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Quantum computers offer the promise of exponential speed-
ups over classical computers. Consequently, as quantum 
technologies grow in scale, there will be an inevitable cross-

ing point after which nascent quantum processors will overtake 
behemoth classical computing systems in performing specialized 
tasks. The term quantum supremacy was coined to describe this 
watershed moment1, which we refer to in this paper as quantum 
superiority. Recent advances in quantum computing hardware 
have resulted in quantum processors with more than 50 qubits, and 
there have been multiple claims that quantum superiority has been 
achieved on different quantum devices, including superconducting 
systems2 and photonic quantum devices3. These milestones mark 
the start of the era of noisy intermediate-sized quantum devices4.

With quantum devices increasing in size and precision, classi-
cal simulation of the corresponding quantum systems also becomes 
increasingly challenging. Classical simulation plays an indispens-
able role in understanding and designing quantum devices, as it is 
often, if not always, the only means to validate and benchmark exist-
ing quantum devices. Although there have already been numerous 
efforts in designing and implementing efficient classical simula-
tors5–7, there is always a push to simulate larger quantum devices. 
The reason is twofold: first, simulating large quantum systems helps 
reduce the finite-size effect observed in certain experiments with 
smaller quantum systems, which allows us to more confidently 
project the performance of large quantum systems in which classi-
cal simulation is definitely out of reach. Second, claims of quantum 
superiority are based on the assumption that classical simula-
tion cannot achieve a task that is easily achievable using quantum 
devices. This is not sound without an extensive effort to push the 
boundaries of classical simulability.

In this paper we propose a highly optimized framework for classi-
cally simulating intermediate- to large-scale quantum computations,  

represented as tensor networks. Tensor network contraction has 
been one of the prominent choices for simulating quantum com-
putation due to its high flexibility and expressive power; however, 
exact contraction of general tensor networks is a computationally 
hard problem with respect to the problem size: there are tensor 
networks for which an exact simulation would take exponential 
amount of time under well-established computational complex-
ity assumptions8,9. Nevertheless, exact tensor network contraction 
is indispensable in cases in which a numerically accurate approxi-
mation ansatz has not yet been established, suffers from practical 
inefficiency (for example, repeated singular value decomposition) 
or outputs poor-quality results. In reality, most tensor network 
instances of interest are far from the worst-case scenario and the 
contraction efficiency can have orders of magnitude improvements 
compared with the naive approach by optimizing the contraction 
procedure. This is the focus of our paper.

In addition to developing and conglomerating several technical 
optimizations for tensor network contraction, the main technical 
contribution of our paper is a framework to parallelize tensor net-
work contraction called index slicing. Index slicing decomposes 
a tensor network contraction task into many subtasks that have 
identical shapes and can be executed in an embarrassingly paral-
lel way, that is, there is no dependency or communication required 
between the execution of the subtasks. Such an algorithm can be 
readily deployed on modern computational clusters and experi-
mental evidence shows that such parallelization introduces little 
overhead to the total running time. As tensor networks are ubiq-
uitous in quantum information science (with applications includ-
ing benchmarking quantum devices2, probing quantum many-body 
systems10–13 and decoding quantum error-correcting codes14–17), our  
simulator represents a useful tool to aid in the development of quan-
tum technologies.
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One major challenge of index slicing is controlling the overhead 
introduced to the total running time. This overhead is usually not 
noticeable when the number of indices needed to be sliced is very 
small, but it can quickly grow out of control for a larger number 
of sliced indices. Multiple works have been dedicated to address-
ing this problem18–21. In this paper we develop a heuristic algorithm 
to minimize the overhead by interleaving finding the best index to 
slice with local optimization of the contraction order. To further 
improve performance, we focus the local optimizations on tensor 
network contraction steps that takes the most amount of time and 
space, allowing more rounds of local optimization.

As a benchmarking example, we test our algorithm on the simu-
lation task that prompted the quantum-superiority claim made in 
Arute and co-workers2. This task—called Sycamore random cir-
cuit sampling—is to output bitstrings distributed according to the 
measurements of random quantum circuits that are designed to be 
executed on Google’s recent 53-qubit Sycamore device. This task is 
considered relatively easy on the Sycamore quantum chip, while at 
the same time infeasibly hard for any classical computational device. 
It is estimated that such a sampling task takes about 200 s to achieve 
on the Sycamore quantum chip, but would take over 10,000 years for 
the then-best supercomputer Summit2. By experimenting on a sub-
sample of the task on the GPU cluster at Alibaba, we show that our 
embarrassingly parallel tensor network contraction algorithm can 
indeed be carried out without extra cost, and it can complete the ran-
dom circuit sampling task within 20 days on a Summit-comparable 
cluster. Furthermore, to demonstrate the usefulness and broad 
capabilities of the tensor network-based simulation framework, we 
apply it to both the studies of near-term quantum algorithms and 
fault-tolerant quantum computing. The two examples we studied 
are the quantum approximate optimization algorithm (QAOA) as 
a candidate for graph isomorphism discovery, and the performance 
of the Surface-17 in a quantum memory experiment under noise 
models including neighbouring qubit stray ZZ-interaction. In both 
cases, the simulation tasks go slightly beyond quantum circuits, but 
they fall easily into the grasp of our simulation framework, indicat-
ing flexibility of our framework in the area of quantum computing.

