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Diffusion magnetic resonance imaging and tractography 
enable the estimation of anatomical connectivity in the human 
brain, in vivo. Yet, without ground-truth validation, different 
tractography algorithms can yield widely varying connectiv-
ity estimates. Although streamline pruning techniques miti-
gate this challenge, slow compute times preclude their use in 
big-data applications. We present ‘Regularized, Accelerated, 
Linear Fascicle Evaluation’ (ReAl-LiFE), a GPU-based imple-
mentation of a state-of-the-art streamline pruning algo-
rithm (LiFE), which achieves >100× speedups over previous 
CPU-based implementations. Leveraging these speedups, we 
overcome key limitations with LiFE’s algorithm to generate 
sparser and more accurate connectomes. We showcase ReAl-
LiFE’s ability to estimate connections with superlative test–
retest reliability, while outperforming competing approaches. 
Moreover, we predicted inter-individual variations in multiple 
cognitive scores with ReAl-LiFE connectome features. We 
propose ReAl-LiFE as a timely tool, surpassing the state of 
the art, for accurate discovery of individualized brain connec-
tomes at scale. Finally, our GPU-accelerated implementation 
of a popular non-negative least-squares optimization algo-
rithm is widely applicable to many real-world problems.

Intact anatomical connectivity among brain areas is critical to 
cognition1. Accurate estimation of anatomical connections in vivo is 
critical not only for uncovering the neural underpinnings of human 
behavior, but also for understanding the genetic bases of neurologi-
cal disorders2.

Diffusion magnetic resonance imaging (dMRI), followed by 
tractography, enables the estimation of anatomical connectivity in 
the human brain, in vivo3. dMRI measures the diffusion of water 
molecules in the brain’s white matter, then tractography algorithms 
estimate axonal structures based on restricted diffusion, post hoc4. 
However, dMRI and tractography algorithms are prone to chal-
lenges such as acquisition noise and redundant fiber geometries. 
As part of an international tractography challenge, a recent study5 
compiled efforts by 20 teams that estimated a whole-brain connec-
tome from a simulated dMRI scan, which was, in turn, generated 
with simulated ‘ground-truth’ fiber bundles. The diverse success 
rates across the different teams—in terms of their ability to match 
the ground truth—underscores the magnitude of this challenge. 
Because actual ground-truth connectivity in the brain is typically 
unavailable in vivo, direct validation of tractography in the human 
brain remains elusive.

Streamline pruning and evaluation algorithms represent a state-
of-the-art, post-processing approach to address these challenges3,6,7. 
Linear Fascicle Evaluation (LiFE) is a recent, state-of-the-art model 
that prunes out spurious fibers based on the quality of fit to the 
underlying diffusion signal3. Yet, LiFE’s algorithm is implemented 

on central processing units (CPUs) and suffers from both speed and 
memory bottlenecks3, which preclude its application for connec-
tome evaluation at scale.

In this Brief Communication, we present an improvement to 
LiFE—Regularized, Accelerated, Linear Fascicle Evaluation, or 
ReAl-LiFE—for rapid and accurate connectome evaluation at scale. 
We improve the LiFE algorithm by introducing an explicit regular-
ization (sparsity) penalty into its objective function, and present a 
scalable graphics processing unit (GPU) implementation that rou-
tinely achieves orders of magnitude (>100×) speedups over CPU 
implementations while also estimating more sparse and more con-
sistent connectomes. Next, we show that ReAl-LiFE performs at par 
with, and even outperforms, other state-of-the-art approaches (for 
example, SIFT26 and COMMIT28) in terms of estimating stream-
lines with high test–retest reliability. Finally, we apply ReAl-LiFE 
to identify structural connectivity correlates of behavior in a cohort 
of 200 participants drawn from the Human Connectome Project 
(HCP) database9. We propose ReAl-LiFE as an effective tool, sur-
passing the state of the art, for rapid and accurate connectome dis-
covery at scale.

We introduced a preliminary version of the ReAl-LiFE algo-
rithm in an earlier study10 (Fig. 1a,b); this implementation achieved 
50–100× speedups over CPU implementations of LiFE. In the pres-
ent study, we optimize the algorithm further (Methods) to achieve 
even greater speedups (>100×, up to 155×; Methods). We demon-
strate these speedups with three different diffusion MRI datasets.

We tested for speedups, first, with a state-of-the-art diffusion 
MRI dataset (dataset H; Nv = 437,495, Nθ = 270) from the HCP data-
base9. We generated connectomes of seven different sizes, ranging 
from 50,000 to two million fibers (Methods). The streamlines in 
these connectomes were then pruned with the CPU implementation 
as well as with our GPU implementation of LiFE (Methods). The 
GPU implementation produced substantial speedups, ranging from 
62-fold (62×; 95% confidence interval (CI), [59.8, 63.4]) for a con-
nectome with 50,000 fibers to 129-fold (129×; 95% CI, [128.8, 129]) 
for a connectome with 1.5 million fibers (Fig. 1c). We evaluated these 
speedups on two other, independently acquired datasets: a dMRI 
dataset acquired in house (dataset I; Nv = 116,468, Nθ = 64; Methods) 
and a dataset used in the original LiFE study3 (dataset S; Nv = 247,969, 
Nθ = 96; Methods). Again, we observed maximum speedups of 124× 
(95% CI, [123.6, 124.4]; dataset I) and 155× (95% CI, [155.1, 155.2]; 
dataset S) for connectomes with 1.5 million fibers (Fig. 1c).

We also tested how speedups scaled with the number of voxels 
(Nv) and number of diffusion directions (Nθ). Overall, speedups 
scaled fastest with the number of diffusion directions, followed by 
the number of voxels (Supplementary Fig. 1). We also compared 
convergence times for ReAl-LiFE with two other pruning algo-
rithms, SIFT7 and COMMIT28. ReAl-LiFE performed comparably 

GPU-accelerated connectome discovery at scale
Varsha Sreenivasan   1 ✉, Sawan Kumar2, Franco Pestilli3, Partha Talukdar2,4 and  
Devarajan Sridharan   1,4 ✉

Nature Computational Science | VOL 2 | MaY 2022 | 298–306 | www.nature.com/natcomputsci298

mailto:varshas@iisc.ac.in
mailto:sridhar@iisc.ac.in
http://orcid.org/0000-0003-3225-7057
http://orcid.org/0000-0003-1998-9018
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-022-00250-z&domain=pdf
http://www.nature.com/natcomputsci


Brief CommunicationNAtURE CoMPUtAtionAL SciEncE

to SIFT and COMMIT2, with a slight advantage for our approach, 
especially at larger connectome sizes (Supplementary Fig. 1 and 
Supplementary Information).

