
Articles
https://doi.org/10.1038/s43588-021-00119-7

1Alibaba Quantum Laboratory, Alibaba Group USA, Bellevue, WA, USA. 2Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, MI, USA. 3Departments of Physics and Electrical and Computer Engineering, Duke University, Durham, NC, USA. 4Alibaba Quantum
Laboratory, Alibaba Group, Hangzhou, Zhejiang, China. 5Alibaba Cloud Intelligence, Alibaba Group USA, Bellevue, WA, USA. 6Alibaba Cloud Intelligence,
Alibaba Group, Hangzhou, Zhejiang, China. 7Alibaba Quantum Laboratory, Alibaba Group, Beijing, Beijing, China. 8These authors contributed equally:
Cupjin Huang, Fang Zhang. ✉e-mail: y.shi@alibaba-inc.com; liangjian.cjx@alibaba-inc.com

Quantum computers offer the promise of exponential speed-
ups over classical computers. Consequently, as quantum
technologies grow in scale, there will be an inevitable cross-

ing point after which nascent quantum processors will overtake
behemoth classical computing systems in performing specialized
tasks. The term quantum supremacy was coined to describe this
watershed moment1, which we refer to in this paper as quantum
superiority. Recent advances in quantum computing hardware
have resulted in quantum processors with more than 50 qubits, and
there have been multiple claims that quantum superiority has been
achieved on different quantum devices, including superconducting
systems2 and photonic quantum devices3. These milestones mark
the start of the era of noisy intermediate-sized quantum devices4.

With quantum devices increasing in size and precision, classi-
cal simulation of the corresponding quantum systems also becomes
increasingly challenging. Classical simulation plays an indispens-
able role in understanding and designing quantum devices, as it is
often, if not always, the only means to validate and benchmark exist-
ing quantum devices. Although there have already been numerous
efforts in designing and implementing efficient classical simula-
tors5–7, there is always a push to simulate larger quantum devices.
The reason is twofold: first, simulating large quantum systems helps
reduce the finite-size effect observed in certain experiments with
smaller quantum systems, which allows us to more confidently
project the performance of large quantum systems in which classi-
cal simulation is definitely out of reach. Second, claims of quantum
superiority are based on the assumption that classical simula-
tion cannot achieve a task that is easily achievable using quantum
devices. This is not sound without an extensive effort to push the
boundaries of classical simulability.

In this paper we propose a highly optimized framework for classi-
cally simulating intermediate- to large-scale quantum computations,

represented as tensor networks. Tensor network contraction has
been one of the prominent choices for simulating quantum com-
putation due to its high flexibility and expressive power; however,
exact contraction of general tensor networks is a computationally
hard problem with respect to the problem size: there are tensor
networks for which an exact simulation would take exponential
amount of time under well-established computational complex-
ity assumptions8,9. Nevertheless, exact tensor network contraction
is indispensable in cases in which a numerically accurate approxi-
mation ansatz has not yet been established, suffers from practical
inefficiency (for example, repeated singular value decomposition)
or outputs poor-quality results. In reality, most tensor network
instances of interest are far from the worst-case scenario and the
contraction efficiency can have orders of magnitude improvements
compared with the naive approach by optimizing the contraction
procedure. This is the focus of our paper.

In addition to developing and conglomerating several technical
optimizations for tensor network contraction, the main technical
contribution of our paper is a framework to parallelize tensor net-
work contraction called index slicing. Index slicing decomposes
a tensor network contraction task into many subtasks that have
identical shapes and can be executed in an embarrassingly paral-
lel way, that is, there is no dependency or communication required
between the execution of the subtasks. Such an algorithm can be
readily deployed on modern computational clusters and experi-
mental evidence shows that such parallelization introduces little
overhead to the total running time. As tensor networks are ubiq-
uitous in quantum information science (with applications includ-
ing benchmarking quantum devices2, probing quantum many-body
systems10–13 and decoding quantum error-correcting codes14–17), our
simulator represents a useful tool to aid in the development of quan-
tum technologies.

Efficient parallelization of tensor network
contraction for simulating quantum computation
Cupjin Huang1,8, Fang Zhang1,2,8, Michael Newman3, Xiaotong Ni4, Dawei Ding   1, Junjie Cai5,
Xun Gao1, Tenghui Wang4, Feng Wu4, Gengyan Zhang4, Hsiang-Sheng Ku4, Zhengxiong Tian6,
Junyin Wu5, Haihong Xu6, Huanjun Yu6, Bo Yuan6, Mario Szegedy1, Yaoyun Shi   1 ✉, Hui-Hai Zhao7,
Chunqing Deng4 and Jianxin Chen   1 ✉

We develop an algorithmic framework for contracting tensor networks and demonstrate its power by classically simulating
quantum computation of sizes previously deemed out of reach. Our main contribution, index slicing, is a method that effi-
ciently parallelizes the contraction by breaking it down into much smaller and identically structured subtasks, which can then
be executed in parallel without dependencies. We benchmark our algorithm on a class of random quantum circuits, achieving
greater than 105 times acceleration over the original estimate of the simulation cost. We then demonstrate applications of the
simulation framework for aiding the development of quantum algorithms and quantum error correction. As tensor networks are
widely used in computational science, our simulation framework may find further applications.

Nature Computational Science | VOL 1 | September 2021 | 578–587 | www.nature.com/natcomputsci578

mailto:y.shi@alibaba-inc.com
mailto:liangjian.cjx@alibaba-inc.com
http://orcid.org/0000-0001-7728-5380
http://orcid.org/0000-0001-5523-6166
http://orcid.org/0000-0002-9365-776X
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-021-00119-7&domain=pdf
http://www.nature.com/natcomputsci

ArticlesNATure COmpuTATiOnAl Science

One major challenge of index slicing is controlling the overhead
introduced to the total running time. This overhead is usually not
noticeable when the number of indices needed to be sliced is very
small, but it can quickly grow out of control for a larger number
of sliced indices. Multiple works have been dedicated to address-
ing this problem18–21. In this paper we develop a heuristic algorithm
to minimize the overhead by interleaving finding the best index to
slice with local optimization of the contraction order. To further
improve performance, we focus the local optimizations on tensor
network contraction steps that takes the most amount of time and
space, allowing more rounds of local optimization.

As a benchmarking example, we test our algorithm on the simu-
lation task that prompted the quantum-superiority claim made in
Arute and co-workers2. This task—called Sycamore random cir-
cuit sampling—is to output bitstrings distributed according to the
measurements of random quantum circuits that are designed to be
executed on Google’s recent 53-qubit Sycamore device. This task is
considered relatively easy on the Sycamore quantum chip, while at
the same time infeasibly hard for any classical computational device.
It is estimated that such a sampling task takes about 200 s to achieve
on the Sycamore quantum chip, but would take over 10,000 years for
the then-best supercomputer Summit2. By experimenting on a sub-
sample of the task on the GPU cluster at Alibaba, we show that our
embarrassingly parallel tensor network contraction algorithm can
indeed be carried out without extra cost, and it can complete the ran-
dom circuit sampling task within 20 days on a Summit-comparable
cluster. Furthermore, to demonstrate the usefulness and broad
capabilities of the tensor network-based simulation framework, we
apply it to both the studies of near-term quantum algorithms and
fault-tolerant quantum computing. The two examples we studied
are the quantum approximate optimization algorithm (QAOA) as
a candidate for graph isomorphism discovery, and the performance
of the Surface-17 in a quantum memory experiment under noise
models including neighbouring qubit stray ZZ-interaction. In both
cases, the simulation tasks go slightly beyond quantum circuits, but
they fall easily into the grasp of our simulation framework, indicat-
ing flexibility of our framework in the area of quantum computing.

Results
Efficient contraction of tensor networks. The tensor network is a
well-studied framework for expressing multilinear functions over
multidimensional arrays called tensors, and it is extensively used
in multiple areas including quantum physics22,23, machine learn-
ing24,25 and quantum computation26,27. A tensor network can be
formulated as a mutlihypergraph. Each node of a tensor network
is associated with a tensor and each of its connecting edges cor-
responds to one dimension of the tensor. A hyperedge in a tensor
network can connect multiple tensor nodes, indicating that the cor-
responding dimensions are identified. Furthermore, a hyperedge
is either closed or open. The computational task associated with a
tensor network—called the tensor network contraction—is to com-
pute an output tensor given the values of the tensor nodes and the
hypergraph structure. Each dimension of the output tensor corre-
sponds to an open edge in the tensor network. A particular entry in
the output tensor corresponds to an assignment of the open edges,
and its value equals the summation over all possible assignments of
the closed edges of the product of the corresponding entries of the
input tensors.

