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Dynamic changes in many stochastic processes occur over 
typical periods known as timescales. Accurate measure-
ments of timescales from experimental data are necessary 

to uncover the mechanisms controlling the dynamics of underlying 
processes and reveal their function1–5. The timescales of a stochastic 
process are defined by the exponential decay rates of its autocor-
relation function. Accordingly, timescales are usually estimated by 
fitting the autocorrelation of a sample time-series with exponential 
decay functions1,5–15, or fitting the shape of the sample power spec-
tral density (PSD) with a Lorentzian function3,16.

However, the sample autocorrelation values computed from 
a finite time-series systematically deviate from the true autocor-
relation17–22. This bias is exacerbated by the lack of independence 
between the samples, especially when the timescales are large and 
the time-series is short23–25. The magnitude of bias generally depends 
on the length of the sample time-series, but also on the value of 
the true autocorrelation at each time-lag. The expected value and 
variance of the autocorrelation bias can be derived analytically in 
simple cases (for example, the single-timescale Markov process)17,20, 
but become intractable for more general processes with multiple 
timescales or an additional temporal structure. Moreover, as the 
bias depends on the true autocorrelation itself, which is unknown, it 
cannot be easily corrected.

The statistical bias deforms the shape of empirical autocorrela-
tions and—according to the Wiener–Khinchin theorem26—PSDs; it 
can therefore affect the timescales estimated by direct fitting meth-
ods. Fitting the sample autocorrelation of an Ornstein–Uhlenbeck 
(OU) process with an exponential decay function results in system-
atic errors in the estimated timescale and confidence interval27. It is 
possible to fit the time-series directly with an autoregressive model 
to avoid these errors, without using autocorrelation or PSD27,28. 
However, the advantage of autocorrelation is that factors unre-
lated to the dynamics of the processes under study (for example, 
slow activity drifts) can be efficiently removed with resampling 
methods29–32. By contrast, accounting for irrelevant factors in the  

autoregressive model requires the addition of components that 
must all be fitted to the data. Fitting the summary statistic such as 
autocorrelation or PSD is therefore attractive, but how the statistical 
bias affects the estimated timescales was not studied systematically.

We show that large systematic errors in estimated timescales 
arise from the statistical bias due to a finite sample size. To correct 
for the bias, we develop a flexible computational framework based 
on adaptive approximate Bayesian computations (aABCs) that esti-
mate timescales by fitting the autocorrelation or PSD with a gen-
erative model. The aABC algorithm approximates the multivariate 
posterior distribution of parameters of a generative model using 
population Monte Carlo sampling33. The posterior distributions can 
be used for quantifying the estimation uncertainty and model selec-
tion. Our computational framework can be adapted to various types 
of data and can find broad applications in neuroscience, physics and 
other fields.

Results
Bias in timescales estimated by direct fitting. Timescales of a sto-
chastic process A(t′) are defined by the exponential decay rates of 
its autocorrelation function, that is, the correlation between values 
of the process at time points separated by a time lag t. For stationary 
processes, the autocorrelation function only depends on t:

AC(t) = E[(A(t′)− μ) (A(t′ + t)− μ)]t′

σ2 . (1)

Here μ and σ2 are the mean and variance of the process, respectively, 
and E[·]t′ is the expectation over t′. For empirical data, the true val-
ues of μ and σ are unknown. Hence, several estimators of the sample 
autocorrelation were proposed that use different estimators for the 
sample mean μ̂ and sample variance σ̂2 (see the “Computing sample 
autocorrelation” section in the Methods)17,18. The sample autocorre-
lation can also be computed as the inverse Fourier transform of the 
PSD on the basis of the Wiener–Khinchin theorem26. However, for 
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any of these methods, the sample autocorrelation is a biased estima-
tor: the sample autocorrelation values for a finite-length time-series 
systematically deviate from the ground-truth autocorrelation17–22 
(Fig. 1 and Supplementary Fig. 1). This statistical bias deforms the 
shape of the sample autocorrelation or PSD and may affect the esti-
mation of timescales by direct fitting of the shape.

To investigate the impact of autocorrelation bias on the times-
cales estimated by direct exponential fitting, we tested how accu-
rately this procedure recovers the correct timescales on synthetic 
data for which the ground truth is known. We generated synthetic 
data from several stochastic processes for which the autocorrelation 
function can be computed analytically (see the “Generative models” 
section in the Methods). The exponential decay rates of the analyti-
cal autocorrelation provide the ground-truth timescales. We con-
sidered three ground-truth processes that differed by the number 
of timescales, an additional temporal structure, and noise: (1) an 
OU process (Fig. 1a); (2) a linear mixture of an OU process and 
oscillatory component (Fig. 1b, resembling the firing rate of a neu-
ron modulated by a slow oscillation34,35); and (3) an inhomogeneous 
Poisson process (often used to model spiking activity of neurons36) 
with the instantaneous rate modeled as a linear mixture of two OU 
processes with different timescales (Fig. 1c).

For all three processes, the sample autocorrelation exhibits a 
negative bias, that is, the values of the sample autocorrelation are 
systematically below the ground-truth autocorrelation function  

(Fig. 1, left). This bias is clearly visible in the logarithmic-linear 
scale, in which the ground-truth exponential decay turns into a 
straight line. The sample autocorrelation deviates from the straight 
line and even becomes systematically negative at intermediate 
lags (and hence is not visible on the logarithmic scale) for pro-
cesses with a strictly positive ground-truth autocorrelation (Fig. 
1a,c). The deviations from the ground truth are larger when the 
timescales are longer or when multiple timescales are involved. 
The negative bias decreases for longer trial durations (Fig. 1, left 
inset) but it is still substantial for realistic trial durations such as in  
neuroscience data.

Due to the negative bias, a direct fit of the sample autocorrela-
tion with the correct analytical function cannot recover the ground-
truth timescales (Fig. 1, middle, right; Supplementary Figs. 2 and 3). 
When increasing the duration of each trial, the timescales obtained 
from the direct fits bcome more closely aligned with the ground-
truth values (Supplementary Fig. 4). This observation indicates that 
timescales estimated from datasets with different trial durations 
cannot be directly compared, as differences in the estimation bias 
may result in misleading interpretations. Direct fitting of a sample 
autocorrelation—even with a known correct analytical form—is 
therefore not a reliable method for measuring timescales in experi-
mental data. Bias-correction methods based on parametric boot-
strapping can mitigate the estimation bias of timescales from direct 
fits37. However, as the amount of bias depends on the ground-truth 

0 200 400

0

0.5

1.0

A
C

a

0 50 100

–2

0
lo

g(
A

C
)

Ground truth

T = 1 s

T = 2 s

T = 4 s

T = 8 s

0 20 40 60

–2.0

–1.5

–1.0

–0.5

0

lo
g(

A
C

)
lo

g(
A

C
)

lo
g(

A
C

)