Incorporating a sparsity-inducing prior (L1-norm of fiber 
weights; Methods) enabled ReAl-LiFE to generate sparser and more 

accurate connectomes. Yet, previous studies have indicated that such 
a sparsity-inducing prior may increase the chances of false negatives 
(missed fibers), particularly when duplicate fibers occur in the con-
nectome11. We addressed this challenge precisely by constructing an 
artificial connectome comprised entirely of near-identical, duplicate 
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Fig. 1 | Rapid and reliable connectome evaluation with the ReAl-LiFE algorithm. a, Schematic of the LiFE model. O(w), objective function value.  
b, Schematic of the GPU-accelerated LiFE algorithm. c, Left: speedups as a function of the number of fibers Nf for datasets H (yellow), I (black) and S (blue). 
The x axes are shown in log scale. Middle: speedups as a function of the number of voxels Nv in each diffusion MRI volume. Right: speedups as a function 
of the number of gradient directions Nθ for each diffusion MRI scan. Filled circles, connectome sizes tested. Solid lines, logarithmic fit. Dashed open circles 
indicate points excluded from the logarithmic fit. d, Heatmaps showing within-participant variability (Vw) against between-participant variability (Vb) across 
n = 561 connections from five participants’ test–retest data, following pruning with the LiFE algorithm (top) and the ReAl-LiFE algorithm (bottom). Dashed 
diagonal line, line of equality. One-sided Wilcoxon signed-rank test, P = 0.119 (top), ***P < 0.001 (bottom). e, Vector plots demonstrating the improvement 
in reliability, relative to the unpruned connectome, following pruning with each of four different methods. Each plot shows change in within-participant 
variability (ΔVw) against change in between-participant variability (ΔVb) following pruning with LiFE (top left), ReAl-LiFE (bottom left), SIFT2 (top right) and 
COMMIT2 (bottom right). Each vector corresponds to one of the 561 connections evaluated. f, Reliability matrix, whose (i, j)th entry indicates the reliability 
measure (ϕ = Vb/(Vb + Vw)) of each pair of (n = 561) intra-hemispheric connections between regions i and j. Deeper shades indicate connections with higher 
test–retest reliability. R, right; L, left. g, Average reliability (ϕ) across all connections (n = 561) after pruning with LiFE, ReAl-LiFE, SIFT2 and COMMIT2. 
Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. One-sided Wilcoxon signed-rank test: LiFE 
versus ReAl-LiFE, ***P < 0.001; ReAl-LiFE versus COMMIT2, **P < 0.01. h, Exemplar tracts corresponding to two connections with high consistency.  
i, Exemplar tracts corresponding to two connections with low consistency.
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streamlines, and show that pruning with ReAl-LiFE largely amelio-
rated this challenge (Supplementary Fig. 2). In addition, we show 
that ReAl-LiFE reduced overfitting and produced more consistent 
connectomes, as compared to LiFE (Supplementary Figs. 3 and 4).

We next quantified the reliability of the ReAl-LiFE algorithm, 
comparing it with that of LiFE, SIFT26 and COMMIT28. We per-
formed a test–retest reliability analysis12 using a sample of n = 5 
participants drawn from the HCP database (Methods). For each 
participant, pairwise intra-hemispheric connectivity was computed, 
the total variability of which was partitioned into between-partici-
pant (Vb) and within-participant (Vw) components (Methods).

Following pruning with LiFE, within- and between-participant 
variabilities were comparable (Vb, CI [0.411, 0.435]; Vw, CI [0.407, 
0.432]; P = 0.119; effect size = 0.025; Fig. 1d), but, following ReAl-
LiFE pruning, within-participant variability was significantly lower 
than between-participant variability (Vb, CI [0.374, 0.401]; Vw, CI 
[0.337, 0.365]; P < 0.001, effect size = 0.217; Fig. 1d). Thus, ReAl-
LiFE pruning increased test–retest reliability of the estimated 
connection weights. Moreover, between-participant variability fol-
lowing ReAl-LiFE pruning was significantly lower than that follow-
ing LiFE pruning (P < 0.001).

We further quantified the test–retest reliability with a reliabil-
ity index (ϕ; Methods). A greater reliability index is a hallmark 
of efficient pruning. Compared with LiFE, pruning with ReAl-
LiFE yielded a significantly higher reliability index (Fig. 1g; LiFE: 
ϕ = 0.507, CI [0.503, 0.512], ReAl-LiFE: ϕ = 0.533, CI [0.528, 0.538]; 
P < 0.001 across all connections). Pruning with SIFT2 yielded reli-
ability indices comparable with those of ReAl-LiFE (Fig. 1g; SIFT2, 
ϕ = 0.535, CI [0.530, 0.540]; P = 0.812), whereas pruning with 
COMMIT2 yielded a marginally lower reliability index than ReAl-
LiFE (Fig. 1g; ϕ = 0.526, CI [0.521, 0.531]; P = 0.004).

Next we quantified the improvement in reliability based on the 
proportion of connections in each quadrant of the (Vb, Vw) plot: a 
greater proportion in the II quadrant (Vb > Vw; ‘high-reliability’) as 
compared to the IV quadrant (Vw > Vb; ‘low-reliability’) indicates 
more efficient pruning. Compared to the unpruned connectome, 
streamline pruning with LiFE yielded fewer connections in the 
high-reliability (6.8%) than in the low-reliability quadrant (11.1%), 
although not different from chance (P = 0.994, binomial test;  
Fig. 1e). On the other hand, pruning with ReAl-LiFE yielded sig-
nificantly more connections in the high-reliability (13.2%) than 
in the low-reliability quadrant (8.5%; P = 0.011; Fig. 1e). Pruning 
with SIFT2 and COMMIT2 yielded comparable proportions of 
connections in both the high- and low-reliability quadrants (SIFT2, 
P = 0.399; COMMIT2, P = 0.390; Fig. 1e).

Finally, we identified connections exhibiting extreme values of 
test–retest reliability following ReAl-LiFE pruning (Fig. 1f). The 
highest test–retest reliability was observed for long-range connec-
tions between the frontal and parietal lobes (Supplementary Table 3), 
which strongly overlap with established white-matter tracts includ-
ing the superior and inferior longitudinal fasciculus (SLF/ILF), the 
arcuate fasciculus (AF) and the inferior fronto-occipital fasciculus 
(IFOF) (Fig. 1h). Conversely, test–retest reliability was least for short-
range connections, especially those connecting the middle temporal 
gyrus with adjacent temporo-occipital regions (Fig. 1i).

As a real-world application of ReAl-LiFE, we asked if stream-
line pruning with ReAl-LiFE would enable identification of struc-
tural connectivity correlates of behavior. For this, we predicted 
60 behavioral test scores13 spanning three categories—cognition, 
emotion and personality—of 200 participants (HCP database9; 
Supplementary Data File 1). Behavioral score prediction was per-
formed with a support vector regression (SVR) model using recur-
sive feature elimination (RFE)14 (Methods and Fig. 2a). Specifically, 
we compared predictions made with ReAl-LiFE connection weights 
as features against those based on the number of fibers in the 
unpruned connectome.

