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Given the periodic influenza pandemics in the twentieth cen-
tury—the so-called Spanish flu in 1918, Asian flu in 1957 
and Hong Kong flu in 1968—the medical community has 

been apprehensive about the emergence of novel pathogens with 
an extensive reach in a more connected world1. Unlike influ-
enza, with its well appreciated ability to mutate2, the few relatively 
benign coronaviruses did not originally cause alarm. This was the 
case until the 2003 outbreak of severe acute respiratory syndrome 
(SARS) in China3 and Middle East respiratory syndrome (MERS) 
in Saudi Arabia in 20124, which featured severe symptoms and high 
mortality. Both outbreaks were short-lived, and isolation of cases 
proved sufficient to overcome the restricted ability of these patho-
gens to transmit between humans. The emergence of the novel 
SARS-CoV-2, with a similar geographic and zoonotic origin as 
SARS5, was declared a pandemic by the World Health Organization 
(WHO) in March 20206 and has rapidly spread over extensive 
regions. So far, over 220 million cases have been recorded, with 
over 4.7 million deaths7 and a high mortality, not unlike influenza, 
in older age groups8.

Studies of the 2009 H1N1 influenza viruses suggested that low 
relative humidity (RH) and high population density shaped the early 
spread of the virus. Those conditions also favored persistence of the 
virus during the weeks at the beginning of the pandemic, under-
scoring an increasingly recognized role of humidity in influenza 
dynamics. Climatic factors were deemed relevant when designing 
control and prevention measures9. Determining the role of cli-
mate drivers in the transmission dynamics of emergent pathogens 
remains fraught with difficulties as a result of limited data, nonlin-
ear responses and multiple potential confounding factors at the early 
stages of pandemics10. Examples of such factors include processes 
sharing trends, variable intervention measures such as lockdowns, 
and the rising use of non-pharmacological interventions. An ample 
availability of susceptible individuals fueling transmission is also 
thought to lessen the importance of climate conditions11. The results 
of a mathematical model addressing the potential for seasonality in 
the population dynamics of COVID-19 suggested an inability of 

climate forcing to establish seasonality given the large number of 
available susceptible, non-immune individuals. Nevertheless, ini-
tial observations suggested that SARS-CoV-2 could be a seasonal 
disease, a possibility that was not advanced for the short-lived out-
breaks of SARS and MERS. Specifically, the initial propagation of 
COVID-19 emerged in a latitudinal band between 30° N and 50° N, 
with low humidity levels and temperatures between 5 °C and 11 °C 
(ref. 12), and these weather sensitivities were reported from China, 
with absolute humidity (AH) negatively associated with daily death 
counts of COVID-1913. SARS-CoV-2 further resembled influenza 
with respect to its winter appearance. Recent perspectives have 
reviewed and evaluated the evidence for climate-driven seasonality, 
indicating contradictory results and confounding effects of other 
factors at these early stages of the pandemic10,14.

At a more mechanistic level, some observations on the long-range 
transmission of SARS in 200315 raised the scope for aerial transmis-
sion and a role of aerosols3, which would bypass short-range con-
trol measures. The intangible connection between airborne and 
seasonal transmission has been implicit in the scientific interest 
that followed the SARS 2003 outbreak, particularly for influenza. 
Both the nature of seasonality and the plausible substantial contri-
bution of airborne transmission were explored16–18, and attempts 
were made to mechanistically connect temperature and humidity 
to the environmental persistence of bio-aerosols and seasonality. 
Strikingly, the results of these influenza studies on aerosols are simi-
lar to those of initial SARS-CoV-2 investigations19, implying a pos-
sible contribution of aerosols to long-range transmission. With the 
third—and in some cases the fifth—pandemic wave under way in 
the Northern Hemisphere, and the need to project future dynamics 
under vaccination and the different duration of immunity, the ques-
tion of whether COVID-19 is a genuine seasonal disease becomes 
increasingly central, with implications for determining judicial 
intervention measures. More generally, the answer can inform our 
understanding of airborne transmission in other respiratory viruses.

Retrospective consideration of the first and second waves pro-
vides an opportunity to address climate drivers influencing the 
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rising and waning phases of the epidemic, even in the presence of 
containment measures. A statistical method for transient correla-
tions (scale-dependent correlation analysis, or SDC) is applied to 
the time series of reported COVID-19 cases to identify similar 
temporal variation to that of temperature and humidity over local-
ized windows of time. The consistency of the results across tem-
poral and spatial scales is also examined. Transitory associations 
can arise from nonlinear responses involving thresholds, whereby a 
climate factor acts as a more dominant limiting factor of transmis-
sion intensity in a given critical range. Because of its ability to detect 
small localized changes in epidemic shape, the statistical approach 
is able to uncover climate effects, despite confounding public health 
interventions and the very limited effect of trends at these scales 
(Methods)20–22. The new multiscale SDC (MSDC) implementation 
provides an opportunity to further confirm the consistency of asso-
ciations, assessing their stability across scales. As a comparison, 
preferential meteorological ranges are also derived with the same 
approach for seasonal influenza in Japan. Finally, a complementary 
analysis of COVID-19 is implemented with a process-based epide-
miological model for which the transmission rate is driven by cli-
mate. Its ability to capture observed cases and deaths is compared 
to that of alternate formulations with either a constant or a seasonal 
transmission term. We replicate this analysis at two different spatial 
scales—regional and city levels.

Results
Global and country-level role of temperature in COVID-19. To 
address the association of temperature (T) and AH in the initial 
phase of the invasion by SARS-CoV-2 and before changes in human 
behavior and public health policies were put into place, we first con-
sidered a measure of the initial growth rate of cases across countries. 
For this, we relied on an estimate of the reproductive number of the 
disease, R0, in the 20 days after the first 20 cases of COVID-19 were 
officially notified for each of 162 countries spanning five continents 
(Extended Data Fig. 1, Methods and Supplementary Information). 
The global maps for the climate variables at those corresponding 
times in each country and for population density are shown in 
Extended Data Fig. 2. A negative relationship is observed between 
R0 and T, as well as AH, at the global scale on the basis of linear 
pairwise regression models (Extended Data Fig. 1b,c and Extended 
Data Fig. 2). Although these regressions account for 10–25% of 
the variance in R0, the two regressions are consistent and statisti-
cally significant (P < 0.001), irrespective of the COVID-19 measure 
employed (for example, R0 or cumulative cases; see also sensitivity 
tests in Extended Data Fig. 3).