Results
Efficient contraction of tensor networks. The tensor network is a 
well-studied framework for expressing multilinear functions over 
multidimensional arrays called tensors, and it is extensively used 
in multiple areas including quantum physics22,23, machine learn-
ing24,25 and quantum computation26,27. A tensor network can be 
formulated as a mutlihypergraph. Each node of a tensor network 
is associated with a tensor and each of its connecting edges cor-
responds to one dimension of the tensor. A hyperedge in a tensor 
network can connect multiple tensor nodes, indicating that the cor-
responding dimensions are identified. Furthermore, a hyperedge 
is either closed or open. The computational task associated with a 
tensor network—called the tensor network contraction—is to com-
pute an output tensor given the values of the tensor nodes and the 
hypergraph structure. Each dimension of the output tensor corre-
sponds to an open edge in the tensor network. A particular entry in 
the output tensor corresponds to an assignment of the open edges, 
and its value equals the summation over all possible assignments of 
the closed edges of the product of the corresponding entries of the  
input tensors.

Sequential pairwise contraction. One common method for exactly 
contracting tensor networks is through sequential pairwise contrac-
tion. In each step, two tensors from the tensor network are selected 
and merged together according to their shared indices, in a way 
similar to matrix multiplication. This reduces the number of ten-
sor nodes in the tensor network by one. By repeatedly applying the 
pairwise contraction, one is left with a single tensor in the tensor 

network at the end, which is the result of the tensor network con-
traction. A cleverly chosen order of pairwise contraction can often 
reduce the total time complexity of tensor network contraction by 
several orders of magnitude, making it one of the most time-effi-
cient tensor network contraction algorithms. Over the years many 
heuristics have been proposed to find efficient sequential pairwise 
contraction orders26–29; however, sequential pairwise contraction 
suffers from intrinsic sequentiality and a sometimes inevitable 
space complexity lower bound; both greatly affect the scalability of 
such algorithms.

Index slicing. To remedy these two problems, we propose a parallel-
ization framework called index slicing that aims to divide a tensor 
network contraction task into many subtasks with identical tensor 
network structures such that the subtasks can be executed in paral-
lel, each with a space complexity small enough to fit into a single 
computational unit. Index slicing starts by selecting a subset of the 
hypergraph indices. Each subtask then corresponds with a partial 
sum where the assignment of the selected sliced indices are fixed; 
it is itself a tensor network. The subtask tensor networks often have 
simpler structures, allowing them to be contracted sequentially 
pairwise with reduced space complexity. A contraction of the whole 
tensor network is then reduced to summing up the partial results 
obtained from the contractions of the individual subtasks.

In practice, memory constraints are far more rigid than running 
time constraints, and many modern computer architectures allow 
for massive parallelism. Index slicing effectively makes use of the 
latter while coping with the former, thereby improving on previ-
ous tensor network contraction algorithms both in efficiency and 
scalability. Of course, selecting the best subset of indices to slice 
over is a non-deterministic polynomial-time (NP)-hard optimiza-
tion problem, for which no known algorithm is guaranteed to find 
an optimal solution in polynomial time. Furthermore, it is often 
intertwined with the other NP-hard optimization problem of find-
ing the best sequential contraction algorithm; however, with the 
heuristics discussed in the Methods, index slicing can be carried 
out with extremely low parallelization overhead while reducing the 
space complexity to a single computational node. Figure 1 illustrates 
the idea of tensor networks, contraction orders, index slicing and a 
flowchart briefing our heuristic strategies for finding good contrac-
tion orders and indices to slice.

Unless specifically indicated, all indices in the tensor network 
run through {0, 1}, a common assumption for qubit-based quan-
tum computation. Throughout the results we report the complex-
ity of contracting different tensor networks by a pair of numbers: 
the first one, called the computation cost, is the base-ten logarithm 
of the number of total floating point operations (FLOPS), serving 
as a measure for the time complexity. The second one, the num-
ber of subtasks, is exponential in the number of sliced indices, and 
serves as a measure of concurrency for the contraction algorithm. 
Moreover, we measure the quality of the index slicing by the slicing 
overhead, that is, the ratio of the total time complexity before and 
after performing index slicing. Figure 2 summarizes the contraction 
costs and slicing overheads for various tensor networks studied in 
this paper.

Classical simulation of Sycamore random circuit sampling. We 
first benchmark the open-source implementation of our simulation 
framework (the Alibaba Cloud Quantum Development Platform, 
ACQDP) with a family of circuits called the Sycamore random 
circuits, which were originally proposed to demonstrate quantum 
superiority2. It was claimed that when the number of layers m in the 
circuit is 20, a certain sampling task could be efficiently performed 
on the existing Sycamore quantum chip in about 200 s, whereas a 
comparable task would take Summit—one of the most powerful 
supercomputers in the world—at least 10,000 years.
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We measure the performance of various simulation frameworks 
based on tensor network contraction with the contraction cost and 
an extrapolated running time that is based on actually running some 
of the many structurally identical subtasks created by index slicing. 
The ACQDP achieves an exceptionally low contraction cost—up 
to 106-times lower than qFlex21 and up to 1,000-times lower than 
Cotengra28; however, the FLOPS efficiency of ACQDP is also con-
siderably lower than that of Cotengra and qFlex. This is probably 
due to the involvement of many general matrix–matrix products 
with small-sized matrices during the computation. Overall, ACQDP 
forecasts a running time of less than 20 days for the m = 20 random 
circuit sampling task on a Summit-comparable computing cluster, 
a speedup of more than five orders of magnitude when compared 
with the best classical algorithms reported by Arute and colleagues2, 
and a speedup of more than two orders of magnitude when com-
pared with other state-of-the-art simulators.