Across a range of significance thresholds (α = 0.00001 to 0.05, 
uncorrected), the number of behavioral scores predicted signifi-
cantly by connectome features based on both the number of fibers 
(Fig. 2b, top, red filled circles) and ReAl-LiFE weights (Fig. 2b, top, 
purple filled circles) were not different (P = 0.906; effect size = 0.011). 
However, predictions based on ReAl-LiFE weights were more accu-
rate than those based on the number of fibers, as evidenced by the 
higher average correlations (Fig. 2b, bottom; effect size = 0.660). 
Similar trends were observed when each category of scores—cogni-
tion, emotion and personality—was predicted separately (Fig. 2c–f 
and Supplementary Fig. 5). Specifically, for cognition and personal-
ity scores, ReAL-LiFE weights yielded consistently higher prediction 
accuracies (average r values) than the number of fibers, across the 
entire range of significance thresholds (Fig. 2c,e, lower panels).

Next we asked which set of connectome features—ReAl-LiFE 
weights or unpruned connectome fibers—more robustly predicted 
behavioral scores. For this, we combined both sets of features and 
quantified the proportion of ReAl-LiFE features selected by the RFE 
algorithm for the best prediction of each behavioral score. For over 
95% (58/60) of score predictions, RFE favored a higher proportion 
of ReAl-LiFE features, as compared to features from the unpruned 
connectome (P < 0.001, Wilcoxon signed-rank test; Fig. 2g).  
Additional control analyses for these behavior predictions are 
reported in the Supplementary Information (Supplementary Fig. 5).

We also analyzed the anatomical features underlying these pre-
dictions, focusing on the ‘cognition’ scores. Briefly, reading ability 
correlated significantly with connectivity in the left frontal cortex, 
whereas picture vocabulary scores correlated significantly with con-
nectivity within the right parietal cortex (Supplementary Fig. 5 and 
Supplementary Data File 2).

Our findings indicate that, in addition to yielding more accurate 
connectomes, ReAl-LiFE connection weights enabled more accu-
rate predictions across a range of behavioral scores, all acquired out-
side the scanner environment. dMRI-based structural connectivity, 
quantified following connectome evaluation, may provide a reliable 
neuroimaging-based biomarker for key cognitive traits.

The ReAl-LiFE algorithm may be developed and improved on 
several key fronts to overcome its current limitations. First, the cur-
rent version of the ReAl-LiFE algorithm does not take advantage of 
parallel computations across multiple GPUs. Moreover, ReAl-LiFE 
is presently not integrated with multi-CPU acceleration schemes10, 
although our speedups exceed (~8.7×) state-of-the-art num-
bers reported for these approaches. Combining these CPU-based 
schemes with our GPU implementation, or implementing parallel 
computations across multiple GPUs, may yield further speedups of 
the algorithm.

Second, ReAl-LiFE’s optimization objective, including the 
sparsity-inducing prior, may be further improved. A key feature of 
regularized pruning with ReAl-LiFE is the ability to generate con-
nectomes at various, desired levels of sparsity using L1-norm-based 
regularization, a feature unavailable in the original LiFE algorithm. 
Yet, such a stringent regularization increases the chances of false 
negatives (missed fibers)8,11. Although we tested for this possibility 
(Supplementary Fig. 2), other kinds of regularization (for example, 
L2-norm-based) will need to be systematically evaluated to identify 
those that minimize false negatives in the connectome. Nonetheless, 
incorporating this penalty resulted in ReAl-LiFE outperforming 
LiFE in terms of reducing overfitting, producing more consistent 
connectomes and increasing test–retest reliability. Although the 
test–retest reliability analyses were performed with only a limited 
number of participants (n = 5), ReAl-LiFE connections with the 
highest test–retest reliability mapped onto established white mat-
ter tracts15. Incorporating additional features and constraints into 
the objective function—for example, based on brain anatomy, as  
with COMMIT28—may enable future improvements to the  
ReAl-LiFE algorithm.
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Third, a principled evaluation of the reasons underlying the 
differences between ReAl-LiFE and other state-of-the-art algo-
rithms—SIFT/SIFT2 and COMMIT26–8—remains to be carried 
out. ReAl-LiFE pruning times were largely comparable with the 
other approaches, but demonstrated a marginal advantage for 
larger connectome sizes. Moreover, ReAl-LiFE differed from the 
other approaches in the proportion of high-reliability connec-
tions retained following pruning. The reasons for these differences 
need to be investigated carefully. Finally, ReAl-LiFE will need to be 
directly compared against these competing approaches, in terms of 
their respective success rates with mapping structural connectivity 
to behavior. Such a principled comparison is essential for identify-
ing robust structural connectivity bases of higher-order cognitive 
functions, such as attention, learning and decision-making15,16.

More generally, the Subspace Barzilai–Borwein Non-Negative 
Least-Squares (SBB-NNLS) algorithm, at the heart of ReAl-LiFE, 
is widely applicable to optimization problems in many real-world 

applications, including healthcare17. Our GPU-accelerated imple-
mentation of the SBB-NNLS algorithm has the potential for wide 
application in diverse domains that go beyond connectome pruning.

Methods
All experiments were conducted according to protocols approved by the Institute 
Human Ethics Committee, Indian Institute of Science, Bangalore. Informed written 
consent was obtained from each participant before the study.

ReAl-LiFE. Description of the LiFE algorithm. The LiFE algorithm models 
a diffusion signal from the reconstructed whole-brain connectome. LiFE’s 
optimization algorithm minimizes the error between the modeled and the 
measured diffusion signal, while eliminating fibers from the connectome that do 
not contribute to the underlying diffusion signal. The diffusion signal is typically 
measured along multiple, uniformly sampled gradient directions in space, Nθ. 
For each voxel and gradient direction, this signal is then encoded into a vector 
b ∈ RNθ×Nv, where Nv is the number of voxels in the data. In a given whole-brain 
connectome, fibers traverse multiple voxels and each voxel may contain many 
different fibers. The contribution of each fiber f, traversing a voxel v, measured 
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Fig. 2 | Predicting key cognitive scores using ReAl-LiFE connection weights. a, Schematic of the SVR-RFE prediction model. For each participant (n = 200), 
the 68 × 68 whole-brain connectivity matrix was vectorized to give 1,122 connectivity features. Feature vectors from all participants were collated to form a 
feature matrix of size 200 × 1,122, which was used to predict 60 different behavioral and cognitive scores. Data were divided into training and testing folds, 
and the prediction model was trained on the train fold using SVR (dashed box). Feature selection was implemented using RFE. b, Top: number of scores 
significantly predicted as a function of the uncorrected P-value threshold for predictions based on the number of fibers in the unpruned connectome (red 
circles) and connection weights in the ReAl-LiFE-pruned connectome (purple circles). Bottom: average correlations between the observed and predicted 
scores as a function of the uncorrected P-value threshold. Other conventions are the same as in the top panel. c–e, As in b, but for scores from the cognition 
(c), emotion (d) and personality (e) categories. Other conventions are the same as in b. f, Word clouds showing the different behavioral scores from the 
cognition (left), emotion (middle) and personality (right) categories, sized based on their prediction accuracy values using ReAl-LiFE connection weights. 
Larger words indicate better predicted scores. g, Proportion of ReAl-LiFE features chosen by the SVR-RFE model for predicting each of the 60 behavioral 
and cognitive scores using a combined feature set, including both the number of fibers in the unpruned connectome (1,122 features), as well as ReAl-LiFE 
connection weights (1,122 features). The proportions of features are shown in descending order, separately, for each of the three categories of scores—
cognition (blue, n = 13), emotion (magenta, n = 23) and personality (green, n = 24).
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along the gradient direction θ, is encoded into a matrix M ∈ RNvNθ×Nf , where 
Nf is the number of fibers in the connectome. The diffusion signal in each voxel is 
modeled as a weighted sum of the individual fibers traversing the voxel. This can 
be written as b = Mw, where w ∈ RNf  signifies the contribution (or weight, wf) of 
each fiber f to the diffusion signal b.

