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Abstract Enhanced sampling methods such as metadynamics and umbrella

sampling have become essential tools for exploring the configuration space of

molecules and materials. At the same time, they have long faced a number of

issues such as the inefficiency when dealing with a large number of collective

variables (CVs) or systems with high free energy barriers. In this work, we show

that with the clustering and adaptive tuning techniques, the reinforced dynamics

(RiD) scheme can be used to efficiently explore the configuration space and free

energy landscapes with a large number of CVs or systems with high free energy

barriers. We illustrate this by studying various representative and challenging

examples. Firstly we demonstrate the efficiency of adaptive RiD compared with

other methods, and construct the 9-dimensional free energy landscape of peptoid

trimer which has energy barriers of more than 8 kcal/mol. We then study the

folding of the protein chignolin using 18 CVs. In this case, both the folding

and unfolding rates are observed to be equal to 4.30 µs−1. Finally, we propose

a protein structure refinement protocol based on RiD. This protocol allows us

to efficiently employ more than 100 CVs for exploring the landscape of protein

structures and it gives rise to an overall improvement of 14.6 units over the initial

Global Distance Test-High Accuracy (GDT-HA) score.

I. INTRODUCTION

Over the past several decades, molecular dynamics (MD) has become an essential tool in

modeling the structure and dynamics of biomolecules. At the same time, it has also been

recognized that an essential difficulty with MD is the time scale it can access, due to the

presence of a large number of (free) energy barriers in the (free) energy landscape of these

biomolecules, since crossing such barriers are rare events. Enhanced sampling methods have

thus been proposed to accelerate the sampling over the phase space. A useful idea has

been to add a biasing potential, a function of one or more collective variables (CVs) of the

system, to the potential energy, so that the free energy barriers are reduced. Well-known

examples of the application of such ideas include metadynamics (MetaD) [1, 2] and umbrella

sampling [3]. Both of them have become popular tools in molecular simulations. However,
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the effectiveness of these methods is much reduced as the number of CVs increases. When

the number of CVs is small, the choice of the CVs becomes a critical issue for the accuracy

of these methods. Yet at the moment, there are still no systematic and reliable ways to

choose such CVs.

An important advance was the temperature accelerated MD (TAMD) [4–6]. It proposes

to treat the CVs as dynamical variables, couple them, adiabatically [4] or harmonically [5, 6],

to the atomistic system by introducing an extended system, and accelerate the sampling by

using an artificially higher temperature for these variables. TAMD is a very effective tool

for exploration. It allows for at least dozens of CVs to be used, and it has been successfully

applied to large-scale systems [7]. On the front of reconstructing the free energy surface,

Maragliano et al [8] proposed to use radial-basis functions, which predated the work using

neural networks. Whether these ideas can be used to accurately calculate the free energy

of systems with a larger number of CVs as the ones reported here is a non-trivial issue that

remains to be addressed.

Recently, some efforts on dealing with larger number of CVs have been made under

the MetaD framework. Bias-exchange metadynamics (BEMetaD) [9] is proposed to sim-

ulate multiple replicas at the same temperature, and each replica is biased with a dif-

ferent set of CVs. Using the replica exchange idea, BEMetaD is able to construct free

energy surfaces (FESs) in the high-dimensional CV space. Parallel bias metadynamics (PB-

MetaD) [10, 11] constructs a high-dimensional bias potential by the weighted direct product

of low-dimensional ones, and boosts the sampling with only one replica. These methods can

be implemented under the well-tempered MetaD scheme. Both BEMetaD and PBMetaD

assume that the biasing potential is a direct product, so they are effective only when the FES

has a similar structure, which is not necessarily true for general high-dimensional problems.

Recent advances in machine learning (ML) offer a powerful tool for approximating high-

dimensional functions. Several attempts have been made along this direction [12–20]. These

approaches represent the free energy surface by high-dimensional approximators like kernel

functions or deep neural networks (DNNs). What differentiates different approaches is how

one optimizes the parameters of the approximators and how the approximators are used

on-the-fly to facilitate sampling. The Gaussian process regression is used to reconstruct

the FES [12] and to enhance the sampling of the system [13]. DNNs trained by stochastic
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optimization techniques are proposed to represent the FESs [14]. The efficiency of sampling

is enhanced by biasing the system with DNNs trained from density estimations [16] or from

mean forces [17]. Sultan et.al. proposed nonlinear latent embedding for obtaining the latent

CVs [18]. The neural network-based variationaly enhanced sampling (VES) approach [19]

minimizes the Kullback-Leibler (KL) divergence between the distribution of the CVs and a

target distribution [21, 22]. The performance of these approximators has also been studied

by Cendagorta et. al. [23]. Their results show that the kernel method typically requires

larger memory and its performance deteriorates as the number of CVs increases, while the

neural network models are more robust and accurate.

The starting point of the present work is the reinforced dynamics (RiD) scheme introduced

in [15]. RiD uses an uncertainty indicator to decide where to bias the MD simulation and

at which values of the CVs one should calculate the mean force. The accumulated CVs and

mean forces are used for training and refining the DNN parameters. RiD has been shown to

be successful in exploring spaces with no more than 20 CVs, but its efficiency deteriorates

quickly with more CVs: It has been observed getting trapped in the deep local minima for

higher dimensional systems. This difficulty is caused by the following two factors: (1) The

probability of visiting the neighborhood of a local minimum in a high-dimensional CV space

is much lower than that in lower dimensional cases. Thus a random batch of RiD samples is

not enough for reconstructing the landscape near the local minimum of a high-dimensional

FES. (2) The biasing mechanism is too rigid for exploration, and particularly for escaping

from deep local minima.