To address whether the negative relationship with both T and 
AH is merely the result of a coincident timing between trends in 
epidemic spread and the dominant wintertime conditions in tem-
perate regions, we analyzed the evolution of the disease–climate 
associations locally in time and at several disaggregated spatial 
scales for groups of countries in all five continents (Fig. 1). To this 
end, we relied on a statistical method, SDC, which was specifically 
developed to identify similar patterns of variation by means of local 
or transitory (linear) correlations between two time series given a 
moving window of time (Methods and refs. 20–22). Application of this 
analysis to other diseases known to be climate-sensitive (for exam-
ple, cholera, malaria and Kawasaki disease) has successfully shown 
that associations can be discontinuous in time, alternating temporal 
intervals with highly significant correlations and those with low or 
non-existent ones23,24. Such transient coupling can be expected in 
the response of nonlinear systems to an external driver, especially 
when the functions relating particular parameters to the driver are 
themselves nonlinear, so that effects are more evident in particular 
ranges of the forcing variable. SDC is essentially a pattern-recogni-
tion tool that allows one to consider the scale over which to evalu-
ate correlations, as the window size can be systematically varied  

to focus on increasingly local patterns of variation, for example 
(Methods)21. A new extension of this method, MSDC, is presented 
in this study to examine the stability of correlations across all scales.

Figure 1 shows the results of SDC analyses for COVID-19 
cases and T for time windows of two and a half months (a scale of 
s = 75 days) when grouping countries according to region and lati-
tude in the two hemispheres. Similar patterns are found for cases 
and AH (Extended Data Fig. 4). Strong negative transient associa-
tions are obtained for short time lags between the disease and cli-
mate time series, with consistent patterns worldwide. Interestingly, 
the negative relationship is seen during both the first and second 
waves of the pandemic, and for both the rising and declining 
phases, with a break during summertime in all continents (Fig. 1 
and Extended Data Fig. 4). Transient positive correlations of vary-
ing intensity are also detected during the warmer months across 
locations, varying in intensity and not consistently high. Whether 
these reflect real patterns linked to mass gatherings of young people 
in vacation resorts, as in Spain in the summer 2021, is discussed 
later. To further examine the association patterns, we next con-
sidered the reported cases at the smaller spatial scale of individual 
countries in Europe (Fig. 2, for France, the United Kingdom, Italy, 
Spain and Germany), the first most affected continent following the 
emergence of the virus in China. SDC results show similar tran-
sient and negative associations for T and AH with COVID-19 cases 
(s = 75 days). The negative relationship occurs largely in synchrony 
across the different countries, for the same time intervals during 
the waning of the first epidemic wave as T and AH rise, and also 
during the rise of the second wave in the fall as T and AH fall, with 
a break in between. For this same temporal window (s = 75), a simi-
lar negative relationship holds also for individual regions within 
three of these highly affected European countries for which data at 
the higher spatial resolution of individual provinces are available 
(namely, Lombardy, Thüringen and Catalonia, Supplementary Figs. 
1 and 2). These results are also shown separately for the first and sec-
ond waves in Lombardy, Thüringen and Catalonia (Supplementary 
Fig. 2). Locally in time, these associations account for large fractions 
of the variability in COVID-19 cases in the three regions (over 80% 
at scales of s = 21 days; Supplementary Fig. 2). Their discontinuity 
explains the lower values obtained with the traditional correlation 
coefficient, since by definition this quantity averages over the whole 
length of the time series20.

We can also inspect how these transient couplings change as a 
function of the temporal lag (in days) between the two time series. 
As the magnitude of the change in the climate variable T or AH 
increases, the lag tends to shorten. As shown in Fig. 2b, this behav-
ior is seen for the direction of change that is presumably relevant for 
influencing transmission (increasing T and AH in the fall of the first 
wave and decreasing T and AH in the rise of the second wave). The 
shorter lags may reflect a faster speed of community transmission, 
concomitant with a more intense effect of the meteorological fac-
tors. Zooming in even more locally in time with a window of about 
two weeks (s = 14), SDC reveals limited intervals of very highly sig-
nificant correlations at these regional levels for Lombardy (Italy; Fig. 
3) and for Catalonia, Spain (Extended Data Fig. 5). Intervals where 
the climate covariate accounts for over 80–90% of the variability in 
cases alternate with complete decoupling between the time series. 
Interestingly, the strongest negative associations are observed dur-
ing the rise of the second wave in these European regions. Positive 
associations are weaker and infrequent at this scale.

We next interrogate our SDC results to address the existence 
of threshold values in T and AH for the spread of COVID-19. To 
this end, we examine whether intervals of coupling become more 
frequent depending on the range of the climate covariates. This 
behavior would indicate the existence of a critical range within 
which responses are heightened and, conversely, outside which the 
forcing becomes ineffective. As an example, a meta-analysis was 
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performed for Italy, where detailed regional case data are avail-
able. We jointly analyzed all SDC correlations between COVID-
19 cases and each of the climate covariates (T or AH) by pooling 
together the results for all the individual regions of Italy (Fig. 3, 
Supplementary Fig. 5 and Methods; for Spain, results are shown 
in Extended Data Fig. 6). The resulting distributions, shown in 
Supplementary Fig. 4 and Extended Data Fig. 6, show the pro-
portion of the total possible comparisons (pairs of time intervals 
between the two time series) that fall into a given range of the cli-
mate covariate, with those proportions subdivided into significant 
positive and negative correlations (Fig. 3e,f) and including non-
significant ones (Supplementary Fig. 4). Distributions are also 
shown for only the positive and negative correlations along the 
range of climate intervals (Fig. 3e,f), and for the first two waves 
separately (Supplementary Figs. 5 and 6 and Extended Data Fig. 
6). The mode in these distributions indicates preferential inter-
vals for T and AH, respectively, where the climate effects are most 
evident and beyond which decoupling is likely (roughly 12–18 °C 
and 4–12 g m−3, respectively; Fig. 3g,h). Although similar results 
are obtained for the first and second waves separately, these ranges 

should only be seen as indicative, given the short records yet avail-
able (Supplementary Fig. 6 and Extended Data Fig. 6).