Sequential pairwise contraction. One common method for exactly
contracting tensor networks is through sequential pairwise contrac-
tion. In each step, two tensors from the tensor network are selected
and merged together according to their shared indices, in a way
similar to matrix multiplication. This reduces the number of ten-
sor nodes in the tensor network by one. By repeatedly applying the
pairwise contraction, one is left with a single tensor in the tensor

network at the end, which is the result of the tensor network con-
traction. A cleverly chosen order of pairwise contraction can often
reduce the total time complexity of tensor network contraction by
several orders of magnitude, making it one of the most time-effi-
cient tensor network contraction algorithms. Over the years many
heuristics have been proposed to find efficient sequential pairwise
contraction orders26–29; however, sequential pairwise contraction
suffers from intrinsic sequentiality and a sometimes inevitable
space complexity lower bound; both greatly affect the scalability of
such algorithms.

Index slicing. To remedy these two problems, we propose a parallel-
ization framework called index slicing that aims to divide a tensor
network contraction task into many subtasks with identical tensor
network structures such that the subtasks can be executed in paral-
lel, each with a space complexity small enough to fit into a single
computational unit. Index slicing starts by selecting a subset of the
hypergraph indices. Each subtask then corresponds with a partial
sum where the assignment of the selected sliced indices are fixed;
it is itself a tensor network. The subtask tensor networks often have
simpler structures, allowing them to be contracted sequentially
pairwise with reduced space complexity. A contraction of the whole
tensor network is then reduced to summing up the partial results
obtained from the contractions of the individual subtasks.

In practice, memory constraints are far more rigid than running
time constraints, and many modern computer architectures allow
for massive parallelism. Index slicing effectively makes use of the
latter while coping with the former, thereby improving on previ-
ous tensor network contraction algorithms both in efficiency and
scalability. Of course, selecting the best subset of indices to slice
over is a non-deterministic polynomial-time (NP)-hard optimiza-
tion problem, for which no known algorithm is guaranteed to find
an optimal solution in polynomial time. Furthermore, it is often
intertwined with the other NP-hard optimization problem of find-
ing the best sequential contraction algorithm; however, with the
heuristics discussed in the Methods, index slicing can be carried
out with extremely low parallelization overhead while reducing the
space complexity to a single computational node. Figure 1 illustrates
the idea of tensor networks, contraction orders, index slicing and a
flowchart briefing our heuristic strategies for finding good contrac-
tion orders and indices to slice.

Unless specifically indicated, all indices in the tensor network
run through {0, 1}, a common assumption for qubit-based quan-
tum computation. Throughout the results we report the complex-
ity of contracting different tensor networks by a pair of numbers:
the first one, called the computation cost, is the base-ten logarithm
of the number of total floating point operations (FLOPS), serving
as a measure for the time complexity. The second one, the num-
ber of subtasks, is exponential in the number of sliced indices, and
serves as a measure of concurrency for the contraction algorithm.
Moreover, we measure the quality of the index slicing by the slicing
overhead, that is, the ratio of the total time complexity before and
after performing index slicing. Figure 2 summarizes the contraction
costs and slicing overheads for various tensor networks studied in
this paper.

Classical simulation of Sycamore random circuit sampling. We
first benchmark the open-source implementation of our simulation
framework (the Alibaba Cloud Quantum Development Platform,
ACQDP) with a family of circuits called the Sycamore random
circuits, which were originally proposed to demonstrate quantum
superiority2. It was claimed that when the number of layers m in the
circuit is 20, a certain sampling task could be efficiently performed
on the existing Sycamore quantum chip in about 200 s, whereas a
comparable task would take Summit—one of the most powerful
supercomputers in the world—at least 10,000 years.

Nature Computational Science | VOL 1 | September 2021 | 578–587 | www.nature.com/natcomputsci 579

http://www.nature.com/natcomputsci

Articles NATure COmpuTATiOnAl Science

We measure the performance of various simulation frameworks
based on tensor network contraction with the contraction cost and
an extrapolated running time that is based on actually running some
of the many structurally identical subtasks created by index slicing.
The ACQDP achieves an exceptionally low contraction cost—up
to 106-times lower than qFlex21 and up to 1,000-times lower than
Cotengra28; however, the FLOPS efficiency of ACQDP is also con-
siderably lower than that of Cotengra and qFlex. This is probably
due to the involvement of many general matrix–matrix products
with small-sized matrices during the computation. Overall, ACQDP
forecasts a running time of less than 20 days for the m = 20 random
circuit sampling task on a Summit-comparable computing cluster,
a speedup of more than five orders of magnitude when compared
with the best classical algorithms reported by Arute and colleagues2,
and a speedup of more than two orders of magnitude when com-
pared with other state-of-the-art simulators.

The contraction cost, FLOPS efficiency, extrapolated runtime
and comparisons with other leading simulators are all illustrated
in Fig. 3. For all of the tensor network-based simulators (qFlex,
Cotengra and ACQDP), a batch of amplitudes is computed using
open tensor network contraction. Due to randomness in the ACQDP,
we ran ten independent order-finding experiments for each num-
ber of cycles m (the statistical results are presented in Fig. 2a). The
orders found show good concentration in time complexity, and we
take the best orders found for the comparisons reported in Fig. 3.
The projected running time of the hybrid Schrödinger–Feynman
algorithm reported in ref. 2 is estimated from a different architecture
than Summit, and so the FLOPs efficiency is not shown.

A very recent result by Pan and colleagues30 claimed to have com-
pleted the Sycamore random circuit sampling task by producing one
million distinct but correlated bitstrings within five days using a
small GPU cluster, achieving a linear cross-entropy benchmarking

A

B D

C

Tbe := ∑ AacBabdCcdeDbc
a,c,d

a

A B DC

Step 1

Step 2

Step 3

Tbe = ∑(∑ (∑AacBabd)Ccde)Dbc
c d a

b

A

B D

C Ac

B Dc

Cc

= ∑
C

c

Local tree reconfiguration

Slice one index greedily

Fits in memory?

Output contraction scheme

Phase 2: robust index slicing

Yes

No

Input tensor network hypergraph

Top-layer (K, �)-multipartition

Lower-layer (2, �′)-bipartition

Candidate good
enough?

Phase 1: initial contraction order finding

Select partition parameters (K, �, �′)

Yes

No

d

Tbe := ∑(∑AacBabdCcdeDbc)
c a,d

Fig. 1 | An illustration of tensor networks, sequential pairwise contraction, index slicing and the contraction scheme-finding heuristics. a, An example
of a tensor network with four tensor nodes and five edges, where the edges a, c, d are closed and b, e are open. b, A sequential contraction order, where
two tensors are merged into one at each step. The edges going upwards indicate the corresponding indices in the intermediate results. c, A slicing of the
index c, resulting in identically structured tensor networks labelled by all possible values of c. The subtensor networks are to be contracted individually and
summed up at the end. d, A two-phase heuristic used to find a good contraction order and index slicing for a given tensor network structure, which will be
discussed in detail in the Methods.

Nature Computational Science | VOL 1 | September 2021 | 578–587 | www.nature.com/natcomputsci580

http://www.nature.com/natcomputsci

ArticlesNATure COmpuTATiOnAl Science

fidelity (XEB) value of ~0.739. This is made possible by combining
hierarchical partitioning and dynamic index slicing of tensor net-
works with their newly developed heuristics. Although their work
verifiably passes the linear XEB test, it essentially completes a dif-
ferent task than what we describe as an unbiased-noise approximate
(UNA) sampling. A detailed discussion of the definition of the ran-
dom circuit sampling task is presented in Supplementary Section 3C.