Despite all these efforts, we are still unable to tackle challenging tasks such as protein

structure refinement, in which MD simulations are used to refine the decoys predicted by

data-driven methods. Such a task usually requires repetitions of the unfolding and refold-

ing processes, which takes a very long computational time because of the kinetic barriers.

Enhanced sampling methods such as replica exchange MD (REMD) simulation [24] and

metadynamics could in principle be used to overcome the barriers. In practice, REMD is

very expensive and, for metadynamics, it is unclear how to choose a low dimensional CV

space even for small proteins with dozens of residues in the absence of the knowledge of the

native structure. If one chooses all the dihedral angles (twice the number of residues) as

the CVs, then the approaches discussed above may, in principle, be applied. However, in
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practice, to the best of our knowledge, these methods, have never been reported to be able

to handle problems with more than 100 CVs, so their effectiveness in solving the protein

structure refinement problem is still unknown.

In this work, we propose an adaptive version of the RiD scheme, which has the poten-

tial to overcome the difficulties with RiD, and we demonstrate its effectiveness on several

challenging examples. The novelty of the adaptive RiD lies in two aspects: (1) A cluster-

ing algorithm is applied to the configurations selected for labeling to reduce the number of

configurations needed to represent the unexplored configuration space. (2) The uncertainty

indicator and the bias are adaptively and automatically tuned by using the same clustering

argument that quantifies the diversity of the explored configurations. This helps to en-

courage RiD to escape from the deep local minima. In addition, adaptive RiD supports a

multi-walker scheme, which allows to make full use of parallel computational platforms.

II. RESULTS

The adaptive RiD method runs in iterations and each iteration consists of three steps

(Fig. 1): exploration, labeling, and training. In the exploration step, the sampling of

the configuration space is enhanced by a biasing force defined in the CV space. The biasing

force is switched on (or off) according to the value of an uncertainty indicator that is defined

as the standard deviation of the force predictions from an ensemble of DNN models. The

explored configurations are selected firstly according to the uncertainty indicator, then by

a clustering argument, so that the a diversified subset of the sampled configurations with

large model prediction error is selected. In the labeling step, we calculate the mean force

of every selected configuration as its label. In the training step, we train an ensemble of

DNN models with random and independent parameter initializations. The section Meth-

ods The adaptive RiD method provides more details on the adaptive RiD method.

Four representative systems are used to illustrate the performance of adaptive RiD. First

we use the peptoid system to compare adaptive RiD with its original version. Then, we

move to a more complex situation, the peptoid trimer with relatively large energy barriers,

where we construct a 9-dimensional free energy landscape and compare adaptive RiD with

other methods. Next, we study a classical protein system, chignolin. Using the 18 backbone
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FIG. 1: The workflow of the adaptive RiD. Adaptive RiD iteratively and automatically

promotes exploration, labeling, and training steps. (a) Biased MD is used in the exploration step

and the visited CV values with large uncertainty, viz. E(s) > e0, are proposed for labeling. The

proposed CVs are then clustered into Nc clusters, one set of CV values is randomly selected from

each cluster for labeling. An adaptive strategy is used at each iteration by changing the uncertainty

levels according to the number of clusters Nc. In detail, if Nc is less than 13, then the level e0 is

multiplied by 1.5 and e1 = e0 + 1, otherwise the same levels as the initial values are used (gray

panel). (b) The mean forces evaluated by the restrained MD simulation are used as labels to train

the DNN models. (c) Four DNN models are trained by using different random initial parameters

and the uncertainty indicator E(s) is defined as the standard deviation of the force predictions

from this ensemble of DNN models.
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dihedral angles as the CVs, we can employ adaptive RiD to efficiently sample the folding

and unfolding states of chignolin. Finally, we use adaptive RiD to help refine the protein

structures of three targets in CASP13 using more than 100 CVs.

Peptoid. Peptoids are a family of synthetic oligomers composed of protein-like, poly-

glycine backbones with side chains (R) attached to the amide nitrogen atoms rather than

their α-carbons [25, 26] (Fig. 2a). Recently, peptoids receive growing interest due to their re-

semblance to peptides, with applications such as bioactive peptide mimics [27] and targeted

binders [28, 29]. Despite a great amount of efforts [30–33], efficient sampling of peptoid con-

figurations remains challenging and is far from being routine due to the high dimensionality

and the large energy barriers in the space of torsion angles.

In our work, we firstly consider a simple peptoid, s-(1)-phenylethyl (s1pe), which is ob-

tained from Weiser’s work [33]. The adaptive RiD simulation is conducted for 51 iterations,

which corresponds to a 25.5-ns biased MD simulation for each walker (See Methods Pep-

toid for details). The calculated FES is fully converged within 40 iteration, as shown in

Fig. 2b-d. The error of FES estimated by the maximal standard deviation of four DNN mod-

els is 0.31 kcal/mol. Remarkably, the free energy difference between the trans (ω ∼180◦)

and cis (ω ∼0◦) conformations is 0.18 ± 0.07 kcal/mol, which agrees quite well with exper-

iment (0.14 kcal/mol) [34]. We show that the FES is consistent with previous simulation

results [33] (Supplementary Figure 1) and with that calculated by the REMD method (Sup-

plementary Figure 2).