The contraction cost, FLOPS efficiency, extrapolated runtime 
and comparisons with other leading simulators are all illustrated 
in Fig.  3. For all of the tensor network-based simulators (qFlex, 
Cotengra and ACQDP), a batch of amplitudes is computed using 
open tensor network contraction. Due to randomness in the ACQDP, 
we ran ten independent order-finding experiments for each num-
ber of cycles m (the statistical results are presented in Fig. 2a). The 
orders found show good concentration in time complexity, and we 
take the best orders found for the comparisons reported in Fig. 3. 
The projected running time of the hybrid Schrödinger–Feynman 
algorithm reported in ref. 2 is estimated from a different architecture 
than Summit, and so the FLOPs efficiency is not shown.

A very recent result by Pan and colleagues30 claimed to have com-
pleted the Sycamore random circuit sampling task by producing one 
million distinct but correlated bitstrings within five days using a 
small GPU cluster, achieving a linear cross-entropy benchmarking 
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fidelity (XEB) value of ~0.739. This is made possible by combining 
hierarchical partitioning and dynamic index slicing of tensor net-
works with their newly developed heuristics. Although their work 
verifiably passes the linear XEB test, it essentially completes a dif-
ferent task than what we describe as an unbiased-noise approximate 
(UNA) sampling. A detailed discussion of the definition of the ran-
dom circuit sampling task is presented in Supplementary Section 3C.

QAOA for graph isomorphism discovery. We investigate a poten-
tial application of the QAOA, which is to determine whether two 
graphs are isomorphic by checking whether their QAOA energy 

functions are equal31. It is not clear whether this method can distin-
guish between all pairs of non-isomorphic graphs (for sufficiently 
large number of QAOA layers p) or whether the energy gap would be 
noticeable. Here we try to study these questions by using ACQDP to 
classically compute QAOA energies associated with various graphs.

By classically computing the QAOA energies, we can separate 
all non-isomorphic 3-regular graphs up to size 18, all strongly 
regular graphs up to size 26, and several hard graph pairs includ-
ing the Miyazaki and Praust graphs of size 20, and the Cai–Fürer–
Immerman graphs of size 40. These findings and the theoretical 
results in Szegedy31 make us believe that QAOA energies give a full 
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highest and lowest contraction costs/overheads that are not outliers, where outliers are defined as data points whose distance to the nearest quartile is 
larger than 1.5 times the interquartile range. a, Tensor networks for evaluating a batch of 64 amplitudes in Sycamore random circuits. b, Tensor networks 
corresponding to 2 + 1 rounds of syndrome extraction for the Surface-17 code. c, Tensor networks associated with edges of the Cai–Fürer–Immerman (CFI) 
graphs. For each graph and each QAOA depth, there are two pairs of unsliced/sliced costs for the two isomorphic classes of edges in that graph: the left 
pair corresponds to the first class, whereas the right pair corresponds to the second class (see Fig. 4).
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characterization of isomorphism classes, unlike many quantum 
walk-based distinguishers that were considered earlier32–34. Table 1 
provides pairs or classes of graphs, as well as the QAOA depth p that 
distinguish them.

Our simulator can cope with Cai–Fürer–Immerman graphs 
of size 40, a well-known pair of hard instances (see Fig.  4). This 
instance is hard even for the QAOA due to the fact that the two 
graphs cannot be distinguished until the QAOA depth reaches six. 
In fact, Fig. 2c shows the contraction cost of the QAOA instances. 
It is worth noting that most of the slicing induces extremely low 
slicing overhead. The overall average overhead introduced by one 
slice for all of the p = 5 and p = 6 tensor networks is 0.2% and 3.5%, 
respectively.

Simulating surface codes with cross-talk errors. We simulate a 
quantum memory experiment on a surface code with 17 qubits—
Surface-17 for short—in the presence of a practical noise model35 
and a ZZ cross-talk model (see Methods), which was not considered 
before in this context. The performance of the surface code is mea-
sured by the Pauli transfer matrix (PTM) on the logical qubit.

Effects of cross-talk for 2 + 1 rounds of syndrome extraction. To 
compute the logical PTM under the optimal decoder, one needs to 
compute all of the PTMs corresponding to quantum operations for 
each assignment of the syndrome bits. As mentioned before, our 
tensor network-based approach can deal with up to 2 + 1 rounds 
of syndrome extraction, as this would result in a resulting tensor 
of size 228. Note that this is also the depth proposed for a near-term 
fault-tolerance demonstration36.

We report the logical channels for 2 + 1 rounds of syndrome 
extraction, with and without the presence of cross-talk (Fig. 5). We 
can infer from the table that the effect of ZZ cross-talk on the logi-
cal channel is concentrated on the logical coherent Z-rotation and 
the stochastic phase-flip error, each ~10−3 in magnitude. Compared 
with other error sources, ZZ cross-talk introduces a minimal 
amount of logical error and thus does not present itself as a main 
error source for the quantum memory experiment.

Results with variants in code and gate scheduling. We test the perfor-
mance of slight variants of the above gate scheduling on Surface-17 
to validate the robustness of our findings. We first switch the 
Z-stabilizer syndrome extractions and the X-stabilizer ones in each 
cycle to see whether considerable changes in logical errors can be 
observed. We then test out the recently proposed XZZX code37 to 
balance the bias in X- and Z- Pauli errors. The corresponding PTMs 
are listed in Fig. 5.

