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Forecasting of severe acute graft-versus-host disease 
(aGVHD) after transplantation is a challenging ‘large p, small 
n’ problem that suffers from nonuniform data sampling. We 
propose a dynamic probabilistic algorithm, daGOAT, that 
accommodates sampling heterogeneity, integrates multidi-
mensional clinical data and continuously updates the daily 
risk score for severe aGVHD onset within a two-week mov-
ing window. In the studied cohorts, the cross-validated area 
under the receiver operator characteristic curve (AUROC) of 
daGOAT rose steadily after transplantation and peaked at 
≥0.78 in both the adult and pediatric cohorts, outperform-
ing the two-biomarker MAGIC score, three-biomarker Ann 
Arbor score, peri-transplantation features-based models and 
XGBoost. Simulation experiments indicated that the daGOAT 
algorithm is well suited for short time-series scenarios where 
the underlying process for event generation is smooth, mul-
tidimensional and where there are frequent and irregular 
data missing. daGOAT’s broader utility was demonstrated by 
performance testing on a remotely different task, that is, pre-
diction of imminent human postural change based on smart-
phone inertial sensor time-series data.

To this day, severe acute graft-versus-host disease (grade III–IV 
aGVHD) remains a leading cause of death after allogeneic hemato-
poietic stem cell transplantation (allo-HSCT)—a last-resort treat-
ment for many blood diseases—with a transplant-related mortality 
rate as high as ~30% within 100 days1.

Previous algorithms for forecasting severe aGVHD were usually 
based on peri-transplantation features (including recipient, donor 
and transplantation procedural parameters) or ‘landmark’ bio-
marker analysis (designating a specific time point, post-transplant, 
for plasma biomarker analysis). Area under the receiver operator 
characteristic curve (AUROC) scores of models using only peri-
transplantation features were reported to be ~0.62, even when data 
from more than 20,000 patients were available2,3. For landmark 
analysis, it has been reported in at least some study cohorts that 
suppression of tumorigenicity 2 (ST2)—by far the most promis-
ing biomarker for predicting treatment response ‘after’ aGVHD 
onset4,5—had either no substantial association with aGVHD6 or a 
low AUROC (0.56) for forecasting severe aGVHD5 if measured at 
days 11 to 17 post-transplant (that is, ‘before’ aGVHD onset). One 
study of a Japanese cohort, however, did show association (AUROC 

0.66) between grade II–IV aGVHD and ST2 measured on day 147. 
A two-biomarker model using ST2 and regenerating islet-derived 
3-alpha (Reg3α) measured on day 7 post-transplant—the MAGIC 
score—was shown to predict six-month non-relapse mortality 
(NRM; AUROC 0.68)8. Forecasting NRM, however, was not equiva-
lent to forecasting severe aGVHD. Using data reported by Hartwell 
et al.8 (their table S6), one could calculate that the proportion of 
NRM cases attributed to aGVHD was statistically indistinguishable 
between MAGIC score-stratified ‘high-risk’ and ‘low-risk’ groups 
(64% (41/64) versus 57% (47/83); P = 0.458, χ2 test). In contrast, if 
computed ‘at’ or ‘after’ aGVHD onset, multi-biomarker scores were 
shown to be efficacious in predicting treatment response and long-
term outcome8–10.

Few studies have used time-series of all available patient infor-
mation for forecasting severe aGVHD. One recent study applied 
penalized logistic regression to vital signs (body temperature, heart 
rate and so on) that were consistently recorded within the first 10 
days after HSCT and achieved an AUROC value of 0.66 for fore-
casting grade II–IV aGVHD11. Modeling in HSCT—unlike in more 
common medical situations—is challenged by the small sample size 
(n), high feature number (p) and nonuniform data sampling12. This 
study thus aims to utilize evidence from all available dynamic vari-
ables to forecast severe aGVHD better.

We compiled and curated the post-transplant multidimen-
sional time-series data of patients treated with human leukocyte 
antigen (HLA)-mismatched allo-HSCT using stem cells derived 
from peripheral blood, bone marrow or both at the Institute of 
Hematology, Chinese Academy of Medical Sciences (IHCAMS) 
between 2012 and 2021 (hereafter referred to as the ‘aGOAT’ 
(aGVHD Onset Anticipation Tianjin) dataset).

aGOAT contained data from 584 adult and 45 pediatric cases, 
and 16% of the adult cohort and 24% of the pediatric cohort suffered 
from severe aGVHD (Supplementary Table 1). There was a substan-
tial difference in overall survival between the severe aGVHD cases 
and the other patients in the adult cohort (Fig. 1a). aGOAT encom-
passed a total of 194 dynamic variables for the adult cohort and  
159 dynamic variables for the pediatric cohort (Supplementary  
Table 2). The dynamic variables were not measured uniformly 
across all the patients (Fig. 1b and Supplementary Table 3). Fifteen 
peri-transplantation variables were also included in aGOAT 
(Supplementary Table 4).
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We have devised a dynamic probabilistic model—‘daGOAT’ 
(dynamic aGVHD Onset Anticipation Tianjin)—that integrates 
multidimensional time-series data to calculate the risk for severe 
aGVHD. Our model updates the risk score φi(t) for developing 
severe aGVHD between t + 1 and t + δ according to

φi(t) = ρ(zi) +
∑

τ∈[t−δ+1, t]

∑

k
(Iikτθk (xik(τ), τ)), (1)

where ρ(zi) and θk(xik(τ), τ) define the contribution of all peri-
transplantation features zi and the contribution of the individual 
dynamic variable xik(τ), respectively, to the relative risk of the ith 
patient developing severe aGVHD between t + 1 and t + δ.