Data

Ground truth

Direct fit

16 17 18 19 20
0

0.5

1.0

P
ro

ba
bi

lit
y 

de
ns

ity Ground truth

Direct fit

0 200 400 600

0

0.5

1.0

A
C

b

0 100

–2

0

lo
g(

A
C

)

0 50 100 150
–2.0

–1.5

–1.0

–0.5

0

40 50 60
0

0.15

0.30

P
ro

ba
bi

lit
y 

de
ns

ity

0 200 400

Time lag (ms)

0

0.5

1.0

A
C

c

0 200

–2

0

lo
g(

A
C

)

0 50 100 150

Time lag (ms)

–2

–1

0

0 20 40 60 80

Timescale (ms)

0

0.5

1.0

P
ro

ba
bi

lit
y 

de
ns

ity

τ1

τ2

Fig. 1 | Bias in sample autocorrelations and timescales estimated by direct exponential fitting. a, Data are generated from an OU process with the 
timescale τ = 20 ms. Left: the sample autocorrelations (colored dots) systematically deviate from the ground-truth autocorrelation. The shape of sample 
autocorrelation depends on the time-series duration (T) approaching the ground truth with increasing T (the inset shows a close up on a logarithmic-
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autocorrelation shape. Right: the ground-truth timescales largely deviate from the distribution of timescales estimated by direct exponential fitting across 
500 independent realizations of the same process. b, Same as a for data from a linear mixture of an OU process with τ = 60 ms and an oscillation at 
frequency f = 2 Hz. c, Same as a for data from an inhomogeneous Poisson process, with the instantaneous rate generated from a linear mixture of two OU 
processes with τ1 = 5 ms and τ2 = 80 ms. All simulation parameters are provided in Supplementary Table 1.
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timescales, such corrections cannot guarantee accurate estimates in 
all cases (Supplementary Fig. 5).

Alternatively, we can estimate timescales in the frequency 
domain by fitting the PSD shape with a Lorentzian function, equa-
tion (5), which is the ground-truth PSD for a stochastic process 
with an exponentially decaying autocorrelation3,16. Comparison 
of the ground-truth PSD with the sample PSD of an OU process 
with finite duration reveals that the statistical bias also persists in 
the frequency domain (Supplementary Fig. 6a). Due to this bias, the 
estimated timescale deviates from the ground truth by the amount 
that depends on the fitted frequency range. Although careful choice 
of the fitted frequency range can improve the estimation accuracy 
(Supplementary Fig. 6b), without knowing the ground-truth tim-
escale, there is no principled way to choose the correct range for 
all cases. Slightly changing the fitted frequency range can produce 
large errors in estimated timescale, especially in the presence of 
additional noise, for example, spiking activity.

Estimating timescales by fitting generative models with aABC. 
As direct fitting methods cannot estimate timescales reliably, we 
developed an alternative computational framework based on fitting 
the sample autocorrelation (or PSD) with a generative model. Using 
a model with known ground-truth timescales, we can generate syn-
thetic data that match the essential statistics of the observed data, 
that is, with the same duration and number of trials, mean and vari-
ance. Hence the sample autocorrelations (or PSDs) of the synthetic 
and observed data will be affected by a similar statistical bias when 
their shapes match. We chose a linear mixture of OU processes (one 
for each estimated timescale) as a generative model, which, if nec-
essary, could be augmented with an additional temporal structure 
(such as oscillations) and noise. The advantage of using a mixture 
of OU processes is that the analytical autocorrelation function of 
this mixture explicitly defines the timescales. We set the number of 
components in the generative model according to our hypothesis on 
the autocorrelation in the data, for example, the number of times-
cales, additional temporal structure and noise (see the “Generative 
models” section in the Methods). We then optimize parameters of 
the generative model to match the shape of the autocorrelation (or 
PSD) between the synthetic and observed data. The timescales of 
the optimized generative model provide an unbiased estimation of 
timescales in the data.

Calculating the likelihood for complex generative models can be 
computationally expensive or even intractable. We therefore opti-
mize the generative model parameters using aABC (Fig. 2)33, an iter-
ative algorithm that minimizes the distance between the summary 
statistic of synthetic and observed data (Fig. 2 and the “Optimizing 
generative model parameters with aABC” section in the Methods). 
Depending on the application, we can choose a summary statistic 
in the time (autocorrelation) or frequency (PSD) domains. On each 
iteration, we draw a set of parameters of the generative model, either 
from a prior distribution (first iteration) or a proposal distribution, 
and generate synthetic data using these parameter samples. The 
sampled parameters are accepted if the distance d between the sum-
mary statistic of the observed and synthetic data is smaller than a 
selected error threshold ε. The last set of accepted parameter samples 
provides an approximation of the posterior distribution. The joint 
posterior distribution quantifies the estimation uncertainty taking 
into account the stochasticity of the observed data (Supplementary  
Fig. 7). We implemented this algorithm in the abcTau Python pack-
age including different types of summary statistics and generative 
models (see the “abcTau Python package” in the Methods). We 
marginalize the multivariate posterior distribution over all other 
parameters of the generative model to visualize the posterior distri-
bution of a parameter (such as a timescale).

We illustrate our method on synthetic data from the processes 
described in the previous section, using the autocorrelation as the 

summary statistic (compare Fig. 3 with Fig. 1). For all three pro-
cesses, the shape of the sample autocorrelation of the observed 
data is accurately reproduced by the autocorrelation of synthetic 
data generated using the maximum a posteriori (MAP) estimate 
of parameters from the joint multivariate posterior distribution  
(Fig. 3, left). The posterior distributions inferred by aABC include 
the ground-truth timescales (Fig. 3, middle). The posterior vari-
ance quantifies the estimation uncertainty. In our simulations, 
the number of trials controls the signal-to-noise ratio in sample 
autocorrelation and consequently the width of the posteriors 
(Supplementary Fig. 8).

The aABC method also recovers the ground-truth timescales 
by fitting the sample PSD without tuning the frequency range, 
even in the presence of multiple timescales, additional spiking 
noise (Supplementary Fig. 9) or multiple oscillatory components 
(Supplementary Fig. 10). Moreover, the aABC method can uncover 
slow oscillations in signals that do not exhibit clear peaks in PSD 
due to the short duration of the time-series and the low frequency 
resolution (Supplementary Fig. 9c). The aABC method can be used 
in combination with any method for computing the PSD (for exam-
ple, any window functions for removing the spectral leakage), as 
the exact same method applied to synthetic data would alter their 
sample PSD in the same way.

Different summary statistics and fitting ranges may be preferred 
depending on the application. For example, autocorrelations allow 
for using additional correction methods such as jittering31, whereas 
PSD estimation can be improved with filtering or multitapers38. 
Furthermore, selecting a smaller maximum time-lag when fitting 
autocorrelations prevents overfitting to noise in the autocorrelation 
tail. The choice of summary statistic (metric and fitting range) can 
influence the shape of the approximated posterior (for example, 
posterior width), but the posteriors peak close to the ground-truth 
timescales as long as the same summary statistic is used for observed 
and synthetic data (Supplementary Fig. 11). The advantage of such 
behavior is particularly visible when changing the range over which 
we compute the summary statistics (for example, minimum and 
maximum frequency in PSD), which affects direct fit but not aABC 
estimates (Supplementary Fig. 6).

