
found to be comparable across the different tissues and conditions 
(Supplementary Fig. 1b).

Notably, owing to the lack of patient metadata in the majority 
of studies integrated into IBD TaMMA, we could perform neither 
stratification nor clustering based on patient characteristics (age 
and gender). Similar limitations are found in previously published 
studies, although they offered important contributions for the 
development of innovative IBD-counteracting therapies. To miti-
gate limitations related to the absence of patient metadata, we first 
assessed whether this platform confirmed previously established 
IBD-specific features. Our platform indeed pinpoints strong differ-
ential gene expression among UC, CD and healthy (control) groups 
in the ileum, colon and rectum, as shown in Fig. 1c. Of note, IBD-
specific proinflammatory signatures were confirmed. Specifically, 
by comparison with healthy tissues, IBD-derived intestinal tissues 
displayed increased expression levels of tumor necrosis factor-α 
(TNF), interferon-γ (IFNG), interleukin-12B (IL12B), integrin-α4 
(ITGA4) and integrin-β7 (ITGB7), encoding for proteins known to 
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be drivers of chronic inflammation and thus exploited as therapeutic  
targets for patients with IBD9 (Fig. 1d, Supplementary Fig. 1c  
and the ‘Old evidence from the literature’ tab at IBD TaMMA). 
Similarly, S100 calcium-binding protein A8 and A9 (S100A8 and 
A9) transcripts encoding for the two subunits of the fecal biomarker 
calprotectin10 and the recently emerged S100A1210 were increased 
in intestinal samples from CD and UC as compared to the healthy 
(Fig. 1e,f) groups. These results are well in line with most of the 
studies reporting these molecules as biomarkers of inflammation in 
patients with IBD10. Additionally, epithelium- and pro-angiogenic-
related biological processes, known to be altered during gut chronic 
inflammatory disorders11–14, were also found to be dysregulated in 
both UC and CD colon versus control colon, as well as in CD ileum 
versus control ileum (Supplementary Fig. 1d and ‘Old evidence 
from the literature’ tab at IBD TaMMA).

Metatranscriptomics performed on IBD and healthy stools15 
paralleled previous metagenomics analysis, confirming the 
Bacteroidetes and Firmicutes phyla, followed by Actinobacteria 
and Proteobacteria, as the main colonizers of the fecal microbiota16  
(Fig. 1g, upper bars). IBD TaMMA also highlighted IBD and healthy 
intestinal samples to be colonized by the same phyla, although with 
different proportions (Fig. 1g, lower bars). Moreover, decreased 
intestinal microbiota diversity, a well-known feature of IBD patho-
genesis1, was confirmed in IBD stools as compared to healthy stools 
(Fig. 1h), paralleled by decreased diversity also in the colon and 
ileum from the UC group and in the colon from the CD group  
(Fig. 1i,j). Interestingly, CD ileum showed increased microbiota 
diversity compared to the other groups (Fig. 1j), providing an 
insight into the disease location-dependent microbiota composi-
tion in patients with CD. Of note, IBD TaMMA also confirmed 
virome dysbiosis, with the expansion of Caudovirales in both pedi-
atric IBD and UC samples17,18 (Fig. 1k), as well as increased levels 
of the Herpesviridae family in IBD-derived samples and of the 
Hepadnaviridae family in UC ileum as compared to the healthy, 
as previously reported19,20 (Supplementary Fig. 1e,f). Among the 
Herpesviridae-belonging viruses, cytomegalovirus (CMV) genus 
infection was previously associated with complicating UC, and its 
presence correlated with increased colectomy and mortality rates 
in patients with UC21. CMV includes different species of human 
beta herpesvirus species whose transcripts from IBD TaMMA were 
found to be upregulated in patients with IBD. Specifically, human 
beta herpesvirus 5 was highly abundant in UC and CD colon and 
CD ileum as compared to healthy tissues (Supplementary Fig. 1g 
and ‘Old evidence from literature’ tab at IBD TaMMA). These data 
support previously published evidence and indicate that high levels 
of the CMV genus-belonging beta herpesvirus 5 are associated with 
intestinal inflammation.