The motivation behind equation (1) was to first highlight short-
stretch temporal patterns that were suggestive of prodromes for 
severe aGVHD, with δ being the length of the moving time window 
(we set δ = 14). The higher the φi(t), the likelier there was a prodrome 
between τ = t − δ + 1 and τ = t. Considering the evolving nature of 
immune reconstitution after HSCT, we assumed the development 
of severe aGVHD was not a stationary process and defined θk(·) to 
be a function of time. In other words, the same value for the same 
clinical feature might have different implications at different times 
after transplantation. The final risk score on each day was highly 
dependent on all available clinical information and computed scores 
in previous days, so, in this sense, daGOAT is an adaptive algorithm.

We compared daGOAT to two landmark-specific plasma bio-
marker-based models (the two-biomarker MAGIC score8 and the 
three-biomarker Ann Arbor score (based on ST2, Reg3α and tumor 
necrosis factor receptor 1, TNFR1)9), two peri-transplantation fea-
tures-based models (fitted using Naïve Bayes (‘PeriHSCT-NB’) or 
Random Forest (‘PeriHSCT-RF’)) and XGBoost (a gradient-boost-
ing tree algorithm that permits data missing)13.

In the adult cohort, plasma biomarker data at days 6–8 were 
available for 67 patients. The MAGIC score achieved AUROCs of 
0.86 and 0.49 for six-month NRM and severe aGVHD, respectively, 
and the Ann Arbor score achieved AUROCs of 0.59 and 0.50 for 
six-month NRM and severe aGVHD, respectively (Fig. 1c). The 
pediatric cohort’s biomarker data were too small in size to test the 
biomarker models.

To evaluate daGOAT, PeriHSCT-NB, PeriHSCT-RF and XGBoost,  
the patients who received HSCT before (excluding) 1 December 
2020 were designated as training sets and the rest of the patients 
as test sets. Internal validation within the training sets (a series of 
temporal splitting within the training sets) and holdout validation 
on the test sets were then conducted.

In the adult cohort, the Q1 (25th percentile), Q2 (median) and 
Q3 (75th percentile) time points for disease onset were days 24, 29 
and 39, respectively. In internal validation (n = 519), daGOAT’s area 
under the precision-recall curve (AUPRC) peaked at 0.42 (mean; 
s.d., 0.39 (range, 0.06–1.00)) on day 23, surpassing all the other 
models (Extended Data Fig. 1a,b). It is worthwhile noting, however, 
that the PeriHSCT models outcompeted daGOAT during the first 
two weeks after transplantation. AUROC values showed a trend 
similar to AUPRC values. daGOAT’s AUROC peaked at 0.78 (mean; 
s.d., 0.17 (range, 0.58–1.00)) on day 23 (Extended Data Fig. 1c and 
Supplementary Fig. 3). In holdout validation (n = 65), daGOAT’s 
AUPRC and AUROC peaked at 0.82 and 0.94, respectively, on day 
23, outcompeting all the other models (Extended Data Fig. 2a–c 
and Supplementary Fig. 3). Again, the PeriHSCT models surpassed 
daGOAT during the first two weeks (Extended Data Fig. 2a and 
Supplementary Fig. 3). For the adult cohort, on day 23, hazard ratios 
(HRs) between high-risk (risk score top 1/6) and low-risk (risk 
score bottom 5/6) patients according to daGOAT were 2.07 (95% 
confidence interval (CI), 1.03–4.15) and 18.40 (95% CI, 3.95–85.60) 
in internal and holdout validations, respectively, in the ensuing two-
week window (Extended Data Figs. 1d and 2d).

In the pediatric cohort, the Q1, Q2 and Q3 time points for disease 
onset were days 15, 17 and 21, respectively. In internal validation 
(n = 39), daGOAT’s AUPRC peaked at 0.75 (mean; s.d. 0.28 (range, 
0.45–1.00)) on day 10, surpassing all the other models (Extended 
Data Fig. 3a,b). AUROC values showed a similar trend to AUPRCs. 
daGOAT’s AUROC peaked at 0.87 (mean; s.d., 0.13 (range, 0.75–
1.00)) on day 10 (Extended Data Fig. 3c and Supplementary Fig. 3).  
In holdout validation (n = 6), daGOAT’s AUPRC and AUROC 
values were both 1.00 on day 10—on par with XGBoost and out-
competing the PeriHSCT models (Extended Data Fig. 4a–c and 
Supplementary Fig. 3). Note, however, that XGBoost’s AUPRC  
and AUROC values were more stable in time than daGOAT’s in 
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Fig. 1 | Characteristics of the aGOAT dataset. a, Overall survival of the adult cohort in the aGOAT dataset. The shown curves are Kaplan–Meier estimators. 
Red, severe aGVHD cases; black, the other cases. The survival curves for the pediatric cohort are provided in Supplementary Fig. 2. b, Data densities and 
severe aGVHD onset distributions in the aGOAT dataset. Top: data densities of dynamic variables after transplantation in the adult and pediatric cohorts in 
the aGOAT dataset (after ‘time-limited sample-and-hold’ data imputations). CBC, complete blood count. Bottom: temporal distributions of severe aGVHD 
onset. Brighter colors in the heat maps indicate higher densities. The numerical values of missing-data rates for individual dynamic variables are provided in 
Supplementary Table 3. c, Validation of the two-biomarker MAGIC score and three-biomarker Ann Arbor score. Shown here are AUROCs and AUPRCs that 
were calculated based on the 67 adult patients in the aGOAT dataset who had plasma biomarker values collected at days 6–8. Error bars are 95% CIs based 
on bootstrapping (1,000 bootstrap samples of the original 67 patients). Solid bars, AUROCs; striped bars, AUPRCs; gray, predicting six-month NRM; pink, 
predicting severe aGVHD within 100 days; light blue, predicting grade II–IV aGVHD within 100 days.
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holdout validation for the pediatric cases (Extended Data Fig. 4a 
and Supplementary Fig. 3). For the pediatric cohort, on day 10, HRs 
between patients classified as high-risk (risk score top 1/6) and low-
risk (risk score bottom 5/6) identified by daGOAT were 4.47 (95% 
CI, 1.14–17.50) and incalculable (due to the small sample size) in 
internal and holdout validations, respectively, in the ensuing two-
week window (Extended Data Figs. 3d and 4d).

