
Emergence of Urban Growth Patterns from Human
Movements
Fengli Xu 

Tsinghua University
Yong Li  (  liyong07@tsinghua.edu.cn )

Tsinghua University
Chaoming Song 

University of Miami

Article

Keywords: Applied Physics, Statistical Physics, Social Couplings, Long-memory Effects

Posted Date: September 23rd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-79579/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-79579/v1
mailto:liyong07@tsinghua.edu.cn
https://doi.org/10.21203/rs.3.rs-79579/v1
https://creativecommons.org/licenses/by/4.0/


Emergence of Urban Growth Patterns from Human Move-

ments

Fengli Xua, Yong Lia∗ & Chaoming Songb∗

a) Beijing National Research Center for Information Science and Technology (BNRist), Depart-

ment of Electronic Engineering, Tsinghua University, Beijing, China

b) Department of Physics, University of Miami, Coral Gables, FL, USA

Cities grow in a bottom-up manner, leading to fractal-like urban morphology characterized

by scaling laws. Correlated percolation has succeeded in modeling urban geometries by im-

posing strong spatial correlations. However, the origin of such correlations remains largely

unknown. Very recently, our understanding of human movements has been revolutionized

thanks to the increasing availability of large-scale human mobility data. This paper proposes

a novel human movement model that offers a micro-foundation for the dynamics of urban

growth. We compare the proposed model with three empirical datasets, which evidences that

strong social couplings and long-memory effects are two fundamental principles responsible

for the mystical spatial correlations. The model accounts for the empirically observed scaling

laws, but also allows us to understand the city evolution dynamically.

Over a century ago, urban scientists envisioned the future cities being perfectly symmetric as

a result of well designed top-down city planning strategies 1. However, the increasingly available
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urban data suggests that cities grow in a bottom-up manner, calling for understandings of its micro

foundation 2–4. Later, three fundamental empirical laws have been discovered 2, 5, 6: First, the

distribution of city size follows a power law with a scaling exponent around two, implying large

cities are much rarer than small towns 5. Second, the urban area grows super-linearly with the

population, due to intense competition for spaces in previous studies 7, 8. Finally, the density of

occupied urban areas decreases exponentially with the radial distance to city centers 9–11. Physicists

have applied diffusion-limited aggregation (DLA) to model urban growth as an aggregation of

physical particles 7, 12. Further works showed that correlated percolation (CP) is a better alternative

to explain the emergence of the aforementioned laws 5. A key observation of the CP model is the

requirement of strong geographical correlation to reproduce the correct scaling relations 13. While

the CP model successfully explains the urban morphology, it has little connections with human

activities at the micro-level. The micro-foundation of such geographical correlation remains a

mystery. Here, we develop a novel urban growth model based on human movements, suggesting

that strong social coupling and long memory are two fundamental principles governing urban

growth.

Thanks to the availability of large-scale movement datasets, our understanding of human

movements has been revolutionized over the past decade 14–16. Existing human movement models

fall into three classes, as depicted in Fig. 1: Class A models treat human movements as randomly

moving particles without interactions. Brownian movement is one of such prototype models where

an individual’s displacements are normal-distributed 17. Unlike physical particles, empirical data

suggests human movements are characterized by large jumps between two consecutive steps, sat-
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isfying a power law,

P (~r|~r′) ∼
1

|~r − ~r′|(d+α)
, (1)

where P (~r|~r′) is the transition probability from location ~r′ to ~r, with d = 2 for two-dimensional

space 14, 18. The exponent α is observed around 0.55±0.05 19. The fact that the transition probabil-

ity decreases with distance characterizes the cost of travel distance of human movements, i.e., most

of the time people travel only over short distances, whereas occasionally people take longer trips.

Neglecting social interactions and memory effects, Eq. (1) suggests human movements follow a

Lévy-flight, with the population density ρ(~r) satisfying the fractional diffusion equation,

∂ρ(~r, t)

∂t
= −D(−∆)α/2ρ(~r, t), (2)

where D is the diffusion constant (see Method section for details). Nevertheless, both Brownian

motion and Lévy flight predict a uniform population distribution when time t approaches infinity,

in contrast to empirical observations 9.