To further examine the consistency of the identified relationships 
with T and AH, we applied MSDC—an extension of SDC developed 
to inspect the evolution of transient correlations at all scales at once 
in the same graphical display (Methods)—to countries in other con-
tinents that experienced a later arrival of SARS-CoV-2 than Europe, 
namely South Africa, Argentina and Canada, from February to 
December 2020 (Extended Data Fig. 7). The top and central plots 
in Extended Data Fig. 7 for each country present, respectively, the 
most negative and the most positive significant Spearman correla-
tion found for every pair of fragments of a given window size and 
date. (To visualize timing with respect to the epidemic progression, 
the bottom plot displays the seven days moving average of daily 
reported new cases for each of the countries.) Negative correlations 
exhibit continuity as scale s is increased, and also transition to larger 
values (indications of causal effects). By contrast, positive correla-
tions are much more limited in the range of scales, largely restricted 
to the very small scales and appearing either at times of minima 
or maxima of COVID-19 incidence, but not during the rise or the 
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fall of the pandemic waves. Total attributed variability is therefore 
large for negative correlations, but much more limited for the posi-
tive patterns. When the positive correlations are only present at the 
smallest scales and do not persist as we move up in scale, they most 
probably reflect spurious associations arising from random fluctua-
tions (Extended Data Fig. 7).

A mechanistic model incorporating explicit temperature data. 
To further evaluate the role of climate factors on disease dynam-
ics from a more mechanistic perspective, we also implemented 
a process-based stochastic model that incorporates an effect of 
temperature in the transmission rate. The model structure and 
corresponding parameters are shown in Fig. 4 (see Methods for 
additional description). The basic model, which divides the human 
population into seven compartments (susceptible, exposed, con-
fined, infected, quarantined, recovered and dead individuals), 
already exhibited good performance in terms of predictive skill for 
the first waves of the COVID-19 pandemic in different countries25.  

Here, we extend its formulation to include temperature as a driver 
in the transmission rate. For simplicity, T was chosen for this 
purpose rather than AH based on its stronger relationship with 
COVID-19 in the above SDC results, and given the similarity of 
the temporal patterns of the two climate variables. For the pur-
pose of comparison, the baseline formulation omits temperature 
and includes a constant transmission rate. A seasonally forced ver-
sion includes a sinusoidal variation of this term with a period of 
12 months. The model incorporating T is better able to capture 
the data for all the different waves and regions (Figs. 4 and 5 and 
Supplementary Table 1). Figure 4c,d shows model fits for the three 
different models for recovered cases, active cases and deaths in 
Catalonia and Lombardy, respectively. Comparisons of the mean 
squared error for these models are displayed in Fig. 5 and Extended 
Data Fig. 8. To address the different spatial scales of aggregation, 
the same mechanistic model was fitted to the epidemic data for 
the city of Barcelona (Fig. 5a,b and Extended Data Fig. 8). Here, 
too, the model incorporating T shows better performance overall  
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(Fig. 4c,d) and lower residual estimates than any other model (Fig. 
5a,b and Supplementary Table 1). In particular, the fitting to the 
first wave appears clearly improved with respect to its counter-
parts, possibly indicating a stronger temperature control for this 
early epidemic stage. Although notable effects are seen also for 
the other waves (and are most apparent for the active cases), the 
improvements are modest in the second wave for Lombardy (Figs. 
4c,d and 5a,d), Thüringen (Fig. 5a,b) and in the second and third 
waves for Catalonia (Figs. 4c and 5a,b) and Barcelona (Fig. 5a,b) 
(also Extended Data Fig. 8). These results are in strong agreement 
with those obtained with SDC analysis on the enhanced extraction 
of a T signature in this first COVID-19 pandemic wave.

Finally, the cutoff analysis conducted for COVID-19 
(Supplementary Fig. 6) was also applied to records of seasonal 
influenza (A and B) in the city of Kawasaki in Japan from 2014 to 
2021 (Fig. 6b). Seasonal influenza is a better known respiratory dis-
ease for which climate effects have been documented, in particular 
in relation to humidity (Extended Data Fig. 9). Transient negative  

correlations are clearly evident for influenza A and influenza B with 
both AH and T (Extended Data Fig. 9). As for COVID-19, the num-
ber of positive correlations is, by comparison, minimal (Extended 
Data Fig. 9). The ranges or thresholds for T and AH derived from 
the SDC analysis indicate (1) a slight systematic delay of up to one or 
two months in the occurrence of influenza B with respect to influ-
enza A (Extended Data Fig. 9) and (2) T and AH relevant ranges 
similar to those obtained for COVID-19 (Fig. 6b). Interestingly, 
these ranges are slightly different between the two viral strains, sug-
gesting small differences in climatic niches.