We also investigated the differential contributions of individual 
dynamic features to aGVHD prediction. The importance score of 
a feature at a given time point was calculated as the decremental 
change of AUPRC (based on internal validation within the train-
ing set) at that time point if the feature was entirely ignored from 
day 1 through day 100. Interestingly, the importance scores of many 
features varied smoothly with time (that is, scores at neighboring 
time points were similar to one another; Fig. 2a,b). We conducted 
an ablation experiment with daGOAT by removing its smoothing 
component and then testing the truncated version of the model. As 
expected, daGOAT without smoothing performed worse in both 
the adult and pediatric cohorts (Fig. 2c).

We ranked all the dynamic features according to their maximum 
importance scores during days 8–30 (Fig. 2a,b and Supplementary 
Table 5). Spearman’s rank correlation coefficients between feature 
importance and data density were 0.51 and 0.72 in the adult and 
pediatric cohorts, respectively. Although data densities were clearly 
influential in the rankings of the dynamic features, some top-ranked 
features nonetheless had lower data densities (especially in the  
adult cohort).

The ability of daGOAT to predict severe aGVHD depended 
on leveraging the multidimensionality of data (Fig. 2d,e). In the 
training sets, performance metrics peaked when ~20% top-ranked 
variables were used in the model. In holdout validations, however, 
it took at least 80% and 50% of the dynamic features for model 
performance to approach saturation in the adult and pediatric  
cohorts, respectively.

To explore plausible explanations for daGOAT’s advantage over 
benchmarks in predicting severe aGVHD, we conducted simula-
tion experiments in which three data characteristic parameters were 
manipulated systematically. The first was the complexity of the under-
lying process. A more complex process had a higher number of effec-
tor features that each had independent association with event onset. 
On the other hand, when the underlying process was more simple, 
most observed features were dummies and made no contribution to 
relative risk. The second parameter was the smoothness of the under-
lying process. When the underlying process was ‘smooth’, each feature’s 
contribution to relative risk could change over time, but there were no 
rapid up-and-down swings. The third parameter was the data missing 
rate. Data missing was expected to make model fitting more difficult.

Examining the simulation results, we found that daGOAT out-
performed XGBoost when most of the observed variables were 
associated with event onsets, when the underlying event-generat-
ing process was smooth and when there was much data missing 
(Extended Data Fig. 5a).

Although this study focused on HSCT, we also tested whether 
our proposed approach could be generalized to a remotely unre-
lated scenario of dynamic event forecasting using multivariate 
time-series. More specifically, we asked whether waist-mounted 
smartphone inertial sensor data could be utilized by daGOAT to 
anticipate a person’s postural change, that is, to predict if a sit-
ting person was about to stand up. A publicly available smart-
phone inertial sensor dataset14 was downloaded from the UCI 
Machine Learning Repository. The dataset contained time-series 
data (Δt = 1.28 s) of 30 human subjects that covered 561 features. 
Each discrete time point was associated with a label that indicated 
whether the person was sitting, standing up (transitioning from sit-
ting to standing), standing or performing another activity at that 
moment. There was no missing value. Although we did not have 
direct insights into the underlying neurobehavioral process, we pos-
tulated that the relationship between prodromic subtle motions and 
human postural change was probably smooth.

Four models—daGOAT, Naïve Bayes, Random Forest and 
XGBoost—were tested on the smartphone inertial sensor data-
set. For daGOAT, a ‘+’ data segment would be akin to a ‘severe 
aGVHD case’, and its associated 561-feature time-series would be its  
‘presymptomatic clinical data’. daGOAT’s AUPRC and AUROC 
peaked at 0.29 and 0.73 (Extended Data Fig. 5b–e), respectively, 
≥2.56 s before the observed postural transition, outperforming 
Naïve Bayes, Random Forest and XGBoost.

Although we caution that our simulation experiments and 
smartphone data analysis were far from encompassing all possible 
real-world scenarios, they nonetheless served as a conduit to under-
standing the possible mechanisms behind daGOAT’s comparative 
advantage in severe aGVHD prediction.

In contrast to modeling in HSCT, machine learning research 
on dynamic risk monitoring based on high-density multidimen-
sional time-series data has been particularly active in intensive care 
in recent years. Instead of banking on a small set of biomarkers, 
researchers have taken a holistic approach that considers time-series 
of a high number of features to forecast shock15,16 and to make arti-
ficial intelligence-based recommendations for sepsis treatment17. 
Homogeneous ultrahigh data density in intensive care units is nev-
ertheless an outlier situation. As of today, ‘spotty data’ (inadequate 
data densities) remain the norm in most real-world healthcare set-
tings (outside of clinical trials), and this includes HSCT. Machine 
learning research in HSCT is furthermore hampered by smaller 
sample sizes.