We demonstrate the improvement of adaptive RiD upon the original RiD and brute-force

MD in terms of sampling efficiency by studying the transition events. As shown in Fig. 2g,

j, a 1-µs-long brute-force MD simulation exhibits very few transitions of the torsion angles

ω and φ. Transitions happen in a 25.5-ns-long original RiD simulation (Fig. 2f, i), but less

frequently than those in an adaptive RiD simulation of the same length (see also Supplemen-

tary Table 1). The number of explored transition states (ω ∈ [3π/8, 5π/8]∪ [11π/8, 13π/8])

is 725 and 266 for adaptive and original RiD, respectively. While, no transition states

can be seen from the REMD simulations (Supplementary Figure 2). In conclusion, adap-

tively changing the uncertainty level e0 (red lines in Fig. 2e-j, see the definition in Meth-

ods The adaptive RiD method) helps accelerate the exploration of conformation space.

Furthermore, we consider a more complex system, the peptoid trimer (s1pe)3, which
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FIG. 2: The accuracy and efficiency of adaptive RiD. (a) Backbone plot, side chain plot, and

3D structure of the peptoid s1pe. The 3D structure is shown in Ball and Stick representation and

colored by atomic types: nitrogen (blue), oxygen (red), hydrogen (white), and carbon (grey). Free

energy curve of each CV of the peptoid s1pe, ω (b), φ (c) and ψ(d), at different iterations (10th,

20th, 30th, 40th, 50th). The transitions of angles for the first walker of an adaptive RiD simulation

(e, h), the first walker of an original RiD simulation (f, i), and a brute-force MD simulation (g, j)

as a function of the simulation time. Blue dots represent the torsion angles of ω (e-g and φ (h-j) of

s1pe. The values of uncertainty level e0 in adaptive RiD and original RiD simulations are drawn

in red lines.

exhibits high free energy barriers in the space of nine torsion angles ω1, φ1, ψ1, ω2, φ2, ψ2,

ω3, φ3, and ψ3. A previous study showed that it is hard to observe transitions of torsion

angle ω and φ in simulations with explicit solvent [33]. In our simulation, 12 walkers are

used and each lasts 140 iterations. The biased MD simulation in each iteration lasts 2

ns (see Methods Peptoid for details). As can be seen from Supplementary Table 2, we

observed tens to hundreds of transitions of the six torsion angles (ω1, ω2, ω3, φ1, φ2, φ3),
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FIG. 3: Free energy curves of the peptoid trimer (s1pe)3. Free energy curve of each CV of

the peptoid trimer (s1pe)3. The free energy curves derived from different iterations (20th, 60th,

100th, 140th) are drawn to assess the convergence of adaptive RiD. Error bars are calculated based

on four DNN models.

much more than what was observed in a previous work [33] which performed a 85-ns brute-

force MD simulation at 950K. The overall trend of the transition frequency at different

angles is qualitatively consistent with the result of the previous MD simulations at high

temperature [33].

We use a Markov Chain Monte Carlo (MCMC) scheme to project the FES on fewer

CVs (see Methods MCMC simulations for details). Fig. 3 exhibits an energy barrier of

more than 8 kcal/mol in ω1. The free energy differences between metastable states can be

estimated fairly accurately at the early stage of the adaptive RiD simulation (20th iteration).

In fact the FES has almost converged after 60 iterations (about 1440 ns). Note that the FES
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in the space of ψ3 is quite flat over a large region. This indicates that the carboxy termini

(φ3, ψ3) is quite flexible, which confirms the conclusion in a previous study [33] obtained

by high-temperature simulations.

As a comparison, we calculated the free energy surface of peptoid trimer by replica

exchange molecular dynamics (REMD) simulations (see Methods Peptoid trimer for

more details and Methods REMD Simulations of Peptoid for more discussion). The

FES calculated by REMD is sensitive to the setting of temperature range. Even with the

optimal temperature range, the transition states of the ω and φ angles are not properly

sampled by REMD, so the free energy profile is hard to converge at the transition states.

This difficulty can be avoided by using adaptive RiD. BEMetaD and PBMetaD simulations

are also conducted as another comparison. The same set of CVs and 9 replicas are used

under different conditions (detailed in Methods Peptoid trimer). The free energy curve of

each angle essentially converges after 160 ns for each replica (see Supplementary Figure 3),

accumulating to a total of 1440 ns of simulation time, with the same time as adaptive

RiD. The free energy curves of BEMetaD, PBMetaD, adaptive RiD and REMD are in good

agreement (see Supplementary Figure 4), and their errors with respect to the best converged

REMD (300-680K, 400 ns each replica) are similar (see Supplementary Table 3). Overall,

adaptive RiD has comparable efficiency and accuracy with BEMetaD and PBMetaD.

Chignolin. Folding of small proteins serves as a good benchmark for first-principles-

based methodologies. Here, we choose the artificial protein chignolin, which shows a β-

hairpin structure (with 10 residues), as an example. There are both extensive experimental

[36], and simulation studies [22, 35, 37–39] for this system. In particular, using the Anton

machine, an MD simulation lasting longer than 100 µs has been conducted [35], and a folding

and unfolding time of about 0.6 µs and 2.2 µs, respectively, were observed.