Discussion
Taken together, our findings support the existence of strong exter-
nal drivers of transmission intensity, as suggested by a uniform 
summer recession despite a variety of intervention measures across 
countries25. They also support the view of COVID-19 as a true sea-
sonal infection, similar in that sense to seasonal influenza and to the 
more benign circulating coronaviruses26.
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Fig. 3 | Analysis of the effect of T and AH in the spread of COVID-19 in Italy. a–d, Short-term transient correlations over time intervals of two weeks 
at the spatial resolution of region, here for Lombardy in Italy. As for Fig. 1, the graphical results of SDC analysis are shown for the correlations between 
daily COVID-19 cases and T (a,b) or AH (c,d) and for the different parts of the pandemic. Here, a smaller window size is used (s = 14 days) to examine 
even shorter-term transient associations. The panels in a and c showcase the results for the waning phase of the first wave (from late February to July), 
and the panels in b and d those for the rising phase of the second wave (from August to late October). The time intervals of significant correlations are 
indicated with boxes within the central grid, with the corresponding timings in the two time series highlighted with red arrows for the meteorological 
factor and with black arrows for the response variable, COVID-19 cases. The pairs of arrows for a given box show clear patterns of opposite temporal 
change (negative correlation) in the climate and epidemiological variables. For clarity, in this case the bottom panels below each plot show only the 
maximum negative correlation values obtained as the analysis window is moved in time (with red dots indicating negative correlations). e,f, Frequency 
distributions of negative and positive correlations as a function of range of the climate covariate (numbers in parentheses), for T (e) and AH (f). The 
frequency of windows with negative (or positive) correlations is obtained from SDC analysis of COVID-19 cases and the given climate factor in all Italian 
regions (n = 20; for s = 21 days). The percentages correspond to the percentages of total comparisons (within each of the ranges of the climate variables) 
that were statistically significant in either of the directions. The distributions are non-uniform with a mode in a particular range of the climate variables. 
This is indicative of a nonlinear relationship where the negative associations are most likely to be observed in a particular meteorological range. g,h, This 
same frequency distribution but across the different Italian regions. As can be seen, there is an overrepresentation of significant negative monotonic 
relationships in temperate conditions (AH of 4–12 g m−3, T of 12–18 °C).
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Concomitant temporal variation of ecological conditions, human 
behavior and disease incidence over the annual cycle can produce 
true but also spurious correlations with climate parameters21. Our 
results are consistent with those of ref. 27 on an effect of tempera-
ture and specific humidity on the spread of COVID-19, which is 
certainly encouraging given that the methods applied in this work 
(SDC) and their work (distributed-lag nonlinear models) are differ-
ent. Our analysis is also complementary in considering data from 
different countries and spatial scales. The analyses in our study 
were formulated to circumvent the spurious correlations arising 
from such coincident seasonal variation, as well as effects of poten-
tial confounders (Supplementary Discussion). A similar approach 
could contribute to the further understanding of the complex global 
seasonality of influenza28,29.

Further support for a transient but strong role of climate in 
the modulation of COVID-19 transmission is provided here by 
the results of the implemented mechanistic model. Model fits and 
model comparisons consistently indicate a climate effect across the 
different epidemic waves, for different regions and individual cities 
(Fig. 5 and Extended Data Fig. 8). The results for Barcelona are fully 
aligned with those for Catalonia and other regions. When inspect-
ing results by waves, this observation is further reinforced, as the 

mean squared error for the temperature-driven model is always the 
lowest, especially for the first epidemic wave. Similarly, increasing 
the scale resolution does not modify the results by SDC at the largest 
spatial scales considered (those of region and country).

The problem of co-linearity in climate factors has challenged the 
search for environmental drivers of influenza in the past, and very 
similar issues now apply to COVID-1927. Both T and AH appear 
here equally capable of accounting for the observed COVID-19 
variation. It is well known that air of rising temperature can con-
tain more water, and for geophysical reasons these two parameters 
are usually strongly coupled over extensive spatial scales. Also, both 
parameters can act in the same direction in their biological effects. 
For example, the environmental persistence of an exhaled infec-
tious virus particle—associated with a small (<5 μm) or a larger 
(100 μm) droplet30—it increases under laboratory conditions with 
lower temperatures and lower humidity for both influenza31, SARS32 
and SARS-CoV-233. Although prolonged environmental survival at 
lower temperatures applies to most of the viruses that have been 
studied34, a less humid environment shortens the survival for most 
upper airway infections such as the rhino- and adenoviruses that 
cause the common cold35. Importantly, however, these viruses lack 
an envelope and are not seasonally defined36. By contrast, enveloped  
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viruses, including measles, variola and varicella, are infections 
reaching the lower airways, are prevalent during the cooler seasons 
and are predominantly or substantially airborne. It seems plausible 
that some viruses have adapted to this phase in the seasonal cycle 
and their concomitant features of temperature and humidity, ruling 
out the identification of a single or dominant driver of transmis-
sion. Our results point to SARS-CoV-2 belonging to this cluster of 

viruses. Regardless, plausible modes of action of temperature and 
humidity (Supplementary Discussion) suggest the importance of 
airborne transmission. Low humidity levels can reduce the size of 
bio-aerosols by evaporation when these cool-weather viruses are 
exhaled37. ‘Droplet nuclei’ smaller than 5 μm in size can bypass the 
nasal zone defenses and enter the deeper parts of the lungs. SARS 
and SARS-CoV-2 specifically target the angiotensin-converting 
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enzyme 2 protein for cell entry38, where this protein is most abun-
dant in alveolar tissue39. During the colder winter months in higher 
latitudes, indoor heating generates a microclimate with low levels 
of RH, a parameter that better reflects the drying power of air than 
AH. However, both indoor AH and RH in heated accommodation 
correspond well with the routinely measured outdoor AH in colder 
climates18, and therefore also the gridded climatology used here for 
studying this parameter.

The permissive role of low temperatures for the transmission 
of SARS-CoV-2 appears to contradict the warm-weather-related 
transmission and severity of the second wave in the United States 
for July–August 2020 (not shown) and the 2021 summer wave, as 
well as the second or third waves in 2021 in tropical countries such 
as India and in Latin America. In rich countries of the Northern 
Hemisphere, the cooled indoor microclimate during these months 
could accommodate transmission, as in the many outbreaks 
observed in the meat-processing plants of the United States40 and 
Europe41 where cooled air is mechanically reventilated. In countries 
such as Argentina, Brazil, Colombia and Peru, the limited vaccine 
supply with its slow roll-out, weak health systems and fragile econo-
mies that make stay-at-home orders difficult to impose or main-
tain can all combine to explain the recent surges in spring of 2021. 
The implications, and the possibility that new variants emerging at 
these latitudes might be better adapted to stable tropical conditions, 
remain to be thoroughly examined.

The positive correlations we found for the summer months of 
2020 (for example, Fig. 1) during the seasonal low of cases may also 
reflect community transmission in public temperature-controlled 
buildings such as care homes41,42. They may also result from mas-
sive social clustering and increased contact during warm-weather 
leisure activities outdoors43. Indeed, air conditioning in the sub-
tropics was also proposed to explain SARS transmission32, a situ-
ation bearing similarities with influenza44. Similarly, the Northern 
Hemisphere experienced an important uptick in cases in summer of 
2021 in countries such as Spain and Portugal, the target of massive 
seaside tourism in Europe. Regardless of explanation, these positive 
associations were less frequent overall, and less robust and weaker 
when zooming into smaller temporal window sizes.