We then attempted to uncover novel aspects of the IBD-derived 
samples. We present evidence generated by meta-analysis of the 
archaeome and mycome composition. Archaeome analysis by 
TaMMA revealed that the archaea Nitrosophaerales, Haloferacales, 
Natrialbales and Thermococcales were among the most abundant  

archaea orders in the CD ileum, whereas the most abundant 
orders in UC ileum were Methanococcales, Methanobacteriales, 
Methanosarcinales and Methanomicrobiales, evidencing the differ-
ences between the two diseases in the ileal part. Interestingly, mem-
bers of Methanomicrobiales were also found higher in UC colons, 
where it was the sole archaeal order to be statistically significant, 
while no differences were observed in colons from patients with 
CD. From these insights, we can conclude that each intestinal tract 
may display differential abundances of archaea, not only reflecting 
the specific gut tract, but also specific disease conditions (‘New evi-
dence by TaMMA’ tab).

Regarding the mycome profile, CD and UC ileum both fea-
ture an increased abundance of Glomerellales, Tremellales and 
Hypocreales while also featuring a decreased abundance of 
Schizosaccharomycetales. Some orders were differentially abun-
dant in the two conditions. Saccharomycetales, Ustilaginales, 
Malasseziales, Eurotiales, Mycosphaerellales and Magnaporthales 
were found to be differentially abundant exclusively in UC ileum, 
while Saccharomycetales, Ustilaginales and Sordariales were dys-
regulated only in CD ileum. Interestingly, different from the ileum, 
very few orders were found to be differentially abundant in the 
colon, perhaps resembling the different immune competence of 
the two tissues20. In conclusion, the mycobiome composition is gut 
tract- and disease-specific, opening additional horizons for IBD-
associated microbiota diversity (‘New evidence by TaMMA’ tab).

It is noteworthy that, during the analysis, most of the human 
unmapped reads failed to be classified by metatranscriptomics 
profiling and therefore were considered as NGS dark matter. These 
data have been submitted to a data repository (given in the ‘Data 
availability’ statement) as we believe these data can also contribute 
to the understanding of gene and microbial entities not yet known 
but that may be the aim of future investigations (to discover new  
microbial entities).

In conclusion, together, these pieces of evidence propose IBD 
TaMMA as a platform that can confirm well-known features of IBD 
pathogenesis, hopefully resulting in a useful open-source tool for 
uncovering further insights into personalized diagnosis and prog-
nosis upon treatment.

Discussion
Numerous whole-transcriptome analyses of IBD samples have been 
performed, but a platform where these data can be browsed and 
compared is currently lacking. The IBD TaMMA web app intro-
duces an integrative analysis of all IBD-related publicly available 
RNA-seq datasets and has been designed to have a graphical inter-
face that allows users to interact with it, helped by a guide, icons and 
dropdowns selecting specific analysis and comparisons. However, 
owing to the lack of patient metadata, many clinically relevant 
aspects cannot be confirmed, such as the correlation between CMV 
infection and increased risk of colectomy in patients with UC21. 
Of course, including other characteristics will reinforce the web  
app, and we propose to update it soon as they are available in other 

Fig. 1 | IBD TaMMA overview. a,b, Multidimensional scaling of the human whole transcriptome by UMAP from patients with UC and CD, as well as 
healthy (control) participants. c, MA plots showing the differential gene expression results, expressed as log2(fold change) between the indicated 
comparisons (M) as a function of log2(average gene expression) (A). Red dots represent genes being differentially expressed with high statistical 
significance (false discovery rate (FDR) < 1 × 10−10). The number of differentially expressed genes and their trends are indicated in red. d, Box plots showing 
differential tumor necrosis factor (TNF) normalized expression among UC and CD, as well as healthy ileum, colon and rectum. e,f, Box plots showing 
differential calprotectin (S100A8 and S100A9) (e) and S100A12 (f) encoding gene normalized expression among UC and CD, as well as healthy (control) 
ileum, colon and rectum. g, Bar plots showing the relative abundance of the indicated bacterial phyla in stools, ileum and colon from patients with UC and 
CD, and healthy participants (control). h–j, Violin plots showing Shannon diversity indices among CD, healthy (control) and UC in stools (h), colon (i) and 
ileum (j). k, Box plots showing relative Caudovirales order abundance in colon, ileum and stools from healthy participants (control) and patients with CD, 
and UC. All box plots represent the sample distribution with median, minimum, maximum, first and third quartiles. An interquartile range of 1.5 is used to 
define outliers. Statistical differences between groups were calculated by analysis of variance with Tukey’s honestly significant difference post hoc test for 
multiple comparisons. Differences with adjusted P ≤ 0.05 were considered significant. For complete statistics, see Supplementary Table 2.
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datasets. We thus hope that more clinical metadata will be added 
over time, finally providing more insights into the different aspects 
of chronic intestinal inflammation.