The adaptive RiD uses 18 backbone dihedral angles as the CVs with 12 walkers in par-

allel. The initial configurations are randomly extended conformations and 31 iterations are

conducted. In each iteration, a 5-ns biased MD simulation is performed for each walker (see

Methods Chignolin for details). As shown in Fig. 4a,b, the folding and unfolding events

are observed within a few iterations. The minimum Cα RMSD is 0.019 nm (Fig. 4b,c). Both

the folding and unfolding rates are observed to be equal to 4.30 µs−1. Therefore, adaptive

RiD efficiently samples the folding and unfolding events of chignolin without prior knowledge
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FIG. 4: Folding and unfolding of the protein chignolin. (a, b) Time series of the Cα RMSD

from the reference structure for chignolin for two walkers in the adaptive RiD. Structures with

RMSD less than 0.15 nm (grey dash line) are defined as folded states. (c) The folded structure

obtained from adaptive RiD (blue) superimposed on the reference structure (red). The Cα RMSD

is 0.019 nm. (d-f) Free energy surfaces (kcal/mol) of φ2 and ψ2 (d), ψ3 and ψ4 (e), φ5 and ψ5 (f)

from adaptive RiD. (g-i) The corresponding free energy surfaces obtained from a 100-µs unbiased

MD trajectory from the work of Lindorff-Larsen and their coworkers [35].
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on the native state, in comparison to the VES scheme [22], which needs a target distribution

to lead the sampling. BEMetaD and PBMetaD simulations are also conducted to compare

with adaptive RiD. The same set of CVs is used and different working parameters are con-

sidered (see Methods Chignolin for details). The folding and unfolding rates are reported

in Supplementary Table 5. Overall, the adaptive RiD and all variants of MetaD successfully

fold chignolin, but only the adaptive RiD and PBMetaD can escape from the native state.

This implies that adaptive RiD and PBMetaD are more suitable for larger proteins that

have deep metastable states on the free energy landscape.

In Fig. 4 we compare the FES calculated by adaptive RiD (Fig. 4d-f) with a 100-µs

unbiased MD trajectory (Fig. 4g-i). We find qualitative agreement between the two results,

and adaptive RiD samples a broader region in the conformation space using a much shorter

exploration time (1.8µs). Moreover, the result also agrees well with the ones obtained by

the VES scheme in a previous study [22].

Protein structure refinement. In the past few years, a significant progress has been

made on the protein folding problem. Of particular importance is the reported remarkable

achievement of AlphaFold2 [40]. However, for 47% of all targets or 37% of those with less

than 100 residues, the structures predicted by AlphaFold2 in CASP14 have Global Distance

Test-High Accuracy (GDT-HA) [41] scores less than 75. GDT-HA scores range from 0 to

100, and a higher score means a higher similarity between the predicted and native struc-

tures. For these structures, an additional structure refinement procedure might generate

better predictions. Several refinement protocols have been reported in the literature [42–

47], including those based on MD simulations [43, 44]. In the refinement category of the

CASP13 competition, in which the goal is to generate a better predicted structure using

the given decoys as starting points, the FEIGLAB, using MD simulations, achieved the best

results with an average improvement of GDT-HA scores of about 3.99 units. However, as

the authors noted, sufficient sampling remains challenging for some proteins because of the

kinetic barriers [47].

Here, we choose three CASP13 targets, R0974s1, R0986s1, and R1002-D2, which were

analyzed in detail in the work of Heo et al [47]. We use 8 walkers and perform 16 iterations.

Each iteration lasts 6 ns, so a total of 96-ns biased MD simulation is conducted for each

walker. 136, 182, and 116 dihedral angles of these three targets are used as CVs respectively.
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In addition, to prevent transitions to the unfolded states, we apply flat-bottom harmonic

restraint potential to each Cα atom [47] (see Methods Protein structure refinement

for details). The refined structure is constructed by averaging 200 structures with the lowest

RWplus values [48] along the adaptive RiD trajectories. The effectiveness of the adaptive

RiD in terms of the improvement in GDT-HA score is reported and compared with the results

of FEIGLAB in Fig. 5a, b. The three targets have initial GDT-HA scores of 65.6, 59.2 and

72.9, respectively, and are all refined to beyond 78.0 under adaptive RiD scheme. Special

attention is drawn to R1002-D2, the score of which is improved to 78.0 after the refinement,

but is significantly worse than the score by FEIGLAB [47]. The average improvement in

GDT-HA score is 14.6 units. The standard deviation is 2.8. This low value shows the

robustness of adaptive RiD.

To see how the protein structures are explored by the adaptive RiD, we calculated the

GDT-HA scores along the adaptive RiD trajectories and found the best sampled structures

with GDT-HA scores of 92.4, 82.6, and 79.7, respectively (Figs. 5c, e, g). Notice that the

structures with high scores are quickly reached within 20 ns in the cases of R0974s1 and

R0986s1. In contrast, for R1002-D2, the GDT-HA score quickly drops in the beginning of

the simulation, and then transition to a better score after more than 40 ns. To further com-

pare the conformational space explored by adaptive RiD with that sampled by FEIGLAB,

we project the trajectories onto the two time-structure independent component (tIC) coordi-

nates used in the Markov state model (MSM) analysis of the FEIGLAB study (Fig. 5d, f, h).

We find that, compared with the 2-µs-long brute-force simulations in the FEIGLAB sam-

pling protocols, comparable conformation spaces are sampled by the 768-ns-long adaptive

RiD simulations of R0974s1 and R0986s1, and a much larger conformation space is sampled

in the case of R1002-D2. Indeed, for R1002-D2, the FEIGLAB simulation only found one

metastable state out of the three states that were investigated in their MSM study, but

adaptive RiD finds all three, including the native state.

To see how adaptive RiD finds the native state of R1002-D2 from a conformational change

perspective, we perform a detailed analysis (Fig. 6). According to Figs. 6a-c, it is clear that

the initial structure has a high similarity to the native structure, but during the adaptive RiD

simulation, the walker first goes to a meta-stable state that is distant from both the initial

structure and the native structure, and it then falls into the basin of the native structure.
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FIG. 5: Protein structure refinement of three targets, R0974s1, R0986s1 and R1002-

D2. The values (a) and the plot (b) of GDT-HA scores of the initial structures, the refined

structures of FEIGLAB and the refined structures of adaptive RiD. The error-bar in panel b is

the standard deviation of these three targets. (c, e, g) Time series of the GDT-HA score of one

representative trajectory for each target, R0974s1 (c), R0986s1 (e), and R1002-D2 (g). (d, f, h)

Density plots of the two tIC coordinates, used in the MSM analysis in Heo’s work [47], along the

adaptive RiD trajectories of R0974s1 (d), R0986s1 (f), and R1002-D2 (h). The explored regions in

Heo’s work [47] for these targets are drawn as magenta line (iteration 1), blue dash line (iteration

2) and grey dash line (iteration 3) respectively.