LiFE minimizes the error between the modeled and measured diffusion signal 
by assigning a non-negative weight to each fiber. This objective is posed as a non-
negative least-squares optimization problem:

min
w

(O (w)) , O(w) =
1
2
∥b − Mw∥2 , w ≥ 0 (1)

Solving this problem imposes substantial memory demands due to the large 
size of M, which is typically 2 GB for a typical connectome with Nv = 100,000, 
Nf = 1 million and Nθ = 64 (refs. 3,18). A recent study18 overcame this limitation by 
adopting a more efficient, sparse tensorial representation of M. The demeaned 
diffusion signal Mv ∈ RNθ×Nf  in each voxel v was represented, using sparse 
Tucker decomposition (STD), as Mv = S0(v)DΦv, where S0(v) is the ‘baseline’ 
diffusion signal measured in the absence of a diffusion gradient, D ∈ RNθ×Na is 
a dictionary matrix quantifying the contribution of canonical diffusion ‘atoms’ 
(Na atoms) toward each diffusion direction, and Φv = RNa×Nf  is a sparse, binary 
matrix whose columns indicate the contribution of each atom to each fiber, in 
that voxel. Collating Φv for all voxels v into a sparse 3D tensor Φ, the modeled (or 
predicted) diffusion signal may be written as

Y = Φ ×1 D ×2 S0 ×3 wT (2)

where w is the vector of all the individual fiber weights and ×k represents a matrix 
product in mode k. M in equation (1) is now given by M = Φ ×1 D ×2 S0.

With this representation, the optimization problem is solved using an SBB-
NNLS algorithm10. Briefly, given w0 as an initial weight vector, the weight updates 
occur as follows:

w(i+1)
= [w(i)

− α(i)
∇g(w(i)

)]
+

where the gradient term is given by

∇g(w) = MT
(Mw − b) (3)

and α(i), the step value at each iteration, is given by

α(i)
odd =

⟨∇g̃(i−1),∇g̃(i−1)
⟩

⟨M∇g̃(i−1), M∇g̃(i−1)⟩

for the odd iterations and

α(i)
even =

⟨M∇g̃(i−1), M∇g̃(i−1)
⟩

⟨MTM∇g̃(i−1), MTM∇g̃(i−1)⟩

for the even iterations. The tilde denotes the projection of the gradient into the 
positive space at each iteration and 〈a, b〉 denotes an inner product of the vectors 
a and b.

In its original form, the LiFE algorithm suffered from a few key  
drawbacks, which needed to be overcome to enable connectome evaluation  
at scale. First, a CPU implementation of the memory-efficient implementation  
of the LiFE algorithm still suffered from computational bottlenecks, because every 
iteration of the algorithm requires a large number (O(NvNθNf)) of multiplications, 
typically, with matrices comprising 1013–1014 elements. This requirement produced 
a considerable speed bottleneck when evaluating large connectomes. Second, LiFE 
(and related pruning algorithms) suffer from another key limitation: there is no 
explicit provision in LiFE or in other popular pruning algorithms, such as SIFT7 or 
SIFT26, for directly eliminating redundant fibers in the connectome.

GPU acceleration. To address the issue of speed, we sought to identify key 
bottlenecks in LiFE’s algorithm that could be optimized on GPUs. Briefly, the SBB-
NNLS optimization algorithm requires several multiplications of the form Mx or 
MTy, where x and y are generic notations of matrices that are used in various steps of 
the optimization. We sought to speed up these multiplications with efficient GPU-
based computations. The detailed steps are presented as pseudocode in algorithms 1 
and 2 in the Supplementary Information. Here we describe these steps briefly.

A key ingredient of our GPU acceleration approach is splitting the computation 
among voxels, with each CUDA block handling data associated with one voxel. 
For storage efficiency, the matrix M was stored in a sparse tensor (Coordinate list, 
COO format) with indices into the dictionary matrix D, as it was not feasible to 
use standard sparse matrix multiplication packages. Following STD of M (equation 
(2)), computing Mx requires computing linear combinations of columns from D 
while MTy computation requires computation of inner products with columns of 
D (ref. 18). The former has a high memory write bandwidth requirement, whereas 
the latter has a high memory read bandwidth requirement as well as a reduction 
operation. To address this issue we sorted the Φ tensor, stored in the COO format, 

along the voxel dimension, enabling faster per-voxel execution of both Mx and MTy 
by reducing memory write and read requests, respectively.

We fixed the block size to the warp size of the GPU, which corresponds to 
the number of threads processing each voxel. Each thread handled one or more 
diffusion directions, depending on the total number of diffusion directions. Data 
along the diffusion direction dimension were padded such that its size was a multiple 
of the warp size, to avoid branching in the kernel code that is to be run on the GPUs. 
This also permitted maximizing the usage of warp shuffle instructions and reducing 
shared memory usage. We used shared memory only for storing the final results. 
In each block, we read up to warp size entries from the sparse tensor in parallel, to 
leverage memory coalescing advantages, and stored them in thread local memory. 
The threads in a block then computed on different diffusion directions for the read 
entries sequentially. We used warp broadcast instructions to share data from thread 
local memories to all threads in a block. In the case of MTy computation, we used 
warp shuffle instructions for computing inner products. This freed up resources, 
potentially allowing more blocks to be scheduled at any given time.

We implemented these algorithms (algorithms 1 and 2 in the Supplementary 
Information) with the CUDA language for use with NVIDIA GPUs. The results 
reported in the main text reflect speedups with the CUDA implementation. In 
addition, we implemented these same algorithms on AMD GPUs with the HIP 
(Heterogenous Compute Interface for Portability) language, using the HIPIFY 
package (https://github.com/ROCm-Developer-Tools/HIPIFY). We found that 
execution times for algorithms 1 and 2 on the NVIDIA GeForce GTX 1080 Ti 
GPU and the AMD Radeon RX 580 GPU are comparable, and several orders 
of magnitude faster than their corresponding CPU implementations in Matlab 
(Supplementary Fig. 1).

Regularized evaluation. To address the second issue of redundant fibers, we 
developed a regularized pruning algorithm, extending that of LiFE10. We modified 
LiFE’s least-squares error minimization objective function to incorporate 
a regularization term for the weights, such that an L1-norm penalty was 
incorporated into the objective function: O(w) + λ(∥w∥1), w ≥ 0, where λ is 
the regularization constant. The gradient calculation in equation (3) now changes 
to g(w) = MT(Mw − b) + λ1 where 1 is a vector of all 1s. Similarly, we also 
implemented L2 regularization for the weights, by adding an L2-norm penalty 
to the objective function: O(w) + λ

(

∥w∥2
)

,w ≥ 0. The gradient calculation in 
equation (3) now changes to g(w) = MT(Mw − b) + λw. We tested several values 
of the penalty λ, for both the L1 and L2 regularization (Supplementary Fig. 3).