When most of the observed features independently contrib-
ute to relative risk, there is little benefit for a model to distinguish 
between true effectors and dummies. Accordingly, daGOAT does 
not conduct any variable selection, whereas—despite the small 
sample size and the time-varying nature of feature contributions 
to relative risk—on each day XGBoost would have to pick a new 
set of key variables to grow trees. The comparatively good perfor-
mance of our modeling approach suggests that it is feasible to pre-
dict severe aGVHD cost-effectively when taking a panoramic and 

Fig. 2 | Characteristics of the daGOAT model. a,b, Temporal profiles of the importance scores for all dynamic features in the adult (a) and pediatric  
(b) cohorts. CV, coefficient of variation; DC, dendritic cell; RBC, red blood cell. The importance scores (theoretical range: −1 to 1) were calculated based 
on internal validation within the training sets. Red, positive importance score; blue, negative importance score. The features were ranked according to their 
maximum importance scores during days 8–30. The full rankings of all the features are available in Supplementary Table 5. The average data density of 
each dynamic feature was calculated by dividing its total data volume (that is, the total number of available values after ‘time-limited sample-and-hold’ 
data imputations) by the total number of patients and by the total number of days (30 days). Right panels: orange bars, maximum importance score 
during days 8–30; black lines, average data density during days 1–30. c, Ablation experiment with daGOAT. Removing the smoothing component of the 
algorithm hurt daGOAT’s performance at the peak performance days (adults, day 23; children, day 10). There was only one run (comparing ‘without 
smoothing’ and ‘with smoothing’) in each scenario, and the standard error was incalculable. Striped bars, AUPRCs; solid bars, AUROCs; brown, internal 
validation; green, holdout validation. d,e, Relationships between the number of top-ranked features included in the model and the model’s performance 
metrics (AUPRC and AUROC) on the peak performance days (adults, day 23; children, day 10) in internal and holdout validations for the adult (d) and 
pediatric (e) cohorts. Crosses, AUPRCs; circles, AUROCs; brown, internal validation; green, holdout validation.
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dynamic view of a patient’s clinical profile. The average total daily 
cost (charged to the patient) for data collection from day 1 through 
day 30 post-transplant to support daGOAT was 261 renminbi per 
day per pediatric patient and 428 renminbi per day per adult patient 
at the IHCAMS. Despite the large number of dynamic variables 
included in our model, most of the data utilized in the daGOAT 
algorithm are collected in routine clinical care after transplantation 
and thus do not incur additional cost.

For deployment in clinical settings, the daGOAT model must 
be integrated into the hospital information system. On any given 
day we have approximately 100 patients who have recently under-
gone HSCT and are still hospitalized at the IHCAMS; these are the 
patients whose dynamic clinical data need to be updated daily. Our 
semi-automatic data process takes less than 30 min to extract the 
100 patients’ newly collected data on the latest day from the elec-
tronic health records and subsequently append the new incoming 
data to the data accumulated in previous days. daGOAT is fast to 
compute. On average, computing φi(t) for 100 consecutive days for 
one patient takes ~0.5 s. Model fitting is also reasonably fast. Fitting 
daGOAT on our adult training set, for example, took less than 1 min 
using a typical desktop computer. In summary, daGOAT is easy to 
implement, provided that the hospital information system is suf-
ficiently ‘modern’.

Regrettably, this study was limited to data from one hemato-
logical center in China, and additional validation at other hospi-
tals will be needed. The ultimate litmus test of our model would 
be testing whether we can reduce early mortality after transplanta-
tion by applying the model prospectively to administer intensified 
prophylactic immunosuppression to a targeted subset of allo-HSCT 
patients who are predicted to have high risk for developing severe 
aGVHD.

Methods
The aGOAT dataset. We focused on modeling severe aGVHD in HLA-mismatched  
allo-HSCT, because HLA mismatch is the most important factor associated  
with aGVHD18. It should be noted, however, that 97% of the HLA-mismatched 
adult and 100% of the HLA-mismatched pediatric instances were haploidentical  
in the final dataset (Supplementary Table 1). In the following, we describe, in detail, 
the process of compiling the aGOAT dataset (Supplementary Fig. 1).

Post-transplant multidimensional time-series clinical data of 598 adult patients 
(age >16 years) who received HLA-mismatched allo-HSCT with stem cells sourced 
from peripheral blood, bone marrow or both between 1 April 2012 and 30 April 
2021 and 54 pediatric patients (age ≤16 years) who received HLA-mismatched 
allo-HSCT with stem cells sourced from peripheral blood, bone marrow or 
both between 1 April 2018 and 31 March 2021 at the IHCAMS were able to be 
electronically retrieved and curated.

The medical records for each case were reviewed by two or three physicians to 
confirm the aGVHD diagnosis and grading (according to the MAGIC criteria19). 
To avoid ambiguity, onset of aGVHD was uniformly defined as the day of initiating 
aGVHD treatment. After the physicians’ review, 16 cases (ten adults and six 
children) were eliminated due to failure of neutrophil engraftment within 30 days 
of transplantation. An additional seven cases (four adults and three children) were 
eliminated because the recorded date of neutrophil engraftment (defined as the 
date of the first of three consecutive measurements spanning ≥3 days of achieving 
a sustained peripheral blood neutrophil count of >500 × 106 l−1) did not precede the 
recorded onset of aGVHD.

The final dataset contained 584 adult cases and 45 pediatric cases.  
The adult and pediatric cohorts had substantially different baseline distributions  
in age, primary diseases, stem cell sources, conditioning regimens and  
aGVHD prophylaxis regimens (Supplementary Table 1). Because the adult  
cohort and the pediatric cohort were treated at different divisions of the IHCAMS, 
our modeling efforts on the two cohorts were two independent validations of the 
daGOAT algorithm.