QAOA for graph isomorphism discovery. We investigate a poten-
tial application of the QAOA, which is to determine whether two
graphs are isomorphic by checking whether their QAOA energy

functions are equal31. It is not clear whether this method can distin-
guish between all pairs of non-isomorphic graphs (for sufficiently
large number of QAOA layers p) or whether the energy gap would be
noticeable. Here we try to study these questions by using ACQDP to
classically compute QAOA energies associated with various graphs.

By classically computing the QAOA energies, we can separate
all non-isomorphic 3-regular graphs up to size 18, all strongly
regular graphs up to size 26, and several hard graph pairs includ-
ing the Miyazaki and Praust graphs of size 20, and the Cai–Fürer–
Immerman graphs of size 40. These findings and the theoretical
results in Szegedy31 make us believe that QAOA energies give a full

13

14

15

16

17

18

19

20

C
on

tr
ac

tio
n

co
st

Unsliced

Sliced

12 14 16 18 20

2

4

6

8

Number of cycles m

O
ve

rh
ea

d

a

14

14.5

C
on

tr
ac

tio
n

co
st

Unsliced

Sliced

Reg. ZX XZZX

1

2

Variant

O
ve

rh
ea

d

b

7

9

11

13

15

C
on

tr
ac

tio
n

co
st

Unsliced

Sliced

(CFI I, 4) (CFI II, 4) (CFI I, 5) (CFI II, 5) (CFI I, 6) (CFI II, 6)

1

2

3

Graph and QAOA depth p

O
ve

rh
ea

d

c

Fig. 2 | Unsliced costs, sliced costs and slicing overheads for various tensor networks studied in this paper. Each box represents the lower (Q1) to upper
(Q3) quartiles of contraction costs over ten independent runs of the algorithm, with a horizontal line that represents the median. The whiskers indicate the
highest and lowest contraction costs/overheads that are not outliers, where outliers are defined as data points whose distance to the nearest quartile is
larger than 1.5 times the interquartile range. a, Tensor networks for evaluating a batch of 64 amplitudes in Sycamore random circuits. b, Tensor networks
corresponding to 2 + 1 rounds of syndrome extraction for the Surface-17 code. c, Tensor networks associated with edges of the Cai–Fürer–Immerman (CFI)
graphs. For each graph and each QAOA depth, there are two pairs of unsliced/sliced costs for the two isomorphic classes of edges in that graph: the left
pair corresponds to the first class, whereas the right pair corresponds to the second class (see Fig. 4).

Nature Computational Science | VOL 1 | September 2021 | 578–587 | www.nature.com/natcomputsci 581

http://www.nature.com/natcomputsci

Articles NATure COmpuTATiOnAl Science

characterization of isomorphism classes, unlike many quantum
walk-based distinguishers that were considered earlier32–34. Table 1
provides pairs or classes of graphs, as well as the QAOA depth p that
distinguish them.

Our simulator can cope with Cai–Fürer–Immerman graphs
of size 40, a well-known pair of hard instances (see Fig. 4). This
instance is hard even for the QAOA due to the fact that the two
graphs cannot be distinguished until the QAOA depth reaches six.
In fact, Fig. 2c shows the contraction cost of the QAOA instances.
It is worth noting that most of the slicing induces extremely low
slicing overhead. The overall average overhead introduced by one
slice for all of the p = 5 and p = 6 tensor networks is 0.2% and 3.5%,
respectively.

Simulating surface codes with cross-talk errors. We simulate a
quantum memory experiment on a surface code with 17 qubits—
Surface-17 for short—in the presence of a practical noise model35
and a ZZ cross-talk model (see Methods), which was not considered
before in this context. The performance of the surface code is mea-
sured by the Pauli transfer matrix (PTM) on the logical qubit.

Effects of cross-talk for 2 + 1 rounds of syndrome extraction. To
compute the logical PTM under the optimal decoder, one needs to
compute all of the PTMs corresponding to quantum operations for
each assignment of the syndrome bits. As mentioned before, our
tensor network-based approach can deal with up to 2 + 1 rounds
of syndrome extraction, as this would result in a resulting tensor
of size 228. Note that this is also the depth proposed for a near-term
fault-tolerance demonstration36.

We report the logical channels for 2 + 1 rounds of syndrome
extraction, with and without the presence of cross-talk (Fig. 5). We
can infer from the table that the effect of ZZ cross-talk on the logi-
cal channel is concentrated on the logical coherent Z-rotation and
the stochastic phase-flip error, each ~10−3 in magnitude. Compared
with other error sources, ZZ cross-talk introduces a minimal
amount of logical error and thus does not present itself as a main
error source for the quantum memory experiment.

Results with variants in code and gate scheduling. We test the perfor-
mance of slight variants of the above gate scheduling on Surface-17
to validate the robustness of our findings. We first switch the
Z-stabilizer syndrome extractions and the X-stabilizer ones in each
cycle to see whether considerable changes in logical errors can be
observed. We then test out the recently proposed XZZX code37 to
balance the bias in X- and Z- Pauli errors. The corresponding PTMs
are listed in Fig. 5.

For the experiment switching X- and Z- syndrome extraction,
it can be observed that the X- and Z- portions of the logical errors
are also switched. This agrees with the observation that such a error
correction circuit is similar to one where a transversal Hadamard

1018

1021

1024

1027

1030

T
ot

al
 n

um
be

r
of

 fl
oa

tin
g

po
in

t o
pe

ra
tio

ns
 (

F
LO

P
s)

12 14 16 18 20

1 second

1 minute
Sycamore time

1 hour

1 day

1 week

1 month

1 year

10 years

10,000 years

Number of cycles m

P
rojected running tim

e on sum
m

it

Time reported in ref. 2

qFlex

Cotengra

ACQDP

Fig. 3 | Classical simulation cost and extrapolated running time of
sampling from m-cycle Sycamore random circuits with low XEB fidelities.
The dashed lines represent the theoretical number of FLOPs and the solid
lines represent extrapolated running times from the experiments on an
Nvidia V100 graphics card. The two axes are aligned by the theoretical
GPU efficiency of a Nvidia V100. Consequently, the dashed lines represent
runtime lower bounds provided that GPU efficiency is fully saturated.
The velvet line is reported in Arute and colleagues2 using the hybrid
Schrödinger–Feynman algorithm.

Table 1 | Summary of results for using the QAOA to distinguish
non-isomorphic graph sets.

Class or pair of
graphs

Number of
nodes

QAOA depth
giving full
separation

Contraction
cost

Miyazaki I and II 20 4 10.1

Praust I and II 20 4 10.5

Cai–Fürer–Immerman
graphs I and II

40 6 15.4

All 4,060 non-
isomorphic 3-regular
graphs on 16 nodes51

16 4 8.7

All 41,301 non-
isomorphic 3-regular
graphs on 18 nodes51

18 4 9.3

All 10 non-isomorphic
graphs in the SRG
26,10,3,4 family52

26 3 12.8

Experiments were conducted on the 20-node Miyazaki graphs, 20-node Praust graphs, 40-node
Cai–Fürer–Immerman graphs, all non-isomorphic 3-regular graphs on 16 and 18 nodes, and all non-
isomorphic (26, 10, 3, 4) strongly regular graphs. The number of nodes, the minimum QAOA depth
to tell all of the graphs apart, and the average contraction cost for one graph, are listed. Only the
Cai–Fürer–Immerman graph pair requires index slicing, as the graphs contain many nodes and it
takes a deep QAOA circuit to tell the two graphs apart.

(I) (II)

Fig. 4 | Cai–Fürer–Immerman graphs I and II with 40 indices. For each
graph there are two isomorphic classes of edges, with the first class
colored blue and the second class colored red. Note that the only difference
between the two graphs is the two red edges in the upper left corner.

Nature Computational Science | VOL 1 | September 2021 | 578–587 | www.nature.com/natcomputsci582

http://www.nature.com/natcomputsci

ArticlesNATure COmpuTATiOnAl Science

gate is applied to all of the physical qubits, resulting in a logical
Hadamard gate interchanging the X- and Z- Pauli errors. On the
other hand, merely changing the code to its XZZX variant does not
balance the logical noises. This is probably due to the fact that the
majority of the error occurs during the syndrome extraction rou-
tines in this particular experiment, not between them. Although
XZZX variants are good at averaging biases occurring outside of the
error correction cycles, it does not introduce much difference dur-
ing the actual syndrome extraction routines.