The estimated fiber weights vector w is encouraged to be sparse in LiFE 
through the non-negativity constraint. Additionally, in ReAl-LiFE, more sparsity is 
induced, through regularization, on the weights vector.

Although a preliminary version of the method has been published previously10, 
in the present study we advance the ReAl-LiFE algorithm by leveraging the sparsity 
of w to further speed up the GPU implementation of Mx. Specifically, whenever 
a weight vector element x is zero, the entire matrix multiplication computation 
for that step can be skipped, in each thread (step 5 in Supplementary algorithm 
1). This yielded a substantial improvement in speedups for the present ReAl-LiFE 
algorithm (>100–150× for the largest connectome sizes tested) over the version of 
the algorithm published previously10 (~50–100×).

Diffusion MRI acquisition and preprocessing. Dataset I. Structural and dMRI 
scans were acquired on a Siemens Skyra, 3T scanner with a 32-channel head coil, 
at the HealthCare Global Hospital, Bangalore. A T1-weighted MPRAGE structural 
scan was acquired before the diffusion scan (1-mm spatial resolution; echo time 
(TE) = 2.32 ms, repetition time (TR) = 2,300 ms, field of view (FoV) = 240 mm, 
flip angle = 8°, 256-voxel matrix size, parallel acquisition technique (PAT) with 
in-plane acceleration factor 2 (GRAPPA)). Diffusion scans were acquired along 
64 non-collinear directions with a b value of 1,000 s mm−2 (2-mm isotropic voxels, 
TE = 90 ms, TR = 8,900 ms, FoV = 256 mm, 128-voxel matrix size, 68 transversal 
slices with interleaved slice acquisition; parallel acquisition technique (PAT) with 
in-plane acceleration factor 2 (GRAPPA), phase encoding direction: A>>P). 
Two non-diffusion weighted images (b = 0 s mm−2) were acquired, one at the 
beginning and one at the end of each scan, respectively. Preprocessing of dMRI 
images followed previously published protocols3. Briefly, the T1 image was first 
manually aligned to the participant’s anterior commisure–posterior commisure 
(AC–PC) axis coordinates. Following this, scans were preprocessed to correct for 
head motion, eddy current-related distortions were corrected using a rigid-body 
alignment algorithm3, followed by alignment to the AC-PC aligned T1 image using 
the VISTA LAB (Stanford Vision and Imaging Science and Technology) diffusion 
MRI software package, as part of the Vistasoft suite 2017 (https://github.com/
vistalab/vistasoft/). This dataset is available on a Figshare repository19.

Dataset S. We acquired a publicly available, preprocessed dataset as used in the 
evaluation of the LiFE algorithm3. Data were acquired on a General Electric Discover 
750 (GE Healthcare), 3T scanner with a 32-channel head coil. Diffusion scans were 
acquired along 96 non-collinear directions with a b value of 2,000 s mm−2 (1.5-mm 
isotropic voxels, TE = 96.8 ms). Ten non-diffusion weighted images (b = 0 s mm−2) 
were acquired at the beginning of the scan. Preprocessing steps included correcting 
distortions arising out of B0 field inhomogeneities as well as participant head motion 
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correction using a rigid-body alignment method3. Further details regarding the 
acquisition and preprocessing steps are available in refs. 3 and 18.

Dataset H. We acquired a publicly available dataset from the HCP database9. 
Structural and dMRI scans were acquired on a customized Siemens Connectome 
Skyra, 3T scanner with a 32-channel head coil. The T1-weighted MPRAGE 
structural scan was acquired at 0.7-mm spatial resolution, TE = 2.14 ms, 
TR = 2,400 ms, FoV = 224 × 224 mm2, flip angle = 8°, PAT with in-plane acceleration 
factor 2. Diffusion scans were acquired along 270 non-collinear directions using 
multi-shell imaging with b values of 1,000, 2,000 and 3,000 s mm−2 (1.25 mm 
isotropic voxels, TE = 89.5 ms, TR = 5,520 ms, FoV = 210 × 180 mm2, 164 × 144 
matrix size, multiband-factor = 3, phase encoding direction: L>>R and R>>L). 
A total of 18 non-diffusion weighted images (b = 0 s mm−2) were acquired, 
interspersed throughout the scan. Preprocessing steps included B0 intensity 
normalization, susceptibility-induced distortion correction, eddy current and 
participant head motion correction, and gradient nonlinearity correction. Finally, 
the diffusion images were registered to the structural (T1-weighted) image. For all 
our analyses, we used HCP’s minimally preprocessed data9.

Dataset M. This dataset was provided as part of an international Tractography 
Challenge5. Briefly, the authors used one dataset from the HCP database9 to 
manually delineate 25 known fiber bundles and their corresponding termini regions 
(regions of interest, or ROIs) in the human brain5; these were termed ‘ground-
truth’ bundles. Next, using these ground-truth bundles, diffusion MRI data were 
simulated corresponding to a b value of 1,000 s mm−2 and 32 gradient directions 
using the Fiberfox software. A T1-weighted image was also simulated. The authors 
provide two datasets—one artifact-free dataset with no noise and one dataset 
with added artifacts such as head motion, susceptibility-induced distortion, eddy 
currents, spiking noise, ghosting and ringing artifacts, as well as Gaussian noise.

In addition to the dataset already provided by the authors, we simulated a 
second, independent dataset with the same parameters, using Fiberfox5 version 
2018.09.99. Briefly, we generated one diffusion MRI dataset with b = 1,000 s mm−2 
and 32 gradient directions (2-mm isotropic voxels) in the A>>P (anterior to 
posterior) phase encoding direction. For each dataset, we used a four-compartment 
model to simulate the (1) inter-axonal, (2) intra-axonal, (3) gray matter (GM) 
and (4) cerebrospinal fluid (CSF) tissue response profiles. Parameter values 
corresponding to each compartment model are listed in Supplementary Table 1. All 
other parameters were set to their respective, default values. We also simulated an 
additional non-diffusion weighted image (b = 0 s mm−2) with the phase encoding 
direction reversed (P>>A). Individual masks used for each compartment as well 
as the anatomical T1 image were the same as those provided in the original dataset. 
Preprocessing the simulated data involved denoising with MRtrix320 followed by 
motion correction and susceptibility-induced distortion correction20. Finally, the 
diffusion MRI scan was aligned to the T1 image.

HCP datasets for studying structure–behavior relationships. For predicting 
behavioral scores using structural connectivity, we used minimally preprocessed 
diffusion MRI datasets from the HCP database9. We utilized data from n = 200 
participants with an equal number of males and females (n = 100 each) for 
whom both dMRI data as well as behavior data was available (Supplementary 
Table 2; participant IDs). These participants included 60 participants who were 
matched for age, gender and handedness from a previous study21. The remaining 
140 participants were drawn in chronological order from the HCP database to 
ensure gender and age parity (n = 100 females: mean = 29.2 years, s.d. = 3.7 years; 
n = 100 males: mean = 28.5 years, s.d. = 3.9 years). We confirmed that there was 
no significant difference between the average age of male and female participants 
(P = 0.223, two-sample t-test).