Sixteen percent of the adult cohort and 24% of the pediatric cohort suffered 
from severe aGVHD within 100 days. Moreover, the severe aGVHD instances 
in the pediatric cohort tended to experience onset much earlier than those in 
the adult cohort (Fig. 1b and Supplementary Table 1). There was a substantial 
difference in three-year all-cause mortality between the patients with severe 
aGVHD and the other patients in the adult cohort (HR 3.30 (95% CI, 2.28–4.79); 
P < 0.001, log-rank test) (Fig. 1a), and a similar trend also appeared to exist in the 
pediatric cohort, although it did not reach statistical significance (HR 4.40 (95% 
CI, 0.58–33.47); P = 0.120, log-rank test) (Supplementary Fig. 2).

aGOAT encompassed a total of 194 dynamic variables for the adult cohort  
and 159 dynamic variables for the pediatric cohort, collected during the first  
100 days after transplantation (Supplementary Table 2), including vital signs, daily 
fluid loss (due to diarrhea, vomiting and so on), complete blood counts, blood 
chemistry and electrolytes, peripheral blood/bone marrow immune cell profiles 
(measured by flow cytometry), plasma inflammatory factor levels and so on. The 
dynamic variables were not measured uniformly across all patients. Some dynamic 
variables such as vital signs were available nearly daily, whereas others such as 
blood immune cell profiles and plasma inflammatory factor levels were measured 
less frequently and not in all patients. In addition, 15 peri-transplantation variables 
were also included in aGOAT (Supplementary Table 4), including information 
related to primary disease, blood type, stem cell source, HLA mismatch, 
conditioning regimen before transplantation, use of antithymocyte globulin in 
conditioning, aGVHD prophylaxis regimen, transplantation year and so on.

Outlier values in vital signs (for example, exorbitant values for body 
temperature) were made blank. Whenever a dynamic variable was measured more 
than once (distinct samples) on one particular day for one patient, the average 
measurement value of that day was used for that day for that patient. We applied 
the ‘time-limited sample-and-hold’ approach commonly used in intensive care unit 
data analysis17 to augment the aGOAT dataset (holding time set to three days after 
sampling), based on the hypothesis that most measurements were valid for three 
additional days. This augmented dataset was still very sparse in multiple categories 
of dynamic variables (Fig. 1b and Supplementary Table 3). No other missing-data 
imputation procedure was conducted to address the problem of nonuniform  
data measurement.

Validation of the MAGIC score and the Ann Arbor score. The MAGIC score was 
calculated as −11.263 + 1.844(log(ST2)) + 0.577(log(REG3α)). The Ann Arbor  
score was calculated as −9.169 + 0.598(log(TNFR1)) − 0.028(log(REG3α)) +  
0.189(log(ST2)). All the used coefficient values were identical to those reported 
in the original reports8,9. The original reports did not specify the units for plasma 
biomarker measurements, and the two scores used different bases for the logarithm 
(MAGIC, 10; Ann Arbor, 2). None of these, however, affected the AUROC and 
AUPRC calculations.

daGOAT model. We designed the daGOAT algorithm with the motivation to 
leverage one presumed nature of post-HSCT time-series data: the underlying 
biological process for aGVHD onset is multidimensional and smooth with respect 
to time. By explicitly taking the temporal order of data into account, daGOAT 
borrows strengths from neighboring time points. Even if a feature is missing a 
value on one particular day, the model might still learn its contribution to relative 
risk on that day by interpolating between neighboring time points.

Our model integrates multidimensional time-series data to calculate risk for 
severe aGVHD onset between t + 1 and t + δ according to

φi(t) = ρ(zi) +
∑

τ∈[t−δ+1, t]

∑

k
(Iikτ θk(xik(τ), τ)),

where ρ(zi) and θk(xik(τ), τ) define the contribution of all peri-transplantation 
features zi and the contribution of the individual dynamic variable xik(τ), 
respectively, to the relative risk of patient i developing severe aGVHD between t + 1 
and t + δ. Iikτ = 0 when xik(τ) lacks value for the ith patient, and Iikτ = 1 otherwise. 
Although equation (1) does not presume the size of the time step, updating φi(t) 
daily was deemed sufficient for severe aGVHD prediction.

We fitted daGOAT as follows. First, ρ(zi) was set to be the log-odds ratio 
computed by the standard Naïve Bayes algorithm. Second, for every k and t, we 
computed the cutoff value ckt that maximized Shannon’s mutual information 
between the kth dynamic variable at time t and severe aGVHD occurrence, then we 
set lk and uk to be the 25th and 75th percentile values among ck1, …, ckT, respectively. 
This step computed the optimal cutoff values {lk, uk} to discretize the kth dynamic 
variable. Third, for every k and t we computed

ρ(L)
1kt = P(xk(t) < lk|Severe aGVHDonset between t + 1 and t + δ),

ρ(H)

1kt = P(xk(t) > uk|Severe aGVHDonset between t + 1 and t + δ),

ρ(L)
0kt = P(xk(t) < lk|No severe aGVHDonset between t + 1 and t + δ), and

ρ(H)

0kt = P(xk(t) > uk|No severe aGVHDonset between t + 1 and t + δ),

then we computed ρ̂(L)
1k (t), ρ̂(H)

1k (t), ρ̂(L)
0k (t) and ρ̂(H)

0k (t) as ‘smoothed’ versions of 

ρ(L)
1kt , ρ

(H)

1kt , ρ(L)
0kt  and ρ(H)

0kt , respectively, by smoothing-spline fitting (smooth with 
respect to t). This step computed the discretized probability distribution of the kth 
dynamic variable that was smooth along the time axis. Note that we did not conduct 
interpolations on the raw data. True distributions of feature values in normal, 
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prodromic and diseased states are unknown, and it is unclear how to best perform 
interpolations on the raw data for a wide range of variables expressed in various 
units (for example, should we interpolate values in the original scale or in the log 
scale?). Instead, our model was distribution-agnostic and performed interpolation 
on the estimated relative risk contribution terms, that is, in the probability space.