As IBD TaMMA is a visualization rather than an analysis web 
app, users cannot upload or analyze their data independently. 

However, although future versions of IBD TaMMA may be devel-
oped as analysis web apps, in the meantime we encourage users 
to ask for the analysis of new datasets through the dedicated link 
https://github.com/Humanitas-Danese-s-omics/ibd-meta-analysis- 
data/issues.
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As future steps for the IBD TaMMA, additional advantages will 
include the analysis of samples from IBD patients with extraintestinal 
manifestations (https://www.crohnscolitisfoundation.org/what-is- 
ibd/extraintestinal-complications-ibd). This may help understand 
the mechanism through which some patients may experience IBD-
related complications.

Updated versions of IBD TaMMA will include the analysis of 
differential gene abundances for the microbiota, adding valuable 
information, as well as the realization of a dedicated TaMMA-like 
platform comprehensively analyzing IBD along with other immune-
mediated disease-derived samples, which may expedite the discov-
ery of shared features.

IBD TaMMA will also be implemented with other omics anal-
yses, such as genomics and proteomics, and, thanks to the multi-
omics analysis approach22, we will show the real variance explained 
by each omics, instead of using a single dataset at a time (for exam-
ple, archaea only), which would consider only a part of the total 
picture. This is indeed the direction in which we are proceeding 
for future releases of the updated versions of IBD TaMMA, offer-
ing the opportunity to propose new hypotheses and insights for a 
better comprehension of IBD pathogenesis and the development of 
personalized treatments.

Methods
RNA-sequencing data. The pipelines for RNA-seq data download and analysis 
were designed with Snakemake v6.4.123. FASTQ reads from 3,853 RNA-seq 
data (6.5 terabytes, 13 tera base pairs) were searched in NCBI GEO/SRA using 
the following search query: ‘(crohn OR colitis OR ibd) AND expression AND 
sequencing AND sapiens’, last queried on 6 March 2021. All freely available 
IBD-related datasets were included. Only low-quality reads within samples were 
discarded before the analysis pipeline.

FASTQ file download from NCBI SRA and initial quality control (QC) 
filtering were performed with fastq-dump v2.11.0 (https://trace.ncbi.nlm.nih.
gov/Traces/sra/sra.cgi?view=toolkit_doc&f=fastq-dump). Additional quality 
checks and adaptor trimming were performed with FastQC v0.11.9 (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) and Trimmomatic v0.3924.

Read mapping to the human reference genome (GRCh38 primary genome 
assembly), finalized with GENCODE v35 gene annotations25, and gene 
quantification were performed with STAR v2.7.9a26. Post-mapping QC was 
performed with RSeQC v4.0.027 and MultiQC v1.10.128.

Meta-analysis. Because these data came from 26 different studies from different 
laboratories, we counteracted the presumptive bias by batch correction in 
accordance with source (batch covariate) and tissue of origin (explaining other 
possible covariance). Batch-effect detection and correction were performed 
with ComBat7, within the Surrogate Variable Analysis v1.8 R package (https://
bioconductor.org/packages/release/bioc/html/sva.html). Correction was performed 
with the following parameters: sva::ComBat(dat=raw_counts, batch=source, 
mod=tissue), where raw_counts is the merged count matrix, and the source  
of origin was used as a batch covariate and the tissue type as a possible  
other covariate.