In the aABC algorithm we set a multivariate uniform prior dis-
tribution over the parameters of the generative model. The ranges of 
uniform prior should be broad enough to include the ground-truth 
values. Selecting broader priors does not affect the shape of pos-
teriors and only slows down the fitting procedure (Supplementary 
Fig. 12). Hence we can set wide prior distributions when a reason-
able range of parameters is unknown. Timescales estimated from 
the direct exponential fits can be used as a potential lower bound 
for the priors.

We evaluated the reliability of the aABC method on a wide 
range of timescales and trial durations and compared the results 
to direct fitting (Supplementary Fig. 13). The estimation error of 
direct fitting increases when trial durations become short relative 
to the timescale, whereas the aABC method always returns reli-
able estimates. However, the estimation of the full posterior comes 
at a price of higher computational costs (Supplementary Table 3) 
than point estimates; thus, the direct fit of the sample autocorrela-
tion may be preferred when the long time-series data are available 
so that statistical bias does not corrupt the results. To empirically 
verify whether this is the case, we implemented a pre-processing 
algorithm in our Python package that uses parametric bootstrap-
ping to return an approximate error bound of the direct fit estimates 
(see Supplementary Fig. 14 and the “Pre-processing for evaluating 
quality of direct” section in the Methods).

Fitting generative models with the aABC method provides a 
principled framework for estimating timescales that can be used 
with different metrics in time or frequency domain. Furthermore, 
joint posterior distribution of the inferred parameters allows us to 
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examine correlations between different parameters, find manifolds 
of possible solutions, and identify a potential degeneracy in the 
parameter space (Supplementary Fig. 15).

Estimating the timescale of activity in a branching network. So 
far we have demonstrated that our aABC method accurately recov-
ers the ground-truth timescales when the generative model and the 
process that produced the observed data are the same. However, 
the inference of timescales using OU processes is broadly appli-
cable when the mechanism that generated the exponential decay of 
autocorrelation in the data is not an OU process. As an example, 
we tested our method on discrete-time data from an integer-valued 
autoregressive model with a known ground-truth autocorrelation 
function. Specifically, we applied our method to estimate the tim-
escale of the global activity in a branching network model, which is 
often used to study the operating regime of dynamics in neuronal 
networks (Fig. 4a)39–41. We simulated the network model to generate 
the time-series data of the global activity. We then used aABC to fit 
the sample autocorrelation of these data with a one-timescale OU 
process as a generative model. The inferred posterior is centered 
on the theoretically predicted timescale of the branching network, 
and the MAP estimate parameter accurately reproduces the shape of 
the sample autocorrelation of the network activity (Fig. 4b,c). These 
results show that our framework can be used to estimate timescales 
in diverse types of data.

Model selection with ABC. The correct generative model (for 
example, the number of timescales) is usually unknown for experi-
mental data. We thus need a procedure to select between alternative 
hypotheses. Assuming that the autocorrelation or PSD is a suffi-
cient summary statistic for estimating timescales, we can use ABC 
to approximate the Bayes factor for selecting between alternative 
models42–44. Model selection based on ABC can produce inconsis-
tent results when the summary statistic is insufficient45, but whether 

this is likely to be the case can be verified empirically44. Specifically, 
the summary statistic can be used for model selection with ABC  
if its mathematical expectation is significantly different for the  
two models.

Based on this empirical procedure44, we developed a method to 
select between two alternative models M1 and M2 using their aABC 
fits (see the “Model selection and Bayes factor approximation with 
ABC” section in the Methods). We compare models using a good-
ness of fit measure computed as the distance between the summary 
statistic of synthetic and observed data. We estimate the Bayes fac-
tor, which is the ratio of marginal likelihoods of the two models 
and accounts for the model complexity46, to select between M1 and 
M2. Assuming both models are a priori equally probable, the Bayes 
factor can be approximated as the ratio between the cumulative dis-
tribution functions (CDFs) of distances for two models at different 
error thresholds B21(ε) = CDFM2(ε)/CDFM1(ε).

We evaluated our model selection method using synthetic data 
from three example processes with known ground truth so that the 
correct number of timescales is known. We used an OU process 
with a single timescale (Fig. 5a) and two different examples of an 
inhomogeneous Poisson process with two timescales: one with well 
separated ground-truth timescales, such that multiple timescales 
are evident in the autocorrelation shape (Fig. 5d); and another with 
similar ground-truth timescales, such that the autocorrelation shape 
does not clearly suggest the number of timescales in the underlying 
process (Fig. 5g). For all three example processes, we fitted the data 
with one- (M1) and two-timescale (M2) generative models using 
aABC and selected between these models by computing the Bayes 
factors. The one- and two-timescale models were based on a single 
OU process or a linear mixture of two OU processes, respectively. 
For the data from inhomogeneous Poisson processes, the generative 
model also incorporated an inhomogeneous Poisson noise.

For the example OU process with a single timescale, the one- and 
two-timescale models fitted the shape of the data autocorrelation 
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almost equally well (Fig. 5a). The marginal posterior distributions 
of the two timescales estimated by the two-timescale model heavily 
overlap around their peak values (Fig. 5b), which indicates that the 
one-timescale model possibly better describes the data. For the two-
timescale model we enforce the ordering τ1 < τ2, which generates 

the difference between their distributions. We compare the CDFs 
of distances to select between the two models (Fig. 5c). Although 
the two-timescale model has more parameters, it has significantly 
larger distances than the one-timescale model (Wilcoxon rank-sum 
test, P = 0.002; mean dM1 = 6× 10−5; mean dM2 = 8× 10−5). The 
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two-timescale model has a larger average distance as its posterior 
distribution has larger variance, which leads to a greater chance 
to sample a combination of parameters with a larger distance. As 
CDFM2(ε) < CDFM1(ε) (that is, B21(ε) < 1) for all ε, the one-times-
cale model is preferred over the two-timescale model, in agreement 
with the ground-truth generative process.

For both example inhomogeneous Poisson processes with two 
timescales, the shape of the data autocorrelation is better matched 
by the two- rather than one-timescale model (Fig. 5d,g; the differ-
ence is subtle in Fig. 5g). The marginal posterior distributions of 
two timescales estimated by the two-timescale model are clearly 
separated and include the ground-truth values, whereas the times-
cale estimated by the one-timescale model is in between the two 
ground-truth values (Fig. 5e,h). The two-timescale model has sig-
nificantly smaller distances (Fig. 5f, P < 10−10; mean dM1 = 6× 10−4

; mean dM2 = 1.5× 10−5; Fig. 5i, P < 10−10, mean dM1 = 10−6, mean 
dM2 = 7× 10−7). As CDFM2(ε) > CDFM1(ε) (that is, B21(ε) > 1) for 
all ε, the two-timescale model provides a better description of the 
data for both examples, in agreement with the ground truth. Our 

method thus selects the correct generative model even for a chal-
lenging case where the shape of the data autocorrelation does not 
suggest the existence of multiple timescales. Our method can be 
used to discriminate between a broad class of models, for example, 
slow periodic (oscillation) versus aperiodic (exponential decay) 
components in the time-series (Supplementary Fig. 16).