Tensor network contraction cost. Figure 2b shows the contraction
cost of the tensor networks corresponding to the experiments
on different variants of the Surface-17. One particularly inter-
esting phenomenon is that the slicing overhead of the surface
code simulation is below one in some cases. This indicates that
the initial contraction tree found by hypergraph decomposition
framework is suboptimal, which could be due to the fact that the
tensor networks considered here have many open edges, unlike
the instances in the random circuit sampling problem or the
QAOA experiments. Whether such a phenomenon exists in other
tensor networks with many open edges, and whether index slic-
ing can be applied to aid the contraction order finding in a more
general setting is worth further investigation. We leave this to
future work.

Discussion
The index slicing framework proposed in our paper establishes
an interpolation between the sequential pairwise contraction and
the Feynman path integral algorithm, which correspond to the
cases in which no index is sliced and in which all indices are sliced,
respectively. For a tensor network with m indices associated with a
hypergraph with tree width t and contraction width c, the sequential
pairwise contraction achieves a time complexity of O*(2t), whereas
the space complexity is lower bounded by Ω*(2c) (although not
necessarily simultaneously achievable). The Feynman path inte-
gral, on the other hand, has a space complexity of O(m), yet the
time complexity is Ω*(2m); however, how the slicing-incorporated
idea interpolates between the aforementioned two extreme points
requires further investigation. It also remains open whether there
exists a tensor network contraction algorithm that achieves both
the relatively low time complexity of O*(2t) and the space complex-
ity of O(m), and it does not seem likely that a slicing-incorporated
sequential pairwise contraction could achieve this limit.

On the practical side, there are still many ways to improve the
performance of the tensor network contraction algorithm, poten-
tially by several orders of magnitude. A better contraction order—
together with index slicing—might be found through algorithmic
refinements; however, it is known8 that exact contraction of general
tensor networks is a #P-hard problem, a computational complexity

1 0 0 0

X shift 1 − 2pphase Z rotation Y rotation

Y shift Z rotation 1 − 2pY X rotation

Z shift Y rotation X rotation 1 − 2pbit

a

1.00 × 100 −2.06 × 10–19 0.00 × 100 −1.57 × 10–7

2.08 × 10–7 9.94 × 10–1 0.00 × 100 −5.25 × 10–9

0.00 × 100 0.00 × 100 9.87 × 10–1 0.00 × 100

5.59 × 10–6 −4.38 × 10–10 0.00 × 100 9.93 × 10–1

b

1.00 × 100 −2.15 × 10–9 −1.08 × 10–11 −1.47 × 10–7

2.03 × 10–7 9.93 × 10–1 −8.98 × 10–5 5.52 × 10–9

3.97 × 10–9 8.80 × 10–5 9.86 × 10–1 −7.67 × 10–6

5.84 × 10–6 −5.82 × 10–10 7.96 × 10–6 9.92 × 10–1

c

0.00 × 100 −1.02 × 10–10 −1.09 × 10–11 9.45 × 10–9

−4.41 × 10–9 −1.08 × 10–3 −8.98 × 10–5 2.74 × 10–10

3.97 × 10–9 8.80 × 10–5 −1.19 × 10–3 −7.67 × 10–6

2.45 × 10–7 −1.44 × 10–10 7.96 × 10–6 −1.75 × 10–4

d

1.00 × 100 −1.87 × 10–8 5.52 × 10–11 1.98 × 10–7

3.19 × 10–7 9.92 × 10–1 −9.60 × 10–7 5.45 × 10–8

4.25 × 10–9 1.05 × 10–6 9.81 × 10–1 −9.00 × 10–5

1.35 × 10–5 −1.44 × 10–9 8.96 × 10–5 9.88 × 10–1

e

1.00 × 100 1.15 × 10–8 −3.56 × 10–11 −5.28 × 10–7

2.63 × 10–6 9.92 × 10–1 −1.05 × 10–4 3.55 × 10–8

−7.14 × 10–9 1.05 × 10–4 9.87 × 10–1 −5.47 × 10–6

2.04 × 10–7 1.45 × 10–8 5.47 × 10–6 9.94 × 10–1

f

Fig. 5 | Comparisons of logical channels with and without cross-talk for 2 + 1 rounds of syndrome extraction. a, An illustration of a PTM corresponding
to a single-qubit completely positive and trace-preserving map. Mathematically, for all completely positive and trace-preserving maps, the first row of
the corresponding PTMs should be (1, 0, 0, 0). We report the computational result from the tensor network contraction on an Nvidia V100 graphics card,
and use the deviation of the first row to (1, 0, 0, 0) to indicate the magnitude of the numerical imprecision. b, Logical PTM for the default variant for 2 + 1
rounds of syndrome extraction without cross-talk. c, Logical PTM for the default variant for 2 + 1 rounds of syndrome extraction with cross-talk. d, The
difference between the two logical PTMs in b and c. e, Logical PTM for 2 + 1 rounds of syndrome extraction with cross-talk, Z/X switched. f, Logical PTM
for 2 + 1 rounds of syndrome extraction with cross-talk, XZZX variant.

Nature Computational Science | VOL 1 | September 2021 | 578–587 | www.nature.com/natcomputsci 583

http://www.nature.com/natcomputsci

Articles NATure COmpuTATiOnAl Science

category for which no known efficient (subexponential time) algo-
rithms exist. It is therefore worth investigating approximation pro-
posals such as tensor network contraction based on matrix product
states13,22,38,39, matrix product operators40–42 and other such ansatzes.
Such approximation proposals do not necessarily suffer from
#P-hardness and could offer a big leap in simulability assuming the
ansatzes are good. We leave investigation and design of efficient and
relatively accurate approximate tensor network contraction meth-
ods to future work.

It has been noted that the good contraction schemes found by
our algorithm, usually with relatively low time complexity, might
not necessarily perform well on modern computational architec-
tures. In fact, the 20-cycle random quantum circuit simulation indi-
cates a very low FLOPS efficiency (~15%). This is probably due to
the fact that, despite being efficient on paper, many of the contrac-
tion schemes found by our algorithm involve matrix multiplication
of skewed shapes, which cannot be processed as efficiently as matrix
multiplications of square matrices. A computational cost that is tai-
lored to better reflect modern architecture design could be useful
to guide better designs of contraction schemes in practice. We leave
this to future work.

For these reasons, we expect that further improvements on both
the algorithmic and engineering considerations can considerably
reduce the overall simulation costs we report. Given the ubiquity of
tensor networks in quantum information science and the efficiency
of our simulator, we believe that it could provide a valuable tool in
the development of quantum information technologies while help-
ing to define the quantum superiority frontier.

Methods
Tensor networks contraction algorithms. Framework for tensor network
contraction. We use index-slicing-incorporated sequential pairwise contraction to
contract tensor networks. Finding the optimal contraction scheme (that is, a subset
of indices to slice over and a sequential pairwise contraction order for the subtasks;
identical in structure) is NP-hard; however, for large instances of tensor networks
presented in this paper, a preprocessing heuristic finding near-optimal contraction
schemes is often worthwhile as it makes a big difference in time/space complexities
for the actual contraction task that considerably dwarfs the relatively short extra
time spent on such preprocessing.

Finding an optimal contraction order and finding indices to slice are two
strongly coupled optimization problems. On the one hand, good index slicing
is often based on an existing contraction order, as the changes in time/space
complexities caused by slicing then become manifest. On the other hand, the
optimal contraction order also depends on the slicing, as the hypergraph structure
is changed when some edges are removed. We therefore propose a two-phase
contraction scheme-finding heuristic: in the first phase, we find a good contraction
order for the unsliced tensor network. In the second phase, we look for indices to
slice, interleaving index slicing with local reconfigurations of the contraction order
to keep it near-optimal given the already sliced indices.

