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 2 

ABSTRACT 22 

Identifying stable speciation in multicomponent liquid solutions is of fundamental importance to 23 

areas ranging from electrochemistry to organic chemistry and biomolecular systems. However, 24 

elucidating this complex solvation environment is a daunting task even when using advanced 25 

experimental and computational techniques. Here, we introduce a fully automated, high-26 

throughput computational framework for the accurate and robust prediction of stable species 27 

present in liquid solutions by computing the nuclear magnetic resonance (NMR) chemical shifts 28 

of molecules. The framework automatically extracts and categorizes hundreds of thousands of 29 

atomic clusters from classical molecular dynamics (CMD) simulations to identify the most stable 30 

speciation in the solution and calculate their NMR chemical shifts via DFT calculations. 31 

Additionally, the framework creates an output database of computed chemical shifts for liquid 32 

solutions across a wide chemical and parameter space. This task can be infeasible experimentally 33 

and challenging using conventional computational methods. To demonstrate the capabilities of our 34 

framework, we compare our computational results to experimental measurements for a complex 35 

test case of magnesium bis(trifluoromethanesulfonyl)imide Mg(TFSI)2 salt in dimethoxyethane 36 

(DME) solvent, which is a common electrolyte system for Mg-based batteries. Our extensive 37 

benchmarking and analysis of the Mg2+ solvation structural evolutions reveal critical factors such 38 

as the effect of force field parameters that influence the accuracy of NMR chemical shift 39 

predictions in liquid solutions. Furthermore, we show how the framework reduces the efforts of 40 

performing and managing over 300 13C and 600 1H DFT chemical shift predictions to a single 41 

submission procedure. By enabling more efficient and accurate high-throughput computations of 42 

NMR chemical shifts, our approach can accelerate theory-guided design of liquid solutions for 43 

various applications. 44 
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INTRODUCTION 45 

Liquid solutions are critical components of various chemical, materials science, engineering, 46 

and biological applications such as batteries1-3, fuel4, food industry5, and drug discovery6,7. 47 

Optimizing the performance of these technologies requires taking into careful account transport 48 

and structural features, along with the thermodynamic stability of chemical compounds comprising 49 

the solution. More specifically, developing a fundamental understanding of the correlations 50 

between functional properties and the underlying atomistic interactions is necessary for advancing 51 

the rational design of liquid solutions. In this regard, nuclear magnetic resonance (NMR) 52 

spectroscopy stands out as a powerful and widespread technique for studying the 3D organization 53 

of matter and associated structural and dynamical properties8-10. Over the years, technological 54 

advances in NMR spectroscopy have significantly improved the operational ease and spectral 55 

resolutions obtainable from non-traditional nuclei (such as 17O, 25Mg, etc.), leading to a 56 

comprehensive and atomistic view of liquid solutions11,12. However, NMR spectroscopy is limited 57 

by the temporal scale and low sensitivity, making it difficult to speciate structural patterns that are 58 

often driven by electrostatic interactions, reactivity, temperature, compositional variance, and 59 

pressure13-15. 60 

In such complex scenarios, computational NMR studies are necessary to decipher experimental 61 

results and better understand different chemical and physical effects whose interplay determines 62 

the overall spectrum. For example, ab-initio molecular dynamics (AIMD) simulations have been 63 

used to capture the structural evolutions and associated chemical shifts16-18. However, the 64 

computational cost associated with large systems (>100 atoms) and simulation time scales (~10 65 

ps) imposes severe restrictions for tests of liquid solutions across a wide chemical space. Density 66 

functional theory (DFT) calculations have also provided valuable insights into chemical shift 67 
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trends8,19,20. However, they fail to fingerprint the temporal evolution of solvation structures under 68 

exogenous (temperature and pressure) and endogenous (pH and composition) conditions. In 69 

addition, gaps in knowledge between systems examined in-situ or ex-situ and those modeled in 70 

silico still exist. For example, NMR DFT studies are often focused on singular phenomena, e.g., 71 

magnetic shielding tensor. Recently, an automated framework21 and a machine learning based 72 

approach22 were implemented to predict the 13C/1H NMR chemical shift for organic molecules. 73 

However, a generalized approach to identify complexes in multi-component solutions and 74 

accurately predict NMR chemical shift especially for non-traditional nuclei remains a great 75 

challenge. On the other hand, NMR experiments can reveal much more information about the 76 

chemical system, such as details of chemical exchange, correlation times or energetics for 77 

rotational and translational dynamics, etc. Even for the singular focus on chemical shift 78 

calculations, the possible molecular structure(s) are built manually based on chemical intuition, 79 

trial and error, and/or results reported in the literature20,23,24. This approach of providing the initial 80 

guesses is fraught with bias, is time-consuming, can be challenging to automate fully, and leaves 81 

behind many persistent metastable configurations of fundamental importance for interpreting 82 

experimental results. To overcome these challenges, we designed an automated computational 83 

framework that allows accurate prediction of NMR chemical shifts even in complex 84 

multicomponent liquid solutions and guide experiments to identify stable speciation in the 85 

solution. 86 

The paper is composed of two sections. First, we discuss the details of our high-fidelity and 87 

robust computational tool that seamlessly integrates classical molecular dynamics (CMD) 88 

simulations with DFT calculations through force field generation and information flow between 89 

the two length scales. The tool automates the entire process, starting from sampling hundreds of 90 
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thousands of possible configurations in solute-solvent systems to identifying the most stable 91 

configurations and predicting and storing their NMR chemical shifts in a database. To the best of 92 

our knowledge, an automatic derivation of NMR chemical shifts with explicit solvation has not 93 

yet been implemented in any software infrastructure. Although the developed tool is general 94 

enough to be applied to any liquid solution, we consider magnesium 95 

bis(trifluoromethanesulfonyl)imide Mg(TFSI)2 salt in dimethoxyethane (DME) solvent as an 96 

illustrative example. The chosen electrolyte formulation has received considerable attention in 97 

battery literature but reported findings regarding the speciation and the exact solvation structure 98 

of the Mg cation are under contention. More specifically, experimental work reported the 99 

formation of solvent separated ion pairs (SSIPs), while contact ion pairs (CIPs) were observed in 100 

previous computational results14,23,25,26. A comprehensive molecular level understanding of the 101 

speciation present in the solution can allow tuning the chemical structure to control the stability, 102 

solubility, structural, and dynamical properties of liquid solutions. We note that we chose a system 103 

in which complexities in the solvation phenomena arise due to the multivalent nature of the cation, 104 

providing an example to demonstrate that the developed framework can be applied to other simpler 105 

systems. We report a detailed comparison between computed and experimental NMR chemical 106 

shifts for 25Mg, 13C, and 1H nuclei in this electrolyte. We also demonstrate the high-throughput 107 

capability of the workflow by accurately predicting more than 300 13C and 600 1H NMR chemical 108 

shifts from a set of 100 organic molecules from the SDBS27 database and a previous experimental 109 

study28.  In the second section, we address the fundamental challenge of how to accurately predict 110 

NMR chemical shift of liquid solutions by associating the framework with a benchmarking study. 111 

This study reveals several factors such as the choice of force field parameters that affect the 112 

accuracy of predicted chemical shifts, which can be employed by a number of research 113 
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communities by increasing the accessibility to DFT-based chemical shifts for a wide variety of 114 

structures and liquid systems.  115 

RESULTS AND DISCUSSION  116 

Overview of the automated framework 117 

We construct an NMR computational framework using MISPR (Molecular Informatics for 118 

Structure-Property-Relationship), our high-throughput and scalable infrastructure that allows 119 

automatic handling of thousands of computational materials science simulations and multiple 120 

systems with a strong focus on data provenance. MISPR automates many computational tasks that 121 

are typically performed manually. Its functionalities span from processing and manipulating 122 

molecular structures, preparing and executing DFT and CMD simulations on supercomputing 123 

resources, parsing and analyzing output data, and creating output databases that organize the 124 

results from individual calculations. To manage the heterogeneous data that DFT and CMD 125 

workflows output and allow for flexible and complex queries, MISPR employs MongoDB29 for 126 

data storage. MongoDB is a document-oriented NoSQL database that stores data as JSON-127 

formatted documents with flexible schema. A unique feature of MISPR is that it allows seamless 128 

and automated integration of DFT calculations with CMD simulations to capture structural and 129 

dynamical phenomena that span over wide spatial and temporal scales. It contains multiple preset 130 