Once the gene counts were adjusted, samples were divided into groups in 
accordance with the tissue of origin and patient condition before differential 
expression analysis and Gene Ontology functional enrichment. Differential human 
gene expression and differential species/family/order abundance analyses were 
performed with DESeq2 v1.32.0829. Multi-core parallelization was achieved with 
BiocParallel v1.26.0 (https://github.com/Bioconductor/BiocParallel). Gene-level 
annotations were managed by ensembldb v2.16.09 and EnsDb.Hsapiens.v86 
v2.99.0 (http://bioconductor.org/packages/release/data/annotation/html/EnsDb.
Hsapiens.v86.html).

The statistics for human differential gene expression, Shannon diversity and 
viral entity relative abundance are shown in Supplementary Table 2. Comparisons 
with FDR < 1 × 10−10 are considered statistically significant.

Functional enrichment analysis of the Gene Ontology biological process 
was performed with GeneSCF v1.11030, using differentially expressed genes with 
FDR < 1 × 10−10.

Finally, the reads failing to map to the human genome were subjected to 
metatranscriptomics profiling by taxonomic classification of archaeal, bacterial, 
eukaryotic or viral genes. Taxonomic classification of human genome-unmapped 
reads by exact k-mer matching against archaeal, bacterial, eukaryotic or viral 
genomes was performed with Kraken2 v2.1.21131. Bacterial species Spearman 
diversity and Simpson dominance indices were calculated with vegan v2.5  
(https://github.com/vegandevs/vegan).

Low-dimensional embedding of high-dimensional data was performed with 
umap v0.2.7.0 (https://cran.r-project.org/web/packages/umap/vignettes/umap.html).

Data carpentry was performed in R with tidyverse v1.3.1 (https://www.
tidyverse.org/) and Python with NumPy v1.20.3 (https://numpy.org/) and  
pandas v1.2.4 (https://pandas.pydata.org/). Plots in the figures were created  
with ggplot2 v3.3.312.

Clinical metadata. Even if of valuable importance, clinical data are often 
missing from the analyzed datasets. However, because we recognize that, even 
if partial, this information could be useful, we take into account disease stage 
(n = 21), Mayo score (n = 206), Crohn’s disease activity index (CDAI, n = 155) 
and pediatric ulcerative colitis activity index (PUCAI, n = 206) as information 
deserving annotation. This can be retrieved in the metadata table and the ‘Color 
by’ dropdown.

Web app design. The web app was developed with Dash v1.20.0 (https://dash.
plotly.com/) and Plotly v4.14.3 (https://plotly.com/), stored in GitHub and run in 
Heroku. Programmatic access to the data tables is performed by Requests v2.25.1 
(https://docs.python-requests.org/). Programmatic access to the data tables is 
performed by Requests v2.25.1 (https://docs.python-requests.org/).

The web app will be updated as new datasets become available. Users can 
suggest missing studies by clicking on the ‘Suggestions’ link in the TaMMA 
footnotes.

The complete guide on how to use the TaMMA web app is available at https://
ibd-tamma.readthedocs.io/.

Statistics and reproducibility. Statistical differences between groups in Fig. 1d–k 
and Supplementary Fig. 1b–c,e–g were calculated by analysis of variance with 
Tukey’s honestly significant difference post hoc test for multiple comparisons. 
Differences with adjusted P ≤ 0.05 were considered significant.

Ethics statement. Please refer to the original articles for the ethical approval of the 
human studies mentioned in this paper.

Data availability
FASTQ reads were mined from the NCBI GEO/SRA data repositories. Study IDs 
with their respective links and references are provided in Supplementary Table 1.  
The relevant datasets mentioned in this paper are available in the summary and 
metadata tabs within the IBD TaMMA web app, and the described results are 
available in the literature tab within the app. The underlying data for the web  
app are available at https://github.com/Humanitas-Danese-s-omics/ibd-meta-
analysis-data and in the Open Science Framework repository32. Human  
unmapped FASTQ reads that failed to be classified by metatranscriptomics 
profiling have been considered as NGS dark matter. The IBD TaMMA NGS  
dark matter is available at https://dataverse.harvard.edu/dataverse/tamma-
dark-matter. Source data are provided with this paper and in the Open Science 
Framework repository32.

Code availability
The code is stored in GitHub at https://github.com/Humanitas-Danese-s-omics/
ibd-meta-analysis and in the Open Science Framework repository32, and running at 
https://ibd-meta-analysis.herokuapp.com/.
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