Estimating timescales of ongoing neural activity. To illustrate an 
application of our framework to experimental data, we estimated 
the timescales of ongoing spiking activity in the primate visual 
cortex during fixation on a blank screen47. We computed the auto-
correlation of the population spiking activity pooled across 16 
recording channels (see the “Neural recordings and analysis” sec-
tion in the Methods). Autocorrelation of neural activity in several 
brain regions was previously modeled as an exponential decay with 
a single timescale1. To determine whether a single timescale is suf-
ficient to describe the temporal dynamics of neural activity in our 
data, we fitted M1 and M2 using aABC and selected the model that 
better described the data (Fig. 6a–c). We used a doubly stochastic 
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process as a generative model36,48, in which spike-counts in each 
time bin are generated from an instantaneous firing rate modeled 
as one OU process (M1) or a mixture of two OU processes (M2). To 
account for the non-Poisson statistics of the spike-generation pro-
cess49, we sampled spike-counts from a gamma distribution (see the 
“Doubly stochastic process with multiple timescales” section in the 
Methods). The two-timescale model provided a better description 
of the data, as it had smaller distances and CDFM2(ε) > CDFM1(ε) 
for all error thresholds (Fig. 6c, P < 10−10; mean dM1 = 8× 10−4; 
mean dM2 = 2× 10−4).

We further compared our method with a direct exponential fit 
of the sample autocorrelation, which is usually employed to infer 
the timescales of neural activity1,5–12. We fitted the sample auto-
correlation with a double exponential function and compared the 
result with the two-timescale aABC fit (Fig. 6b). Similar to syn-
thetic examples, the direct fit produced timescales systematically 
smaller than the MAP estimates from aABC. As the ground-truth 
timescales are not available for biological data, we used a sampling 
procedure to evaluate whether the data were better described by 
the timescales from the direct fit or from the MAP estimates (see 
Fig. 6d and the “Neural recordings and analysis” section in the 
Methods). The results indicate that MAP estimates better capture 
the shape of neural data autocorrelation (P < 10−10; mean distance 
of MAP parameters, 10−4; mean distance of exponential fit param-
eters, 3 × 10−4). Our method thus estimates the timescales of neural 
activity more accurately than a direct exponential fit and allows for 
comparing alternative hypotheses about the underlying dynamics.

Discussion
Direct fitting the shape of sample autocorrelation or PSD often fails 
to recover the correct timescales. Although past work27 attributed 
errors in the estimated timescales to fitting noise in the tail of auto-
correlation, we find that the main source of error is the statistical 
bias in the sample autocorrelation due to finite sample size. This 
bias arises primarily due to the deviation of the sample mean from 

the ground-truth mean. If the ground-truth mean of the process 
is known, using the true mean for computing the autocorrelation 
largely eliminates the bias. When the true mean is unknown but 
assumed to be the same across all trials, the bias is reduced by esti-
mating a single sample mean from the whole dataset instead of esti-
mating a separate mean for each trial; however, this assumption does 
not always hold. For example, the mean neural activity can change 
across trials due to changes in the behavioral state of an animal. If 
the assumption of a constant mean is violated in the data, estimating 
the sample mean from the whole dataset leads to strong distortions 
of the autocorrelation shape introducing additional slow times-
cales50. As the bias depends on the duration of time-series, compar-
ing timescales estimated from direct fits of experimental data with 
different duration can produce misleading interpretations.

We focused on exponentially decaying autocorrelations, which 
correspond to Lorentzian PSD with the 1/f power-law exponent of 2. 
Defining timescales based on the exponential decay rates of autocor-
relation is widely used in the literature1,5–15 and has a clear interpreta-
tion as a timescale of a generative dynamical system. Many types of 
data exhibit PSD with 1/f exponents deviating from 2 (refs. 3,16,51,52), 
but there is no universally accepted answer as to what is the defini-
tion of timescale for these types of data, and the nature of processes 
generating this behavior. A prominent hypothesis is that the 1/f PSD 
arises from a mixture of many processes with exponential autocor-
relations and different timescales51,52, which can be modeled as a 
mixture of OU processes. For example, a combination of excitatory 
and inhibitory synaptic currents with distinct timescales was sug-
gested as a potential mechanism for creating different 1/f exponents 
in neural data51. However, sometimes we are interested in separat-
ing a process with a well-defined timescale from 1/f background. We 
introduced an augmented generative model to handle such cases (see 
the “Modeling background processes with an arbitrary PSD shape” 
section in the Methods), which can be used to estimate timescales in 
the presence of a background process with an arbitrary PSD shape 
(for example, 1/f exponents other than 2). This generative model 

0 50 100 150

–2

–1

0

lo
g(

A
C

)
lo

g(
A

C
)

a

Data

aABC fit (one timescale)

0 20 40 60 80 100
0

0.05

0.10

P
ro

ba
bi

lit
y 

de
ns

ity aABC fit

0 1 2 3

0

0.5

1.0

C
D

F
(ε

)
C

D
F

(ε
)

c

One-timescale aABC

Two-timescale aABC

0 50 100 150

Time lag (ms)

–2

–1

0
b

Data

Exponential fit (two timescales)

aABC fit (two timescales)

0 20 40 60 80 100

Timescale (ms)

0

0.05

0.10

0.15

P
ro

ba
bi

lit
y 

de
ns

ity

Exponential fit

aABC fit

τ1τ2

τ1
τ2

0 0.5 1.0 1.5

ε (×10–3)

0

0.5

1.0
d

Exponential fit

MAP estimates

Fig. 6 | Estimating timescales of ongoing neural activity and comparing hypotheses about their number with aABC. a, Left: the autocorrelation of 
neural spike-counts is fitted with a one-timescale doubly stochastic model using aABC (sample autocorrelation for MAP estimate parameters). Right: 
posterior distribution of the timescale. τMAP = 58 ms. b, Left: same data as in a is fitted directly with a double exponential function and with a two-timescale 
doubly stochastic model using aABC (sample autocorrelation for MAP estimate parameters). Right: timescales estimated by the direct exponential fit 
and marginal posterior distributions of timescales inferred with aABC. τ1,exp = 5 ms and τ2,exp = 57 ms; τ1,MAP = 8 ms and τ2,MAP = 70 ms. c, Cumulative 
distribution of d for M1 and M2. As M2 resulted in smaller distances (P < 10−10, CL = 0.92, n1 = n2 = 1,000) and CDFM2 (ε) > CDFM1 (ε) for all ε, the two-
timescale model is selected. d, Cumulative distributions of d between the autocorrelation of neural data and synthetic data from the two-timescale doubly 
stochastic model with parameters either from the direct fit or MAP estimate with aABC. The MAP parameters have smaller distances (P < 10−10, CL = 0.82, 
n1 = n2 = 1000), that is, they describe the autocorrelation of neural data more accurately than the direct fit. P-values and CL values are computed from the 
two-sided Wilcoxon rank-sum test. Fitting parameters are provided in Supplementary Table 2.