DFT and CMD workflow templates that, from the outside, the user only needs to call in a single 131 

Python script with minimal required inputs (e.g., molecular structure, the size and geometry of the 132 

system for CMD simulations, etc.) to generate and run a comprehensive workflow. We built 133 

MISPR on top of base libraries developed by the Materials Project, namely: (1) pymatgen30 for 134 

structure representation and input/output files generation and handling, (2) FireWorks31 for 135 

managing workflows over computing resources, and (3) custodian32 for monitoring inevitable 136 
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errors during simulations and applying on-the-fly fixes. At the backend, MISPR uses Gaussian33 137 

electronic structure software for DFT calculations and LAMMPS34 (https://www.lammps.org/) 138 

open-source code for CMD simulations. Examples of implemented DFT workflows include 139 

calculating binding energy, redox potentials, and bond dissociation energy. CMD workflows in 140 

MISPR allow executing CMD simulations in various ensembles and analyzing collected 141 

trajectories for structural and dynamical properties. Force field parameters and derived properties 142 

are saved in their collections with auxiliary information like molecular metadata (e.g., InChI 143 

representation, chemical formula, etc.) and input parameters, making it easy to reproduce and 144 

query computational results. More details about the MISPR infrastructure will be the subject of a 145 

future publication.  146 

The framework designed for automatic NMR chemical shift calculations in liquid solutions is 147 

outlined in Fig 1. The framework takes as input the structures of molecules comprising a liquid 148 

solution of interest. Many molecule formats are supported (e.g., XYZ file, PDB file, pymatgen 149 

molecule object, Gaussian output, etc.) via the OpenBabel35 and pymatgen libraries. Besides these 150 

formats, the framework can take query criteria to retrieve previously optimized structures from the 151 

database. It can also derive a structure on the fly by either attaching a functional group or linking 152 

two structures at a specific binding site. Next, the framework runs an electrostatic partial charges 153 

(ESP) workflow that first converts the input structure formats to pymatgen molecule objects. The 154 

ESP workflow uses this molecule object to generate a Gaussian input file with input parameters 155 

specified as optional inputs to the workflow. The workflow uses default values if these parameters 156 

are not provided. It then runs three sequential steps: (1) a DFT geometry optimization, (2) a 157 

vibrational frequency calculation to ensure that there are no imaginary frequencies, and (3) a 158 

https://www.lammps.org/
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population analysis to assign atomic charges. The framework executes the ESP workflow for each 159 

component of the liquid solution.  160 

 

Fig. 1 Scheme of the computational framework used to calculate NMR chemical shifts in solution as implemented in 
the MISPR high-throughput infrastructure  

We note that the framework is general enough to be applied to various complex liquid solutions 161 

at different conditions (e.g., concentration, temperature, pressure, etc.). It requires, at minimum, 162 

the concentration of species in the solution and the size and geometry of the system box to prepare 163 

the multicomponent system for CMD simulations. One of the most challenging aspects of running 164 

automated CMD simulations is selecting or generating accurate force field parameters. By default, 165 

the framework uses the output of the ESP workflow to derive the general amber force field 166 

(GAFF)36 parameters for each species. The framework also supports other force fields allowing 167 

the user to test different physical models for a specific application or system. In this case, the user 168 

may input the force field parameters to the framework in the form of a Python dictionary or retrieve 169 

them from our in-house database. We note that the user may bypass the ESP workflow if the ESP 170 

charges have been previously calculated or other force fields are directly provided. The framework 171 
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then passes the optimized geometries, force field parameters, concentrations, and information 172 

about the geometry of the simulation box (e.g., lengths, shape, etc.) to the next step to build the 173 

system for LAMMPS simulations. Following this, the framework runs a CMD workflow to 174 

generate time trajectories of atomic positions and velocities. Configurations for common CMD 175 

procedures are encoded in a set of protocols that can be used directly or altered to run any series 176 

of LAMMPS calculations according to the user's needs. The default CMD configuration involves 177 

energy minimization, NPT equilibration at the desired temperature and pressure, melting and 178 

quenching, and NVT production runs.  179 

The framework then uses the generated LAMMPS trajectory files to compute the radial 180 

distribution function (RDF) between all possible pairs of particle types in the system or specific 181 

pairs specified as inputs. The RDF module is part of a standalone in-house suite of Python tools 182 

that we developed to extract a range of structural and dynamical properties from LAMMPS 183 

trajectory and output files. The RDF defines the probability of finding a particle at a distance r 184 

from another particle. More details about the RDF calculations are provided in the section 1 of the 185 

SI.   186 

Sampling solvation structures from the CMD step is a key component of the NMR framework. 187 

Traditional NMR calculations are relatively inefficient at constructing initial guesses for molecular 188 

structures. Building molecular structures by manually placing a number of molecules in the 189 

solvation shell of the particle of interest is extremely time consuming20,23,24. In contrast, our 190 

framework passes the computed RDF from the previous step to perform sampling of the first 191 

solvation shell of a particle of interest in a straightforward and automated manner. In the 192 

framework, the first solvation shell is defined by the cutoff distance 𝑟𝑚𝑖𝑛, corresponding to the 193 

position of the first minimum after the main peak of the RDF between the particle of interest and 194 
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other coordinating particles in the solution. In the default operation of the framework, 𝑟𝑚𝑖𝑛 is 195 

automatically extracted from the RDF, but the user may override this by providing 𝑟𝑚𝑖𝑛 as an 196 

optional input. Thus, a cluster representing the solvation structure is defined as the group of species 197 

within 𝑟𝑚𝑖𝑛 of the particle. By ensemble averaging hundreds of thousands of clusters, we obtain a 198 

distribution of clusters corresponding to all the possible chemical environments surrounding the 199 

particle of interest in the solution.  200 

Next, the framework categorizes the extracted clusters into unique configurations based on the 201 

type and number of species surrounding the particle and their mode of coordination. Then, it 202 

calculates the probability of each configuration as the ratio of the number of clusters that belong 203 

to a specific configuration to the total number of extracted clusters. Configurations with the highest 204 

probability of occurrence correspond to persistent metastable solvation structures in the solution. 205 

By default, the framework selects the top configurations whose probabilities sum to more than 206 

90% of the total number of extracted clusters, but the user may also select the configurations as 207 

needed. The selection of the configurations is done to reduce the number of required DFT 208 

calculations and their associated computational cost. It is also important to select a representative 209 

cluster from each configuration since it is common that thousands of clusters with subtle 210 

geometrical differences (e.g., bond lengths, orientation, etc.) belong to the same configuration. To 211 

this end, the framework performs a local minimization procedure on all the clusters from the 212 

selected top configurations using the MMFF94s force field37 as implemented in the RDKit 213 

library38. The framework then feeds the lowest-energy conformer of each configuration to an NMR 214 

DFT workflow. We note that it would be infeasible to manually generate and categorize this large 215 

number of structural files and account for all the possible solvation structures using conventional 216 
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methods that rely on chemical intuition. This task is especially challenging for chemical systems 217 

that have not been previously explored in detail. 218 

The NMR workflow relaxes the CMD clusters selected from the previous step, performs a 219 

vibrational frequency analysis, and calculates the magnetic shielding tensor on each atom if a true 220 

potential energy surface (PES) minimum is reached. The framework by default uses the 221 