Initial contraction order finding. Disregarding the relative ordering between steps
without data dependence, a contraction order can be regarded as a binary tree,
where the leaf nodes correspond to the input tensors and the root to the final
output tensor (recall the example in Fig. 1). We apply a slight augmentation of the
hypergraph-decomposition-based contraction tree construction method in Gray
and Kourtis28. Such an algorithm constructs a contraction tree top-down, by first
decomposing the hypergraph into two or more components. The components are
then regarded as tensor networks that are to be contracted individually and then
contracted together; in other words, such a hypergraph decomposition fixes the top
layers of the contraction tree. The subgraphs are dealt with in a recursive manner,
until the number of nodes in a certain subgraph is small enough to allow efficient
subtree constructions.

A hypergraph decomposition algorithm takes two parameters (K, ϵ) and a
hypergraph, and outputs K disjoint components of the hypergraph whose size
differences are controlled by the parameter ϵ. We observe a difference between the
top-layer decomposition (where the tensor network is usually closed or contains
few open edges) and the subsequent layers (where there are many open edges
mostly connecting to other components). For this reason, we use the parameter
combination (K, ϵ) for the top layer and (2, ϵ′) for subsequent layers. We then
perform optimizations over the three parameters (K, ϵ, ϵ′) to obtain a satisfactory
initial contraction tree. We use the covariance matrix adaptation evolution strategy
algorithm43 for parameter optimization and the KaHyPar package for hypergraph
decomposition44. The cutoff size for the hypergraph decomposition is set to 25;

contraction trees on hypergraphs with fewer nodes are constructed greedily using
built-in functionalities in the opt_einsum package45.

Index slicing and local optimization. After finding the initial contraction order,
one way of selecting the indices to slice over is by greedily picking the index that
decreases the space complexity the most or introduces the least time complexity
overhead. In this work we interleave the greedy approach with a series of local
reordering of the contraction tree that ensures a more robust slicing. In particular,
we apply the following heuristics:
•	 The first one is a general local optimization method: take a connected sub-

graph of a contraction tree, which represents a series of contraction steps, with
multiple intermediate outcomes as the input and a single output. Such a series
of contraction steps represents a tensor network contraction of its own and
can be optimized by reconfiguring the internal contraction tree connections. If
the subgraph chosen is small enough, the optimal configuration can be found
with a brute-force approach. Repeatedly choosing small connected subgraphs
of the contraction tree and optimizing over them could greatly reduce the
overall contraction cost. We focus on subgraphs with many high-cost interme-
diate steps to accelerate this process, which hopefully reduces the contraction
cost by the maximum. In our experiments, we take subgraphs of size up to 14
to perform local optimizations on.

•	 The second one is more specifically designed for index slicing. In a contrac-
tion tree, the nodes in which a particular index appear form a subtree. The
overhead induced by slicing a particular index is determined by the total cost
of the corresponding subtree, which in turn depends almost entirely on the
overlap of the subtree with the highest-cost nodes. The more high-cost nodes
in a contraction tree involving a particular index, the less overhead is incurred
while slicing this particular index. One can therefore slightly tweak the con-
traction tree by commuting different high-cost contraction steps to maximize
the utility of a single index. This increases the overall unsliced cost (assum-
ing that the original contraction tree is locally optimal), but at the same time
reduces the slicing overhead via increasing the utility of the particular index.
Enumerating over several promising index candidates helps find a good one,
especially when an obvious choice is absent.

Runtime modification of the contraction scheme. When executing sequential
pairwise contraction on a GPU, we apply the following runtime-specific
modifications on the obtained contraction schemes. These modifications do not
alter the theoretical contraction cost by much, but usually enable much more
efficient execution.
•	 Most nodes in the contraction tree represent very small portions of the overall

time complexity; however, they involve many small tensors, transmission of
which to the GPU would incur considerable overhead. This motivates us to
precompute these small steps on a CPU before executing the slicing and only
deploy the heavy computational steps of each individual task on the GPU. The
partial results for the low-cost steps are shared by all subtasks and only need to
be computed once. In practice, this considerably reduces the communication
cost between the GPU and the CPU and helps save a small portion of the com-
putational cost. We regard any intermediate step resulting in an intermediate
tensor of rank 23 (before slicing) as a low-cost step, and execute these steps
before slicing.

•	 After the precomputation getting rid of repeated low-cost steps, the computa-
tion performed on the GPU is typically a sequential absorption of small
tensors into one large tensor, or two large tensors merged together near the
end. In either case, a contraction tree with locally optimal contraction costs
typically suffers from a large skewness in dimensions during matrix multipli-
cation. On Nvidia Tesla V100 GPUs, matrix multiplication with dimensions
M × N and N × K is much more efficient when the dimensions M, N and K
are all multiples of 32; however, a typical small tensor is often shaped 4 × 4,
8 × 8 or 16 × 16. To overcome this, we slightly tweak the contraction order
in the following way: whenever a large tensor is to be contracted with some
small tensors consecutively, we instead contract the smaller tensors first and
contract this intermediate result with the large tensor, thereby ensuring that
inefficiency by skewness does not occur whenever the large tensor is involved
in the contraction. This increases the runtime contraction cost, but decreases
the actual running time by making use of the efficient kernel functions of
the Nvidia Tesla V100. This is a somewhat ad hoc solution to the low GPU
efficiency induced by small tensor dimensions; we hope that more systematic
approaches can be explored to increase the GPU efficiency.

Sycamore random circuits. The Sycamore random quantum circuits used
to benchmark ACQDP are introduced in Arute et al.2 and are available from
the public Dryad repository46. Each Sycamore random circuit is parameterized
with a single parameter m, has 53 qubits arranged in a diagonal square grid
pattern reflecting the qubit layout of the Sycamore quantum processor, and is
generated randomly from some simple rules. Namely, a Sycamore random circuit
is composed of m cycles, each consisting of a single-qubit gate layer and a two-
qubit gate layer, and concludes with an extra single-qubit gate layer preceding

Nature Computational Science | VOL 1 | September 2021 | 578–587 | www.nature.com/natcomputsci584

http://www.nature.com/natcomputsci

ArticlesNATure COmpuTATiOnAl Science

measurement in the computational basis. In the first single-qubit gate layer, single-
qubit gates are chosen for each individual qubit independently and uniformly at
random from {

√
X,

√
Y,

√
W}, where

√
X =

1√
2

[
1 −i

−i 1

]

,
√
Y =

1√
2

[
1 −1

1 1

]

,
√
W =

1√
2

[
1 −

√
i

√
−i 1

]

.

In each successive single-qubit gate layer, single-qubit gates are chosen for each
individual qubit uniformly at random from the subset of {

√
X,

√
Y,

√
W} that

excludes the single-qubit gate applied in the previous cycle. In each two-qubit gate
layer, two-qubit gates are applied to about one-quarter of all pairs of adjacent qubit
in the qubit layout, in a regular pattern, such that at most one two-qubit gate is
applied to each qubit. There are four different patterns, labeled A, B, C and D in ref.
2, and the eight-cycle pattern A, B, C, D, C, D, A, B is repeated over all the two-qubit
layers. Two-qubit gates are decomposed into four Z-rotations determined by the
cycle index and

fSim(θ,ϕ) =










1 0 0 0

0 cos(θ) −i sin(θ) 0

0 −i sin(θ) cos(θ) 0

0 0 0 e−iϕ










,

where the parameters θ and ϕ are determined by the qubit pairing.

The random circuit sampling task. A quantum circuit U naturally defines
a distribution DU over bitstrings when all qubits are measured under
the computational basis after executing the circuit on the all-zero state:
DU(x) := |⟨x|U|0⟩|2. Ideally, a quantum device executing U would sample from
the distribution DU exactly, but in practice many sources of hardware error causes
the actual distribution to deviate from the ideal one. The linear XEB was used to
measure the closeness of the output distribution to the ideal distribution2. It is
defined as 2n〈pI(x)〉 − 1, where n is the number of qubits, pI(x) is the probability of x
in the ideal distribution, and the expectation is taken over the output distribution.
The XEB is 0 when the output distribution is uniform, and is 1 when the output
distribution is ideal following the Porter–Thomas statistics. It was argued from
numerical evidence that the aforementioned random quantum circuits had
achieved an XEB of approximately 0.2%; however, simulating these circuits was
estimated to be infeasible and thus this could not be directly verified.