In detail, as shown by the red arrow in Fig. 6d, there is a register-shift error of about 0.57

nm in the N-terminal β-strand of the initial stricture. Then, during the simulation, the

hydrogen bonds between the β-strands break at first and lead to a large conformational

change with more than 0.4 nm in RMSD compared with both the initial model and the

native structure (Fig. 6a, b, e). It is only after this large conformational change that the

correct β-strand are seen and a more accurate structure with RMSD of about 0.11 nm is

found (Fig. 6f). Therefore, we conclude that the success of adaptive RiD is attributed to the

ability of crossing over the high free energy barrier along the transition path to the native

state. In contrast, the same barrier forbids the FEIGLAB protocol from discovering the

transition path.
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FIG. 6: The detailed analysis of the target R1002-D2. (a-b) Time series of the RMSD

between the structures along a representative trajectory and the initial structure (a), or native

structure (b). (c) One representative adaptive RiD trajectory projected on the two tIC coordinates.

Each circle represents one snapshot and is colored at different times from light blue to dark blue

in panels a-c. (d-f) The native structure (white) superposed on the initial structure (d, blue),

the unfolded structure (e, cyan), and refined structure (f, red), respectively. RMSDs of the initial

structure, unfolded structure and refined structure compared with the native structure are shown

in panel d-f, respectively.

III. DISCUSSION

With the ability to handle a large number of CVs, RiD is very powerful in exploring

the configuration space of atomistic systems. The added feature of adaptively changing

the bias helps to facilitate the escape from metastable states and crossing large energy

barriers. Moreover, adaptive RiD supports a multi-walker scheme, and it is very much

suited for parallelization. It also opens up new possibilities, such as free energy calculation
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of the binding of peptides or intrinsically disordered proteins to proteins, the study of the

ensemble nature of allostery, and structure optimization in materials science.

Several improvements may further enhance the performance of adaptive RiD. For in-

stance, for ab initio folding of large proteins, the space of dihedral angles might be too large,

and a better set of CVs might be needed. For the protein refinement task, with the help

of quality assessment [49] of protein tertiary structures, we may choose to include only the

dihedral angles in the residues with poor quality as the CVs to reduce computational cost.

We leave these possibilities to the future.
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VIII. METHODS

The adaptive RiD method. We consider N atoms in a canonical ensemble, whose

potential energy is denoted by U(r), r = (r1, . . . , rN). Given M predefined CVs, denoted

by s, the free energy defined on the CV space is denoted by A(s). A deep neural network

(DNN), denoted by A(s,w), is used to model the free energy, with w being the network

parameters. For a given set of CV values, the mean forces F (s) = −∇sA(s) are evaluated

by restrained MD simulations [8], through adding a harmonic potential between the target
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and the instantaneous CVs, and estimate F by the averaged restraining force. The mean

forces F (s) are then used as labels to train the DNN models (Fig. 1b, c).

To guarantee the accuracy of the neural network approximation of A, one should have an

adequate training dataset D. How to efficiently explore the CV space and how to select the

explored data points for labeling constitute the key components of RiD. The key quantity

that helps for both purposes is the uncertainty indicator E(s), which is defined as the

standard deviation of the force predictions from a small ensemble of DNN models with the

same network architecture but trained with different randomly initialized parameters. This

ensemble of models typically gives rise to consistent predictions of the mean force in regions

well covered by D, and scattered predictions in regions poorly covered by D (Fig. 1c).

As shown in Fig. 1a, one biases the potential energy U(r) by the current approximation

of the FES, so that the system is encouraged to escape free energy minima and explore a

broader region in the CV space. Since the approximation of FES is of high (or low) accuracy

in regions that have been (or have not been) adequately explored, the bias is switched on

(or off) according to the value of the uncertainty indicator E(s(r)):

f̃i(r) = −∇riU(r) + σ(E(s(r))) 〈∇riA(s(r),w)〉, (1)

where the biasing potential −〈A(s(r),w)〉 is the mean value of the predictions of the prede-

fined ensemble of DNN models, and σ(·) is a fixed switching function that varies smoothly

between two uncertainty levels e0 and e1. When the uncertainty value is smaller than e0, the

accuracy of the FES approximation is adequate and the bias is switched on with σ(E) = 1.

When the uncertainty value is larger than e1, the bias is switched off (σ(E) = 0) and the

dynamics of the system falls back to the one governed by the original potential energy U(r).

The switching function is defined by

σ(ε) =


1, ε < ε0

1
2

+ 1
2

cos (π ε−ε0
ε1−ε0 ), ε0 < ε < ε1

0, ε > ε1

(2)

During the exploration, the visited CV values are tested by the uncertainty indicator and

proposed for labeling if the uncertainty is relatively large, viz. E(s) > e0 (Fig. 1a). The

proposed CVs are first clustered by the agglomerative clustering algorithm, and one CV
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values is randomly selected from each cluster for labeling. This reduces the number of

samples in the CV space needed for labeling without affecting the representativeness of

these samples. This CV selection procedure is applied after the exploration step in every

adaptive RiD iteration. Finally, theselected CV values and the associated labels are added

to the training dataset D, from which a new ensemble of DNN models are trained. The new

iteration is started over with the updated model ensemble.