Nature Computational Science | VOL 2 | March 2022 | 193–204 | www.nature.com/natcomputsci 199

http://www.nature.com/natcomputsci


Articles NaTUre COmPUTaTiOnal Science

is agnostic to the nature of the process generating the background 
activity and directly models the desired PSD shape. We can use this 
model to simultaneously estimate the 1/f exponent and exponential 
decay timescales (Supplementary Fig. 17).

The general framework of inferring timescales with aABC using 
OU processes can be adapted to various data types, different gen-
erative models and summary statistics using our Python package. It 
provides an unbiased estimation of timescales and returns a poste-
rior distribution that quantifies the estimation uncertainty and can 
be used for hypothesis testing. As estimating the full posterior is 
computationally expensive, we included a pre-possessing algorithm 
that verifies whether direct-fit estimates are sufficiently reliable for 
given data and thus may be preferred due to lower computational 
costs. Furthermore, for processes with complex temporal dynam-
ics, finding a plausible generative model that captures all aspects 
of the data might be challenging. Some of the challenges can be 
mitigated by including background processes with an arbitrary PSD 
shape in the generative model (see the “Modeling background pro-
cesses with an arbitrary PSD shape” section in the Methods). Our 
method can select the best model from a proposed set of plausible 
models. However, the model selection may fail to detect the opti-
mal model when the amount of data is very limited, producing an 
inconclusive result. This limitation can be addressed by collecting 
a larger dataset. The modular implementation of our Python pack-
age allows users to easily incorporate additional types of dynam-
ics and non-stationarities into customized generative models, or 
use other types of summary statistics that can be added directly to 
the package. Our approach is particularly favorable for data orga-
nized in short trials or trials of different durations, when direct  
fitting is unreliable.

Methods
Computing sample autocorrelation. In experiments or simulations, the 
autocorrelation needs to be estimated from a finite sample of empirical data. A 
data sample from the process A(t′) constitutes a finite time-series measured at 
discrete times t′i  (i = 1 … N, where N is the length of the time-series). For example, 
the sample time-series can be spike counts of a neuron in discrete time bins or a 
continuous voltage signal measured at a specific sampling rate. Accordingly, the 
sample autocorrelation is defined for a discrete set of time lags tj. Several estimators 
of the sample autocorrelation were proposed using different estimators for μ̂ and 
σ̂2 (refs. 17,18). One possible choice is:

ÂC(tj) =
1

σ̂2(N − j)

N−j
∑

i=1

(

A(t′i ) − μ̂1(j)
)

(

A(t′i+j) − μ̂2(j)
)

, (2)

with σ̂2 = 1
N−1

∑N
i=1(A(t

′

i )
2
−

1
N2 (

∑N
i=1 A(t

′

i ))
2
) and two different sample 

means: μ̂1(j) = 1
N−j

∑N−j
i=1 A(t′i ) and μ̂2(j) = 1

N−j
∑N

i=j+1 A(t
′

i ). Different 
normalizations of autocorrelation are used in literature, but our results do not 
depend on a specific choice of normalization.

Generative models. We used several generative models based on a linear mixture 
of OU processes—one for each estimated timescale—sometimes augmented with 
additional temporal structure (for example, oscillations) and noise.

OU process with multiple timescales. An OU process is defined as

Ȧ(t′) = −

A(t′)
τ

+
√

2Dξ(t′), (3)

where ξ(t′) is Gaussian white noise with zero mean and the diffusion parameter 
D sets the variance Var[AOU(t′)] = Dτ (refs. 53,54). The autocorrelation of the OU 
process is an exponential decay function55

AC(t) = e−t/τ . (4)

Accordingly, the parameter τ provides the ground-truth timescale. The PSD of the 
OU process is a Lorentzian function

PSD(f) =
c

f 2 + f 2knee
. (5)

Here f is the frequency and c = f 2knee/π is the normalization constant. From the 
knee frequency, fknee, we can compute the timescale as τ = (2πfknee)−1.

We define an OU process with multiple timescales A(t′) as a linear mixture of 
OU processes Ak(t′) with timescales τk, k ∈ {1, …, n}, zero mean and unit variance:

A(t′) =

n
∑

k=1

√ckAk(t′),
n

∑

k=1
ck = 1, ck ∈ [0, 1], τ1 < τ2 < ... < τk. (6)

Here n is the number of timescales in the mixture and ck are the mixing coefficients 
that set the relative weights of components without changing the total variance of 
the process. We simulate each OU process Ak by iterating its time-discrete version 
using the Euler scheme55

Ak(t′i+1) =

(

1 −

Δt′

τk

)

Ak(t′) +
√

2DkΔt′ηk(t
′

i ), (7)

where Δt′ = t′i+1 − t′i  is the discretization time-step and ηk(t′i ) is a random 
number generated from a normal distribution. We set the unit variance for each 
OU process Var(Ak) = Dkτk = 1 by fixing Dk = 1/τk. The parameter vector θ for a 
linear mixture of n OU processes consists of 2n − 1 values: n timescales, τk, and 
n − 1 coefficients, ck, in equation (6).

We match the mean and variance of the multi-timescale OU process to μ̂ and 
σ̂2 of the observed data using a linear transformation:

Atrans(t′) = σ̂A(t′) + μ̂. (8)

We use the process Atrans(t′) as a generative model for data fitting and hypothesis 
testing (see below).

Multi-timescale OU process with oscillations. To obtain a generative model with 
an oscillation, we add an oscillatory component with the weight ck+1 to a multi-
timescale OU process, equation (6):

A(t′) =

n
∑

k=1

√ckAk(t′) +
√

2ck+1 sin(ϕ + 2πft′),
n+1
∑

k=1
ck = 1, ck ∈ [0, 1]. (9)

For each trial, we draw the phase ϕ independently from a uniform distribution on 
[0, 2π]. We use the linear transformation in equation (8) to match the mean and 
variance of this generative process to the observed data.

The autocorrelation of this process with a single timescale τ is given by

AC(t) = (1 − c1)e−t/τ
+ c1 cos(2πft), (10)

hence the ground-truth timescale is defined by the OU parameter τ.
For the analysis in Figs. 1b and 3b, we assumed that f is known and only fitted 

ck+1 to show that the bias of the direct fit persists even if we know the correct 
frequency of oscillation; f can be fitted with aABC as an additional free parameter 
(Supplementary Figs. 9 and 10).