Meanwhile, in this paper we require the classical simulation algorithm to
satisfy a stronger criterion of approximate sampling, namely (ϵ, 0.2%)-unbiased
noise approximate sampling, where ϵ is negligible (a rough estimation shows that
ϵ < 6.4 × 10−31 in our algorithm). The definition of unbiased noise approximate
sampling is as follows:

Definition 1 (ϵ, F)-UNA sampling. For a quantum circuit U as a unitary on n
qubits, the task of F-UNA sampling is to generate independent and identically
distributed samples from the distribution

D(F)
U := F × DU + (1 − F) × Un,

where Un denotes the uniform distribution over {0, 1}n. Moreover, (ϵ, F)-UNA
sampling generates independent and identically distributed samples from a
distribution ϵ close to the distribution D(F)

U under total variational distance.
We will discuss more about why this stronger criterion is used in

Supplementary Section 3C. Meanwhile, we will note that if we can achieve
(ϵ, 1)-UNA sampling in average time T, then there is a trivial method to achieve
(ϵF, F)-UNA sampling in average time FT by yielding a genuine sample with
probability F and a uniformly random bitstring otherwise. We adapt this method
in our expirments, generating near-perfect samples from DU and multiplying the
final running time estimate with a factor F = 0.2%.

Frugal rejection sampling. We adopt a previously proposed framework2,6 to reduce
(near-perfect) sampling from DU into computation of probability amplitudes of
individual or small batches of bitstrings. This framework assumes that the output
distribution of a random quantum circuit is a randomly permuted Porter–Thomas
distribution. This assumption implies that there is a small number M (M ≈ 10 for
53-qubit circuits) for which bitstrings x with probability pI(x) > M/N (where N is
the number of all possible bitstrings; N = 253 in this case) do not contribute much
to the overall distribution, which naturally gives rise to a frugal rejection sampling
algorithm that on average only needs to compute M individual probability
amplitudes to generate one sample from DU .

The overhead of frugal rejection sampling can be further decreased by
computing a small batch of amplitudes for related bitstrings at a time, which for
tensor network-based methods can be done with almost no extra cost compared to
computing a single amplitude. We note that we cannot generate multiple samples
from a single batch because that will introduce unwanted correlation between
samples, violating the independent and identically distributed requirement for

UNA sampling; however, if the first randomly chosen bitstring in a batch is
rejected, then we can try other bitstrings in the same batch until one of them is
accepted. With a batch of 26 = 64 bitstrings, the probability that one of them will
be accepted is close to 1, thus lowering the overhead of frugal rejection from about
10× to 1×. This may introduce some further deviation from the ideal distribution
DU , but the error is negligible assuming that the correlation between amplitudes in
the same batch is negligible.

QAOA for graph isomorphism discovery. The QAOA was first developed by
Farhi, Goldstone and Gutman47 to solve combinatorial optimization problems.
For a combinatorial optimization problem of the form C : {0, 1}n → R, which
can be decomposed as a sum of local clauses C =

∑m
i=1 Ci each acting only on a

small number of bits, QAOA works by regarding the objective function C as a local
Hamiltonian Ĉ =

∑
xf(x) |x⟩ ⟨x| =

∑m
j=1 Ĉj, and taking the ansatz that the state

∣
∣
∣
−→γ ,−→β

〉
= e−iβpB̂e−iγpĈ · · · e−iβ1 B̂e−iγ1Ĉ(|+⟩)⊗n

defined by the mixing operator B̂ =
∑n

i=1 Xi and the angle sequences −→γ ,−→β ∈ R
p

approaches an eigenstate of Ĉ with either minimum or maximum eigenvalue with
carefully chosen parameters −→γ ,−→β , even with a small QAOA depth p. As both
B̂ and Ĉ are sums of commuting local terms, the state

∣
∣
∣
−→γ ,−→β

〉
 can be readily

prepared using a quantum circuit.
The QAOA energy function with p layers is defined as

Fp(−→γ ,−→β) := ⟨−→γ ,−→β |Ĉ|−→γ ,−→β ⟩,

that is, the expectation value of the objective function C(Z) where the random
string Z comes from measuring the quantum state

∣
∣
∣
−→γ ,−→β

〉
 under the

computational basis.
In order to use QAOA for graph isomorphism discovery, consider the

Max-cut problem on a graph G = (V, E), with the simple objective function
C(x) = ∑(u, v)∈E∣xu − xv∣, where x ∈ {0, 1}∣V∣. Obviously, the QAOA energy function

Fp(−→γ ,−→β) for the Max-cut problem does not depend on the ordering of vertices
in V but only the structure of G. Two isomorphic graphs will therefore always give
the same value for Fp(−→γ ,−→β), no matter how −→γ and

−→
β are chosen. On the other

hand, it is conjectured that for two non-isomorphic graphs, for sufficiently large
p, the values of Fp(−→γ ,−→β) are different with probability 1 for −→γ ,−→β uniformly
chosen from [0, 2π]2p (ref. 31); thus, evaluating Fp(−→γ ,−→β) for two graphs G1 and G2
with randomly chosen −→γ ,−→β can either reveal that G1 and G2 are non-isomorphic,
or give a strong evidence that they are isomorphic. The larger p is, the stronger
such evidence will be.

As the QAOA energy function can be written as a sum of energy values of all
clauses, the above proposal is essentially a way to use the QAOA to characterize
local neighborhoods of vertices in a graph. This locality also translates to ease of
computation with tensor network-based methods. In order to compute the energy
value of a clause, the tensor network to evaluate corresponds to only part of the
QAOA circuit, namely the lightcone of that clause (see Supplementary Section 4C).

Surface-17. Surface-17 (ref. 35) is a surface code involving 17 qubits, including nine
data qubits, four X-ancilla qubits for X stabilizer measurements, and four Z-ancilla
qubits for Z stabilizer measurements. The nine data qubits are arranged in a 3 × 3
grid, and the ancilla qubits all lie on another square lattice diagonally displaced
from the data qubit lattice, such that each ancilla qubit is diagonally adjacent to
either four data qubits, or two data qubits on the border of the 3 × 3 grid. During
normal operation of the surface code, two-qubit gates are applied only between
adjacent pairs of one data qubit and one ancilla qubit (not two data qubits nor two
ancilla qubits). See Supplementary Fig. 7 for a diagram of the qubit layout.

Error model. The error model we use is based on the one in O’Brien et al.35, which
includes idling, gate-specific and measurement errors. We choose not to include
the gate-specific error of CZ gates—modelled as a quasi-static flux noise—as its
quasi-static coherent nature enables various techniques to compensate for it. We do
introduce a model for cross-talk error caused by stray 2-qubit ZZ interactions48. See
Supplementary Section 5B49.

Logical memory experiment. In this paper, we study only how well the surface
code preserves the value of a logical qubit (as opposed to how to initialize, apply a
gate to, or measure the logical qubit). To detect and correct qubit errors that may
happen even while idling, stabilizer measurements (also known as error syndrome
extraction) need to be constantly performed. Our syndrome extraction circuits are
based on the ones in O’Brien et al. 35, containing only Ry( ± π/2) gates, CZ gates,
and computational basis measurements. We also study variants of the syndrome
extraction circuit where different stabilizers are measured by adding or removing
some Ry(±π/2) gates.

We consider an idealized experiment that ignores errors during initialization
or the final measurement. Starting from any single-qubit state, we first encode it
into Surface-17 with an ideal (noiseless) encoding circuit, then perform k rounds of

Nature Computational Science | VOL 1 | September 2021 | 578–587 | www.nature.com/natcomputsci 585

http://www.nature.com/natcomputsci

Articles NATure COmpuTATiOnAl Science

noisy syndrome extraction plus 1 round of noiseless syndrome extraction (which
we sometimes write simply as ‘k + 1 rounds of syndrome extraction’). The final
round of noiseless syndrome extraction projects the physical state back to the
code space, and allows us to map the final state back to a single-qubit logical state
with a Pauli correction indicated by the optimal decoder. This entire process can
be described by a well-defined logical channel C on the single logical qubit, which
contains information on the kinds and magnitudes of all logical errors incurred by
this process.