For the experiment switching X- and Z- syndrome extraction, 
it can be observed that the X- and Z- portions of the logical errors 
are also switched. This agrees with the observation that such a error 
correction circuit is similar to one where a transversal Hadamard 
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Table 1 | Summary of results for using the QAOA to distinguish 
non-isomorphic graph sets.

Class or pair of 
graphs

Number of 
nodes

QAOA depth 
giving full 
separation

Contraction 
cost

Miyazaki I and II 20 4 10.1

Praust I and II 20 4 10.5

Cai–Fürer–Immerman 
graphs I and II

40 6 15.4

All 4,060 non-
isomorphic 3-regular 
graphs on 16 nodes51

16 4 8.7

All 41,301 non-
isomorphic 3-regular 
graphs on 18 nodes51

18 4 9.3

All 10 non-isomorphic 
graphs in the SRG 
26,10,3,4 family52

26 3 12.8

Experiments were conducted on the 20-node Miyazaki graphs, 20-node Praust graphs, 40-node 
Cai–Fürer–Immerman graphs, all non-isomorphic 3-regular graphs on 16 and 18 nodes, and all non-
isomorphic (26, 10, 3, 4) strongly regular graphs. The number of nodes, the minimum QAOA depth 
to tell all of the graphs apart, and the average contraction cost for one graph, are listed. Only the 
Cai–Fürer–Immerman graph pair requires index slicing, as the graphs contain many nodes and it 
takes a deep QAOA circuit to tell the two graphs apart.

(I) (II)

Fig. 4 | Cai–Fürer–Immerman graphs I and II with 40 indices. For each 
graph there are two isomorphic classes of edges, with the first class 
colored blue and the second class colored red. Note that the only difference 
between the two graphs is the two red edges in the upper left corner.
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gate is applied to all of the physical qubits, resulting in a logical 
Hadamard gate interchanging the X- and Z- Pauli errors. On the 
other hand, merely changing the code to its XZZX variant does not 
balance the logical noises. This is probably due to the fact that the 
majority of the error occurs during the syndrome extraction rou-
tines in this particular experiment, not between them. Although 
XZZX variants are good at averaging biases occurring outside of the 
error correction cycles, it does not introduce much difference dur-
ing the actual syndrome extraction routines.

Tensor network contraction cost. Figure 2b shows the contraction 
cost of the tensor networks corresponding to the experiments 
on different variants of the Surface-17. One particularly inter-
esting phenomenon is that the slicing overhead of the surface 
code simulation is below one in some cases. This indicates that  
the initial contraction tree found by hypergraph decomposition 
framework is suboptimal, which could be due to the fact that the 
tensor networks considered here have many open edges, unlike 
the instances in the random circuit sampling problem or the 
QAOA experiments. Whether such a phenomenon exists in other 
tensor networks with many open edges, and whether index slic-
ing can be applied to aid the contraction order finding in a more 
general setting is worth further investigation. We leave this to  
future work.

Discussion
The index slicing framework proposed in our paper establishes 
an interpolation between the sequential pairwise contraction and 
the Feynman path integral algorithm, which correspond to the 
cases in which no index is sliced and in which all indices are sliced, 
respectively. For a tensor network with m indices associated with a 
hypergraph with tree width t and contraction width c, the sequential 
pairwise contraction achieves a time complexity of O*(2t), whereas 
the space complexity is lower bounded by Ω*(2c) (although not 
necessarily simultaneously achievable). The Feynman path inte-
gral, on the other hand, has a space complexity of O(m), yet the 
time complexity is Ω*(2m); however, how the slicing-incorporated 
idea interpolates between the aforementioned two extreme points 
requires further investigation. It also remains open whether there 
exists a tensor network contraction algorithm that achieves both 
the relatively low time complexity of O*(2t) and the space complex-
ity of O(m), and it does not seem likely that a slicing-incorporated 
sequential pairwise contraction could achieve this limit.

On the practical side, there are still many ways to improve the 
performance of the tensor network contraction algorithm, poten-
tially by several orders of magnitude. A better contraction order—
together with index slicing—might be found through algorithmic 
refinements; however, it is known8 that exact contraction of general 
tensor networks is a #P-hard problem, a computational complexity 
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4.25 × 10–9 1.05 × 10–6 9.81 × 10–1 −9.00 × 10–5

1.35 × 10–5 −1.44 × 10–9 8.96 × 10–5 9.88 × 10–1

e

1.00 × 100 1.15 × 10–8 −3.56 × 10–11 −5.28 × 10–7

2.63 × 10–6 9.92 × 10–1 −1.05 × 10–4 3.55 × 10–8

−7.14 × 10–9 1.05 × 10–4 9.87 × 10–1 −5.47 × 10–6

2.04 × 10–7 1.45 × 10–8 5.47 × 10–6 9.94 × 10–1

f

Fig. 5 | Comparisons of logical channels with and without cross-talk for 2 + 1 rounds of syndrome extraction. a, An illustration of a PTM corresponding 
to a single-qubit completely positive and trace-preserving map. Mathematically, for all completely positive and trace-preserving maps, the first row of 
the corresponding PTMs should be (1, 0, 0, 0). We report the computational result from the tensor network contraction on an Nvidia V100 graphics card, 
and use the deviation of the first row to (1, 0, 0, 0) to indicate the magnitude of the numerical imprecision. b, Logical PTM for the default variant for 2 + 1 
rounds of syndrome extraction without cross-talk. c, Logical PTM for the default variant for 2 + 1 rounds of syndrome extraction with cross-talk. d, The 
difference between the two logical PTMs in b and c. e, Logical PTM for 2 + 1 rounds of syndrome extraction with cross-talk, Z/X switched. f, Logical PTM 
for 2 + 1 rounds of syndrome extraction with cross-talk, XZZX variant.
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category for which no known efficient (subexponential time) algo-
rithms exist. It is therefore worth investigating approximation pro-
posals such as tensor network contraction based on matrix product 
states13,22,38,39, matrix product operators40–42 and other such ansatzes. 
Such approximation proposals do not necessarily suffer from 
#P-hardness and could offer a big leap in simulability assuming the 
ansatzes are good. We leave investigation and design of efficient and 
relatively accurate approximate tensor network contraction meth-
ods to future work.