Tractography and generating whole-brain connectomes from dMRI data. 
Datasets I, S, H and M. For each of these datasets, we used a standard tractography 
pipeline available with MRtrix320. This pipeline comprises the following steps. We 
first performed a five-tissue-type segmentation on the T1 image to separate out 
the (1) cortical GM, (2) subcortical GM, (3) white matter, (4) CSF and (5) other 
pathological tissue. Next, a constrained spherical deconvolution (CSD) algorithm 
was employed to estimate the fiber orientation distribution (FOD) in each voxel20, 
with the maximum harmonic order at 8 (default value). Finally, anatomically 
constrained probabilistic tractography was performed using dynamic seeding7. 
The maximum fiber length cutoff and FOD amplitude threshold for datasets I, S 
and M were set to default values (200 mm and 0.1, respectively). For dataset H, the 
maximum length cutoff and FOD amplitude threshold were set to 250 mm and 
0.06, respectively. Following this, we constructed whole-brain connectomes with 
specific fiber counts, as indicated in the respective sections in the main text. For 
the behavioral score predictions with 200 participants’ dMRI data from the HCP 
database, and for the test–retest reliability analyses with five participants’ data 
from the HCP Retest database, dMRI preprocessing and connectome generation 
followed the same protocol as indicated for dataset H.

Ensemble tractography (dataset S(ET)). Tractography algorithms include multiple 
parameter settings with many degrees of freedom. Ensemble tractography seeks to 
overcome biases associated with specific parameter choices by estimating several 

connectomes, one for each choice of parameter value, and subsequently combining 
them into an ‘ensemble’ connectome10. For ensemble tractography, we used 
dataset S to generate five whole-brain connectomes, with the maximum radius of 
curvature of fibers set to one of five parameter values (0.25 mm, 0.5 mm, 1 mm, 
2 mm and 4 mm). Each connectome was generated by seeding fibers at the GM–
white matter interface. Next, we combined these individual connectomes to form 
the ensemble connectome. We generated two connectomes: a smaller, 0.8-million-
fiber connectome for streamline pruning with LiFE and a larger 1.6-million-fiber 
connectome for pruning with ReAl-LiFE (for details see the section Estimating the 
regularization parameter λ).

Quantifying ReAl-LiFE performance as speedups and fits to data. Quantifying 
speedups. For each of the datasets I, S and H and for every connectome size (Fig. 1c),  
we first pruned streamlines with the original LiFE optimization algorithm3 for 
500 iterations. Next, we pruned streamlines with the same connectome using the 
GPU-accelerated version of LiFE (with no regularization), again for 500 iterations. 
Speedup of the GPU-accelerated pruning as compared to CPU pruning was 
computed as

Speedup =
t(LiFECPU)

t(LiFEGPU) + t(OverheadGPU)

where t(LiFECPU) is the time taken for 500 iterations of the LiFE algorithm on the 
CPU, t(LiFEGPU) is the time taken for 500 iterations of the GPU-accelerated LiFE 
and t(OverheadGPU) is the GPU overhead time corresponding to the time taken for 
data transfer between the CPU and GPU memory and other preprocessing steps, 
such as sorting along the voxels dimension.

To calculate the speedup scaling factor, we fit a function of the form 
y = a + b log(x) to the speedups, where y is the speedup, x is the parameter (Nv, 
Nθ, Nf), a is the intercept and b is the slope. We quantified the scaling factor (q) as 
change in speedup from the lowest to the highest value for each of the parameters 
Nv, Nθ and Nf.

We compared the speedups of GPU-accelerated LiFE over a second state-of-
the-art algorithm, SIFT7. We tested for speedups for each of the three datasets—I, 
H and S—on a connectome of one million fibers (Nf = 106), using the respective 
default values for parameters Nv and Nθ. To ensure a fair comparison, we first 
pruned streamlines from each unpruned connectome with the GPU-accelerated 
LiFE, systematically running the optimization algorithm from 50 to 500 iterations 
(steps of 50 iterations). Next, we pruned the same (respective) unpruned 
connectome with SIFT, albeit to the exact same size as the corresponding LiFE-
pruned connectome. In other words, the termination criterion for SIFT was 
specified to match the number of fibers in the LiFE-pruned connectome. We then 
defined the convergence time tc as the iteration at which the change in the objective 
function O(t) over the last ten iterations was less than 0.1% of its initial value 
O(tc + 10) − O(tc) < ∆ · O(t0), where O(t0) is the initial value of the objective 
function and Δ = 0.001. For each dataset, we then computed the speedup of GPU-
accelerated LiFE over SIFT at convergence as the average of the speedups across 
the nearest two multiples of 50 iterations. Speedups were compared based on total 
execution times of each algorithm from start to finish, including all overheads 
associated with loading data into memory.

We also compared the speedups of GPU-accelerated LiFE over yet another 
a state-of-the-art algorithm, COMMIT2, which incorporates anatomically 
informed priors into its objective8. As before, for each of the three datasets (I, H 
and S), we computed speedups of a connectome of one million fibers (Nf = 106), 
with default parameter values for Nv and Nθ. To enable a fair comparison, in 
this case, we first pruned the connectome with COMMIT2 until convergence, 
with all default parameters. Next, we pruned the same (respective) unpruned 
connectome with GPU-accelerated LiFE to within 1% of the initial size of the 
corresponding COMMIT2-pruned connectome. In this case, we pruned the 
ReAl-LiFE streamlines to the size of the COMMIT2-pruned connectome, because 
the converse approach—pruning the COMMIT2 streamlines to match the ReAl-
LiFE-pruned connectome, at convergence—required over 500 iterations of the 
COMMIT2 algorithm. As with SIFT, speedups were compared based on total 
execution times of each algorithm from start to finish, including all overheads 
associated with loading data into memory.

Finally, we tested a dockerized version of the LiFE algorithm (https://doi.
org/10.25663/bl.app.104) to optimize a one-million fiber connectome for each of 
the three datasets (500 iterations). We found that the run times were comparable 
to those of CPU-LiFE, as reported in Supplementary Fig. 1 (dataset H: CPU-LiFE 
17.9 h, dockerized LiFE, 23.1 h; dataset I: CPU-LiFE 3.0 h, dockerized LiFE 3.3 h; 
dataset S: CPU-LiFE 8.2 h, dockerized LiFE 8.4 h).