ωB97X39/def2-TZVP level of theory for performing these three sequential DFT steps. Switching 222 

the functional, basis set, and other Gaussian input parameters (e.g., solvation model, numerical 223 

and algorithmic parameters, etc.) is straightforward and requires the user to input them in the form 224 

of a Python dictionary to the framework. The framework then performs an analysis step that stores 225 

the calculation results in an NMR collection in the database or a local JSON file with all the 226 

necessary metadata for future reference. Creating a local file allows the user to check outputs 227 

quickly, retrieve data without accessing the database, and exchange data with other parties. An 228 

example of the structure of an NMR document is shown in Fig S1. Finally, results from the 229 

computational framework are compared to experimental NMR spectra to elucidate the solvation 230 

structures. 231 

In the NMR workflow, a series of convergence checks are performed to ensure the results are 232 

as reliable as possible. For example, we implemented checks for normal termination of DFT 233 

calculations and automatic inspection of the 3D structure resulting from optimization to confirm 234 

connectivity matches the input structure. Once each step of the NMR workflow has terminated, 235 

the output file is parsed for errors. An automatic error correction process is employed through 236 

well-defined rules via the custodian package if an error is detected. If possible, the error handler 237 

applies the appropriate remedy, generally by modifying the input parameters, writing a new 238 

Gaussian input file, and restarting the calculation. If no remedy has been implemented for a 239 
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particular error or the error handler cannot interpret the encountered error, the calculation is 240 

allowed to fail. The error handler improves the success rate of the calculations without relying on 241 

human intervention, which would be impossible for handling large computational investigations. 242 

Examples of the errors addressed are SCF failure, geometry optimization convergence, error in 243 

internal coordinates, and exceeded wall time limit.  244 

The framework takes solvent effects into account by two approaches. It uses an explicit 245 

approach where several solvent molecules surrounding the species are correctly placed in its first 246 

solvation shell since the geometries are extracted directly from CMD simulations. Second, it 247 

approximates bulk solvent effects using a dielectric continuum model. This approach allows 248 

incorporating a thermodynamically stable and realistic chemical environment of species compared 249 

to the traditional approach, which relies on either implicit solvent models or manual prediction of 250 

the possible solvation structures. Since multiple configurations are considered, collected data result 251 

in various chemical shifts corresponding to different chemical environments experienced by the 252 

nucleus of interest. Therefore, predictions from this approach can be compared and fitted to the 253 

entire experimental NMR peak rather than just matching the peak center, especially when peak 254 

broadening occurs due to distribution of chemical shifts or intermediate exchange dynamics in 255 

solutions.  256 

Components of the NMR framework presented in Fig 1 can be decoupled according to the 257 

needs of the user. For example, we used the NMR workflow as a standalone code to compute the 258 

13C and 1H chemical shifts for a set of 100 organic molecules. Detailed information about the 259 

library is provided in Table S1. The calculations were performed in a chloroform solvent at the 260 

ωB97X/def2-TZVP level of theory and referenced to tetramethylsilane (TMS). The code snippet 261 

in Fig S2 demonstrates how to submit these calculations starting from structures defined in the 262 



 13 

XYZ file format. Upon submitting the script, the calculations were added to a FireWorks database 263 

and subsequently executed over computing resources. The workflow generated and managed over 264 

600 input and output files and inserted more than 300 13C and 600 1H chemical shifts into the 265 

database via a simple one-shot script. We compared our predictions to experimental data from the 266 

SDBS27 database and a previous study28. Fig S3 and Fig S4 show parity plots of the computed 267 

chemical shifts and their associated error distribution, respectively. A good correlation is observed 268 

between the workflow output and the experimental data with only minor deviations from the fitted 269 

line. This example demonstrates how our high-throughput approach may be adapted for the 270 

determination of accurate NMR chemical shifts.    271 

Factors affecting the accuracy of NMR chemical shifts  272 

Reliably differentiating among different extracted solvation structures requires high accuracy 273 

NMR chemical shift predictions. The successful implementation of our framework necessitates 274 

adequate consideration of several important factors. First, a key question for the CMD component 275 

is the quality of the interatomic potentials since significant deviations in system properties have 276 

often been observed compared to experimental data40. Second, the DFT level of theory comprising 277 

the density functional and basis set is critical for achieving well-converged chemical shieldings. 278 

Achieving this convergence for small molecules is relatively straightforward by combining DFT 279 

or even coupled cluster calculations with large basis sets. However, this is much more challenging 280 

with complexes consisting of multiple species. Therefore, there is a need to balance the cluster size 281 

with the quality of the DFT level of theory. In addition, the choice of the implicit solvent model is 282 

crucial for approximating the bulk solvent effect. A remarkable number of benchmarking studies 283 

have been done on quantum mechanical methods for predicting properties in complex 284 

multicomponent battery electrolytes similar to the test case here41-43. However, parallel studies for 285 
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NMR calculations for these types of systems are still in their infancy. Other factors include 286 

selecting an appropriate number of molecules in the chemical reference to account for 287 

intermolecular interactions and a representative conformer from each solvation environment. In 288 

the following sections, we report the role of each of these factors using results obtained by the 289 

framework for the Mg(TFSI)2/DME test case system.  290 

Role of the force field  291 

The choice of the force field parameters used in CMD simulations can significantly influence 292 

the speciation observed in solution, and thus the NMR chemical shift predictions. Therefore, we 293 

benchmark the most commonly used and reliable force fields for liquid solutions, including GAFF 294 

(FF1), non-polarizable OPLS44 (FF2), and polarizable OPLS (FF3) force fields to compare their 295 

performance in terms of the solution properties. FF1 and FF2 are computationally less expensive 296 

due to their non-polarizable nature and have been used extensively in the battery literature showing 297 

satisfactory agreement with experimental findings. FF3, built on top of FF2, allows for a 298 

polarizable response of molecules to an electric field using the Drude oscillator model45. In this 299 

model, particles are added to each polarizable atom to mimic physical dipoles and model the 300 

corresponding distortion of electron density.  301 

The simulation density (𝜌) using the three force fields, shown in Table S2, agrees well with 302 

the experimental value. The lowest average error (1.2 %) is achieved with FF3. The RDFs between 303 

the cation and oxygen atoms of DME and TFSI- are shown in Fig 2a and 2b, respectively. FF1 304 

results in the weakest cation-solvent [Mg2+-DME] interaction and the most vital cation-anion 305 

[Mg2+- TFSI-] interaction, as evident from the sharp RDF peak between the cation and oxygen 306 

atoms of the anion. On the other hand, with FF3, little coordination occurs with the anion (inset of 307 

Fig 2b), indicating that solvent molecules dominate the first solvation shell of the cation. Fig 2c 308 
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shows Mg2+ - O (DME) and Mg2+ - O (TFSI-) coordination numbers, calculated by integrating the 309 

corresponding RDF curves for the first solvation shell. FF3 results indicate that Mg(TFSI)2 tends 310 

to form SSIPs in DME, while FF2 shows that the salt participates in forming CIPs. On the other 311 

extreme, FF1 results in the formation of aggregate solvates (AGGs), in which two or more anions 312 

coordinate with the cation. An example of the type of coordination represented by the RDFs is 313 

displayed in Fig 2d. The tested force fields also result in different percentages of DME and TFSI- 314 

that coordinate to Mg2+ with two oxygen atoms, i.e., in bidentate configuration, as shown in Fig 315 

S5.  316 

 
Fig. 2 Structural properties of Mg(TFSI)2 in DME at 298.15 K using FF1 (GAFF), FF2 (non-polarizable OPLS), and 
FF3 (polarizable OPLS). RDF of (a) Mg2+ – O (DME) and (b) Mg2+ – O (TFSI-), (c) coordination numbers with Mg2+ 

with the corresponding type of structure: solvent separated ion pairs (SSIPs), contact ion pairs (CIPs), and aggregates 
(AGGs), and (d) corresponding types of coordination with oxygen atoms of DME and TFSI- 
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The top Mg2+ configurations identified by the framework are provided in Fig S6 and Fig S7. 317 

Overall, we find significant differences in the type and distribution of these structures among the 318 

tested force fields. For example, the most probable solvation structure predicted with FF1 involves 319 

one DME molecule in bidentate configuration and four TFSI- anions in monodentate configuration. 320 

In addition, rather than forming a single stable solvate like in the case of FF3, the distribution of 321 

coordination environments for the cation with FF1 is much more heterogeneous and involves 322 

configurations dominated by the anion. With FF2, the electrostatic interaction with the anion is 323 

slightly suppressed, and the most probable solvation shell is composed of two DME solvents and 324 