Finally, we defined

θk(x, t) =






log




max

{

0, ρ̂(L)1k (t)
}

+γ

max
{

0, ρ̂(L)0k (t)
}

+γ



 if x < lk

log




max

{

0, 1−ρ̂(L)1k (t)−ρ̂(H)1k (t)
}

+γ

max
{

0, 1−ρ̂(L)0k (t)−ρ̂(H)0k (t)
}

+γ



 if lk ≤ x ≤ uk

log




max

{

0, ρ̂(H)1k (t)
}

+γ

max
{

0, ρ̂(H)0k (t)
}

+γ



 if uk<x

,

where γ ≥ 0 is a hyperparameter that we set to be 0.1. When the model was run in 
the ‘no smoothing’ mode, ρ̂(L)

1k (t), ρ̂(H)

1k (t), ρ̂(L)
0k (t) and ρ̂(H)

0k (t) were not calculated, 
and ρ(L)

1kt , ρ
(H)

1kt , ρ(L)
0kt  and ρ(H)

0kt  were used instead for calculating θk(x, t).

Data generation for simulation experiments. We generated multidimensional 
time-series data using a simplified version of equation (1):

φi =
∑

t∈[1, T]

∑

k∈[1, p]
θk(xik(t), t) (2)

where φi is the relative risk of the event of interest happening to individual i, p = 50 
and T = 14. To further simplify the simulations (without hurting generalizability), 
we assumed each xik(t) term had only two possible values: low and high.

First, for each individual i and feature k, a smooth time-series xik(t) was 
generated by a random walk that meandered between low and high (transition 
rates: ‘low→low’ or ‘high→high’, 0.7; ‘low→high’ or ‘high→low’, 0.3).

Second, we simulated values for θk(x, t), the underlying process for event 
generation. When the underlying process was designated to be more complex 
(that is, a high percentage of observed variables were indeed correlated with event 
onset), we set θk(x, t) = 0 for k ∈ [46, 50]. On the other hand, when the underlying 
process was designated to be simple (that is, most observed variables were 
dummies), we set θk(x, t) = 0 for k ∈ [6, 50]. For all the other k values, when the 
underlying process was designated to be smooth, we first generated a smooth time-
series αk(t) through a random walk with multiplicative Gaussian steps (mean = 1; 
s.d. = 0.05) starting from αk(1) = 1. On the other hand, when the underlying  
process was designated to be not smooth, αk(t) at each t was independently  
drawn from a uniform distribution between 0 and 1. The values of αk(t) were then 
linearly rescaled so that min

t∈[1, T]
αk(t) = 0.3 and max

t∈[1, T]
αk(t) = 0.7; then we  

defined θk(high, t) = log
(

αk(t)
1−αk(t)

)
 and θk(low, t) = −θk(high, t).

Third, the generated values xik(t) and θk(x, t) were then plugged into 
equation (2) to calculate φi. For each i, draw a random number γ from a uniform 
distribution between 0 and 1. If γ < φi, the event of interest happened to individual 
i; otherwise, the event did not happen to individual i.

Finally, when the data missing rate was designated to be high, 60% of the xik(t) 
terms were randomly marked as missing; otherwise, there was no data missing.

For each combination of data characteristic parameters, the simulation was 
repeated 150 times. Each run was conducted with n = 1,000 (80:20 random split 
for holdout validation) and a constant 15% percentage of positive cases within 
the simulated sample (a larger cohort of individuals was first generated and then 
randomly downsampled to the desired size).

The smartphone-based recognition of human activities and postural transitions 
dataset. The waist-mounted smartphone inertial sensor dataset14 was downloaded 
from the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/
datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+
Transitions). Before download, the smartphone dataset had already been randomly 
partitioned into two subsets, with 70% of the subjects designated as the training 
set and the rest as the test set. From this dataset we extracted all 8.96-s time-series 
segments in which a person was continuously sitting and then classified each 
segment according to whether the person stood up within the next 5.12 s (‘+’) or 
not (‘−’). The training set contained 789 data segments (‘+’, n = 92; ‘−’, n = 697), 
and the test set contained 292 segments (‘+’, n = 40; ‘−’, n = 252).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
Although there was no genetic polymorphism, gene expression or protein sequence 
data involved in this study, sharing of substantial clinical data generated from 

China’s human genetic resources needs to abide by the Regulations of the People’s 
Republic of China (PRC) on the Administration of Human Genetic Resources. 
A ‘minimum dataset’ for severe aGVHD that would be necessary to verify the 
research in this Article would include all dynamic features (from day 1 through 
day 100 post-HSCT) listed in Supplementary Table 2, all peri-transplantation 
features listed in Supplementary Table 4, presence/absence of severe aGVHD 
within 100 days, and onset dates of severe aGVHD. On 21 February 2022, the PRC 
Human Genetic Resources Administration Office approved the compilation of a 
desensitized version of the ‘minimum aGOAT dataset’ for facilitating international 
research collaborations (Reference No. CJ0272 (2022)). At the time of the 
publication of the manuscript, the authors’ application to deposit this desensitized 
dataset at the PRC National Genomics Data Center (NGDC) database was still 
under review. A mock-up dataset that can be used for demo runs of the daGOAT 
algorithm is available in a public Zenodo repository (https://doi.org/10.5281/
zenodo.6050675)20. After publication of this work, the Chinese government has 
approved the archiving of the aGOAT dataset at the PRC National Genomics Data 
Center (NGDC) in April, 2022 (ref. no. 2022BAT1224). Accordingly, the authors 
have made the dataset publicly accessible at the NGDC website (https://ngdc. 
cncb.ac.cn/omix/release/OMIX001095/). The waist-mounted smartphone  
inertial sensor dataset is available from the UCI Machine Learning Repository 
(https://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+ 
Human+Activities+and+Postural+Transitions). Source data for Figs. 1 and 2 and 
Extended Data Figs. 1–5 are provided with this paper.