PTMs. We describe a single-qubit quantum channel as a PTM, a 4 × 4 real matrix
indicating how the channel modifies the expectation values of Pauli operators. The
PTM for a channel C is defined as

P(C)ij =
1
2
Tr[σiC(σj)],

where σ0, σ1, σ2, σ3 = I, X, Y, Z, respectively. Note that the first row of any PTM
corresponding to a trace preserving map is always (1, 0, 0, 0), since a physical
quantum channel should not change the expectation value of I, regardless of the
expectation values of X, Y, and Z.

Optimal decoder. During normal operation of a stabilizer code, any errors detected
are usually not corrected with physical gates. Instead, conceptually, virtual Pauli
gates are applied to some of the code qubits, which is implemented by adjusting
the results of stabilizer measurements thereafter on those qubits. Any Pauli
gates on any number of code qubits can be implemented this way as long as
the only operations applied on the code qubits are Clifford gates and stabilizer
measurements.

Accordingly, our decoder tries to correct errors using only Pauli gates on code
qubits, depending on the error syndromes measured. It is implemented in two
steps: first, based on only the final round of noiseless error syndromes, a trivial
decoder uses any number of Pauli gates to map the code qubits back into the code
space. Second, based on all (including noisy and noiseless) error syndromes, a
logical Pauli gate, one of I, X, Y, and Z, is applied to the logical qubit in order to
maximize the fidelity of the logical channel. For the circuit sizes considered in this
paper (no more than 2 + 1 rounds of syndrome extraction), tensor network-based
simulations enables us to compute the optimal decoder exactly. See Supplementary
Section 5D.

Data availability
All data51 used to create the figures in the main texts as well as in the
Supplementary Information can be found at https://doi.org/10.5061/dryad.
nk98sf7t8. Contraction orders were derived using the order-finding scheme in the
ACQDP package. Detailed information about our cluster architecture and order-
finding parameters can be found in Supplementary Section 2. Source data are
provided with this paper.

Code availability
ACQDP is publicly available at https://github.com/alibaba/acqdp. The specific
version of the ACQDP package and the scripts50 that reproduces all of the results
reported in this paper can be found at https://doi.org/10.24433/CO.4349832.v3.

Received: 26 January 2021; Accepted: 29 July 2021;
Published online: 13 September 2021

References
	1.	 Preskill, J. Quantum computing and the entanglement frontier. Preprint at

https://arxiv.org/abs/1203.5813 (2012).
	2.	 Arute, F. et al. Quantum supremacy using a programmable superconducting

processor. Nature 574, 505–510 (2019).
	3.	 Zhong, H.-S. et al. Quantum computational advantage using photons. Science

370, 1460–1463 (2020).
	4.	 Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2,

79 (2018).
	5.	 Steiger, D. S., Häner, T. & Troyer, M. ProjectQ: an open source software

framework for quantum computing. Quantum 2, 49 (2018).
	6.	 Boixo, S. et al. Characterizing quantum supremacy in near-term devices.

Nat. Phys. 14, 595–600 (2018).
	7.	 Pednault, E. et al. Breaking the 49-qubit barrier in the simulation of quantum

circuits. Preprint at https://arxiv.org/abs/1710.05867 (2017).
	8.	 Biamonte, J. D., Morton, J. & Turner, J. Tensor network contractions for

#SAT. J. Stat. Phys. 160, 1389–1404 (2015).
	9.	 Huang, C., Newman, M. & Szegedy, M. Explicit lower bounds on strong

quantum simulation. IEEE Trans. Inf. Theory 66, 5585–5600 (2020).
	10.	White, S. R. Density matrix formulation for quantum renormalization groups.

Phys. Rev. Lett. 69, 2863 (1992).
	11.	Vidal, G. Efficient classical simulation of slightly entangled quantum

computations. Phys. Rev. Lett. 91, 147902 (2003).

	12.	Vidal, G. Classical simulation of infinite-size quantum lattice systems in one
spatial dimension. Phys. Rev. Lett. 98, 070201 (2007).

	13.	Schollwöck, U. The density-matrix renormalization group. Rev. Modern Phys.
77, 259 (2005).

	14.	Bravyi, S., Suchara, M. & Vargo, A. Efficient algorithms for maximum
likelihood decoding in the surface code. Phys. Rev. A 90, 032326 (2014).

	15.	Ferris, A. J. & Poulin, D. Tensor networks and quantum error correction.
Phys. Rev. Lett. 113, 030501 (2014).

	16.	Chubb, C. T. & Flammia, S. T. Statistical mechanical models for quantum
codes with correlated noise. Ann. Henri Poincaré D 8, 269–321 (2021).

	17.	Darmawan, A. S. & Poulin, D. Linear-time general decoding algorithm for
the surface code. Phys. Rev. E 97, 051302 (2018).

	18.	Dudek, J. M. and Vardi, M. Y. Parallel weighted model counting with tensor
networks. Preprint at https://arxiv.org/abs/2006.15512 (2020).

	19.	Schutski, R., Khakhulin, T., Oseledets, I. & Kolmakov, D. Simple heuristics for
efficient parallel tensor contraction and quantum circuit simulation.
Phys. Rev. A 102, 062614 (2020).

	20.	Lykov, D., Schutski, R., Galda, A., Vinokur, V. & Alexeev, Y. Tensor network
quantum simulator with step-dependent parallelization. Preprint at
https://arxiv.org/abs/2012.02430 (2020).

	21.	Villalonga, B. et al. A flexible high-performance simulator for verifying and
benchmarking quantum circuits implemented on real hardware.
npj Quantum Inf. 5, 1–16 (2019).

	22.	Orús, R. A practical introduction to tensor networks: matrix product states
and projected entangled pair states. Annals Phys. 349, 117–158 (2014).

	23.	Vidal, G. Class of quantum many-body states that can be efficiently
simulated. Phys. Rev. Lett. 101, 110501 (2008).

	24.	Han, Z.-Y., Wang, J., Fan, H., Wang, L. & Zhang, P. Unsupervised generative
modeling using matrix product states. Phys. Rev. X 8, 031012 (2018).

	25.	Gao, X., Zhang, Z.-Y. & Duan, L.-M. A quantum machine learning algorithm
based on generative models. Sci. Adv. 4, eaat9004 (2018).

	26.	Markov, I. L. & Shi, Y. Simulating quantum computation by contracting
tensor networks. SIAM J. Comput. 38, 963–981 (2008).

	27.	Boixo, S., Isakov, S. V., Smelyanskiy, V. N. & Neven, H. Simulation of
low-depth quantum circuits as complex undirected graphical models. Preprint
at https://arxiv.org/abs/1712.05384 (2017).

	28.	Gray, J. & Kourtis, S. Hyper-optimized tensor network contraction. Quantum
5, 410 (2021).

	29.	Schutski, R., Lykov, D. & Oseledets, I. Adaptive algorithm for quantum circuit
simulation. Physical Review A 101, 042335 (2020).

	30.	Pan, F. & Zhang, P. Simulating the sycamore quantum supremacy circuits.
Preprint at https://arxiv.org/abs/2103.03074 (2021).

	31.	Szegedy, M. What do QAOA energies reveal about graphs? Preprint at
https://arxiv.org/abs/1912.12277 (2019).

	32.	Wang, H., Wu, J., Yang, X. & Yi, X. A graph isomorphism algorithm using
signatures computed via quantum walk search model. J. Phys. A 48,
115302 (2015).

	33.	Emms, D., Severini, S., Wilson, R. C. & Hancock, E. R. Coined quantum
walks lift the cospectrality of graphs and trees. Pattern Recognit. 42,
1988–2002 (2009).

	34.	Mahasinghe, A., Izaac, J. A., Wang, J. B. & Wijerathna, J. K. Phase-modified
CTQW unable to distinguish strongly regular graphs efficiently. J. Phys. A 48,
265301 (2015).

	35.	O’Brien, T. E., Tarasinski, B. & DiCarlo, L. Density-matrix simulation of small
surface codes under current and projected experimental noise. npj Quantum
Inf. 3, 1–8 (2017).

	36.	Trout, C. J. et al. Simulating the performance of a distance-3 surface code in
a linear ion trap. New J. Phys. 20, 043038 (2018).

	37.	Ataides, J. P. B., Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J.
The XZZX surface code. Nat. Commun. 12, 1–12 (2021).