Class B models such as Gravity model 8 and Radiation model 20, originate from the study

of migrations, where the traffic flow between two locations depends on their populations. For

instance, the Gravity model suggests the transition probability,

P (~r|~r′) ∼
ρ(~r) + ρ0

|~r − ~r′|(d+α)
, (3)

where ρ0 is the (inverse) coupling constant. In addition to the fat-tailed jump size distribution (1),

the gravity model (2) also requires the transition probability increases linearly with the population

at the destination ~r 21. This mechanism accounts for a mean-field background attractiveness rooted
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in social interaction, e.g., highly populated locations often offer more social opportunities 8. One

would hope that this social attractiveness being responsible for the mystical geographical corre-

lation in the CP model. Unfortunately, we find that the diffusion process of the gravity model

follows the same fractional diffusion Eq. (2) for Lévy flights (see Method section for details), i.e.,

it predicts a uniformly distributed urban patterns at a large t.

Class C models have been developed during the recent study of human mobility. Unlike

Class A where individuals move freely, empirical data found notable recurrent-visitation patterns

in human movements. Consequently, individuals show an ultra-slow diffusion, in contrast to a reg-

ular power-law diffusion in the Brownian motion and Lévy flight. To explain these new findings,

Individual mobility model(IMM) retreats human movements as a two-stage return-exploration pro-

cess to account for long memory effects. In particular, a preferential return mechanism is imposed,

i.e., the probability returning to a previous location ~ri,

P (ri) ∝ f(ri), (4)

proportional to its historic visitation frequency f(ri). Such long-memory return process slows the

human diffusion drastically. In particular, IMM predicts that the traveling distance l follows,

l ∼ logA, (5)

where A is the total visitation area 22. The logarithmic growth is one of the key ingredients for

human movements, characterizing the anomalous ultra-slow diffusion and home range effect 23

. Unfortunately, since IMM only models individual movements without involving social interac-

tions, it fails to capture urban growth patterns (see Result Section).
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Figure 1: The paradigm of human movement models. Existing human movement models classi-

fied based on whether account for the memory of historic movements or the social interactions, are

summarized as the paradigm with four classes: (A) Brownian motion and Lévy-flight belong to this

class where movements are independent and memoryless; (B) Gravity model and Radiation model

are the typical models where movements are socially correlated and memoryless; (C) Individual

mobility model belongs to this class where movements are independent and memory-aware. (D)

Missing corner of the current paradigm. The proposed Collective Mobility Model fills in this class

where movements are both socially correlated and memory-aware.
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In summary, neither social interactions (class B) nor memory effects (Class C) alone repro-

duce the geographical correlation required in the CP model. However, there is a missing corner

(Class D) in the current paradigm of human movement models (Fig. 1) that integrates social in-

teractions and long-memory simultaneously. It is rather curious to ask if these new class models

can predict urban growth patterns. To fill the gap, we propose a Collective Mobility Model(CMM)

that accounts in a minimal fashion both for memory effects and for interactions. Consider a N -

individual migration process in a L×L square lattice. Each individual follows a return-exploration

process. Like IMM, an individual’s return probability is proportional to his/her visitation frequency

(4). The probability to explore a new site, in contrast, relies on the populations, satisfying the grav-

ity law (3) (see supplementary material S2 for details). The coupling constant, ρ−1
0 , controls the

strength of population attraction, i.e., increasing ρ0 reduces the impact of population density, and

consequently, the strength of social interactions. For ρ−1
0 → 0, CMM is effectively equivalent to

IMM. Inspired by the strong geometrical correlation in CP models 5, we’re interested in the strong

coupling limit ρ−1
0 → ∞, where CMM describes a strongly correlated many-body system.

Results

We collect three public available urban development datasets, including the population and urban

area of cities in i) United States of America (U.S.A.) at 2000, ii) Great Britain (G.B.) at 1991,

and iii) the distribution of urban area in Berlin region at 1910, 1920 and 1945. For comparison,

we emulate the human migrations by four typical movement models for Classes A–D respectively,

namely the Lévy flight, Gravity model, IMM, and the proposed CMM. A simple emulation of large
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urban systems is impractical due to the high time complexity, which is O(Ml2) for each epoch with

M and l denoting the number of citizens and the size of the urban area, respectively. We address

this problem by designing improved sampling techniques to effectively reduce the complexity to

O(M)

To compare the morphology of the emulated urban systems to the empirical observations, we

plot population distributions in Fig. 2A–D for all models, together with the empirical distribution of

London city in where Fig. 2E. While the real-world geometry is affected by geographical features,

e.g., lakes and rivers, London city still exhibits prominent features of the compact city center and

fractal perimeters. These observations echo previous studies on the fractal geometry of urban

area 24–26.