Doubly stochastic process with multiple timescales. The doubly stochastic process 
with multiple timescales is generated in two steps: first generating a time-varying 
rate and then generating event counts from this rate. To generate the time-varying 
rate, we scale, shift and rectify a multi-timescale OU process (equation (6)) using 
the transformation

Atrans(t′) = max
(

σ
′A(t′) + μ

′, 0
)

. (11)

The resulting rate Atrans(t′) is non-negative, and for μ′
≫ σ′ it has the mean 

E[Atrans(t′i )] ≈ μ′ and variance Var[Atrans(t′i )] ≈ σ′2. We then draw event counts 
s for each time bin [t′i , t′i+1] from an event-count distribution pcount(s|λ(t′i )), where 
λ(t′i ) = Atrans(t′i )Δt′ is the mean event count and Δt′ = t′i+1 − t′i  is the bin size 
(in our simulations Δt′ = 1 ms). A frequent choice of pcount(s|λ(t′i )) is a Poisson 
distribution

pcount(s|λ(t′i )) =
(λ(t′i ))

s

s!
e−λ(t′i ), λ(t′i ) = Atrans(t′i )Δt′, (12)

which results in an inhomogeneous Poisson process.
To match μ and σ2 of the doubly stochastic process to the observed data, we 

need to estimate the generative model parameters μ′, σ′2 and the variance of the 
event-count distribution σ2

s|λ(t′i ). According to the law of total expectation, the 
mean rate μ′ = λ̂/Δt′, where λ̂ is the sample mean of the observed event counts. 
According to the law of total variance48, the total variance of event counts σ2 arises 
from two contributions: the variance of the rate and the variance of the event- 
count distribution

σ
2
= Var[λ(t′i )] + E[σ2

s|λ(t′i )
] = (Δt′)2σ

′2
+ E[σ2

s|λ(t′i )
]. (13)

For the Poisson distribution, the variance of the event-count distribution is equal 
to its mean: σ2

s|λ(t′i )
= λ(t′i ). However, the condition of equal mean and variance 

does not always hold in experimental data49. We therefore also use other event-
count distributions, in particular a Gaussian and gamma distribution. We define 
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α as the variance to mean ratio of the event-count distribution, α = σ2
s|λ(t′i )

/λ(t′i )
; α = 1 always holds for the Poisson distribution, whereas we assume that α is 
constant (that is, it does not depend on the rate) for other distributions. With this 
assumption, the law of total variance, equation (13), becomes

σ
2
= (Δt′)2σ

′2
+ αΔt′μ

′, (14)

where μ′ = E[Atrans(t′i )] is the mean rate. From equation (14) we find the rate 
variance

σ
′2

=
1

(Δt′)2
(

σ̂
2
− αλ̂

)

, (15)

where σ̂2 is the sample variance of event counts in the observed data. We find 
that with the correct values of μ′, σ′2 and α, both the Gaussian and gamma 
distributions of event counts produce comparable estimates of timescales 
(Supplementary Fig. 18).

To calculate σ′2 with equation (15), we first need to estimate α from the 
observed data. We estimate α from the drop of autocorrelation of event counts 
between the time-lags t0 and t1. As event counts in different time bins are drawn 
independently, this drop mainly reflects the difference between the total variance 
of event counts and variance of the rate (equation (13); we neglect a small 
decrease of the rate autocorrelation between t0 and t1) and does not depend on 
timescales. We thus find α with a grid search that minimizes the distance between 
the autocorrelation at t1 of the observed and synthetic data from the generative 
model with fixed timescales. Alternatively, α can be fitted together with all other 
parameters of the generative model using aABC. We find that as α is almost 
independent from other parameters, aABC finds the correct value of α first and 
then fits the rest of parameters. The MAP estimate of α converges to the same value 
as estimated by the grid search, but aABC requires more iterations to get posterior 
distributions for estimated timescales with a similar variance (Supplementary 
Fig. 19). The grid-search method is thus preferred when moderate errors in α 
are acceptable and an approximate range of ground-truth timescales are known, 
but for more accurate results it is better to fit α by aABC together with other 
parameters.

For a doubly stochastic process, we can compute the autocorrelation function 
analytically based on the autocorrelation of its underlying time-varying rate and 
the mean and variance of the doubly stochastic process. For the the two-timescale 
inhomogeneous Poisson process (Fig. 1c), the autocorrelation is given by:

AC(tj) =







1, j = 0
σ2

−μ

σ2

(

c1e−tj /τ1 + (1 − c1)e−tj /τ2
)

, j > 0.
(16)

Here τ1 and τ2 are the ground-truth timescales defined by the parameters of two 
OU processes; c1 is the mixing coefficient; and μ and σ2 are the mean and variance 
of the event counts, respectively. The drop of autocorrelation between t0 and t1 
mainly reflects the variance in the Poisson process. To estimate the timescales with 
direct exponential fits (Fig. 1c), we assumed that the mean and variance of the 
event counts are known and only estimated τ1, τ2 and the coefficient c1 by fitting 
equation (16) to the sample autocorrelation starting from the lag t1. When we later 
estimate the timescales from the data, we first need to find the correct μ and σ2.

Modeling background processes with an arbitrary PSD shape. We can generate 
random time-series with any desired shape of the PSD. First, we convert the power 
spectrum PSD(f) to amplitudes A(f) =

√

2 · PSD(f). We then draw random 
phases ϕ(f) from a uniform distribution on [0, 2π] and construct a frequency 
domain signal Z(f) = A(f)eiϕ(f ). We transform this signal to the time domain by 
applying the inverse fast Fourier transform and z-score to the time-series to obtain 
zero mean and unit variance.

For example, a common class of background processes exhibit power-law decay 
in PSD3,16,51,52. We model this PSD shape as PSD(f) = f−χ, where fmin < f < fmax is the 
frequency range and χ is the power-law exponent. We can set the lower frequency 
cut-off at fmin = 1 Hz and the upper frequency cut-off fmax is defined by the 
Nyquist frequency (that is, half of the desired sampling rate). We can combine this 
process with a time-series generated from an OU process with τ to obtain a PSD 
shape with both 1/f and Lorentzian components (Supplementary Fig. 17). We sum 
the two time-series with the coefficients c and 1 − c and rescale using the linear 
transformation in equation (8) to match the mean and variance to the observed 
data. This generative process can be used when the 1/f exponent in the data PSD 
deviates from 2 (that is, a Lorentzian shape). This method can be applied to 
generate background processes with arbitrary desired PSD shapes and estimate the 
relevant parameters.

Generating synthetic data for direct fitting. Each synthetic dataset consisted of 500 
independent realizations of the process (that is, trials) with a fixed duration. Such 
trial-based data are typical in neuroscience but usually with a smaller number of 
trials. We computed the sample autocorrelation for each trial using equation (2), 
averaged them to reduce the noise and then fitted the average autocorrelation 
with the correct analytical functional form to estimate the timescale parameters. 

We repeated the entire procedure 500 times to obtain a distribution with multiple 
independent samples of timescales estimated by direct fit (that is, we simulated 
500 × 500 trials for each distribution).

Optimizing generative model parameters with aABC. We optimize parameters 
of generative models with aABC following the algorithm from ref. 33; aABC is 
an iterative algorithm to approximate the multivariate posterior distribution of 
model parameters. It uses population Monte-Carlo sampling to minimize the 
distance between the summary statistic of the observed and synthetic data from the 
generative model.