Our study has several limitations, the most important one stem-
ming from the limited length of the epidemiological records so far 
available. Also limiting are the different social and environmental 
forcing factors influencing the epidemiology of COVID-19, which 
can be country-dependent. When SDC is employed at a single scale 
of analysis, it can potentially identify spurious correlations, an aspect 
largely circumvented by the new multiscale analysis. Interestingly, 
SDC sensitivity can help track other locally relevant epidemiologi-
cal dynamics potentially linked to human behavior, such as summer 
gatherings in 2020 inside building premises or under the effect of air 
conditioning in hot climates, producing positive associations. Such 
associations do not arise from direct meteorological preferences of 
the virus but from effects of human behavior on virus transmis-
sion. They would not be detected by fixed regression methods. 
Data-reporting differences across locations and different sensitivi-
ties of virus strains might alter the current results, as data for these 
new variants (delta, delta-plus, lambda) have not been analyzed 
here. Variation in reporting errors add uncertainty to the analysis, 
although SDC appears robust to identifying associations even in the 
presence of a strong weekly cycle. This robustness opens the door 
to the development, in the near future, of more curated and tailored 
climate services and early-warning systems for COVID-19.

The identified climate forcing should persist for novel virus 
variants with increased transmissibility and an enhanced abil-
ity to partially evade protection from previous exposure. It 
should also persist at lower incidence levels were the disease to 
become endemic, therefore defining the annual timing for vacci-
nation. Strong current policies to curtail transmission, including  

lockdowns, where effective, should limit the role of climate drivers. 
This effect can already be seen when considering the most recent 
reported cases through the winter in regions of Italy (Extended 
Data Fig. 6). The frequency of local significant correlations with our 
method decreases markedly and the critical range of negative cor-
relations is no longer evident (Extended Data Fig. 6b). By contrast, 
for regions of Spain, where control efforts have been more variable 
in implementation, this range remains apparent and consistent with 
the earlier waves (Extended Data Fig. 6b), even though climate 
conditions are shared by the two countries (Extended Data Fig. 
6c). Public health interventions to curb transmission of COVID-
19 have focused in this initial phase on reducing the contact rate 
between people through social distancing, and on hand washing, 
decontamination of infected surfaces and face covering. With the 
exception of face covering, these measures have emphasized the 
importance of short-range transmission, the default assumption on 
respiratory diseases caused by exhaled droplets45 with a restricted 
spatial range46. The role of smaller exhaled droplets that become air-
borne as bio-aerosols or ‘droplet nuclei’ for extended periods, and 
may cover long distances in a viable state, has been proposed for 
COVID-19 but has remained unresolved47–50. Seasonality, and the 
role of low temperatures and the associated low humidity, can be 
mechanistically linked to viable SARS-CoV-2 aerosols, supporting 
the relevance of the airborne transmission route implicated in other 
studies51. This link warrants an emphasis on ‘air hygiene’ through 
improved indoor ventilation52 to more effectively intervene in the 
unfolding pandemic. It also underscores the need to include appro-
priate meteorological parameters in the evaluation and planning of 
pharmacological and behavioral control measures.

Methods
Global statistical analysis. Our first attempt to identify plausible effects of 
meteorological covariates on COVID-19 spread applied a comparative regression 
analysis. To this end, we focused on the exponential onset of the disease, as it is the 
epidemic phase that allows for a better comparison between countries or regions, 
without the confounding effect of intervention policies. We first determined, for 
each of the spatial units (either countries or NUTS (nomenclature of territorial 
units for statistics) 2 regions), the day in which 20 or more cumulative cases were 
officially reported. We then fitted the first-order polynomial function f(t) = x0 + rt 
for the next 20 days of log-transformed data, where t represents time (in days) 
and x0 is the value at initial condition t = 0. The r parameter can be understood as 
the exponential growth rate, and is then used to estimate the basic reproduction 
number (R0) using the estimated serial interval T for COVID-19 of 4.7 days53, such 
that R0 = 1 + rT (ref. 54). (We note that we are interested here in the relationship 
between the reproductive number and not in the actual inference of R0.) Once R0 
was obtained for all our spatial units, we filtered our meteorological data to match 
the same fitting period (with a 10-day negative delay to account for an incubation 
and reporting lapse) for every spatial unit. To compute a single average of the 
meteorological variables per regional unit, we computed a weighted average on 
the basis of the population contribution of each grid cell to the total population 
of the region. We did so to have an aggregated value that would better represent 
the impact of these factors on the population transmission of COVID-19, as the 
same variation in weather in a high-density urban area is more likely to contribute 
to a change in population-level transmission than that of an unpopulated rural 
area. We then averaged the daily values of temperature and AH for each country 
and computed univariate linear models for each of these variables as predictors of 
R0. Given the somewhat arbitrary criteria to select the dates to estimate the R0 in 
each country, a sensitivity analysis was run to test the robustness of the regressions 
to changes in the related parameters. We tested 70 different combinations of two 
parameters: the total number of days used for the fit (18–27) and the threshold of 
cumulative COVID-19 cases used to select the initial day of the fit (15–45). We also 
calculated the weather averages by shifting the selected dates accordingly. Then, a 
linear model for each of the estimates was fitted for both T and AH. A summary of 
the distribution of parameter estimates (the regression slope coefficients and the R2 
of the models) is shown in Extended Data Fig. 3.

Bivariate time-series analysis with scale-dependent correlations. To examine 
associations between cases and climate factors in more detail, SDC was performed 
on the daily time series of both COVID-19 incidence and a given meteorological 
variable. SDC is an optimal method for identifying dynamical couplings in short 
and noisy time series20,21. In general, Spearman correlations between incidence 
and a meteorological time series assess whether there is a monotonic relation 
between the variables. SDC analysis was specifically developed to study transitory 
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associations that are local in time at a specified temporal scale corresponding 
to the size of the time intervals considered (s). The two-way implementation 
(TW-SDC) is a bivariate method that computes non-parametric Spearman rank 
correlations between two time series, for different pairs of time intervals along 
these series. Different window sizes (s) can be used to examine increasingly finer 
temporal resolution. The results are sensitive to the value of this window size, s, 
with expected significant and highest correlation values at the scale of the transient 
coupling between variables. Correlation values decrease in magnitude as window 
size increases, and averages are computed over too long a time interval. Values can 
also decrease and become non-significant for small windows when correlations 
are spurious. Here, the method was applied for windows of different length (from 
s = 75 to 14 days) and, despite a weekly cycle showing up in some cases for small s, 
results removing this cycle were robust. We therefore did not remove this cycle.