The urban population distribution for Lévy flight and Gravity model follows the fractional dif-

fusion process (2), implying that individuals will gradually diffuse away from their initial position

over time. The emulation verifies this prediction with the urban population distributed uniformly

in urban space when the systems converge(see Fig. 2A–B). It indicates these two models fail to

reproduce compact and stable city centers. On the other hand, IMM predicts urban systems grow

homogeneously in the perimeter. The emulation result shows the perimeter of the urban area is a

standard circle, and the urban areas that have a similar radial distance to the city center have similar

population density (see Fig. 2C), which is in consistence with the theoretical prediction. Therefore,

the emulation suggests IMM cannot reproduce the fractal morphology of the urban area. On the

contrary, CMM successfully reproduces the compact city center in the urban system, where the
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Figure 2: The morphology of urban area generated by four different human movement mod-

els: (A) Lévy flight, (B) Gravity model, (C) Individual mobility model (IMM), (D) Collective

mobility model (CMM), and (E) the empirical data from London city. The population distri-

bution of each urban system is visualized as a heatmap in log scale, where blue color represents

underpopulated regions and red colors corresponding to regions of high population. The urban

systems are emulated with 30,000 individuals initially situated in urban centers and then move ac-

cording to mobility models until reaching a stable state. The Lévy flight and Gravity model fail to

reproduce a compact urban center, while IMM predicts the urban system grows in a homogeneous

manner, where fractal perimeter and sub-clusters are absent. CMM accurately reproduces the com-

pact urban center, fractal perimeter of urban area, and sub-clusters. The morphology predicted by

CMM is consistent with the empirical observation of London city.
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population density is significantly higher than the peripheral urban area (see Fig. 2D). Besides, the

perimeter of the city center demonstrates prominent fractal geometry, and numerous sub-clusters

are formed around it (see Supplementary Material S4 for details). These observations are in agree-

ment with the empirical observation on London city, which indicates CMM can reproduce the

morphology of the urban area.

To compare models to real-world urban growth quantitatively, we will focus on three funda-

mental empirical laws, each of which has been validated on multiple cities around the globe 2, 5, 6:

(A) City size distribution: The number of cities N(A) decreases with their areas A, following

a power law,

N(A) ∼ A−τ , (6)

where the exponent τ has been reported around 2.0 5. Percolation theory is the prevalent narrative

for this observation, with each site occupied as an urban area with a certain probability 13. It

predicts the scaling law (6) with the exponent ranging between 2 and 2.5, where τ = 2 corresponds

to a strong correlation between different sites and τ = 2.5 corresponds to a mean-field theory 13.

The empirical urban datasets show that city size distributions are well approximated by Eq. (6)

(see Fig. 3A), with τ = 2.09 ± 0.09 for U.S.A., τ = 2.01 ± 0.08 for G.B. and τ = 1.91 ± 0.16

for Berlin. These findings echo the theoretical predictions of site percolation theory and empirical

observations in the previous research 5, 13.

Lévy flight characterizes the movement as an individual diffusion process. The urban popula-
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Figure 3: The comparison of reproducing empirical urban growth patterns with urban sys-

tems driven by different human movement models. (A) Empirical city size distributions follows

scaling laws with exponent of −2.09± 0.09, −2.01± 0.08 and −1.91± 0.16 for U.S.A., G.B. and

Berlin region, respectively. (B) Empirical urban population density increases logarithmically with

city sizes. (C) Populated area density decreases exponentially with the distance to city center with

exponents of -0.3, -0.3 and -0.4 for U.S.A., G.B. and Berlin region, respectively. (D) Lévy flight,

Gravity model and IMM predict the scaling law with exponent of −2.55± 0.15, −2.58± 0.17 and

−2.98±0.51, while CMM predicts the exponent to be −2.02±0.13. (E) Lévy flight, Gravity model

and IMM predict urban population density to be invariant with city size, while CMM reproduces

the logarithmic correlations. (F) Lévy flight and Gravity model predict the populated area density

is invariant with distance to urban center, while IMM predicts populated area density decreases

slower than exponential function. CMM reproduce exponential distribution.10



tion will distribute uniformly in urban space as the urban system reaches a stable state. On the other

hand, although the Gravity model introduces the correlation among individuals through Eq. (3),

our analysis shows it also predicts the population distribution follows a fractional diffusion as Eq.