We can use autocorrelations as the summary statistic and define the suitable 
distance between the autocorrelations of synthetic and observed data, for example, 
as

d(tm) =
1
m

m
∑

j=0

(

ACobserved(tj) − ACsynthetic(tj)
)2, (17)

where tm is the maximum time-lag considered in computing the distance. 
Alternatively, we can compute distances between the PSDs of synthetic and 
observed data:

d(fn, fn+m) =
1
m

n+m
∑

j=n

(

PSDobserved(fj) − PSDsynthetic(fj)
)2, (18)

where fn and fn+m define the frequency range for computing the distance. Distances 
can also be computed on logarithmic scale. For the figures in the main text,  
we used the autocorrelation as the summary statistic and compute distances  
on a linear scale.

First, we choose a multivariate prior distribution over the parameters of the 
generative model and set an initial ε at a rather large value. On the first iteration 
of the algorithm, the parameters of the generative model θ(1)

r  are drawn from the 
prior distribution. We use a multidimensional uniform prior distribution π(θ) 
over fitted parameters (for example, timescales and their weights). The domain of 
prior distribution for the timescales is chosen to include a broad range below and 
above the timescales estimated by the direct exponential fits of data autocorrelation 
(Supplementary Table 2). For the weights of timescales ck, we use uniform prior 
distributions on [0, 1]. The model with parameters θ(1)

r  is used to generate 
synthetic time-series A(t′) with the same duration and number of trials as in the 
observed data. We next compute d between the summary statistics of the synthetic 
and observed data. If d is smaller than ε (initially set to 1), the parameters are 
accepted and added to the multivariate posterior distribution. Each iteration of the 
algorithm is repeated until 500 parameters samples are accepted.

On subsequent iterations, the same steps are repeated but with parameters 
drawn from a proposal distribution and with an updated error threshold. On 
each iteration, the error threshold is set at the first quartile of the accepted sample 
distances from the previous iteration. The proposal distribution is computed 
for each iteration ξ as a mixture of Gaussian distributions based on the prior 
distribution and the accepted samples θr, r = 1, …, N from the previous iteration:

π̂ξ(θ
(ξ)

) ∝

N
∑

r=1
ω

(ξ−1)
r Kξ(θ

(ξ)
|θ

(ξ−1)
r ). (19)

Here ω(ξ−1)
r  is the importance weight of the accepted sample θ(ξ−1)

r  from the 
previous iteration

ω
(ξ−1)
r ∝

π(θ(ξ−1)
r )

π̂(θ
(ξ−1)
r )

. (20)

Kξ is the random walk kernel for the population Monte Carlo algorithm, which is a 
multivariate Gaussian with the mean θ(ξ−1)

r  and the covariance equal to twice the 
covariance of all accepted samples from the previous iteration Σ = 2Cov[θ(ξ−1)]:

Kξ(θ(ξ)
|θ(ξ−1)

r )

= 1
√

2πκ
|Σ|

exp
(

−1
2

(

θ(ξ)
− θ(ξ−1)

r

)T
Σ−1

(

θ(ξ)
− θ(ξ−1)

r

)

)

.
(21)

Here κ is the number of fitted parameters, and ∣Σ∣ is the determinant of Σ.
In the regular ABC algorithm56, the error threshold is fixed and parameters 

are sampled from the prior distribution (the same as in the first step of aABC). 
Updating the error threshold and proposal distribution in successive iterations of 
aABC allows for a more efficient fitting procedure especially when setting wide 
prior distributions33.

The convergence of the algorithm is defined based on the acceptance rate, 
accR, which is the number of accepted samples divided by the total number of 
drawn samples on each iteration. The algorithm terminates when the acceptance 
rate reaches accRmin, which is set to accRmin = 0.003 in our simulations. A 
smaller accRmin leads to a smaller final error threshold (Fig. 3, right) and a better 
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approximation of the posterior distributions, but requires longer fitting time. To 
find the MAP estimates, we smooth the final joint posterior distribution with a 
multivariate Gaussian kernel and find its maximum with a grid search.

Model selection and Bayes factor approximation with ABC. We compare M1 
and M2 using a goodness of fit measure that describes how well each model fits the 
data. The goodness of fit can be measured by the distance between the summary 
statistic (for example, autocorrelation or PSD) of synthetic and observed data; 
that is, residual errors (equations (17) and (18)). For a fair comparison, the same 
summary statistics and fitting range should be used for fitting both models. As 
d is a noisy measure due to the finite sample size and uncertainty in the model 
parameters, we compare the distributions of distances generated by two models 
with parameters sampled from their posterior distributions. To approximate the 
distributions of distances, we generate multiple samples of synthetic data from 
each model with parameters drawn from its posterior distribution and compute d 
for each sample. If the distributions of distances are significantly different (that is, 
expectations of the summary statistic for two models are significantly different44) 
then we continue with the model selection, otherwise the summary statistic is 
insufficient to distinguish these models.

Using the distributions of distances we estimate the Bayes factor to select 
between the two models. The Bayes factor is the ratio of marginal likelihoods of the 
two models and accounts for the model’s complexity46. Assuming both models are a 
priori equally probable p(M1) = p(M2), the Bayes factor can be approximated using 
the models’ acceptance rates for a specific ε (refs. 42,45,57)

B21(ε) =
accRM2 (ε)

accRM1 (ε)
. (22)

B21(ε) > 1 indicates that the model M2 is more likely to explain the observed 
data and vice versa. To eliminate the dependence on a specific error threshold, 
we compute the acceptance rates and the Bayes factor with a varying error 
threshold. For each ε, the acceptance rate is given by the CDF of the distances 
CDFMi (ε) = pMi (d < ε) = accRMi (ε) (i = 1, 2). Hence, the ratio between CDFs 
of two models gives the value of the Bayes factor for every error threshold 
B21(ε) = CDFM2 (ε)/CDFM1 (ε). We select the model M2 if B21(ε) > 1, that is, 
if CDFM2 (ε) > CDFM1 (ε) for all ε and vice versa. For experimental data, it is 
often reasonable to put an upper bound on ε for computing the Bayes factor (for 
example, the largest median(ε) between the two models), as only small values of ε 
indicate a well-fitted model.

abcTau Python package. We developed the abcTau Python package implementing 
our aABC framework for estimation of timescales from autocorrelations or 
PSDs of various types of experimental data, and the Bayesian model comparison 
to select between different hypotheses58. We also provided tutorials as Jupyter 
Notebooks and example Python scripts to make our framework easily accessible for 
researchers in different fields.

The minimal requirements for using this package are Python v.3.7.1, 
Numpy v.1.15.4 and Scipy v.1.1.0. For visualization, Matplotlib > = v.3.0.2 and 
Seaborn > = v.0.9.0 are required. The basis of aABC algorithm in the package 
is adopted from a previous implementation originally developed in Python 2 
(https://github.com/rcmorehead/simpleabc). As all parameters of our generative 
models are positive and sometimes subject to additional conditions (for example, 
τ2 > τ1), we introduced constraints on sampling from proposal distributions. 
Moreover, we enhanced the algorithm for parallel processing required for 
analyzing large datasets.