The results are typically displayed in a figure with the following subplots: (1) the 
two time series, to the left and top of the matrix of correlation values, respectively; 
(2) the matrix or grid of correlation values itself in the center, with significant 
correlations colored in blue when positive and in red when negative, with rows and 
columns corresponding to the temporal localization of the moving window along 
the time series on the left and top, respectively; (3) a time series at the bottom, 
below this grid, with the highest significant correlations for a given time (vertically, 
and therefore for the variable that acts as the driver, here the meteorological time 
series). To read the results, one starts at the diagonal and moves vertically down 
from it to identify a given lag for which significant correlations are found (the 
closest to the main diagonal). In some of the SDC figures, the time intervals with 
high local correlations are highlighted with boxes. These intervals alternate with 
other ones (left blank) for which no significant correlation is found. All colored 
areas correspond to significance levels of at least P < 0.05. A new presentation 
of results is also used for the influenza analysis, in which the two time series are 
superimposed in the same plot with the significant correlations shown in a panel 
below as a function of time and lag (Extended Data Fig. 9).

Significance is assessed with a non-parametric randomization test (see ref. 20 for 
further details and for examples illustrating the method). For the baseline test, SDC 
calculates Spearman correlations (at α = 0.05) between two white-noise time series 
at each fragment size s for a non-parametric permutation test (Supplementary Fig. 
7). The indices of the series are randomly re-ordered, breaking their temporal shape. 
This permutation test enables a first estimate of the probability of finding significant 
spurious correlations, and it can thus be used as a non-parametric significance 
test for pairs of any length for the time series of interest. As seen in Supplementary 
Fig. 7, the threshold decays rapidly as the fragment size grows, with high values 
becoming rarer the longer the time series are compared. As a second test, SDC 
evaluates the unwanted effects of the internal autocorrelation in a time series. This 
effect might artificially inflate the correlation obtained between two time series, and 
should therefore be taken into consideration properly in a significance comparison. 
To estimate this effect, we generate pairs of autocorrelated (red) noise series of 365 
time steps, with a mean μ = 0 and standard deviation σ = 1 and varying degrees 
of autocorrelation (autocorrelation parameter φ in Supplementary Fig. 8) from 0 
(equivalent to white noise) to 0.95, in steps of 0.05. We repeated this procedure 20 
times for every unique combination of parameters to achieve a robust estimate. The 
method then searches for significant couplings in either direction. This is carried 
out for each of these synthetic time-series pairs with an SDC analysis (for example, 
with s = 30), yielding, for each of them, the false discovery rate, which accounts 
for a type I error and provides the rate of significant couplings at α = 0.05. In 
Supplementary Fig. 8b, we show the average false discovery rate of the tests for each 
pair of autocorrelation values. As shown, the chance of finding a spurious coupling 
increases monotonically as a function of the autocorrelation evaluated.

Our approach focuses on analyzing temporal associations in one location 
at a time, and comparing across these locations the patterns of association 
themselves, including their timing (for example, in the waning or rising phase of 
epidemic waves). This allows comparison of results among distinct regions, despite 
differences in control measures and disease epidemic state. Time-series analyses 
applied to each location do not present the typical problems of comparative spatial 
regression studies, which might be biased by uncontrollable confounding effects 
across spatial locations.

One reason why couplings between two variables in ecological or 
epidemiological systems may be transient couplings is the existence of thresholds 
above or below which responses to forcing are weak or absent. To interrogate our 
analyses for the existence of critical thresholds/ranges for optimal transmission 
of the virus (inferred from COVID-19 disease outcomes), we pooled all negative 
and positive significant correlations performed at a size s = 21 days between each 
meteorological variable and COVID-19 cases. We then computed the proportion 
of those negative correlations among all possible correlations for a given fragment 
size obtained for each bin of T or AH values and plotted their distribution (Fig. 3 
and Supplementary Figs. 4–6) for all individual regions in Italy.

Singular spectrum analysis (SSA) involves the spectral decomposition 
(eigenvalues and corresponding eigenvectors) of a covariance matrix obtained 
by lagging the time-series data for a prescribed number of lags M called the 
embedding dimension. There are two crucial steps in this analysis for which 
there are no formal results, but useful rules of thumb: (1) the choice of M and 
(2) the grouping of the eigenvectors to define the specific major components and 

reconstruct them. Typically, the grouping of the eigencomponents is based on the 
similarity and magnitudes of the eigenvalues, their power (variance of the data they 
account for) and the peak frequency of the resulting reconstructed components. 
For selection of the embedding dimension, one general strategy is to choose it 
so that at least one period of the lowest-frequency component of interest can 
be identified, that is, M > fs/fr, where fs is the sampling rate and fr the minimum 
frequency. Another strategy is that M be large enough that the M-lagged vector 
incorporates the temporal scale of the time series that is of interest. The larger 
the M, the more detailed the resulting decomposition of the signal. In particular, 
the most detailed decomposition is achieved when the embedding dimension 
is approximately equal to half of the total signal length. A compromise must be 
reached, however, as a large M implies increased computation, and too large a value 
may produce mixing of components. SSA is especially well suited for separating 
components corresponding to different frequencies in nonlinear systems. Here, we 
applied it to remove the weekly cycle.

MSDC analysis. MSDC provides a scan of the SDC analyses over a range of 
different scales (here, S from 5 to 100 days at 5-day intervals), by selecting the 
maximum correlation values (positive or negative) closer to the diagonal. The goal 
is to consider the evolution of transient correlations at all scales pooled together 
in a single analysis. The MSDC plot displays time on the x axis and scale (S) on 
the y axis, and positive and negative correlations either jointly or separately. The 
rationale behind MSDC is that correlations at very small scales can occur by chance 
because of coincident similar patterns, but that as one moves up to larger scales (by 
increasing S), the correlation patterns that are spurious tend to vanish, whereas those 
reflecting mechanistic links increase in strength. This increase in correlation values 
should occur up to the real scale of interaction, decreasing afterwards. By ‘real’, we 
mean here the temporal scale covering the extent of the interaction between the 
driver and the response process (in this case, the response of disease transmission 
to a given climate factor). Thus, continuity of the same sign correlations together 
with transitions to larger values are indicative of causal effects, whereas the rapid 
vanishing of small-scale significant correlations signals spurious ones.