Quantifying duplication of fiber weights. We tested ReAl-LiFE’s ability to prune 
away duplicate (redundant) fibers and compared its performance with the LiFE and 
SIFT2 algorithms6. For this we used two approaches. In the first approach, we used 
dataset M to generate a whole-brain connectome comprising 0.5 million fibers. 
Next, we used this connectome to simulate a noise-free diffusion signal5. We then 
created two, randomly ‘jittered’, near-identical versions of this connectome (C1 and 
C2), by randomly perturbing the spatial coordinates of 10% of the nodes in each 
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fiber, randomly by ±0.01%. We combined these perturbed connectomes to create a 
single connectome comprising one million fibers. Finally, we pruned streamlines in 
the combined connectome with LiFE and ReAl-LiFE, using the noise-free diffusion 
dataset simulated in the previous step. For pruning with SIFT2, we followed a 
slightly different approach. SIFT2, unlike LiFE or ReAl-LiFE, does not prune out 
(eliminate) any fiber. To facilitate a fair comparison with LiFE and ReAl-LiFE, 
we first pruned the combined connectome with SIFT7 followed by pruning with 
SIFT2 to obtain fiber weights of the unpruned fibers retained by SIFT. We sought 
to perturb the fibers across the two connectomes before pooling them, rather 
than combining two connectomes with identical, duplicated fibers; in the latter 
case, each algorithm yielded identical weights across each pair of duplicate fibers 
because none of the algorithms could break ties across identical fibers.

Following pruning, we computed a ‘uniqueness’ index quantifying the 
normalized difference in weights between copies of corresponding fibers as

ζuniq =
|w1 − w2|

(w1 + w2)

A higher value of ζuniq indicates a higher tendency to prune out redundant 
fibers and to retain only one copy of the two near-identical fibers.

In the second approach, we created a ‘trimmed’ version of the whole-brain 
connectome from dataset M (same as estimated in the previous approach) by 
trimming out 5% of the nodes from each terminus of each fiber. We then combined 
the original whole-brain connectome with this jittered copy, followed by pruning 
with LiFE, ReAl-LiFE and SIFT2, as before.

Estimating the regularization parameter λ. We sought to compare the performance 
of LiFE with ReAl-LiFE in terms of model fit. Because the L1-regularization 
penalty in ReAl-LiFE yields systematically sparser connectomes as compared to 
LiFE, to enable fair comparisons of the model fit we matched the summed weights 
(L1-norm) of the fibers, following pruning with each approach (Supplementary 
Fig. 3). To permit this, we generated a larger initial connectome, with 2× the 
number of fibers for pruning with ReAl-LiFE, as compared to LiFE, and sampled 
λ, in the range of [10−8, 1] in logarithmically spaced steps (Supplementary Fig. 3). 
For datasets I and M, we compared the cross-validated root-mean-square error 
(r.m.s.e.) by generating a connectome with one million fibers, followed by pruning 
with LiFE (unregularized), against the accuracy of a connectome generated with 
two million fibers, followed by pruning with ReAl-LiFE. For dataset S(ET), we 
generated two ensemble connectomes: one with 0.8 million fibers (for pruning 
with LiFE) and another with 1.6 million fibers (for pruning with ReAl-LiFE). 
These ensemble connectomes were assembled from five smaller whole-brain 
connectomes generated with 160,000 and 320,000 fibers respectively. We then 
chose the λ that matched the L1-norm of weights across both pruning approaches. 
For datasets I, M and S(ET), λ values of 0.006, 0.01 and 0.01, respectively, 
provided this match (Supplementary Fig. 3); unless otherwise specified, the same 
configurations and regularization parameter values were used for all subsequent 
analyses (for example, Fig. 2 and Supplementary Figs. 2–4).

Quantifying the model fit. For each dataset (datasets I, S(ET) and M), we 
evaluated the performance of the pruning algorithm in two ways—by testing for 
overfitting and consistency. To test for overfitting, we first generated a whole-brain 
connectome (C1) with one diffusion dataset (D1; Supplementary Fig. 3). Next, we 
pruned C1 with LiFE and ReAl-LiFE using dataset D1 as ground truth to obtain 
a predicted diffusion signal (P1; Supplementary Fig. 3). Finally, we computed the 
voxel-wise, cross-validated r.m.s.e. between the predicted diffusion signal P1 and a 
second, independently acquired diffusion dataset (D2; Supplementary Fig. 3) from 
the same participant. For dataset M, D2 was independently simulated from the 
same underlying ground-truth connectome (see section Diffusion MRI acquisition 
and preprocessing). We then computed the distribution of voxel-wise r.m.s.e.s, 
following pruning with LiFE and ReAl-LiFE, and also computed their pairwise 
differences (ReAl-LiFE – LiFE; Supplementary Fig. 3).

To test for consistency (Supplementary Fig. 4), we generated two whole-brain 
connectomes (C1 and C2) from two independently acquired diffusion datasets 
(D1 and D2, respectively), both from the same participant (Supplementary Fig. 
4). Next, we pruned C1 (with LiFE or ReAl-LiFE) with dataset D2 as ground 
truth and, similarly, pruned C2 with dataset D1 as ground truth (Supplementary 
Fig. 4). We then chose the fibers assigned the top 50th percentile of the weights, 
to predict the diffusion signals P1 and P2 (Supplementary Fig. 4). Finally, we 
computed the voxel-wise, r.m.s.e. between the predicted diffusion signals P1 and 
P2 (Supplementary Fig. 4). As before, we computed the distribution of voxel-wise 
r.m.s.e.s, following pruning with LiFE and ReAl-LiFE, and also computed their 
pairwise differences (ReAl-LiFE – LiFE; Supplementary Fig. 4).

Test–retest reliability analysis, HCP retest data. Estimating structural connectivity 
features. For each participant in the HCP retest dataset (n = 5; blue indices 
in Supplementary Table 2), we estimated two whole-brain connectomes, one 
comprising one million fibers and a second two million fibers (see ‘Tractography 
and generating whole-brain connectomes from dMRI data’). This was done both 
for the original dataset (dataset 1) and the retest dataset (dataset 2). For each visit’s 

data, we employed FreeSurfer’s anatomical parcellation based on the Desikan–
Killiany atlas comprising 34 regions on each hemisphere to construct two 34 × 34 
structural connectivity matrices (one per hemisphere)21. We computed five kinds 
of structural connectivity matrix: (1) unpruned, (2) ReAl-LiFE pruned (λ = 0.01, 
two-million-fiber connectome), (3) LiFE pruned (one-million-fiber connectome), 
(4) SIFT2 pruned (one-million-fiber connectome) and (5) COMMIT2 pruned 
(one-million-fiber connectome). For each connectivity matrix, the (i, j)th entry 
indicates the number of fibers, or the sum of pruned fiber weights (after pruning 
with either ReAl-LiFE, LiFE, SIFT2 or COMMIT2), across all fibers connecting 
regions i and j, respectively. Because diffusion MRI does not provide information 
regarding the direction of connectivity, each matrix was symmetric about the 
diagonal. For these analyses we considered only connections between pairs of 
intra-hemispheric regions and ignored diagonal elements of the connectivity 
matrix, that is, connections that originate and terminate within the same ROI. As 
a result, the total number of connectivity features across both hemispheres was 
1,122 (34C2 connections per hemisphere × 2 hemispheres). To limit noisy estimates 
of test–retest reliability metrics, we chose only connections with the top 50th 
percentile of fibers (561 connections), for the test–retest reliability analysis.