TFSI- anions participating in bidentate and monodentate configurations, respectively. FF3 results 325 

in an Mg2+ solvation shell dominated by three DME molecules participating in bidentate 326 

configuration, with only minor structures containing an anion. This configuration has been 327 

previously suggested based on experimental measurements of diffusion and Raman and NMR 328 

spectroscopy23,26, and computationally by Kubisiak and Eilmes46 for a concentration range of 0.1-329 

1 M.   330 

Variations in the structural properties between the tested force fields are translated to the 331 

dynamical behavior of the electrolyte. The distribution of diffusion coefficients (Fig S8) from FF3 332 

indicates 2.58 slow DME molecules per Mg2+ cation. This result is in close agreement with the 333 

experimentally measured value of 3.023 and is consistent with the computed structural properties. 334 

FF1 and FF2 predict 1.17 and 1.86 slow DME molecules per Mg2+, respectively. The calculated 335 

ionic diffusion coefficients with FF3 are also in better agreement with experimental results (mean 336 

absolute error of 20%), whereas those from FF1 and FF2 are underestimated by approximately 337 

90% and 30%, respectively (Fig S9).   338 
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The discrepancies in the predicted properties are not particularly a problem of a specific force 339 

field or the Mg(TFSI)2/DME system, but rather due to a lack of accounting for the critical 340 

interactions in the non-polarizable simulations. The predicted properties using FF3 are the most 341 

consistent with previous experimental23,26 and computational46 studies among the tested force 342 

fields. However, the better performance of FF3 comes at the expense of its 2-3 fold higher 343 

computational time compared to FF1 and FF2. To summarize, the computational results for the 344 

cation-anion motifs and the propensity of the salt to form ion aggregation in the solution are 345 

strongly dependent on the type of the force field. Therefore, evaluating the quality of the force 346 

field used in the sampling process is a necessary primary step to obtain reliable structures for NMR 347 

computations. Here, we proceed with the FF3-predicted solvation structures to report results from 348 

the DFT component of the NMR framework.  349 

Role of the DFT level of theory 350 

We evaluate the performance of selected DFT functionals and basis sets in predicting chemical 351 

shifts of 25Mg, 13C, and 1H of the top configurations and the chemical shifts of 13C and 1H 352 

resonances in the bulk solution. All calculations presented in this section are performed using the 353 

polarizable continuum model (PCM)47-49. The NMR workflow (Fig 1) is designed to be used in 354 

high-throughput mode to study speciation evolution in liquid solutions at variable conditions, e.g., 355 

concentration and temperature. Therefore, the comparison is made not only based on accuracy but 356 

also on factors that are particularly important for high-throughput simulations (e.g., computational 357 

cost and tendency to fail). Predictions from combinations of four commonly utilized DFT 358 

functionals (B3LYP50, M06-2X51, PBE1PBE52, and ωB97X39) and three Gaussian basis sets (6-359 

31+G*, 6-311++G**, and def2-TZVP) are compared with experimental NMR data.  360 
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During the benchmark study, the most common failures encountered include failure to 361 

converge the geometry to a PES minimum in a finite number of optimization steps, difficulties in 362 

converging SCF calculations, and errors in internal coordinate transformations. Around 78% of 363 

the total performed calculations were completed without error correction procedures. Levels of 364 

theory primarily involved in the failed calculations include B3LYP/6-31+G* and PBE1PBE 365 

hybrid functional coupled with each of the 6-31+G* and 6-311++G** basis sets. Given that one 366 

of our primary goals is to find a level of theory that is not likely to fail with complex 367 

multicomponent clusters, these levels of theory are not considered the most appropriate for the 368 

required task.  369 

The 25Mg NMR results from the top-performing level of theory (ωB97X/def2-TZVP) are 370 

shown in Fig 3 along with the corresponding structure of the predicted species. A single broad 371 

peak is observed, indicating either a single solvation structure or a convolution of multiple 372 

structures with a rapid exchange. The predicted 25Mg chemical shift in the most probable 373 

configuration is -0.809 ppm, which is highly consistent with the experimental peak center located 374 

at -0.71 ppm. Given the broad line width of the 25Mg peak, i.e., the half peak height at 0.83 and -375 

2.13 ppm, the chemical shift of 25Mg in configuration 2 (Table 1) is also deemed to be in 376 

satisfactory agreement with experimental data. Therefore, multiple Mg2+ structures that are 377 

entirely dissociated from the anion are possible in the solution. Excluding configuration 4, the 378 

increase in the ion-dipole interaction between Mg2+ and TFSI- in the following order: configuration 379 

1 < configuration 2 < configuration 3 < configuration 6 < configuration 5 leads to the observed 380 

monotonic upfield shift in the corresponding 25Mg chemical shift. The presence of loosely packed 381 

clusters of [Mg(DME)n] (n ≤ 2), i.e., configuration 4, is attributed to the high degree of freedom 382 

and structural flexibility of DME. This type of configuration has been reported to be favorable at 383 
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lower concentrations due to lower electrostriction (reduced solvent volume in the Mg2+ solvation 384 

shell relative to the bulk) and diminished entropy loss23. On the contrary, higher concentrations 385 

(0.51 M) such as the one used in this study lead to closer distances between Mg2+ ions, resulting 386 

in stronger electrostatic interactions and dampened DME motion, thus favoring fully solvated 387 

clusters (n = 3, configuration 1). This behavior is consistent with the low probability of 388 

configuration 4 and the predicted 25Mg chemical shift of this configuration, which is far from the 389 

experimental peak center (Fig 3).   390 

 

Fig. 3 Predicted 25Mg NMR chemical shifts using the NMR computational protocol and the experimental NMR 
spectrum along with the corresponding predicted solvation structures of 1:18 Mg(TFSI)2 in DME solution. DFT 
calculations are performed at the ωB97X/def2-TZVP level of theory using the PCM solvation model 
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Table 1 DFT predicted chemical shifts for 1:18 Mg(TFSI)2 in DME solution along with deviations from experimental data 

Moleculea 𝛿 25Mg (ppm) 𝛿 13C (ppm) 𝛿 1H (ppm) 

PCMb,c SMDb,c Shiftc,d Deviatione  Shiftd,f  Deviatione 

Bulk DME   CH2: 72.32 CH2: 0.83  CH2: 3.74 CH2: 0.06 

 CH3: 59.16 CH3: 0.27 CH3: 3.64 CH3: -0.01 

Configuration 1  

[Mg(DME)3]2+ 

-0.809 0.283 CH2: 72.62 CH2: -0.26 CH2: 4.24 CH2: 0.16 

 CH3: 62.70 CH3: -0.09 CH3: 4.07 CH3: 0.29 

Configuration 2 

Mg(DME)2(TFSI)]+ 

-4.741 -4.649 CH2: 72.50 CH2: -0.14 CH2: 4.20 CH2: 0.20 

 CH3: 62.18 CH3: 0.43 CH3: 4.11 CH3: -0.01 

Configuration 3 

Mg(DME)2(TFSI)]+ 

-6.016 2.784 CH2: 72.16 CH2: 0.20 CH2: 4.27 CH2: 0.13 

 CH3: 61.64  CH3: 0.97 CH3: 4.15 CH3: -0.05 

Configuration 4  

[Mg(DME)2]2+ 

-15.559 -3.982 CH2: 73.37 CH2: -1.01 CH2: 4.32 CH2: 0.08 

 CH3: 62.73 CH3: -0.12 CH3: 4.14 CH3: -0.04 

Configuration 5  

[Mg(DME)2(TFSI)2] 