It has been noted that the good contraction schemes found by 
our algorithm, usually with relatively low time complexity, might 
not necessarily perform well on modern computational architec-
tures. In fact, the 20-cycle random quantum circuit simulation indi-
cates a very low FLOPS efficiency (~15%). This is probably due to 
the fact that, despite being efficient on paper, many of the contrac-
tion schemes found by our algorithm involve matrix multiplication 
of skewed shapes, which cannot be processed as efficiently as matrix 
multiplications of square matrices. A computational cost that is tai-
lored to better reflect modern architecture design could be useful 
to guide better designs of contraction schemes in practice. We leave 
this to future work.

For these reasons, we expect that further improvements on both 
the algorithmic and engineering considerations can considerably 
reduce the overall simulation costs we report. Given the ubiquity of 
tensor networks in quantum information science and the efficiency 
of our simulator, we believe that it could provide a valuable tool in 
the development of quantum information technologies while help-
ing to define the quantum superiority frontier.

Methods
Tensor networks contraction algorithms. Framework for tensor network 
contraction. We use index-slicing-incorporated sequential pairwise contraction to 
contract tensor networks. Finding the optimal contraction scheme (that is, a subset 
of indices to slice over and a sequential pairwise contraction order for the subtasks; 
identical in structure) is NP-hard; however, for large instances of tensor networks 
presented in this paper, a preprocessing heuristic finding near-optimal contraction 
schemes is often worthwhile as it makes a big difference in time/space complexities 
for the actual contraction task that considerably dwarfs the relatively short extra 
time spent on such preprocessing.

Finding an optimal contraction order and finding indices to slice are two 
strongly coupled optimization problems. On the one hand, good index slicing 
is often based on an existing contraction order, as the changes in time/space 
complexities caused by slicing then become manifest. On the other hand, the 
optimal contraction order also depends on the slicing, as the hypergraph structure 
is changed when some edges are removed. We therefore propose a two-phase 
contraction scheme-finding heuristic: in the first phase, we find a good contraction 
order for the unsliced tensor network. In the second phase, we look for indices to 
slice, interleaving index slicing with local reconfigurations of the contraction order 
to keep it near-optimal given the already sliced indices.

Initial contraction order finding. Disregarding the relative ordering between steps 
without data dependence, a contraction order can be regarded as a binary tree, 
where the leaf nodes correspond to the input tensors and the root to the final 
output tensor (recall the example in Fig. 1). We apply a slight augmentation of the 
hypergraph-decomposition-based contraction tree construction method in Gray 
and Kourtis28. Such an algorithm constructs a contraction tree top-down, by first 
decomposing the hypergraph into two or more components. The components are 
then regarded as tensor networks that are to be contracted individually and then 
contracted together; in other words, such a hypergraph decomposition fixes the top 
layers of the contraction tree. The subgraphs are dealt with in a recursive manner, 
until the number of nodes in a certain subgraph is small enough to allow efficient 
subtree constructions.

A hypergraph decomposition algorithm takes two parameters (K, ϵ) and a 
hypergraph, and outputs K disjoint components of the hypergraph whose size 
differences are controlled by the parameter ϵ. We observe a difference between the 
top-layer decomposition (where the tensor network is usually closed or contains 
few open edges) and the subsequent layers (where there are many open edges 
mostly connecting to other components). For this reason, we use the parameter 
combination (K, ϵ) for the top layer and (2, ϵ′) for subsequent layers. We then 
perform optimizations over the three parameters (K, ϵ, ϵ′) to obtain a satisfactory 
initial contraction tree. We use the covariance matrix adaptation evolution strategy 
algorithm43 for parameter optimization and the KaHyPar package for hypergraph 
decomposition44. The cutoff size for the hypergraph decomposition is set to 25; 

contraction trees on hypergraphs with fewer nodes are constructed greedily using 
built-in functionalities in the opt_einsum package45.

Index slicing and local optimization. After finding the initial contraction order, 
one way of selecting the indices to slice over is by greedily picking the index that 
decreases the space complexity the most or introduces the least time complexity 
overhead. In this work we interleave the greedy approach with a series of local 
reordering of the contraction tree that ensures a more robust slicing. In particular, 
we apply the following heuristics:
•	 The first one is a general local optimization method: take a connected sub-

graph of a contraction tree, which represents a series of contraction steps, with 
multiple intermediate outcomes as the input and a single output. Such a series 
of contraction steps represents a tensor network contraction of its own and 
can be optimized by reconfiguring the internal contraction tree connections. If 
the subgraph chosen is small enough, the optimal configuration can be found 
with a brute-force approach. Repeatedly choosing small connected subgraphs 
of the contraction tree and optimizing over them could greatly reduce the 
overall contraction cost. We focus on subgraphs with many high-cost interme-
diate steps to accelerate this process, which hopefully reduces the contraction 
cost by the maximum. In our experiments, we take subgraphs of size up to 14 
to perform local optimizations on.