The uncertainty levels e0 and e1 are two crucial parameters in the RiD method. A large

level would encourage exploration at the cost of lowing the accuracy of the FES approxi-

mation. A small level gives more accurate approximation of the local FES, but the system

is easily trapped by deep energy wells. Here we adaptively change the uncertainty levels

at each iteration. In detail, the explored configurations are clustered by the agglomerative

clustering algorithm. If the number of clusters is less than some fixed value K0 (K0 = 13

for this work), then the level e0 is multiplied by 1.5 and e1 = e0 + 1, otherwise the same

levels as the initial values are used. If e0 is more than 8 times larger than its initial value,

then both levels are reset to their initial values (Fig. 1a, gray panel). We refer to this as

the adaptive RiD. The comparison of the efficiency of the original RiD and adaptive RiD us

given in the following parts.

Simulation protocol. We use the GROMACS/2019.2 software package [50] with a

modified version of the PLUMED/2.5.2 plugin [51] to conduct all MD simulations. The

PLUMED package is modified to compute the DNN biasing force, viz., Eq.1. We first

minimize the energy of proteins using the steepest descent algorithm. Then the added solvent

is equilibrated with position restraints on the heavy atoms of the protein. Temperature is

maintained using the V-rescale method [52] with a relaxation time of 0.2 ps. We use the

Parrinello-Rahman barostat [53] to keep the pressure at 1 bar with a time constant of 1.5 ps.

The cutoff of electrostatic interactions and van der Waals interactions are both set to be

1 nm, and the particle mesh Ewald method [54] is used to treat electrostatic interactions.

All bonds involving H atoms are constrained by the LINCS algorithms [55].

Peptoid. In order to assess the accuracy and efficiency of adaptive RiD, we first study

one example system, the peptoid with side chain s-(1)-phenylethyl (s1pe) which is ob-

tained from Weiser’s work [33]. The molecules are solvated in (2.9 nm)3 dodecahedron

boxes with 546 water molecules. The final systems contain 1676 atoms. All simulations
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are carried out with the CHARMM general force field (CGenFF) parameters developed

for peptoids [33] and the TIP3P water model [56] for the explicit solvent. The temper-

ature is maintained at 300 K. After a conventional 1000 ns MD simulation is conducted,

12 conformations are randomly selected from the trajectory for the initial configurations

of adaptive RiD. Three torsion angles ω (Cα, C, N, Cα), φ (C, N, Cα, C) and ψ (N, Cα,

C, N) are chosen as CVs, i.e., s = (ω, φ, ψ). The preprocessing operator is taken as

P (ω, φ, ψ) = (cos(ω), sin(ω), cos(φ), sin(φ), cos(ψ), sin(ψ)), so the periodic condition of the

FES is guaranteed. 12 walkers with different conformations of adaptive RiD are conducted

using 500 ps biased MD simulations. The CV values along the MD trajectories are com-

puted and recorded in every 0.5 ps. We assume no prior information regarding the FES,

so brute-force simulations are performed for the 0th iteration step (we count the iterations

from 0). In each iteration, the recorded CV values in the region with high uncertainty are

clustered using the agglomerative clustering algorithm with a distance threshold. The dis-

tance threshold is chosen such that, for a conventional MD simulation, about 15 clusters

are formed. One CV value from each cluster is added to the training dataset D. Restrained

MD simulations with spring constant 500 (kJ/mol)/rad2 are then performed to estimate the

mean force. Each restrained MD simulation is 100 ps long for both systems. The CV values

are recorded in every 0.1 ps along the restrained MD trajectories to estimate the mean forces.

The uncertainty levels of the reinforced dynamics are set to e0 = 2.0 (kJ/mol)/rad, e1 =

3.0 (kJ/mol)/rad and eaccept = 2.0 (kJ/mol)/rad. For RiD, the uncertainty levels e0 and e1

remain fixed, while for adaptive RiD, they are adaptively changed based on the number of

clusters, Nc = 13. The DNN models contain four hidden layers of size (M1, M2, M3, M4)

= (200, 200, 200, 200). Model training is carried out using the deep learning framework

TensorFlow [57] with the Adam stochastic gradient descent algorithm [58] with a batch size

of |B| = 128. The learning rate is 0.0006 in the beginning and decays exponentially accord-

ing to rl(t) = rl(0)× dt/dsr , where t is the training step, dr = 0.96 is the decay rate, and ds

= 50 × |D|/|B| is the decay step. The total number of training steps is 12, 000 × |D|/|B|.

Four DNN models with independent random initialization are trained in the same way to

compute the uncertainty indicator. Details on the hyper-parameter tuning is explained in

the final subsection of Methods A guideline for tuning the hyper-parameters of the

adaptive RiD. The whole procedure is conducted for 51 iterations.
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For REMD simulations, a total of 20 different temperatures ranging from 300-430 K

are generated using Temperature generator for REMD-simulations [59]. The exchange time

between two adjacent replicas is 2 ps and each replica lasts for 100 ns, giving 2 µs of

simulation in total. The average acceptance ratio is about 44%. The free energy curve

of each angle is calculated from the trajectory at 300K and the convergence is assessed in

Supplementary Figure 2.

REMD Simulations of Peptoid. The REMD method runs an ensemble of MD sim-

ulations at a set of temperatures starting at the investigated temperature and ending at a

high temperature that encourages the exploration in the conformation space. Intermediate

temperatures are provided in the temperature range to make sure that the exchange prob-

ability between the replicas running at neighboring temperatures is significant. A priori

knowledge of the free energy surface is thus needed to properly set the highest temperature,

which should be high enough to overcome the highest barrier of the free energy landscape,

and be as low as possible to reduce the number of replica to save the computational cost.