-6.785 -6.196 CH2: 71.85 CH2: 0.51 CH2: 4.10 CH2: 0.30 

 CH3: 62.57 CH3: 0.04 CH3: 4.14 CH3: -0.04 

Configuration 6 

[Mg(DME)2(TFSI)]+ 

-6.450 -5.815 CH2: 72.68 CH2: -0.32 CH2: 4.29 CH2: 0.11 

 CH3: 62.52 CH3: 0.09 CH3: 4.13 CH3: -0.03 

 
a For the difference between configurations 2, 3, and 6, refer to Fig S3,  
b Compared to experimental peak center at -0.71 ppm,  
c Using ωB97X/def2-TZVP, 
d Using PCM model,  
e Deviation = 𝛿𝑒𝑥𝑝 - 𝛿𝐷𝐹𝑇, 
f Using M06-2X/def2-TZVP.
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The benchmarking results for 25Mg chemical shift calculations are displayed in Fig S10. On 391 

average, going from left to right, i.e., increasing the number of basis functions, moves most of the 392 

predicted chemical shifts corresponding to different electronic environments surrounding the 25Mg 393 

nucleus within the bounds of the observed NMR spectrum. From top to bottom, significant 394 

variations are observed in the predicted chemical shifts using the four functionals with 6-31+G*, 395 

while this difference is less clear with def2-TZVP. In addition, we find that different levels of 396 

theory can lead to contradictory conclusions regarding the dominant species in solution. For 397 

example, the structure is predicted to be [Mg(DME)2(TFSI)]+ using PBE1PBE/6-31+G* while the 398 

fully solvated [Mg(DME)3]2+ is found with PBE1PBE/def2-TZVP.  399 

Fig 4 shows 13C NMR shifts assigned to CH3 of DME existing in the bulk solution (labeled 400 

'free CH3') and DME coordinated to Mg2+ (labeled 'bound CH3') from DFT predictions and 401 

experimental measurements. Similar plots for 13C shifts assigned to CH2 and 1H shifts assigned to 402 

CH3 and CH2 of both types of DME molecules are shown in Figs S11-S13, respectively. While 403 

free and bound DME molecules are distinguishable from experimental and predicted 13C and 1H 404 

NMR chemical shifts, it is impossible to differentiate between bound DME at different 405 

configurations identified in this work. The spectroscopic differences between the structures may 406 

be subtle (see, for example, Table 1 for 13C and 1H chemical shifts in different configurations). On 407 

the contrary, 25Mg chemical shifts can be utilized for this purpose, whereby changes in charge 408 

density localization on different Mg2+ complexes directly alter the screening effects experienced 409 

by the 25Mg nucleus, thus giving rise to different NMR responses. As displayed in Fig 4 and Fig 410 

S11, the highest deviation from experimental 13C shifts are obtained with the 6-31+G* and 6-411 

311++G** basis sets combined with any tested density functional. The basis set from the 'def2' 412 

family of Alrichs and coworkers53, particularly in combination with ωB97X, leads to 13C NMR 413 
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chemical shift error that approaches the underlying uncertainty in experimental measurements 414 

(Table 1). Fig S12 and S13 indicate that for 1H chemical shifts, M06-2X/def2-TZVP outperforms 415 

the other tested levels of theory with absolute errors between 0.01 and 0.3 ppm (Table 1).   416 

 

Fig. 4 Strip plot of the computed and experimental 13C NMR chemical shifts assigned to CH3 of DME coordinated to 
Mg2+ (labeled Bound CH3) and CH3 of free DME (labeled Free CH3). For color code of 'Bound CH3', please refer to 
Fig 3. Results from each DFT functional are shown with the basis sets in the following order: 6-31+G*, 6-311++G**, 
and def2-TZVP 

We conclude that the choice of the basis set has the highest impact on the accuracy of NMR 417 

chemical shift predictions. The 6-31+G* basis set is ruled out as a suitable basis set for NMR 418 

calculations of complexes similar to those studied herein due to its degraded accuracy compared 419 

to other basis sets, despite its lower computational cost (see Fig S14 for timings). For 25Mg and 420 

13C chemical shifts, the ωB97X/def2-TZVP level of theory is recommended if computational 421 

resources are available as its remarkable accuracy and the applicability of def2-TZVP to broader 422 

chemical systems make it well worth the additional cost. If computational resources are limited, 423 

M06-2X/6-311++G** is recommended for 25Mg shifts as its cost is not prohibitive while still 424 
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predicting the correct Mg2+ solvation structure.  Finally, M06-2X with def2-TZVP or 6-311++G** 425 

are recommended for 1H chemical shift predictions.   426 

Effect of geometry optimization 427 

To examine the possibility of making DFT calculations more affordable, we calculated the 428 

25Mg chemical shift of 33 pre-relaxed clusters extracted from CMD simulations. We then compare 429 

their deviation from calculations utilizing optimized geometries at the same level of theory (Fig 430 

S15). We find a mean absolute deviation of ~ 37.6 ppm between the two types of calculations, 431 

with a systematic downfield shift from calculations utilizing fully optimized structures. This result 432 

is not surprising due to the sensitivity of the 25Mg nucleus to subtle differences in the local structure 433 

and coordination environment. Therefore, relaxing the structures ensures that 'reasonable 434 

geometries' are used, and therefore is a prerequisite for obtaining accurate NMR chemical shifts 435 

that are comparable to experimental measurements.  436 

Choice of the chemical reference  437 

Because water is selected as the 1H chemical shift reference, another consideration is the 438 

accurate computational representation of the effect of strong hydrogen bonding among water 439 

molecules. To this end, calculations on clusters of (H2O)n (n = 1 - 4, 6, 8, 10, 12) are performed. 440 

At the M06-2X/def2-TZVP level of theory, the isotropic shielding constant of 1H moves upfield 441 

when the number of water molecules increases and tends to converge at ~ 27.6 ppm for eight water 442 

molecules. In addition, multiple clusters for non-hydrogen-bonding dimethylsulfoxide (DMSO)n 443 

(n = 1 - 4, 6), used as a reference in 13C chemical shift calculations, are considered. The use of a 444 

DMSO dimer is found to be sufficient, whereby the 13C isotropic shielding constant converges at 445 

~ 150 ppm at the ωB97X/def2-TZVP level of theory.  Finally, since intermolecular interactions 446 

inevitably exist in DME solution, calculations on (DME)n (n = 1 - 4) are carried out for predicting 447 
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the 13C and 1H chemical shifts of DME molecules in the bulk solution, and (DME)2 is found to 448 

result in bulk CH3 and CH2 chemical shifts that reproduce the experimental data. All calculated 449 

isotropic shielding constants for H2O, DMSO, and DME clusters are included in the dataset 450 

associated with this work. 451 

Role of the implicit solvation model  452 

In addition to the explicit solvent molecules modeled in the Mg2+ first solvation shell, an 453 

implicit model is used to incorporate long-range electrostatic effects. Implicit solvent models have 454 

the advantage of reducing the number of degrees of freedom of the environment (solvent), thereby 455 

decreasing the computational cost to describe the dielectric continuum outside the solute cavity. 456 

SMD is reliable in many applications54 and therefore is compared to the PCM results in this work. 457 

As evident from the data in Table 1, both methods lead to similar interpretations of experimental 458 

results in terms of the most probable solvation structure. However, the PCM method predicts more 459 

accurately the chemical shift of the top configuration. The only significant differences between the 460 

two methods are for configurations 3 and 4. Similarly, more minor errors associated with 13C and 461 

1H chemical shifts are achieved with PCM than the SMD model using the ωB97X/def2-TZVP and 462 

M06-2X/def2-TZVP levels of theory, respectively (Fig S16).  463 

Role of conformer 464 

Another consideration in the NMR framework is that it utilizes the lowest-energy conformer 465 

from each configuration to initialize the NMR DFT calculations. Previous NMR DFT studies have 466 

also reported findings on possible solvation structures based on a single conformer20,24,55. 467 

However, the measured shift is the weighted average of chemical shifts of all possible conformers 468 

in solution during the NMR acquisition time. Therefore, we assess the sensitivity of DFT chemical 469 

shifts to conformer sampling by starting from the MMFF94 energies of a total of ~ 270,000 470 
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conformers of configuration 1 and ~ 4,000 conformers of configuration 2 extracted from CMD 471 

simulations. From each configuration, 15 conformers spanning the entire energy range are selected 472 

to initialize full NMR calculations that include geometry optimization, frequency, and chemical 473 

shift estimation at the ωB97X/def2-TZVP level of theory using the PCM solvation model. 474 