•	 The second one is more specifically designed for index slicing. In a contrac-
tion tree, the nodes in which a particular index appear form a subtree. The 
overhead induced by slicing a particular index is determined by the total cost 
of the corresponding subtree, which in turn depends almost entirely on the 
overlap of the subtree with the highest-cost nodes. The more high-cost nodes 
in a contraction tree involving a particular index, the less overhead is incurred 
while slicing this particular index. One can therefore slightly tweak the con-
traction tree by commuting different high-cost contraction steps to maximize 
the utility of a single index. This increases the overall unsliced cost (assum-
ing that the original contraction tree is locally optimal), but at the same time 
reduces the slicing overhead via increasing the utility of the particular index. 
Enumerating over several promising index candidates helps find a good one, 
especially when an obvious choice is absent.

Runtime modification of the contraction scheme. When executing sequential 
pairwise contraction on a GPU, we apply the following runtime-specific 
modifications on the obtained contraction schemes. These modifications do not 
alter the theoretical contraction cost by much, but usually enable much more 
efficient execution.
•	 Most nodes in the contraction tree represent very small portions of the overall 

time complexity; however, they involve many small tensors, transmission of 
which to the GPU would incur considerable overhead. This motivates us to 
precompute these small steps on a CPU before executing the slicing and only 
deploy the heavy computational steps of each individual task on the GPU. The 
partial results for the low-cost steps are shared by all subtasks and only need to 
be computed once. In practice, this considerably reduces the communication 
cost between the GPU and the CPU and helps save a small portion of the com-
putational cost. We regard any intermediate step resulting in an intermediate 
tensor of rank 23 (before slicing) as a low-cost step, and execute these steps 
before slicing.

•	 After the precomputation getting rid of repeated low-cost steps, the computa-
tion performed on the GPU is typically a sequential absorption of small 
tensors into one large tensor, or two large tensors merged together near the 
end. In either case, a contraction tree with locally optimal contraction costs 
typically suffers from a large skewness in dimensions during matrix multipli-
cation. On Nvidia Tesla V100 GPUs, matrix multiplication with dimensions 
M × N and N × K is much more efficient when the dimensions M, N and K 
are all multiples of 32; however, a typical small tensor is often shaped 4 × 4, 
8 × 8 or 16 × 16. To overcome this, we slightly tweak the contraction order 
in the following way: whenever a large tensor is to be contracted with some 
small tensors consecutively, we instead contract the smaller tensors first and 
contract this intermediate result with the large tensor, thereby ensuring that 
inefficiency by skewness does not occur whenever the large tensor is involved 
in the contraction. This increases the runtime contraction cost, but decreases 
the actual running time by making use of the efficient kernel functions of 
the Nvidia Tesla V100. This is a somewhat ad hoc solution to the low GPU 
efficiency induced by small tensor dimensions; we hope that more systematic 
approaches can be explored to increase the GPU efficiency.

Sycamore random circuits. The Sycamore random quantum circuits used 
to benchmark ACQDP are introduced in Arute et al.2 and are available from 
the public Dryad repository46. Each Sycamore random circuit is parameterized 
with a single parameter m, has 53 qubits arranged in a diagonal square grid 
pattern reflecting the qubit layout of the Sycamore quantum processor, and is 
generated randomly from some simple rules. Namely, a Sycamore random circuit 
is composed of m cycles, each consisting of a single-qubit gate layer and a two-
qubit gate layer, and concludes with an extra single-qubit gate layer preceding 
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measurement in the computational basis. In the first single-qubit gate layer, single-
qubit gates are chosen for each individual qubit independently and uniformly at 
random from {

√
X,

√
Y,

√
W}, where

√
X =

1√
2

[
1 −i

−i 1

]

,
√
Y =

1√
2

[
1 −1

1 1

]

,
√
W =

1√
2

[
1 −

√
i

√
−i 1

]

.

In each successive single-qubit gate layer, single-qubit gates are chosen for each 
individual qubit uniformly at random from the subset of {

√
X,

√
Y,

√
W} that 

excludes the single-qubit gate applied in the previous cycle. In each two-qubit gate 
layer, two-qubit gates are applied to about one-quarter of all pairs of adjacent qubit 
in the qubit layout, in a regular pattern, such that at most one two-qubit gate is 
applied to each qubit. There are four different patterns, labeled A, B, C and D in ref. 
2, and the eight-cycle pattern A, B, C, D, C, D, A, B is repeated over all the two-qubit 
layers. Two-qubit gates are decomposed into four Z-rotations determined by the 
cycle index and

fSim(θ,ϕ) =










1 0 0 0

0 cos(θ) −i sin(θ) 0

0 −i sin(θ) cos(θ) 0

0 0 0 e−iϕ










,

where the parameters θ and ϕ are determined by the qubit pairing.

The random circuit sampling task. A quantum circuit U naturally defines 
a distribution DU  over bitstrings when all qubits are measured under 
the computational basis after executing the circuit on the all-zero state: 
DU(x) := |⟨x|U|0⟩|2. Ideally, a quantum device executing U would sample from 
the distribution DU  exactly, but in practice many sources of hardware error causes 
the actual distribution to deviate from the ideal one. The linear XEB was used to 
measure the closeness of the output distribution to the ideal distribution2. It is 
defined as 2n〈pI(x)〉 − 1, where n is the number of qubits, pI(x) is the probability of x 
in the ideal distribution, and the expectation is taken over the output distribution. 
The XEB is 0 when the output distribution is uniform, and is 1 when the output 
distribution is ideal following the Porter–Thomas statistics. It was argued from 
numerical evidence that the aforementioned random quantum circuits had 
achieved an XEB of approximately 0.2%; however, simulating these circuits was 
estimated to be infeasible and thus this could not be directly verified.