In the case of peptoid trimer, in which the a priori knowledge is not available, a systematic

of the free energy convergence with the temperature setting is needed.

We report REMD simulations with temperature ranges of 300-430K, 300-560K and 300-

680K here, which runs an ensemble of MD simulations at a set of temperatures starting at

the investigated temperature and ending at a high temperature that encourages the explo-

ration in the conformation space. Wider temperature ranges are not shown because they

need a smaller time-step to stabilize the MD simulation at higher temperature replicas and

thus requires significantly more computational resources. The free energy curves derived

from REMD with the temperature range 300-680K are the closest to adaptive RiD simula-

tion among these conditions (Supplementary Figure 7, red lines and gray dash lines). The

shape of free energies obtained from REMD 300-430K simulations deviates from those from

REMD 300-560K and 300-680K, especially the free energies against the angles φ1, φ2 and ψ2

(Supplementary Figure 7, blue lines). The time series of the peptoid trimer dihedral angles

calculated on the continuous replicas that span different temperatures are shown in Supple-

mentary Figure 8. In addition, the total number of transitions of the six torsion angles ω1,

ω2, ω3, φ1, φ2, φ3 of (s1pe)3 in different REMD simulations are shown in Supplementary

Table 2. We observe that there are tens of transitions in the REMD simulations of 300-430K
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and much more transitions are seen in the REMD simulations of 300-560K and 300-680K.

This indicates that higher temperatures make it easier for the algorithm to converge. There-

fore, Overall, a minimal temperature range of 300-560K is needed. Even with temperature

range 300-680K, the transition states of the ω and φ angles are not properly sampled by

REMD, so the free energy profile is hard to converge at the transition states. There are two

difficulties in the REMD simulations: (1) a systematic and expensive investigation about

the temperature ladder is needed to ensure the convergence of the free energy calculation,

and (2) the free energy at the transition states of high energy barriers are not available.

These difficulties can be avoided by using adaptive RiD.

Peptoid trimer. The molecules are solvated in (3.5 nm)3 dodecahedron boxes with 973

water molecules. The final systems contain 3003 atoms. Here, the adaptive RiD simulation

is conducted for 12 walkers and 140 iterations. All other parameters are the same as in

Peptoid except that the biased MD simulation lasts for 2ns.

For REMD simulations, a total of 27, 42 and 56 different temperatures ranging from

300-430 K, 300-560 K and 300-680 K, respectively, are generated using the Temperature

generator for REMD-simulations [59]. The exchange time between two adjacent replicas is

2 ps and each replica lasts for 100 ns, giving 2.7, 4.2 and 5.6 µs of simulations in total,

respectively. Three independent REMD simulations of 300-680K are conducted in order to

obtain the error bar (Supplementary Figure 6, red lines). The average acceptance ratios are

all about 40%. An additional REMD with each replica simulated for 400 ns at 300-680 K is

conducted to quantitatively compare the accuracy of FES calculation by different methods

(Supplementary Figure 4).

For BEMetaD simulations, 9 dihedral angles are used as CVs. Nine replicas are used

and one for each collective variable. Each replica lasts for 200 ns and the replicas are al-

lowed to exchange every 20 ps. The average acceptance ratio is about 20%. Three different

sets of parameters are used. For BE0.2 which is derived from plumID:19.059, the parame-

ters are [PACE=1000 HEIGHT=0.2 SIGMA=0.17 GRID MIN=-pi GRID MAX=pi BIAS-

FACTOR=10.0 TEMP=300]. The parameters of BE0.5 derived from plumID:21.014 are

[PACE=500 HEIGHT=0.5 SIGMA=0.015 SIGMA MAX=0.6 SIGMA MIN=0.03 ADAP-

TIVE=GEOM GRID MIN=-pi GRID MAX=pi BIASFACTOR=10.0 TEMP=300]. The

parameters of BE0.8 are [PACE=500 HEIGHT=0.8 SIGMA=0.25 GRID MIN=-pi
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GRID MAX=pi BIASFACTOR=10.0 TEMP=300]. The free energy curve of each angle

is calculated from the trajectories and convergence is assessed in Supplementary Figure 3.

For PBMetaD simulations, 9 dihedral angles are used as CVs. 9 replicas are sim-

ulated and each replica lasts for 200 ns. The parameters are derived from Plumed

Nest with ID plumID:21.014 [PACE=500 HEIGHT=0.5 SIGMA=0.015 SIGMA MAX=0.6

SIGMA MIN=0.03 ADAPTIVE=GEOM GRID MIN=-pi GRID MAX=pi BIASFAC-

TOR=10.0 TEMP=300]. This PBMetaD setting is denoted by PB0.5.

Chignolin. For chignolin, the crystal structure was first obtained from Protein Data

Bank (PDB ID: 5AWL) [36]. In order to achieve the initial unfolded conformations, one

MD simulation in vacuum at 1000 K is conducted for 5 ns. 12 fully extended conformations

are randomly chosen for the initial conformations of adaptive RiD. They are solvated in

a (4.2 nm)3 dodecahedron box with 1622 water molecules and 2 sodium ions to neutralize

the charge. All simulations are carried out with the CHARMM22* force field [60] and the

TIP3P water model [56]. The temperature is maintained at 340 K (in agreement with

some previous work [22, 35]). 18 backbone dihedral angles are set as CVs. 12 walkers

with different conformations of adaptive RiD are conducted for 31 iterations and the biased

MD simulation lasted for 5 ns in each iteration. The CV values are computed every 5 ps.