Boltzmann averaging is done according to the equation shown in Fig 5 to calculate the ensemble 475 

NMR chemical shift. Because optimization at the higher level of theory leads to the reordering of 476 

conformational energies, the results are reported relative to the MM global minimum energy 477 

conformer. The plots in Fig 5 show the mean difference (including the 95% confidence interval) 478 

between the Boltzmann average NMR chemical shift for the entire ensemble, 〈𝛿〉, and our initial 479 

chemical shift estimation, 𝛿0, as a function of the number of optimizations performed. We note 480 

that for each number of optimized structures (𝑁𝑜𝑝𝑡) shown on the x-axis of Fig 5, the calculated 481 〈𝛿〉 is the result of averaging over all possible combinations of 𝑁𝑜𝑝𝑡 from a pool of 15 structures, 482 

with a restriction that the MM global minimum energy conformer is included in these 483 

combinations. To maintain statistical significance, only 𝑁𝑜𝑝𝑡 resulting in more than 30 possible 484 

combinations are used, thus 𝑁𝑜𝑝𝑡 = 2, 13, 14, 15 are excluded from the analysis. Variable degrees 485 

of errors are obtained with each nucleus type, with the highest difference in the 25Mg chemical 486 

shift. In this electrolyte system, a maximum unsigned error of 1.2 ppm in the 25Mg chemical shift 487 

of configuration 1 upon excluding conformational sampling does not alter the interpretation of 488 

experimental findings in terms of the most probable solvation structure while saving 15⨉ the 489 

computational resources. Nevertheless, conformational sampling has a more pronounced impact 490 

on other less probable solvation structures like configuration 2, for which an error of 4.4 ppm is 491 

incurred if only the MM global minimum is considered for calculations at the higher level of 492 

theory. Significantly lower errors are obtained for 13C chemical shifts of CH2 and CH3 groups, 493 
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while 1H chemical shifts are insensitive to conformer sampling regardless of the type of 494 

configuration to which the proton belongs. Therefore, an evaluation of the impact of 495 

conformational sampling on DFT predictions for a nucleus of interest should be done whenever 496 

possible to boost the confidence in correlations established between experiments and the results of 497 

the computational framework described in this work. Such a process would determine whether the 498 

conformer issue is critical in the examined case study to possibly avoid instances of multiple 499 

conformers that would need to be considered.  500 

 

Fig. 5 Effect of multiple conformers for (a) configuration 1 and (b) configuration 2 on 25Mg, 13C, and 1H NMR 
chemical shifts. In the equation of the Boltzmann weighted average of the chemical shift 〈𝛿〉, 𝑝𝑖 and ∆𝐺𝑖 are the 
Boltzmann weight and the formation energy of structure 𝑖 relative to the most stable configuration predicted by DFT, 
respectively 

CONCLUSIONS 501 

In conclusion, we have developed and tested a computational framework that couples first-502 

principle calculations with CMD simulations to robustly and efficiently calculate, analyze, and 503 

store NMR chemical shifts from a variety of molecules in liquid solutions. The framework 504 

overcomes limitations in current NMR computational studies such as the Edisonian approach in 505 

selecting possible solvation structures and the significant time required for manual file 506 

management, data collection, and error handling. By overcoming these limitations, we were able 507 
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to accurately identify multiple stable species present in the solution that contribute to the overall 508 

NMR spectral shape. Minimal inputs comprising structures of species in solution and their force 509 

field parameters are required to obtain accurate shifts, but the calculation procedure can be tuned 510 

by overriding default inputs like the level of theory and solvation model. Factors such as the choice 511 

of the force field used to identify the type of speciation in solution, DFT level of theory, implicit 512 

solvation model, and conformer sampling are critical in determining the accuracy of predictions 513 

made by the framework. We have successfully applied the framework to calculate chemical shifts 514 

in a complex multicomponent Mg(TFSI)2/DME solution and resolved the discrepancy in the 515 

literature regarding the Mg2+ solvation structure in this solution. Our results show formation of 516 

solvent separated ion pairs in this electrolyte which is consistent with the experimental NMR 517 

results reported in this work and the previously reported SCXRD results26. The benchmark test 518 

case shows that our procedure can generate reliable results that can facilitate NMR deconvolution 519 

assignments to determine ionic association interactions within liquid solutions similar to those 520 

reported in this work. An extension of this framework is under development and will be 521 

successfully added to the existing one. Features that will be supported include the ability to explore 522 

the role of the second solvation shell and coupling this strategy with a more detailed analysis of 523 

the exchange dynamics in the solution. In addition, support for performing automated polarizable 524 

CMD simulations using the thermalized Drude dipole method as implemented in LAMMPS will 525 

be added. The current and extended framework will be used to study other monovalent and 526 

multivalent electrolytes whose structure is not intuitive or when the chemical and parameter spaces 527 

are too large for human search using conventional non-automated methods. Data collected from 528 

the framework is expected to provide fingerprints to guide future experimental investigations of 529 

liquid solutions with optimal properties.  530 
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METHODS 531 

Computational  532 

CMD simulations are performed using the LAMMPS simulation package34 version 3Mar2020 533 

(http://lammps.sandia.gov). Initial configurations of ions in the solvent are first obtained by 534 

randomly packing the molecules in a cubic box of size 5 ⨉ 5 ⨉ 5 nm3 with periodicity in XYZ 535 

directions using the PACKMOL package56. We consider MgTFSI2 in DME at a salt-to-solvent 536 

ratio of 1:18. In FF1, i.e., GAFF36 parameterization, TFSI- and DME parameters are obtained by 537 

first generating the electrostatic potential of single molecules in Gaussian 1633 at the B3LYP/6-538 

31+G* level of theory and fitting the electrostatic potential surface of the optimized structures 539 

using the RESP method in Antechamber57. AMBER force field parameters by Aqvist are used for 540 

Mg cations58. FF2, corresponding to the OPLS36 force field, uses TFSI bonded parameters by 541 

Lopes/Pádua59 and nonbonded parameters by Köddermann60. DME parameters are taken from the 542 

work of Anderson and Wilson61 except for the parameters of C-C-O-C and O-C-C-O dihedrals, 543 

which are based on GAFF parameterization36. Lastly, based on FF2, we build FF3 544 

parameterization that includes polarization effects via the classical Drude oscillators model45,62. 545 

Drude particles are attached to all atoms, excluding hydrogen and Mg2+ due to their relatively small 546 

polarizabilities. Atomic polarizabilities and charges for TFSI are based on the APPLE&P force 547 

field63, whereas those for DME are taken from work on poly(ethylene oxide)64. Nonbonded 548 

parameters for Mg2+ cations are adapted from AMOEBA-PRO-13-FF65. Force field parameters 549 

used in this work are listed in Tables S3-S7. 550 

Lennard Jones interactions are truncated at a cutoff distance of 1.2 nm, and the particle-particle 551 

particle-mesh (PPPM)66 method is used to handle long-range electrostatic interactions. With FF3, 552 

a Thole damping factor67 of 1.0 is used to smear the neighboring induced dipoles located on the 553 

http://lammps.sandia.gov/
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same molecule and prevent the 'polarization catastrophe'68. Initial structures are subjected to a two-554 

step energy minimization, first using the steepest descent algorithm employing convergence 555 

criteria of 1,000 kcal/mol Å and then using a conjugated-gradient minimization scheme with an 556 

energy convergence criteria of 10 kcal/mol Å. The two-step minimization allows for the release of 557 

strained contacts in the initial configuration. Isothermal-isobaric simulations (NPT) are performed 558 

to obtain the correct density on the minimized system using a Nosé/Hoover temperature thermostat 559 

and pressure barostat to maintain the temperature at 298.15 K and the pressure at 1 atm for 2 ns. 560 

With FF3, Drude particles are thermalized at a lower temperature relative to Drude cores to avoid 561 

fast vibrations of the small reduced masses, thus allowing the use of a reasonable time step. The 562 

system is then melted to 500.15 K for 2 ns and subsequently quenched to 298.15 K for 3 ns. 563 