Process-based model. Description. The dynamical model is a discrete stochastic 
model that incorporates seven different compartments: S, E, I, C, Q, R and D. The 
model structure is illustrated in Fig. 4. The transition probabilities of the stochastic 
model are based on the corresponding rates of the transitions between classes in 
the deterministic (mean-field) model (specified in Fig. 4b). These probabilities 
are defined as follows. P(e) = (1.0 − exp(−β dt)) is the probability of infection 
exposure of the susceptible class, where β = (1/N)(βII + βQQ) is the infection rate 
(of the deterministic model). P(i) = (1.0 − exp(−γ dt)) is the probability that an 
new exposed individual becomes infectious, where γ denotes the incubation 
rate. P(r) = (1.0 − exp(−Λ dt)) is the recovery probability, where λ0(1 − exp(λ1t)) 
is the (deterministic) recovery rate. P(p) = (1.0 − exp(−α dt)) is the protection 
probability, where α = α0exp(α1t). P(d) = (1.0 − exp(−K dt)) is the mortality 
probability, with K = k0exp(k1t). P(re) = (1.0 − exp(−τ dt)) is the release probability 
from confinement, where τ = τ0exp(τ1t). Finally, P(q) = (1.0 − exp(−δ  dt)) is the 
detection probability, where δ is the quarantine rate (for example, at which infected 
individuals are isolated from the rest of the population).

In the model, both infected non-detected and infected detected individuals 
can infect susceptible ones. In the model incorporating temperature in the 
transmission rate, the respective values of βI and βQ are calculated as follows:

βI(t) = βI Tinv(t); βQ(t) = βQ Tinv(t)

where Tinv = f
(

1−T(t)
T̄

)

, with T̄  corresponding to the overall mean of the 
temperature time series and f(·) to a Savitzky–Golay filter, used to smooth the 
temperature series with a window size of 50 data points and a polynomial order of 
3. When the infection rate is constant, we simply omit the temperature term. For 
further comparison, in a third model, β is specified with a sinusoidal function of 
period equal to 12 months and an estimated phase.

The number of individuals transitioning from compartment i to j at time t are 
determined by means of binomial distributions P(Xi,P(y)), where Xi corresponds 
to one of the compartments S, E, I, Q, R, D, C, and P(y) to the respective transition 
probability defined above. Thus,
•	 e(t) = P(S(t), P(e)), new exposed individuals at time t
•	 p(t) = P(S(t), P(p)), protected individuals at time t
•	 i(t) = P(E(t), P(i)), new infected not detected individuals at time t
•	 q(t) = P(I(t), P(q)), new infected and detected individuals at time t
•	 r(t) = P(Q(t), P(r)), total recovered individuals at time t
•	 d(t) = P(Q(t), P(d)), total dead individuals at time t
•	 re(t) = P(C(t), P(re)), individuals released from confinement at time t

Then, the final dynamics are given by the following equations:

S(t) = S(t − dt) − e(t) − p(t) + re(t)

E(t) = E(t − dt) + e(t) − i(t)

I(t) = I(t − dt) + i(t) − q(t)
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Q(t) = Q(t − dt) + q(t) − r(t) − d(t)

R(t) = R(t − dt) + r(t)

D(t) = D(t − dt) + d(t)

C(t) = C(t − dt) + p(t) − re(t)

Calibration. The model was implemented using Python and calibrated by means of 
the least squares algorithm of the scipy library. The error function minimized with 
this algorithm was obtained from the normalized residuals on the basis of total 
cases (Q + R + D) and deaths (D).

To search parameter space, we ran 100 calibrations starting from different 
initial choices of parameter combinations. The tolerance for termination in the 
change of the cost function was set to 1 × 10−10. Tolerance for termination by the 
norm of the gradient was also set to 1 × 10−10, and the tolerance for termination 
by the change of the independent variables was set to 1 × 10−10. The solver was 
the lsmr method (which is suitable for problems with sparse and large Jacobian 
matrices) with a differential step of 1 × 10−5. With this configuration, each fitting 
run usually converged after ~500 iterations.

Validation. To compare the model including an effect of T in the transmission rate 
to those without it, we calculated the chi-square, Akaike information criterion (AIC) 
and Bayesian information criterion (BIC) indices for the residuals obtained from the 
optimization process. The resulting values are shown in Supplementary Table 1.

Our choice of T to modulate the infection rate (β) instead of AH underlies the 
fact that the temporal dynamics of both factors roughly follow the same shape, 
with the advantage that T shows less oscillatory behavior than AH. This fact adds 
stability to the model when the inverse relationship is used in the calculation of β 
(Supplementary Information). This selection is further reinforced by the results 
from the SDC analyses, which yielded larger correlations for temperature, even 
when penalizing for the larger autocorrelation structure.

Our choice to modulate β using T instead of AH follows from the fact that 
the temporal dynamics of both climate variables present roughly the same shape, 
with the advantage that T exhibits weaker oscillations. This less fluctuating pattern 
provides stability to the model fitting when the inverse relationship is used in 
the calculation of β (Supplementary Information). Additionally, the transient 
correlations obtained with SDC yielded higher values for T than for AH (even 
when accounting for concurrent levels of autoregression in the two variables).