The abcTau package includes various types of generative models that 
are relevant for different types data and various methods for computing the 
autocorrelation or PSD. Using this functionality, users can apply our framework 
to their time-series data, supplied in a Numpy array structured as trials times 
time-points. The object oriented implementation of the package allows users 
to easily replace any function, including generative models, summary statistic 
computations, distance functions and so on with their customized functions to 
better describe statistics of the data. Users can also add their customized generative 
models directly to the package to create a larger database of generative models 
available for different applications.

The package also includes a module for Bayesian model selection. This module 
computes the cumulative distribution of distances from estimated posterior 
distributions and a Bayes factor for every error threshold, runs the statistical tests 
and suggests the best hypothesis describing the underlying processes in data.

Pre-processing for evaluating quality of direct fit. As Bayesian inference of a full 
posterior distribution can be computationally expensive, we implemented a 
fast pre-processing function that uses parametric bootstrapping to determine 
whether the direct exponential fit provides satisfactory estimates of timescales 
(Supplementary Fig. 14). In this function, a generative model (for example, 
based on a mixture of OU processes) with parameters obtained from the direct 
exponential fit can be used to generate multiple synthetic datasets, each with the 
same amount of data as in the original data. For each synthetic dataset, timescales 
are estimated by direct exponential fitting. The obtained distribution of timescales 

from this bootstrapping procedure can be compared to the initial direct-fit estimate 
from the original data. The error between the mean of bootstrapping distribution 
and the initial direct fit is used to approximately evaluate the direct fit quality. If 
the error is small enough, the direct exponential fit may be sufficiently accurate. 
The accuracy of timescale estimates with the direct fit can be further improved by 
empirical bias-correction using the measured deviation between the mean of the 
parametric bootstrap distribution and the direct-fit estimates (Supplementary Fig. 
5). However, this method does not guarantee an accurate bias correction as the 
deviation of the direct fit from the ground truth can be larger than the observed 
deviation between the bootstrap and direct fit. Hence, we recommend users to 
be conservative with the decision to rely on the direct-fit estimates if accurate 
estimates of timescales are desired.

Branching network model. A branching network consists of K interconnected 
binary neurons, each described by the state variable xi ∈ {0, 1}, where xi = 1 
indicates that neuron i is active and 0 that it is silent. We considered a fully 
connected network. Each active neuron can activate other neurons with the 
probability p = m/K and then, if not activated by other neurons, it becomes inactive 
again in the next time-step. Furthermore, at every time-step, each neuron can be 
activated with a probability h by an external input. For a small input strength h, 
the state of the network’s dynamics is governed by a branching parameter m (m = 1 
corresponds to the critical state). The autocorrelation function of the global activity 
A(t′) =

∑

ixi(t
′) in this network is known analytically AC(tj) = exp(tj ln(m))5. 

Thus the ground-truth timescale of this activity is given by τ = −1/ ln(m).

Neural recordings and analysis. Experimental procedures and data pre-processing 
were described previously47. Experimental procedures were in accordance 
with NIH Guide for the Care and Use of Laboratory Animals, the Society for 
Neuroscience Guidelines and Policies, and Stanford University Animal Care and 
Use Committee.

In brief, a monkey was trained to fixate a central dot on a blank screen for 3 s 
on each trial. Spiking activity was recorded with a 16-channel micro-electrode 
array inserted perpendicularly to the cortical surface to record from all layers 
in the visual area V4. For fitting, we used a recording session with 81 trials. We 
pooled the activity across all channels and calculated the population spike-counts 
in 1 ms bins. First, we subtracted the trail-averaged activity (Peristimulus time 
histogram, PSTH) from spike-counts to remove the slow trends locked to the trial 
onset1. We then computed the autocorrelation of spike-counts using equation (2) 
and averaged the autocorrelations across all trials.

To estimate the timescales from direct fitting, we fitted the average 
autocorrelation of spike counts with a double exponential function

AC(t) = c1e−t/τ1 + (1 − c1)e−t/τ2 (23)

up to the same tm = 150 ms as used for the aABC fit. Including all of the time lags 
in exponential fitting results in a larger bias in estimated timescales. We used a 
sampling method based on parametric bootstrapping to compare the goodness 
of direct-fit estimates with the MAP estimates from the aABC fit. We generated 
multiple samples of synthetic data using the two-timescale doubly stochastic 
generative model with parameters from either the direct fit or MAP estimates from 
aABC. For each sample, we measured the distance between the autocorrelation of 
synthetic and neural data to obtain the distribution of distances for both types of 
fits. We then used two-sided Wilcoxon rank-sum test to compare the distributions.

Parameters of simulations and aABC fits in figures. The initial error threshold 
was set to ε = 1 for all fits. The aABC iterations continued until accR ≤ 0.003. All 
datasets (except for the branching network) consisted of 500 trials, each of 1 s 
duration. The dataset for the branching network (Fig. 4) consisted of 100 trials 
with 500 time-steps. The parameters for simulations and aABC fits are given in 
Supplementary Tables 1 and 2, respectively.

Statistics and reproducibility. As the first step of the model selection with ABC, 
we used two-sided Wilcoxon rank-sum test (also known as Mann–Whitney U 
test) to compare the distribution of distances of the two models. For this non-
parametric test, we can compute the common language effect size59 CL = U/(n1n2) 
using U statistics from the rank-sum test and number of samples n1 and n2 from 
the two models. For computing the effect size, we took the model with the longer 
average distance as the reference point. Hence, CL = 1 is the largest effect size. We 
truncated P-values smaller than 10−10 and rounded the remaining P-values to the 
third decimal place. We rounded the effect size values to the second decimal place.

For all model comparisons performed in this paper, there were always a 
significant difference between the distances of the two models (that is, P < 0.05). 
The detailed results of the statistical analysis can be found in the captions of Figs. 
5 and 6. We reported P-values, effect sizes and sample sizes (test statistic U can be 
computed directly from the effect size and sample sizes as U = CL ⋅ n1 ⋅ n2).

Data availability
Electrophysiogical recordings from primate area V4 were performed at Stanford 
University and presented in ref. 47. The raw electrophysiogical data (session 
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2013-06-18, blank screen condition) are available on Fighshare at https://doi.
org/10.6084/m9.figshare.19077875.v1 (ref. 60). Processed data and data from 
example aABC fits and model selections are available on GitHub at https://
github.com/roxana-zeraati/abcTau and on Zenodo at https://doi.org/10.5281/
zenodo.5949117 (ref. 58). Source Data are provided with this paper.

Code availability
The abcTau Python package together with tutorials and Jupyter Notebooks for 
reproducing figures are available on GitHub at https://github.com/roxana-zeraati/
abcTau and Zenodo at https://doi.org/10.5281/zenodo.5949117 (ref. 58).
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