Following that, canonical ensemble (NVT) simulations are performed for 50 ns using a time step 564 

of 0.001 ps at 298.15 K to equilibrate the system. Molecular trajectories are sampled every 5 ps, 565 

resulting in 10,000 snapshots, from which properties of interest are calculated.  566 

All DFT calculations are performed using Gaussian 1633. Magnetic shieldings are calculated 567 

for the extracted Mg2+ clusters, ranging in size from 33 to 78 atoms. The benchmark study is 568 

performed with twelve combinations of functionals and basis sets (Fig 4) chosen due to their broad 569 

application in the NMR literature. An ultrafine integration grid is employed, and van der Waals 570 

interactions are treated using Grimme dispersion correction (D3)69 with the B3LYP, M06-2X, and 571 

PBE1PBE functionals. Besides the explicit solvent model used in this work, bulk solvent effects 572 

are described using a continuum model, particularly PCM47-49 or SMD54. Following the 573 

optimization and frequency steps, magnetic response calculations are performed using the gauge-574 

independent atomic orbital (GIAO)70,71 method at the same level of theory. Chemical shifts are 575 

converted to the experimentally observed scale using 𝛿𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝜎𝑟𝑒𝑓 − 𝜎𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , where 𝛿𝑐𝑙𝑢𝑠𝑡𝑒𝑟  576 
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and 𝜎𝑐𝑙𝑢𝑠𝑡𝑒𝑟  are the chemical shift and the isotropic shielding constant of the nucleus of interest in 577 

a given cluster, respectively, and 𝜎𝑟𝑒𝑓 is the calculated isotropic shielding constant of the same 578 

nucleus in a suitable reference compound. We use an Mg2+ ion coordinated octahedrally by six 579 

water molecules, dimethyl sulfoxide, and water, as the chemical references for 25Mg, 13C, and 1H, 580 

respectively. To reduce systematic errors, we use secondary references (TMS) by adding 39.5 and 581 

4.7 ppm to the calculated chemical shifts of carbon and proton, respectively. These values 582 

correspond to the experimental chemical shifts of the secondary references relative to the primary 583 

standards. We again stress that all the steps described here are automated within our computational 584 

framework except for the polarizable CMD simulations.  585 

Experimental  586 

Mg(TFSI)2 (99.5%, Solvionic) were dried for 48 hours under vacuum at 180 C, and the DME 587 

solvent (Battery-grade, Gotion) was further dried over activated 3 Å molecular sieves in a 588 

glovebox until its water content was determined to be below 10 ppm using a Karl-Fisher Titrator 589 

(Metrohm). Mg(TFSI)2/DME solutions were prepared inside a glovebox filled with nitrogen right 590 

before NMR measurements. 1H and 13C NMR measurements were performed on a Varian DDRS 591 

spectrometer with a 17.6 T magnet using a broad-band (BBO) probe with 1H and 13C Larmor 592 

frequencies of 748.1 and 188.1 MHz, respectively. The 90˚ pulse widths were 16 µs for 1H and 16 593 

µs for 13C. 1H spectra were collected using 30° pulses with a transition number of 16 and a recycle 594 

delay of 20 s with a coaxial tube holding Mg(TFSI)2/DME solution and an outer NMR tube holding 595 

D2O (99.9%, from Sigma Aldrich) as an external reference at 4.77 ppm. 13C spectra were collected 596 

using 30° pulses with averaging of 1024 transients and a recycle delay of 12 s using a thin-wall 5 597 

mm NMR tube. 25Mg NMR spectra were collected at a 14.1 T magnet (Varian DDR spectrometer) 598 

with a 25Mg Larmor frequency of 36.7 MHz and a 90˚ pulse width of 20 µs. A small tip angle of 599 
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15° with a recycle delay of 0.1 s was used and 128,000 transients were acquired. In order to 600 

minimize the spectrometer drift effect on chemical shift, DMSO-d6 and 5 M MgCl2 were used to 601 

reference 13C (39.52 ppm) and 25Mg (0 ppm), respectively, right before each NMR measurement. 602 

DATA AVAILABILITY  603 

The dataset used to generate the results in this work along with the optimized 3D structures in 604 

XYZ format are available in the repository at https://github.com/rashatwi/nmr-dataset.  605 

CODE AVAILABILITY  606 

The open-source LAMMPS-code is used in the CMD simulations while the proprietary Gaussian-607 

code is primarily used in the DFT calculations. The framework shown in Fig 1 is implemented 608 

using the MISPR infrastructure, which defines, executes, manages, and stores DFT and CMD 609 

workflows. The codes used in this work will be made publicly available with the future release of 610 

the MISPR package.  611 
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16 Dracinsky, M., Möller, H. M. & Exner, T. E. Conformational sampling by ab initio 

molecular dynamics simulations improves NMR chemical shift predictions. Journal of 

chemical theory and computation 9, 3806-3815 (2013). 

17 Abella, L., Philips, A. & Autschbach, J. Ab initio molecular dynamics study of sodium 

NMR chemical shifts in the methylamine solution of [Na+[2.2. 2] cryptand Na−]. Physical 

Chemistry Chemical Physics 23, 339-346 (2021). 

18 Casabianca, L. B. & De Dios, A. C. Ab initio calculations of NMR chemical shifts. The 

Journal of chemical physics 128, 052201 (2008). 

19 Hu, M. Y. et al. In situ natural abundance 17O and 25Mg NMR investigation of aqueous 

Mg (OH) 2 dissolution in the presence of supercritical CO2. Environmental science & 

technology 50, 12373-12384 (2016). 

20 Hu, J. Z. et al. 25Mg NMR and computational modeling studies of the solvation structures 

and molecular dynamics in magnesium based liquid electrolytes. Nano energy 46, 436-446 

(2018). 

21 Yesiltepe, Y. et al. An automated framework for NMR chemical shift calculations of small 

organic molecules. Journal of cheminformatics 10, 1-16 (2018). 

22 Gao, P., Zhang, J., Peng, Q., Zhang, J. & Glezakou, V.-A. General protocol for the accurate 

prediction of molecular 13C/1H NMR chemical shifts via machine learning augmented 

DFT. Journal of Chemical Information and Modeling 60, 3746-3754 (2020). 



 35 

23 Chen, Y. et al. Role of Solvent Rearrangement on Mg2+ Solvation Structures in 

Dimethoxyethane Solutions using Multimodal NMR Analysis. The Journal of Physical 

Chemistry Letters 11, 6443-6449 (2020). 

24 Wan, C. et al. Natural abundance 17O, 6Li NMR and molecular modeling studies of the 

solvation structures of lithium bis (fluorosulfonyl) imide/1, 2-dimethoxyethane liquid 

electrolytes. Journal of Power Sources 307, 231-243 (2016). 

25 Rajput, N. N., Qu, X., Sa, N., Burrell, A. K. & Persson, K. A. The coupling between 

stability and ion pair formation in magnesium electrolytes from first-principles quantum 

mechanics and classical molecular dynamics. Journal of the American Chemical Society 

137, 3411-3420 (2015). 

26 Salama, M. et al. Unique behavior of dimethoxyethane (DME)/Mg (N (SO2CF3) 2) 2 

solutions. The Journal of Physical Chemistry C 120, 19586-19594 (2016). 

27 SDBSWeb, <https://sdbs.db.aist.go.jp>. 

28 Fulmer, G. R. et al. NMR chemical shifts of trace impurities: common laboratory solvents, 

organics, and gases in deuterated solvents relevant to the organometallic chemist. 

Organometallics 29, 2176-2179 (2010). 

29 MongoDB Inc., M., 2014. 

30 Ong, S. P. et al. Python Materials Genomics (pymatgen): A robust, open-source python 

library for materials analysis. Computational Materials Science 68, 314-319 (2013). 

31 Jain, A. et al. FireWorks: a dynamic workflow system designed for high‐throughput 

applications. Concurrency and Computation: Practice and Experience 27, 5037-5059 

(2015). 