(2). When time t → ∞, the population will distribute uniformly in urban space ρ(r) = c, which

is independent of the coupling constant ρ−1
0 . Therefore, both the Lévy flight and Gravity model are

equivalent to the uncorrelated percolation. The emulated urban systems of Lévy flight and Gravity

model reproduce the scaling law distribution with −2.55 ± 0.15 and −2.58 ± 0.17 (see Fig. 3D),

which is consistent with the theoretical prediction of completely uncorrelated percolation. While

the analytical prediction of the memory-aware and social independent IMM model is unclear, the

emulation shows it also satisfies the scaling law, yet with an exponent τ = 2.98± 0.51. The large

exponent implies the fact that individuals are localized within their own home-range since the IMM

is equivalent to the non-interactive limit of CMM with ρ−1
0 → 0. In contrast, when the coupling

constant ρ−1
0 → ∞, the CMM model becomes strongly-correlated. As a result, it reproduces the

scaling law with τ = 2.02 ± 0.13, which agrees with the theoretical predictions and empirical

patterns observed in real-world data. These results suggest both the principals of social interaction

and memory are essential components of reproducing the empirical city size distribution, while

CMM successfully integrates them into a unified movement model.

(B) Super-linear relation between population and city size: The positive allometric popula-

tion growth with the urban area is widely observed in cities around the globe 27, 28. Larger cities

tend to have a higher urban population density, ρA ≡ N(A)/A, because they are developing into

the third dimension 24, 29, 30. Recent researches suggested the balance between the cost and gain of
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concentrating population in urban areas, would explain the observed super-linear growth 6. This

social-economic hypothesis consists of two assumptions: i) the average gain from the intense social

interaction is proportional to the population density ρA; ii) the average living cost is proportional

to the typical travel distance l ∼ logA (see Eq. (5)) to explore the city. Their balance leads to,

ρA ∼ logA. (7)

The assumption i) agrees with the social interaction in Eq. (3), whereas the assumption ii) is rooted

in thememory effect in Eq. (4).

Fig. 3B plots the population density ρA with city area A across different cities for both U.S

and G.B, finding that the empirical observation agrees precisely with the predicted logarithmic law

(7). It is worth noting that previous studies reported a power-law fitting, i.e., ρA ∼ Aδ with a tiny

exponent δ ≈ 0.1 6. However, Within the range of magnitude of the empirical data the logarithmic

function is indistinguishable with a small-exponent power-law. Fig. 3E compares the emulation

results for the four prototype models, finding that the proposed CMM reproduces the logarithmic

law, whereas there is no area-dependence of the population density ρA for the other three models.

This result demonstrates that both social interaction and memory are necessary for the observed

scaling law (7).

(C) Exponential occupation profile: The urban occupation profile φ(r) is defined as the prob-

ability of finding an inhabited area at the distance r from the city center. Empirical studies sug-

gested an exponential profile 31,

φ(r) ∼ φce
−λr. (8)
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Figure 4: The qualitative examination on reproducing the populated area density profile in

different periods. (A) The exponent of exponential function between populated are density, and

distance to the city center gradually decreases as the cities evolve in the Berlin region. (B) CMM

predicts the exponent of exponential function between populated area density and distance to the

city center gradually decreases as the emulation proceeds.
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We also observe the same exponential law for all three empirical datasets, shown in Fig. 3C,

indicating that the city center attracts most of the population, whereas the occupation probability

decreases rapidly with the radial distance. However, such a rapid decline somehow contradicts

with the fat-tailed nature of the human movement (1) that suggests the human travels being able to

reach areas far away from the initial location 18, 24.

This paradox can be also resolved by introducing jointly the social interaction and memory

in human movement. Indeed, emulation results in Fig 3F shows the occupation profile in CMM

agrees very well with the exponential law (8). In contrast, φ(r) is independent with r for Lévy

flight and Gravity model, whereas IMM shows an non-exponential decrease. Moreover, it has been

suggested that the declining rate λ shall decrease as the city evolves, due to the constantly pushing

forwarded frontiers of cities 5, in line with the observations in the Berlin dataset where φ(r) at

three different time has been measure. Fig. 4A shows λ decreases gradually from 0.050 to 0.031.