	38.	Zhou, Y., Stoudenmire, E. M. & Waintal, X. What limits the simulation of
quantum computers? Phys. Rev. X 10, 041038 (2020).

	39.	Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected
entangled pair states, and variational renormalization group methods for
quantum spin systems. Adv. Phys. 57, 143–224 (2008).

	40.	Pirvu, B., Murg, V., Cirac, J. I. & Verstraete, F. Matrix product operator
representations. New J. Phys. 12, 025012 (2010).

	41.	Verstraete, F., Garcia-Ripoll, J. J. & Cirac, J. I. Matrix product density
operators: simulation of finite-temperature and dissipative systems.
Physical review letters 93, 207204 (2004).

	42.	Noh, K., Jiang, L. & Fefferman, B. Efficient classical simulation of noisy
random quantum circuits in one dimension. Quantum 4, 318 (2020).

	43.	Hansen, N., Akimoto, Y. & Baudis, P. CMA-ES/pycma on Github
(Zenodo, 2019); https://doi.org/10.5281/zenodo.2559634

	44.	Schlag, S. High-Quality Hypergraph Partitioning. PhD thesis, Karlsruhe
Institute of Technology (2020).

	45.	Daniel, G. et al. Opt_einsum—a python package for optimizing
contraction order for einsum-like expressions. J. Open Source Software 3,
753 (2018).

Nature Computational Science | VOL 1 | September 2021 | 578–587 | www.nature.com/natcomputsci586

https://doi.org/10.5061/dryad.nk98sf7t8
https://doi.org/10.5061/dryad.nk98sf7t8
https://github.com/alibaba/acqdp
https://doi.org/10.24433/CO.4349832.v3
https://arxiv.org/abs/1203.5813
https://arxiv.org/abs/1710.05867
https://arxiv.org/abs/2006.15512
https://arxiv.org/abs/2012.02430
https://arxiv.org/abs/1712.05384
https://arxiv.org/abs/2103.03074
https://arxiv.org/abs/1912.12277
https://doi.org/10.5281/zenodo.2559634
http://www.nature.com/natcomputsci

ArticlesNATure COmpuTATiOnAl Science

	46.	Martinis, J. M. et al. Quantum Supremacy Using a Programmable
Superconducting Processor (Dryad, 2021); https://doi.org/10.5061/dryad.
k6t1rj8

	47.	Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization
algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).

	48.	DiCarlo, L. et al. Demonstration of two-qubit algorithms with a
superconducting quantum processor. Nature 460, 240–244 (2009).

	49.	Huang, C. et al. Efficient Parallelization of Tensor Network Contractions for
Simulating Quantum Computation (Dryad, 2021); https://doi.org/10.5061/
dryad.nk98sf7t8

	50.	Huang, C., Zhang, F. & Chen, J. An open-source simulator-driven
development tool for quantum computing. Code Ocean https://doi.
org/10.24433/CO.4349832.v2 (2021).

	51.	Meringer, M. Fast generation of regular graphs and construction of cages.
J. Graph Theory 30, 137–146 (1999).

	52.	Brouwer, A. E. Paulus-Rozenfeld Graphs https://www.win.tue.nl/~aeb/graphs/
Paulus.html

Acknowledgements
We would like to thank our colleagues from various teams in Alibaba Cloud Intelligence
and the Search Technology Division for supporting us in the numerical experiments
presented in this paper. We also thank X. Jiang and his team, Y. Yan and his team, and
J. Zhang and his local data center team for helping us with the computing facilities.
We thank J. Zhu and his team, and X. Long and his team for their technical support on
massive Elastic Computing Service (ECS) initialization and GPU optimization. Finally,
we are particularly grateful to J. Gray for his helpful comments on this manuscript. Part
of the work by M.N. and F.Z. was supported through an internship at Alibaba Group
USA. M.N. was otherwise supported by ARO MURI (grant no. W911NF-16-1-0349).
F.Z. was otherwise supported in part by the US NSF under award no. 1717523.

Author contributions
C.H. and F.Z. contributed equally to this work. F.Z. and J. Chen proposed the
index slicing technique. F.Z. wrote the original ACQDP v.1 code; C.H. devised new
improvements including multilayered hypergraph decomposition, local reconfiguration
and runtime hardware-specific recompilation to ACQDP v.2. F.Z. and C.H. profiled the
program. F.Z. and J. Chen benchmarked ACQDP v.1.1 with large-scale computational
facilities. C.H. and J. Chen benchmarked ACQDP v.2 on GPU nodes for Sycamore
instances. J. Cai, Z.T., J.W., H.X., H.Y. and B.Y. prepared the large-scale computational
facilities used. X.G. deployed the large-scale simulation based on Alibaba Cloud

Function Compute. C.H. and J. Chen performed an analysis of the data. M.S. designed
the experiment of QAOA simulation. C.H. implemented the QAOA simulation module.
D.D., T.W., F.W., G.Z., H.K., H.Z. and C.D. contributed to the error model studied in
the Surface-17 simulation. X.N., C.H. and F.Z. implemented the Surface-17 simulation
module. C.H., F.Z., M.N., M.S., Y.S. and J. Chen contributed to discussions regarding the
design and implementation of the platform. C.H., F.Z., M.N., D.D., Y.S. and J. Chen wrote
the paper with contributions from all authors. Y.S. conceptualized and co-directed this
study with J. Chen. All authors read and approved the final manuscript.

Competing interests
Alibaba Group Holding Ltd has filed patent application US20190332731A1 for inventors
J. Chen, F.Z., Y.S., C.H. and M.N., as well as provisional patent applications 62/957,442
(C.H., F.Z. and J. Chen), 63/015,178 (C.H. and J. Chen) and 63/015,116 (C.H. and J. Chen).

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43588-021-00119-7.

Correspondence and requests for materials should be addressed to
Yaoyun Shi or Jianxin Chen.

Peer review information Nature Computational Science thanks Roman Schutski and
the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Handling editor: Jie Pan, in collaboration with the Nature Computational Science team.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© The Author(s) 2021

Nature Computational Science | VOL 1 | September 2021 | 578–587 | www.nature.com/natcomputsci 587

https://doi.org/10.5061/dryad.k6t1rj8
https://doi.org/10.5061/dryad.k6t1rj8
https://arxiv.org/abs/1411.4028
https://doi.org/10.5061/dryad.nk98sf7t8
https://doi.org/10.5061/dryad.nk98sf7t8
https://doi.org/10.24433/CO.4349832.v2
https://doi.org/10.24433/CO.4349832.v2
https://www.win.tue.nl/~aeb/graphs/Paulus.html
https://www.win.tue.nl/~aeb/graphs/Paulus.html
https://doi.org/10.1038/s43588-021-00119-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/natcomputsci

	Efficient parallelization of tensor network contraction for simulating quantum computation

	Results

	Efficient contraction of tensor networks.
	Sequential pairwise contraction
	Index slicing

	Classical simulation of Sycamore random circuit sampling.
	QAOA for graph isomorphism discovery.
	Simulating surface codes with cross-talk errors.
	Effects of cross-talk for 2 + 1 rounds of syndrome extraction
	Results with variants in code and gate scheduling
	Tensor network contraction cost

	Discussion

	Methods

	Tensor networks contraction algorithms
	Framework for tensor network contraction
	Initial contraction order finding
	Index slicing and local optimization
	Runtime modification of the contraction scheme

	Sycamore random circuits
	The random circuit sampling task
	Frugal rejection sampling

	QAOA for graph isomorphism discovery
	Surface-17
	Error model
	Logical memory experiment
	PTMs
	Optimal decoder

	Acknowledgements

	Fig. 1 An illustration of tensor networks, sequential pairwise contraction, index slicing and the contraction scheme-finding heuristics.
	Fig. 2 Unsliced costs, sliced costs and slicing overheads for various tensor networks studied in this paper.
	Fig. 3 Classical simulation cost and extrapolated running time of sampling from m-cycle Sycamore random circuits with low XEB fidelities.
	Fig. 4 Cai–Fürer–Immerman graphs I and II with 40 indices.
	Fig. 5 Comparisons of logical channels with and without cross-talk for 2 + 1 rounds of syndrome extraction.
	Table 1 Summary of results for using the QAOA to distinguish non-isomorphic graph sets.