32 Custodian, <https://github.com/materialsproject/custodian>. 

https://sdbs.db.aist.go.jp/
https://github.com/materialsproject/custodian


 36 

33 Gaussian 16 Rev. C.01 (Wallingford, CT, 2016). 

34 Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal of 

computational physics 117, 1-19 (1995). 

35 O'Boyle, N. M. et al. Open Babel: An open chemical toolbox. Journal of cheminformatics 

3, 33 (2011). 

36 Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and 

testing of a general amber force field. Journal of computational chemistry 25, 1157-1174 

(2004). 

37 Halgren, T. A. Merck molecular force field. I. Basis, form, scope, parameterization, and 

performance of MMFF94. Journal of computational chemistry 17, 490-519 (1996). 

38 Landrum, G. RDKit: Open-Source Cheminformatics Software.  (2016). 

39 Chai, J.-D. & Head-Gordon, M. Systematic optimization of long-range corrected hybrid 

density functionals. The Journal of chemical physics 128, 084106 (2008). 

40 Rajput, N. N. et al. Elucidating the solvation structure and dynamics of lithium polysulfides 

resulting from competitive salt and solvent interactions. Chemistry of Materials 29, 3375-

3379 (2017). 

41 Blau, S., Spotte-Smith, E., Wood, B., Dwaraknath, S. & Persson, K. Accurate, Automated 

Density Functional Theory for Complex Molecules Using On-the-fly Error Correction.  

(2020). 

42 Fadel, E. R. et al. Role of solvent-anion charge transfer in oxidative degradation of battery 

electrolytes. Nature communications 10, 1-10 (2019). 



 37 

43 Borodin, O., Behl, W. & Jow, T. R. Oxidative stability and initial decomposition reactions 

of carbonate, sulfone, and alkyl phosphate-based electrolytes. The Journal of Physical 

Chemistry C 117, 8661-8682 (2013). 

44 Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS 

all-atom force field on conformational energetics and properties of organic liquids. Journal 

of the American Chemical Society 118, 11225-11236 (1996). 

45 Lamoureux, G. & Roux, B. Modeling induced polarization with classical Drude oscillators: 

Theory and molecular dynamics simulation algorithm. The Journal of chemical physics 

119, 3025-3039 (2003). 

46 Kubisiak, P. & Eilmes, A. Solvation of Mg2+ Ions in Mg (TFSI) 2–Dimethoxyethane 

Electrolytes—A View from Molecular Dynamics Simulations. The Journal of Physical 

Chemistry C 122, 12615-12622 (2018). 

47 Miertuš, S., Scrocco, E. & Tomasi, J. Electrostatic interaction of a solute with a continuum. 

A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. 

Chemical Physics 55, 117-129 (1981). 

48 Miertus, S. & Tomasi, J. Approximate evaluations of the electrostatic free energy and 

internal energy changes in solution processes. Chemical physics 65, 239-245 (1982). 

49 Pascual‐ahuir, J.-L., Silla, E. & Tunon, I. GEPOL: An improved description of molecular 

surfaces. III. A new algorithm for the computation of a solvent‐excluding surface. Journal 

of Computational Chemistry 15, 1127-1138 (1994). 

50 Beck, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. 

Phys 98, 5648-5646 (1993). 



 38 

51 Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group 

thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and 

transition elements: two new functionals and systematic testing of four M06-class 

functionals and 12 other functionals. Theoretical chemistry accounts 120, 215-241 (2008). 

52 Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable 

parameters: The PBE0 model. The Journal of chemical physics 110, 6158-6170 (1999). 

53 Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and 

quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical 

Chemistry Chemical Physics 7, 3297-3305 (2005). 

54 Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute 

electron density and on a continuum model of the solvent defined by the bulk dielectric 

constant and atomic surface tensions. The Journal of Physical Chemistry B 113, 6378-6396 

(2009). 

55 Andersen, A. et al. Structure and dynamics of polysulfide clusters in a nonaqueous solvent 

mixture of 1, 3-dioxolane and 1, 2-dimethoxyethane. Chemistry of Materials 31, 2308-

2319 (2019). 

56 Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for 

building initial configurations for molecular dynamics simulations. Journal of 

computational chemistry 30, 2157-2164 (2009). 

57 Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type 

perception in molecular mechanical calculations. Journal of molecular graphics and 

modelling 25, 247-260 (2006). 



 39 

58 Aqvist, J. Ion-water interaction potentials derived from free energy perturbation 

simulations. The Journal of Physical Chemistry 94, 8021-8024 (1990). 

59 Canongia Lopes, J. N. & Pádua, A. A. Molecular force field for ionic liquids composed of 

triflate or bistriflylimide anions. The Journal of Physical Chemistry B 108, 16893-16898 

(2004). 

60 Köddermann, T., Paschek, D. & Ludwig, R. Molecular dynamic simulations of ionic 

liquids: A reliable description of structure, thermodynamics and dynamics. 

ChemPhysChem 8, 2464-2470 (2007). 

61 Anderson, P. M. & Wilson*, M. R. Developing a force field for simulation of poly 

(ethylene oxide) based upon ab initio calculations of 1, 2-dimethoxyethane. Molecular 

Physics 103, 89-97 (2005). 

62 Dequidt, A., Devemy, J. & Padua, A. A. Thermalized Drude oscillators with the LAMMPS 

molecular dynamics simulator. Journal of chemical information and modeling 56, 260-268 

(2016). 

63 Borodin, O. Polarizable force field development and molecular dynamics simulations of 

ionic liquids. The Journal of Physical Chemistry B 113, 11463-11478 (2009). 

64 Borodin, O. & Smith, G. D. Development of quantum chemistry-based force fields for poly 

(ethylene oxide) with many-body polarization interactions. The Journal of Physical 

Chemistry B 107, 6801-6812 (2003). 

65 Shi, Y. et al. Polarizable atomic multipole-based AMOEBA force field for proteins. 

Journal of chemical theory and computation 9, 4046-4063 (2013). 

66 Hockney, R. W. & Eastwood, J. W. Computer simulation using particles.  (crc Press, 

1988). 



 40 

67 Thole, B. T. Molecular polarizabilities calculated with a modified dipole interaction. 

Chemical Physics 59, 341-350 (1981). 

68 Borodin, O. et al. Insights into the structure and transport of the lithium, sodium, 

magnesium, and zinc bis (trifluoromethansulfonyl) imide salts in ionic liquids. The Journal 

of Physical Chemistry C 122, 20108-20121 (2018). 

69 Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio 

parametrization of density functional dispersion correction (DFT-D) for the 94 elements 

H-Pu. The Journal of chemical physics 132, 154104 (2010). 

70 Ditchfield, R. Self-consistent perturbation theory of diamagnetism: I. A gauge-invariant 

LCAO method for NMR chemical shifts. Molecular Physics 27, 789-807 (1974). 

71 Wolinski, K., Hinton, J. F. & Pulay, P. Efficient implementation of the gauge-independent 

atomic orbital method for NMR chemical shift calculations. Journal of the American 

Chemical Society 112, 8251-8260 (1990). 

 

 

 

  
 
 

 
 
 
 
 
 
 
 



Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

SIAnautomtedframeworkforhighthroughputpredictionsofNMRchemicalshiftswithinliquidsolutions.pdf

�atRajputepc.pdf

https://assets.researchsquare.com/files/rs-893249/v1/8c88073a4db0e189d34e2947.pdf
https://assets.researchsquare.com/files/rs-893249/v1/96da4795d45caa876ad3346b.pdf

	ABSTRACT
	INTRODUCTION
	RESULTS AND DISCUSSION
	Overview of the automated framework
	Factors affecting the accuracy of NMR chemical shifts
	Role of the force field
	Role of the DFT level of theory
	Effect of geometry optimization
	Choice of the chemical reference
	Role of the implicit solvation model
	Role of conformer


	CONCLUSIONS
	METHODS
	Computational
	Experimental

	DATA AVAILABILITY
	CODE AVAILABILITY
	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	COMPETING INTERESTS
	ADDITIONAL INFORMATION
	REFERENCES