Meanwhile, in this paper we require the classical simulation algorithm to 
satisfy a stronger criterion of approximate sampling, namely (ϵ, 0.2%)-unbiased 
noise approximate sampling, where ϵ is negligible (a rough estimation shows that 
ϵ < 6.4 × 10−31 in our algorithm). The definition of unbiased noise approximate 
sampling is as follows:

Definition 1 (ϵ, F)-UNA sampling. For a quantum circuit U as a unitary on n 
qubits, the task of F-UNA sampling is to generate independent and identically 
distributed samples from the distribution

D(F)
U := F × DU + (1 − F) × Un,

where Un denotes the uniform distribution over {0, 1}n. Moreover, (ϵ, F)-UNA 
sampling generates independent and identically distributed samples from a 
distribution ϵ close to the distribution D(F)

U  under total variational distance.
We will discuss more about why this stronger criterion is used in 

Supplementary Section 3C. Meanwhile, we will note that if we can achieve 
(ϵ, 1)-UNA sampling in average time T, then there is a trivial method to achieve 
(ϵF, F)-UNA sampling in average time FT by yielding a genuine sample with 
probability F and a uniformly random bitstring otherwise. We adapt this method 
in our expirments, generating near-perfect samples from DU  and multiplying the 
final running time estimate with a factor F = 0.2%.

Frugal rejection sampling. We adopt a previously proposed framework2,6 to reduce 
(near-perfect) sampling from DU  into computation of probability amplitudes of 
individual or small batches of bitstrings. This framework assumes that the output 
distribution of a random quantum circuit is a randomly permuted Porter–Thomas 
distribution. This assumption implies that there is a small number M (M ≈ 10 for 
53-qubit circuits) for which bitstrings x with probability pI(x) > M/N (where N is 
the number of all possible bitstrings; N = 253 in this case) do not contribute much 
to the overall distribution, which naturally gives rise to a frugal rejection sampling 
algorithm that on average only needs to compute M individual probability 
amplitudes to generate one sample from DU .

The overhead of frugal rejection sampling can be further decreased by 
computing a small batch of amplitudes for related bitstrings at a time, which for 
tensor network-based methods can be done with almost no extra cost compared to 
computing a single amplitude. We note that we cannot generate multiple samples 
from a single batch because that will introduce unwanted correlation between 
samples, violating the independent and identically distributed requirement for 

UNA sampling; however, if the first randomly chosen bitstring in a batch is 
rejected, then we can try other bitstrings in the same batch until one of them is 
accepted. With a batch of 26 = 64 bitstrings, the probability that one of them will 
be accepted is close to 1, thus lowering the overhead of frugal rejection from about 
10× to 1×. This may introduce some further deviation from the ideal distribution 
DU , but the error is negligible assuming that the correlation between amplitudes in 
the same batch is negligible.

QAOA for graph isomorphism discovery. The QAOA was first developed by 
Farhi, Goldstone and Gutman47 to solve combinatorial optimization problems. 
For a combinatorial optimization problem of the form C : {0, 1}n → R, which 
can be decomposed as a sum of local clauses C =

∑m
i=1 Ci each acting only on a 

small number of bits, QAOA works by regarding the objective function C as a local 
Hamiltonian Ĉ =

∑
xf(x) |x⟩ ⟨x| =

∑m
j=1 Ĉj, and taking the ansatz that the state

∣
∣
∣
−→γ ,−→β

〉
= e−iβpB̂e−iγpĈ · · · e−iβ1 B̂e−iγ1Ĉ(|+⟩)⊗n

defined by the mixing operator B̂ =
∑n

i=1 Xi and the angle sequences −→γ ,−→β ∈ R
p 

approaches an eigenstate of Ĉ with either minimum or maximum eigenvalue with 
carefully chosen parameters −→γ ,−→β , even with a small QAOA depth p. As both 
B̂ and Ĉ are sums of commuting local terms, the state 

∣
∣
∣
−→γ ,−→β

〉
 can be readily 

prepared using a quantum circuit.
The QAOA energy function with p layers is defined as

Fp(−→γ ,−→β ) := ⟨−→γ ,−→β |Ĉ|−→γ ,−→β ⟩,

that is, the expectation value of the objective function C(Z) where the random 
string Z comes from measuring the quantum state 

∣
∣
∣
−→γ ,−→β

〉
 under the 

computational basis.
In order to use QAOA for graph isomorphism discovery, consider the 

Max-cut problem on a graph G = (V, E), with the simple objective function 
C(x) = ∑(u, v)∈E∣xu − xv∣, where x ∈ {0, 1}∣V∣. Obviously, the QAOA energy function 

Fp(−→γ ,−→β ) for the Max-cut problem does not depend on the ordering of vertices 
in V but only the structure of G. Two isomorphic graphs will therefore always give 
the same value for Fp(−→γ ,−→β ), no matter how −→γ  and 

−→
β  are chosen. On the other 

hand, it is conjectured that for two non-isomorphic graphs, for sufficiently large 
p, the values of Fp(−→γ ,−→β ) are different with probability 1 for −→γ ,−→β  uniformly 
chosen from [0, 2π]2p (ref. 31); thus, evaluating Fp(−→γ ,−→β ) for two graphs G1 and G2 
with randomly chosen −→γ ,−→β  can either reveal that G1 and G2 are non-isomorphic, 
or give a strong evidence that they are isomorphic. The larger p is, the stronger 
such evidence will be.