The emulation results of CMM precisely reproduce the evolution of the occupation profile during

urban development (see Fig. 4B).

Discussion The rapid urbanization process urges the demand for a more comprehensive under-

standing of the patterns of urban growth 32, 33. Correlated percolation model (CP) has reproduced

successfully urban morphology by introducing a strong geographical correlation to percolation

theory, leaving the origin of such correlations a mystery 5. In this paper, we propose a novel urban

growth model that roots in human movements, providing a solid micro-foundation for the mystical

geographical correlation in the CP model. It offers a bottom-up approach towards understanding
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the observed urban morphology and scaling laws. Two principles, namely, the strong social inter-

action and memory of historical movements, are shown to be the key ingredients governing human

migration, and consequently the urban development. Unlike existing human movement models

where individual movements are either uncorrelated or memoryless and fail to capture the urban

growth, the proposed Collective mobility model (CMM) demonstrates both principals play essen-

tial roles. Theoretical analysis and emulation results show the memory principal is essential to

reproduce compact and stable city centers in urban systems. In particular, CMM reproduces three

major empirical laws: city size distribution, super-linear population-area relation, and the expo-

nential occupation profile, consistent with the established CP model and social-economic model at

the macroscopic level. Unlikely the CP model that is purely static, and has to take the exponential

occupation profile as input, the proposed CMM predicts the occupation profile (see Fig. 3F) and its

evolution (see Fig. 4B) in a self-contained manner, without imposing additional assumptions (see

supplementary material S5 for more details about model parameters). In all, the CMM not only

fills the missing gap in the paradigm of existing movement models (Fig. 1), but at the same time

complements previous urban growth models, shedding light on the underlying mechanisms urban

growth in the macroscopic level.

In addition to the scientific findings, our research also may have direct implications on wide

range downstream applications 34–37, i.e., city planning, resource allocation, disease controlling,

etc. First, conventional top-down city planning strategies have been shown ineffective in governing

urban growth by the previous research 2. We propose an alternative bottom-up urban growth model

that predicts the urban growth process from the perspective of human movement. These findings
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may inspire novel city planning policies that leverage the principals of human movement 38. For

example, promoting the development of urban regions by reducing the cost of traveling to them.

Second, the proposed urban model facilitates us to emulate the patterns of urban dynamics with

high accuracy, which may shed light on the preemptive allocation of critical resources, such as

transportation infrastructures 39 and medical supplies 40. Third, the proposed model reveals the

underlying correlations between urban structures and human movement. Therefore, the findings

improve our understandings of urban movement, which plays a crucial role in controlling conta-

gious diseases 41, 42.

Methods

Diffusion Equation of Gravity Model In this section, we develop the diffusion equation (2) for

the Gravity model. We start with a lattice model to work out the master equation and then find the

equation at the continuous limit by taking the lattice spacing approaching zero.

Equation. (3) indicates that the transition matrix Wij from the lattice site j to i follows,

Wij = λg(l)
ρi(t) + ρ0
|~ri − ~rj|d+α

, (9)

where λg(l) is the transition rate with an appropriate scaling with the lattice spacing l, and α ∈

(0, 2].
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The corresponding master equation reads,

dρi(t)

dt
=

∑


[Wijρj(t)−Wjiρi(t)]

= λgρ0
∑
j

ρj(t)− ρi(t)

|~ri − ~rj|d+α

(10)

Assuming a small lattice spacing l, we approximate the summation with a continuous inte-

gration,

∑
j

ρj(t)− ρi(t)

|~ri − ~rj|d+α
≈ lα

∫
ρ(~y, t)− ρ(~x, t)

|~x− ~y|d+α
dy

= −cd,αl
α(−∆)α/2ρ(~x, t),

(11)

where (−∆)α/2 is the fractional Laplacian satisfying,

̂(−∆)α/2f(~k) = |~k|αf̂(~k), (12)

and

cd,α =
πd/2|Γ(−α/2)|

2αΓ((d+ α)/2)
. (13)

The continuous equation satisfies the fractional diffusion equation,

∂ρ(~x, t)

∂t
= −D(−∆)α/2ρ(~x, t), (14)

where the diffusion constant D ≡ cd,αρ0 liml→0 λg(l)l
α, in line with Eq. (2). For α = 2 we recover

the standard diffusion equation.