Code availability
The R code used in this study is available in a public GitHub repository at 
https://github.com/chenjunren-ihcams/daGOAT (https://doi.org/10.5281/
zenodo.6041841)21.
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Extended Data Fig. 1 | Internal validation of daGOAT, PeriHSCT-NB, PeriHSCT-RF, and XGBoost in the adult cohort. a, Temporal profiles of AUPRC from 
day 1 through day 100. (Blue, daGOAT; orange, PeriHSCT-NB; red, PeriHSCT-RF; green, XGBoost.) The bottom panel shows how the number of remaining 
positive cases (severe aGVHD cases that had not had onset) decreased over time in the training set. b, Precision-recall curves for the four models on 
day 23 (daGOAT’s peak performance day) in the training set. c, Receiver operating characteristic curves for the four models on day 23 in the training set. 
(The dotted line represents the null model.) d, Cumulative incidence curves for severe aGVHD within the ensuing two-week window (days 24–37) after 
the training-set patients were stratified on day 23. All-cause death was treated as a competing event that precluded severe aGVHD when calculating the 
cumulative incidence curves for severe aGVHD. ‘High-risk’ (purple), daGOAT score among top 1/6; ‘low-risk’ (cyan), daGOAT score among bottom 5/6.
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Extended Data Fig. 2 | Holdout validation of daGOAT, PeriHSCT-NB, PeriHSCT-RF, and XGBoost in the adult cohort. a, Temporal profiles of AUPRC from 
day 1 through day 100. The bottom panel shows how the number of remaining positive cases (severe aGVHD cases that had not had onset) decreased 
over time in the test set. (Blue, daGOAT; orange, PeriHSCT-NB; red, PeriHSCT-RF; green, XGBoost.) b, Precision-recall curves for the four models on day 
23 (daGOAT’s peak performance day for the adults according to internal validation) in the test set. c, Receiver operating characteristic curves for the 
four models on day 23 in the test set. (The dotted line represents the null model.) d, Cumulative incidence curves for severe aGVHD within the ensuing 
two-week window (days 24–37) after the test-set patients were stratified on day 23. All-cause death was treated as a competing event that precluded 
severe aGVHD when calculating the cumulative incidence curves for severe aGVHD. ‘High-risk’ (purple), daGOAT score among top 1/6; ‘low-risk’ (cyan), 
daGOAT score among bottom 5/6.
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Extended Data Fig. 3 | Internal validation of daGOAT, PeriHSCT-NB, PeriHSCT-RF, and XGBoost in the pediatric cohort. a, Temporal profiles of AUPRC 
from day 1 through day 100. The bottom panel shows how the number of remaining positive cases (severe aGVHD cases that had not had onset) 
decreased over time in the training set. (Blue, daGOAT; orange, PeriHSCT-NB; red, PeriHSCT-RF; green, XGBoost.) b, Precision-recall curves for the four 
models on day 10 (daGOAT’s peak performance day) in the training set. c, Receiver operating characteristic curves for the four models on day 10 in the 
training set. (The dotted line represents the null model.) d, Cumulative incidence curves for severe aGVHD within the ensuing two-week window (days 
11–24) after the training-set patients were stratified on day 10. All-cause death was treated as a competing event that precluded severe aGVHD when 
calculating the cumulative incidence curves for severe aGVHD. ‘High-risk’ (purple), daGOAT score among top 1/6; ‘low-risk’ (cyan), daGOAT score among 
bottom 5/6.
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Extended Data Fig. 4 | Holdout validation of daGOAT, PeriHSCT-NB, PeriHSCT-RF, and XGBoost in the pediatric cohort. a, Temporal profiles of 
AUPRC from day 1 through day 100. The bottom panel shows how the number of remaining positive cases (severe aGVHD cases that had not had 
onset) decreased over time in the test set. (Blue, daGOAT; orange, PeriHSCT-NB; red, PeriHSCT-RF; green, XGBoost.) b, Precision-recall curves for the 
four models on day 10 (daGOAT’s peak performance day for the pediatric cases according to internal validation) in the test set. c, Receiver operating 
characteristic curves for the four models on day 10 in the test set. (The dotted line represents the null model.) d, Cumulative incidence curves for 
severe aGVHD within the ensuing two-week window (days 11–24) after the test-set patients were stratified on day 10. All-cause death was treated as a 
competing event that precluded severe aGVHD when calculating the cumulative incidence curves for severe aGVHD. ‘High-risk’ (purple), daGOAT score 
among top 1/6; ‘low-risk’ (cyan), daGOAT score among bottom 5/6.
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Extended Data Fig. 5 | Extension experiments on the daGOAT algorithm. a, Performance of daGOAT and XGBoost in short time-series data simulation 
experiments under various scenarios of data characteristics. The length of the simulated time-series was uniformly T = 14. Mean values and standard 
errors of ΔAUROCs and ΔAUPRCs across the 14 time points are shown here, along with the raw values at the 14 time points overlaid as dots. (Purple, 
ΔAUPRC; cyan, ΔAUROC.) b − e, Performance of daGOAT, XGBoost, Naïve Bayes, and Random Forest on the UCI Machine Learning Repository 
smartphone inertial sensor data. Temporal profiles for AUROC (b) and AUPRC (d) show that daGOAT outperformed the other models from −8.0 to −2.5 s 
before postural transition. Receiver operating characteristic curves and precision-recall curves at −2.56 s (c,e) are also shown here to compare the models 
in better detail; dotted lines represent null models. (Blue, daGOAT; green, XGBoost; orange, Naïve Bayes; red, Random Forest.)
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All data used in this study were retrieved from the electronic health record system at the Institute of Hematology, Chinese Academy of 
Medical Sciences (IHCAMS). Custom scripts used for accessing the hospital's internal database and for curating the retrieved data have to 
remain confidential.