As the QAOA energy function can be written as a sum of energy values of all 
clauses, the above proposal is essentially a way to use the QAOA to characterize 
local neighborhoods of vertices in a graph. This locality also translates to ease of 
computation with tensor network-based methods. In order to compute the energy 
value of a clause, the tensor network to evaluate corresponds to only part of the 
QAOA circuit, namely the lightcone of that clause (see Supplementary Section 4C).

Surface-17. Surface-17 (ref. 35) is a surface code involving 17 qubits, including nine 
data qubits, four X-ancilla qubits for X stabilizer measurements, and four Z-ancilla 
qubits for Z stabilizer measurements. The nine data qubits are arranged in a 3 × 3 
grid, and the ancilla qubits all lie on another square lattice diagonally displaced 
from the data qubit lattice, such that each ancilla qubit is diagonally adjacent to 
either four data qubits, or two data qubits on the border of the 3 × 3 grid. During 
normal operation of the surface code, two-qubit gates are applied only between 
adjacent pairs of one data qubit and one ancilla qubit (not two data qubits nor two 
ancilla qubits). See Supplementary Fig. 7 for a diagram of the qubit layout.

Error model. The error model we use is based on the one in O’Brien et al.35, which 
includes idling, gate-specific and measurement errors. We choose not to include 
the gate-specific error of CZ gates—modelled as a quasi-static flux noise—as its 
quasi-static coherent nature enables various techniques to compensate for it. We do 
introduce a model for cross-talk error caused by stray 2-qubit ZZ interactions48. See 
Supplementary Section 5B49.

Logical memory experiment. In this paper, we study only how well the surface 
code preserves the value of a logical qubit (as opposed to how to initialize, apply a 
gate to, or measure the logical qubit). To detect and correct qubit errors that may 
happen even while idling, stabilizer measurements (also known as error syndrome 
extraction) need to be constantly performed. Our syndrome extraction circuits are 
based on the ones in O’Brien et al. 35, containing only Ry( ± π/2) gates, CZ gates, 
and computational basis measurements. We also study variants of the syndrome 
extraction circuit where different stabilizers are measured by adding or removing 
some Ry(±π/2) gates.

We consider an idealized experiment that ignores errors during initialization 
or the final measurement. Starting from any single-qubit state, we first encode it 
into Surface-17 with an ideal (noiseless) encoding circuit, then perform k rounds of 
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noisy syndrome extraction plus 1 round of noiseless syndrome extraction (which 
we sometimes write simply as ‘k + 1 rounds of syndrome extraction’). The final 
round of noiseless syndrome extraction projects the physical state back to the 
code space, and allows us to map the final state back to a single-qubit logical state 
with a Pauli correction indicated by the optimal decoder. This entire process can 
be described by a well-defined logical channel C on the single logical qubit, which 
contains information on the kinds and magnitudes of all logical errors incurred by 
this process.

PTMs. We describe a single-qubit quantum channel as a PTM, a 4 × 4 real matrix 
indicating how the channel modifies the expectation values of Pauli operators. The 
PTM for a channel C is defined as

P(C)ij =
1
2
Tr[σiC(σj)],

where σ0, σ1, σ2, σ3 = I, X, Y, Z, respectively. Note that the first row of any PTM 
corresponding to a trace preserving map is always (1, 0, 0, 0), since a physical 
quantum channel should not change the expectation value of I, regardless of the 
expectation values of X, Y, and Z.

Optimal decoder. During normal operation of a stabilizer code, any errors detected 
are usually not corrected with physical gates. Instead, conceptually, virtual Pauli 
gates are applied to some of the code qubits, which is implemented by adjusting 
the results of stabilizer measurements thereafter on those qubits. Any Pauli 
gates on any number of code qubits can be implemented this way as long as 
the only operations applied on the code qubits are Clifford gates and stabilizer 
measurements.

Accordingly, our decoder tries to correct errors using only Pauli gates on code 
qubits, depending on the error syndromes measured. It is implemented in two 
steps: first, based on only the final round of noiseless error syndromes, a trivial 
decoder uses any number of Pauli gates to map the code qubits back into the code 
space. Second, based on all (including noisy and noiseless) error syndromes, a 
logical Pauli gate, one of I, X, Y, and Z, is applied to the logical qubit in order to 
maximize the fidelity of the logical channel. For the circuit sizes considered in this 
paper (no more than 2 + 1 rounds of syndrome extraction), tensor network-based 
simulations enables us to compute the optimal decoder exactly. See Supplementary 
Section 5D.

Data availability
All data51 used to create the figures in the main texts as well as in the 
Supplementary Information can be found at https://doi.org/10.5061/dryad.
nk98sf7t8. Contraction orders were derived using the order-finding scheme in the 
ACQDP package. Detailed information about our cluster architecture and order-
finding parameters can be found in Supplementary Section 2. Source data are 
provided with this paper.

Code availability
ACQDP is publicly available at https://github.com/alibaba/acqdp. The specific 
version of the ACQDP package and the scripts50 that reproduces all of the results 
reported in this paper can be found at https://doi.org/10.24433/CO.4349832.v3.
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