All other parameters are the same as in Peptoid. The reference structure of chignolin is

generated from a short, conventional MD simulation that started from the X-ray structure

(PDB ID: 5AWL). This reference structure is a better reflection of the actual folded state of

the protein in the CHARMM22* force field than the crystal structure. Since the maximum

RMSD between X-ray and the NMR (PDB ID: 2RVD) structures is about 0.18 nm, we define

the folded state to be the structure with RMSD < 0.19 nm from the reference structure, and

the unfolded state to be the structure with RMSD > 0.3 nm [61]. The RMSD is smoothed

along the trajectories with a sliding window of width 3 ns to eliminate the overestimate of

folding/unfolding rate due to thermal fluctuation.

For BEMetaD and PBMetaD simulations, 18 backbone dihedral angles are used as CVs.

18 replicas are used and each replica lasts for 120 ns. Other parameters are the same as in

Peptoid trimer.

Protein structure refinement. For protein structure refinement, the initial structure

the targets R0974s1, R0986s1 and R1002-D2 are obtained from the refinement category
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of the CASP13 competition. Then, they are solvated in (5.5 nm)3, (5.8 nm)3, (5.4 nm)3

dodecahedron boxes with 3384, 4191, 3334 water molecules, respectively. Ions are add

to neutralize the charge. All simulations are carried out with the CHARMM36m force

field [62] and the TIP3P water model [56]. The temperature is maintained at 300 K. 136,

182 and 116 backbone dihedral angles are set as CVs. 8 walkers are used and the biased MD

simulation lasted for 6 ns in each iteration. The CV values are computed every 6 ps. All

other parameters are the same as in Peptoid except that the widths of the hidden layers

are chosen as (M1, M2, M3, M4) = (1200, 1200, 1200, 1200) for the DNN models. The

flat-bottom harmonic restraint potential applied to each Cα atom is defined by

Vfb(ri) =
1

2
kfb[dg(ri;Ri)− rfb]2H[dg(ri;Ri)− rfb], (3)

where Ri denotes the reference position of the i-th Cα atom, rfb is the distance from the

center with a flat potential, kfb denotes the force constant, H denotes the Heaviside function,

and dg(ri;Ri) is the distance from the reference position. Here we set rfb to 0.6 nm and kfb

to 12 kJ/mol/nm2.

MCMC simulations. We notice that the FES is a logarithm of the probability distri-

bution, i.e.

A(s) = −kbT ln p(s) (4)

thus the low-dimensional FES is computed from the marginal distribution of the high-

dimensional probability distribution corresponding to the high-dimensional FES. In this

work, we use the Markov chain Monte Carlo (MCMC) method to calculate the marginal

distribution.

For example, we have an M -dimensional CV space s = (s1, . . . , sM), and want to calculate

the FES A(s1) from A(s1, . . . , sM). Since we have the definition for the marginal distribution

on s1

p(s1) =

∫
p(s1, . . . , sM)ds2 . . . dsM (5)

then the FES on s1 is given by

A(s1) = −kbT ln

∫
e
− 1

kbT
A(s1,...,sM )

ds2 . . . dsM . (6)
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The integration in (5) or (6) is computed by MCMC. Here, we carried out 2000 independent

MC samplers and each lasts 106 steps. The example can be easily generalized to any FES

defined on a low-dimensional subspace of the high-dimensional CV space.

Note that the MCMC sampling is performed on the FES, so it is very efficient. The

convergence of the MCMC simulations is assessed in Supplementary Figure 5.

A guideline for tuning the hyper-parameters of the adaptive RiD. In the hyper-

parameter tuning procedure, we first estimate the statistical error introduced by the re-

strained MD simulations. This error defines the highest accuracy achievable by our DNN

representation. Then the hyper-parameters like the batch size, the start learning rate, and

the learning rate decay speed, are tuned to minimize the number of epochs needed for achiev-

ing the optimal accuracy. In the first few adaptive RiD iterations, the width of the DNN may

be chosen to be a relatively small value, for example, 100 each hidden layer. As the adaptive

RiD goes on, more parts of the FES are explored and the training data accumulate, the

accuracy of the DNN model is observed to decrease. This indicates that the current DNN

architecture is not powerful enough compared with the complexity of the explored FES.

We stop the adaptive RiD manually when the relative error reaches ∼0.5, enlarge the DNN

with a sub-network initialized by the original DNN, and then retrain the new DNN. This

can substantially reduce the error of DNN and the adaptive RiD can continue. It is noted

that the strategy of gradually enlarging DNN helps to determine the size of DNN but is

not necessary, because using a large enough DNN at the beginning would not cause any

difficulty in training the DNN.

IX. DATA AVAILABILITY

The initial files of all examples for running adaptive RiD are available at Zenodo.[63]

Our peptoid models come from Weiser’s work[32]. Our chignolin model is obtained from

Protein Data 608 Bank (PDB ID: 5AWL). The MD trajectories of chignolin from Anton

can be obtained from Kresten et al.[35]. The targets in CASP13 can be obtained from

the official CASP list (https://predictioncenter.org/casp13/targetlist.cgi). The

Markov state models of R0974s1, R0986s1, and R1002-D2 can be obtained from the work of

Heo et al.[47]. The input PLUMED2 files are available via Plumed Nest with plumID:21.034.
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Source Data for Figures 2-6 is available with this manuscript.

X. CODE AVAILABILITY

Python implementation of our codes are available at github (https://github.com/

dongdawn/rid) and Zenodo[64].
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