Data analysis R code used in this study is available in a public GitHub repository at https://github.com/chenjunren-ihcams/daGOAT (DOI: 10.5281/
zenodo.6041841). Utilized R libraries and versions: readxl (ver. 1.3.1), dplyr (ver. 1.0.8), e1071 (ver. 1.7-9), randomForest (ver. 4.7-1), xgboost 
(ver. 1.5.0.2), pROC (ver. 1.18.0), and PRROC (ver. 1.3.1).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

While there was no genetic polymorphism, gene expression, or protein sequence data involved in this study, sharing of substantial clinical data generated from 
China’s human genetic resources needs to abide by the Regulations of the People's Republic of China (PRC) on the Administration of Human Genetic Resources. A 
‘minimum dataset’ for severe aGVHD that would be necessary to verify the research in this article would include all dynamic features (from day 1 through day 100 
post-HSCT) listed in Supplementary Table 2, all peri-transplantation features listed in Supplementary Table 4, presence/absence of severe aGVHD within 100 days, 
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and onset dates of severe aGVHD. On 21 February 2022, the PRC Human Genetic Resources Administration Office approved the compilation of a desensitized 
version of the ‘minimum aGOAT dataset’ for facilitating international research collaborations (Reference No. CJ0272 (2022)). At the time of the publication of the 
manuscript, the authors’ application to deposit this desensitized dataset at the PRC National Genomics Data Center (NGDC) database is still under review. To inquire 
the latest status of public accessibility to the desensitized ‘minimum aGOAT dataset’ at the NGDC database, please contact Junren Chen 
(chenjunren@ihcams.ac.cn). A mock-up dataset that can be used for demo runs of the daGOAT algorithm is available in a public Zenodo repository at https://
zenodo.org/record/6050675#.Ygcg1N_P2Uk (DOI: 10.5281/zenodo.6050675). The waist-mounted smartphone inertial sensor dataset is available from the UCI 
Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions). Source 
data for Figs. 1 and 2 and Extended Data Figs. 1–5 are provided with this paper.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Post-transplant multidimensional time-series clinical data of 584 adult patients (age >16) who received HLA-mismatched allo-HSCT with stem 
cells sourced from peripheral blood, bone marrow, or both between 1 April 2012 and 30 April 2021 and 45 pediatric patients (age ≤16) who 
received HLA- mismatched allo-HSCT with stem cells sourced from peripheral blood, bone marrow, or both between 1 April 2018 and 31 
March 2021 at the IHCAMS were able to be electronically retrieved and curated.

Data exclusions 16 cases (10 adults and 6 children) were eliminated due to failure of neutrophil engraftment within 30 days of transplantation. Additional 7 
cases (4 adults and 3 children) were eliminated, because the recorded date of neutrophil engraftment (defined as ‘the date of the first of 
three consecutive measurements spanning ≥3 days of achieving a sustained peripheral blood neutrophil count of >500×10^6/L’) did not 
precede the recorded onset of aGVHD.

Replication The same modeling approach was independently applied to both the adult and pediatric cohorts, and in both cohorts both internal validation 
and holdout validation were independently performed. Our main finding – i.e., daGOAT outperformed the benchmarks – was replicated in all 
four scenarios (adult-internal validation, adult-holdout validation, children-internal validation, children-holdout validation).

Randomization Not applicable. There was no experiment performed on any human subject. This study was a retrospective analysis on patients treated at the 
IHCAMS.

Blinding Not applicable. There was no experiment performed on any human subject. This study was a retrospective analysis on patients treated at the 
IHCAMS.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study
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Methods
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Human research participants
Policy information about studies involving human research participants

Population characteristics The adult cohort contained 584 patients with the following characteristics: age 17-64 (median 35), male sex 58%, primarily 
myeloid neoplasms (AML (44%), ALL (22%), MDS (20%), aplastic anemia (9%)), and receiving primarily (97%) haploidentical 
hematopoietic stem cell transplantation. 
 
The pediatric cohort contained 45 patients with the following characteristics: age 2-15 (median 9), male sex 69%, primarily 
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bone marrow failure diseases (47%) and myeloid neoplasms (49%), and all (100%) receiving haploidentical hematopoietic 
stem cell transplantation.

Recruitment 629 consecutive cases whose data could be retrieved were included in this study. 23 cases were excluded from this study 
during QA/QC (see 'Data exclusions' on p. 2).

Ethics oversight This retrospective study was approved by the IHCAMS Clinical Research Academic Committee on 11 January 2021 
(IIT2021006) and by the IHCAMS Ethics Committee on 7 February 2021 (IIT2021006-EC-1). All the patients included in this 
study signed an informed consent form that permitted their biological samples or data to be utilized for research.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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