Data availability
Data on COVID-19 daily incidence counts were retrieved from the ECDC dataset55 
for the nationally aggregated data and from the COVID-19 Data Hub56 for the 
NUTS 2-disaggregated incidence data. National and regional boundaries were 
obtained from shapefiles provided by GISCO services by Eurostat57. Meteorological 
data were retrieved from ERA5 reanalysis through API requests to the Copernicus 
Climate Data Store (CDS)58. We obtained temperature (at 2 m), sea level pressure, 
total precipitation and dew point temperature data for a 0.5° × 0.5° grid for the 
country-wise analysis and for a 0.25° × 0.25° grid for the rest. From the 2 m 
temperature and the dew point temperature, we derived relative humidity, and used 
the atmos Python package59 to calculate AH. The Gridded Population of the World 
(GPWv4), developed by the Center for International Earth Science Information 
Network (CIESIN) at Columbia University, was obtained from ref. 60 at a resolution 
of 2.5 min. We did not include data from the United States in our analyses given the 
large geographical extent of this country, which includes different climatic zones, 
and the largely asynchronous implementation of intervention policies across its 
different states. Data for influenza A and B incidence in the city of Kawasaki were 
retrieved from the Real-time Surveillance website (https://kidss.city.kawasaki.
jp/en/realsurveillance/opendata) of the Japanese National Epidemiological 
Surveillance of Infectious Diseases61 as total daily reported cases from 1 March 
2014 to 31 December 2020. Daily temperature averages were obtained by averaging 
the hourly values for the same period obtained via the ERA5 reanalysis for grid 
cells spanning the municipality of Kawasaki (coordinates (139.5, 35.5) and (139.75, 
35.5) in a 0.25° × 0.25° grid). Source data for Figs. 1 to 5 and Extended Data Figs. 
1 to 6 are available in a Code Ocean repository62. Source data for Figure 6 are 
provided with this paper.

Code availability
Code for the SDC analyses has been implemented as a Python package 
available in PyPi (sdcpy63). Code to ensure the reproducibility of the analysis 
is available in Code Ocean62 and GitHub (https://github.com/AlFontal/
covid_climate_signatures).
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Extended Data Fig. 1 | Comparison of the country-wise estimated R0 during the initial phases of the pandemic in contrast with their meteorological 
conditions. Estimated basic reproduction number (R0) during the initial phases of the pandemic for all countries included in the study (n=162). (A) 
To focus on the initial rise of the first wave, these estimates are based on the cumulative COVID-19 cases during the first 20 days following the 20th 
confirmed case in each country (see Methods). Scatterplots showing the variation of the estimated R0 for the different countries as a function of their 
average temperatures [∘C] (B) and absolute humidities [g/m3] (C) during the initial phase of the pandemic. Black lines and R2 values correspond to the 
estimates of an univariate linear model in both cases, fitted by Ordinary Least Squares (with p < 0.001 in both cases in a two-tailed T-test). Of the 162 
countries included globally, the numbers corresponding to each continent are the following: Africa (n=50), Asia & Oceania (n=45), Europe (n=38), North 
America (n=16), and South America (n=12). For comparison, the R0 estimates obtained after the first 100 reported cases (rather than 20) are shown 
in Extended Data Fig. 2(A). Similar spatial patterns are observed. The spatial distribution of average temperatures and absolute humidity, as well as the 
national weights based on relative population density, used to compute these averages, are shown in Extended Data Fig. 2(B-D).
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Extended Data Fig. 2 | Worldwide maps for estimated initial R0, weather variables, and population density. (A) Geographical distribution for R0 when 
it is estimated using the period of 20 days after the 100th COVID19 case (for comparison with Extended Data Fig. 1). (B) Geographical distribution of 
relative weights given to each cell in a 1 × 1∘ grid. Weights represent the fraction of the population living in each cell for every country. Maps in C and D 
correspond to the averages of AH and T +/-10 days before/after the notification day of the 20th COVID19 case in each country, respectively.
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Extended Data Fig. 3 | Regression sensitivity analysis. Sensitivity tests for the OLS regression models shown in Extended Data Fig. 1. (A) 95% CI of the 
estimated slopes of the OLS regressions (βAH and βT) for different values of the number of days (18 to 27) and initial number of cases (15 to 45) used for 
estimating the R0 (see Methods). B and C show the distribution of all the regression lines obtained when considering the variation in days and cases 
shown in A, for AH and T, respectively. Solid line is the median regression line and the shaded interval corresponds to the area occupied by the most 
extreme regression lines among the 70 sets of parameters tested. (D) Full range of R2 estimates obtained as a result of the sensitivity analysis. Results 
support the robustness and stability of results in Extended Data Fig. 1.
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Extended Data Fig. 4 | SDC analyses for the aggregated COVID-19 cases and absolute humidity for groups of contiguous countries. Idem as Figure 1 but 
for Absolute Humidity (g/m3).
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Extended Data Fig. 5 | Scale Dependent Correlation analyses of T/AH with COVID-19 cases during the initial wave and summer in Catalonia, Spain. 
Idem as Fig. 3 (A-D) but for Catalonia (Spain).
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Extended Data Fig. 6 | Distribution of weather conditions and its effect on COVID-19 spread across waves in Spain and Italy. (A) Distribution of 
daily absolute humidity and temperature averages for Italy and Spain during the whole considered period (15 February 2020 to 31 January 2021). (B) 
Comparison of the frequency of significant negative local correlations for different ranges of absolute humidity found in SDC analyses (s=21) for Italian 
and Spanish regions across the three defined periods of the COVID19 pandemic (see methods). (C) Distribution of daily absolute humidity averages in the 
same regions during the late waves of the pandemic (October 2020 to January 2021).
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Extended Data Fig. 7 | Multiscale SDC analysis of COVID-19 and temperature in South Africa, Argentina and Canada. Representation of the results of 
running multiple two-way SDCs at scales ranging from 5 to 100 days for the average daily temperatures against the number of reported daily new cases 
of COVID19 in South Africa, Argentina in Canada, spanning from February to December 2020. The top panels (red) represent the minimal significant 
Spearman correlation found for every pair of window size and date, while the central panels (blue) represent the maximal significant correlation for the 
same pair of variables. The bottom panels display the 7-days moving average of daily reported new cases for each of the regions.
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Extended Data Fig. 8 | Mathematical model’s goodness of fit. Mean squared error of each of the models, regions and periods in the study fitted with the 
process-based model.
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Extended Data Fig. 9 | Comparison of historical Influenza incidence and weather conditions in Kawasaki City. A and D show the daily averages for 
absolute humidity and temperature in the Kanagawa prefecture against the daily reported cases of Influenza A and B in Kawasaki City. Below, the results 
of an SDC analysis performed at s=30 for absolute humidity against Influenza A (B) and Influenza B (C), and temperature against Influenza A (E) and 
Influenza B (F).
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