Model Emulation We evaluate the effectiveness of the proposed movement models in predicting

urban growth patterns through emulating urban systems with citizens governed by them. Specif-

ically, the urban system is emulated in a two-dimensional square space with l sites in width and
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length and each site represents a unit area. The urban system consists of N citizens with their

movement trajectories generated based on the corresponding urban movement models. The emu-

lated citizens initially located at the centers of urban systems, and then iteratively sample their next

visit sites at each epoch until the system reaches a stable state. After the system is converged, we

considered the occupied sites as populated urban areas, and examine the morphology and growth

patterns of the emulated urban system. Emulating agent-based urban systems according to urban

movement models is time expensive 43, 44. To address these challenges, we propose two improved

sampling methods, alias sampling and sorted array sampling, to accelerate the emulation (see sup-

plementary material S3 for details).

Data Availability All the empirical urban data we examine are publicly available in government

websites and previous research (see supplementary material S1 for details). Specifically, the data

of U.S.A cities can be accessed through the website of U.S.A. Census Bureau 45. The data of

cities in G.B. is available on the website of the Statistical Office of the European Union 46. Both

of these two datasets provide information on urban area coverage and population distribution. On

the other hand, the dataset of the Berlin region is collected from the telemetry images of urban

area distribution in 1910, 1920, and 1945, which is released in the previous research 47. Note that

the telemetry images only provide information on the coverage area of cities but not the urban

population distribution.
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Figures

Figure 1

The paradigm of human movement models. Existing human movement models classi-�ed based on
whether account for the memory of historic movements or the social interactions, are summarized as the
paradigm with four classes: (A) Brownian motion and L´evy-�ight belong to this class where movements
are independent and memoryless; (B) Gravity model and Radiation model are the typical models where
movements are socially correlated and memoryless; (C) Individual mobility model belongs to this class
where movements are independent and memory-aware. (D) Missing corner of the current paradigm. The
proposed Collective Mobility Model �lls in this class where movements are both socially correlated and
memory-aware.



Figure 2

The morphology of urban area generated by four different human movement mod-els: (A) L´evy �ight, (B)
Gravity model, (C) Individual mobility model (IMM), (D) Collective mobility model (CMM), and (E) the
empirical data from London city. The population distri-bution of each urban system is visualized as a
heatmap in log scale, where blue color represents underpopulated regions and red colors corresponding
to regions of high population. The urban systems are emulated with 30,000 individuals initially situated
in urban centers and then move ac-cording to mobility models until reaching a stable state. The L´evy
�ight and Gravity model fail to reproduce a compact urban center, while IMM predicts the urban system
grows in a homogeneous manner, where fractal perimeter and sub-clusters are absent. CMM accurately
reproduces the com-pact urban center, fractal perimeter of urban area, and sub-clusters. The morphology
predicted by CMM is consistent with the empirical observation of London city.



Figure 3

The comparison of reproducing empirical urban growth patterns with urban sys-tems driven by different
human movement models. (A) Empirical city size distributions follows scaling laws with exponent of
−2.09 ± 0.09, −2.01 ± 0.08 and −1.91 ± 0.16 for U.S.A., G.B. and Berlin region, respectively. (B) Empirical
urban population density increases logarithmically with city sizes. (C) Populated area density decreases
exponentially with the distance to city center with exponents of -0.3, -0.3 and -0.4 for U.S.A., G.B. and
Berlin region, respectively. (D) L´evy �ight, Gravity model and IMM predict the scaling law with exponent
of −2.55 ± 0.15, −2.58 ± 0.17 and−2.98±0.51, while CMM predicts the exponent to be −2.02±0.13. (E) L
´evy �ight, Gravity model and IMM predict urban population density to be invariant with city size, while
CMM reproduces the logarithmic correlations. (F) L´evy �ight and Gravity model predict the populated
area density is invariant with distance to urban center, while IMM predicts populated area density
decreases slower than exponential function. CMM reproduce10 exponential distribution.



Figure 4

The qualitative examination on reproducing the populated area density pro�le in different periods. (A)
The exponent of exponential function between populated are density, and distance to the city center
gradually decreases as the cities evolve in the Berlin region. (B) CMM predicts the exponent of
exponential function between populated area density and distance to the city center gradually decreases
as the emulation proceeds.
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