Within-participant variability (Vw). To compute within-participant variability, for 
each participant, and for each connection in the connectivity matrix, we computed 
a normalized difference index between the connectivity metrics of the first dataset 
and the second dataset, that is

Vi
wk

=

∣

∣ci1 − ci2
∣

∣

k
(ci1 + ci2)k

where k denotes the participant, i denotes the connection, i = 1, 2, ..., 561, and c1 
and c2 denote the connectivity strengths based on datasets 1 and 2 (two visits), 
respectively. We then computed average within-participant variability for each 
connection as

Vi
w =

⟨

Vi
wk

⟩

k

where the angle brackets ⟨·⟩k denote the average across the participants.

Between-participant variability (Vb). To compute between-participant variability, 
for each connection in the connectivity matrix, we first computed a normalized 
difference index between the connectivity metrics of every participant’s dataset m 
and every other participant’s dataset l (m ≠ l), that is

Vi
blm =

∣

∣ci1l − ci2m
∣

∣

lm
(ci1l + ci2m)lm

where i denotes the connection, i = 1, 2, ..., 561, and c1 and c2 denote the 
connectivity strengths based on datasets 1 and 2. We then computed average 
between-participant variability as

Vi
b =

⟨

Vi
blm

⟩

l, m
, l ̸= m

where the angle brackets ⟨·⟩l, m denote the average across each pair of participants.
Finally, for each connection i, we computed a difference in variability between 

pruned and unpruned connectivity as

ΔVw = Vpruned
w − Vunpruned

w andΔVb = Vpruned
b − Vunpruned

b

Reliability. Finally, for each connection i, we computed a reliability metric ϕ as

ϕi =
Vi
b

Vi
b + Vi

w

That is, the reliability of connection i was taken as the ratio of the between-
participant variability to the total variability, including between- and within-
participant components, following ref. 12. Using this reliability metric computed 
using the HCP retest data, we identified connections with the highest and lowest 
reliability metrics.

Analysis of structure–behavior relationships. We tested whether structural 
connectivity could explain inter-individual variations in various cognitive scores, 
with data from n = 200 participants from the HCP database. Specifically, we 
performed SVR-based prediction of cognitive scores with structural connectivity 
features estimated either from the unpruned connectome (number of fibers) or by 
pruning streamlines with ReAl-LiFE or SIFT (connection weights).

Behavioral scores. For each of the n = 200 participants drawn from the HCP 
database, we predicted 60 behavioral scores (Supplementary Data 1) from dMRI 
connectivity9. These 60 scores were chosen based on selection criteria employed 
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in previous studies that sought to predict these scores from functional MRI 
connectivity13. In addition to selecting the 58 scores employed in these studies, 
we included the in-scanner score related to performance accuracy in the shape-
matching subtask of the emotion task (Emotion_Task_Shape_Acc, Supplementary 
Data 1) and replaced the overall accuracy in the relational task with accuracies 
in each of its subtasks (object matching/Relational_Task_Match_Acc and object 
relation/Relational_Task_Rel_Acc). Both state and trait scores were included, and 
age-adjusted scores were used, wherever available. Importantly, behavioral score 
selection was agnostic to the results of our prediction analyses. Broadly, these 
behavioral scores fell into three major categories: cognition (n = 13), emotion 
(n = 23) or personality (n = 24)22. These scores also included nine behavioral 
performance scores recorded during the task-functional MRI sessions. These 
included accuracy scores in all subtasks of each task, except for the working-
memory task, for which we only chose the overall performance accuracy across all 
subtasks. Further details are provided in Supplementary Data 1.

Estimating structural connectivity features. For each participant in the HCP  
dataset (n = 200), we estimated a whole-brain connectome comprising one  
million fibers (see ‘Tractography and generating whole-brain connectomes from 
dMRI data’). As with the test–retest reliability analysis, we used the FreeSurfer 
anatomical parcellation based on the Desikan–Killiany atlas comprising 34 regions 
on each hemisphere to construct a 68 × 68 structural connectivity matrix21. We 
computed two kinds of structural connectivity matrix—(1) unpruned and (2) ReAl-
LiFE-pruned (λ = 0.01)—where the (i, j)th entry in each matrix indicates the number 
of fibers, or the sum of ReAl-LiFE-pruned fiber weights, for fibers connecting 
regions i and j, respectively. We also carried out predictions with a combination of 
features (1) and (2) (Fig. 2g). Because diffusion MRI does not provide information 
regarding the direction of connectivity, each matrix was symmetric about the 
diagonal. In addition, for these analyses we considered only connections between 
pairs of intra-hemispheric regions and also set all diagonal elements of the 
connectivity matrix (connections that originate and terminate within the same 
ROI) to zero. As a result, the total number of connectivity features across both 
hemispheres was 1,122 (34C2 connections per hemisphere × 2 hemispheres).

Prediction model. For predicting behavioral scores using structural connectivity as 
features, we used an SVM-based regression model with a linear kernel (‘fitrsvm’ 
function in MATLAB), along with RFE14. Behavioral scores were standardized by 
z-scoring, prior to model fitting. The 1,122 connection features were organized 
into a feature matrix having dimensions 200 × 1,122, where each row corresponds 
to a participant and each column corresponds to one of the 1,122 connections 
(features). We employed RFE to identify features with the largest weight 
magnitudes in the linear prediction model that provided the highest generalized 
cross-validation accuracy. We describe the algorithm briefly below (a more detailed 
description is provided in ref. 14).

In the first stage of the RFE, the data were divided into N folds. During each 
iteration i, N − 1 of these were used for training and the Nth fold was reserved for 
testing. In the second stage, for each training set (N − 1 folds), the training data were 
further divided into K folds. Subsequently, each of these K folds was left out exactly 
once and the SVR model was trained on the K − 1 folds. In each of the K iterations, 
the estimated regression coefficients were used to predict the behavioral scores of the 
left-out fold (Nth fold) from the first stage, and a correlation between the predicted 
scores and the observed scores of the test fold was computed. At the end of the 
second stage (K iterations), the β weights (regression coefficients) and correlation 
values were averaged across the K iterations to obtain robust estimates. Next, based 
on these average β weights, the bottom 10% of the features were discarded. This 
marks the end of the second stage. The second stage of the RFE was repeated until 
all features were eliminated. Finally, we chose the set of features, say Fi, that yielded 
the maximum correlation between the observed and predicted scores.

The above procedure was repeated N times, leaving one fold for testing each 
time. At the end of the N iterations, we averaged (across the N folds), the final 
set of estimated β weights (<Fi>i). We repeated the entire RFE procedure (first 
and second stage) for 100 runs, to robustly estimate the top features and predict 
behavioral scores. For these analyses, we chose N = 10 and K = 5.

Comparing predictions based on the number of fibers and ReAl-LiFE connection 
weights. We compared the predictions based on ReAl-LiFE weights with those 
based on the number of fibers. We computed the number of significant predictions 
(based on the correlation between the observed and predicted scores) for each 
feature set (ReAl-LiFE weights and number of fibers) for a range of different 
levels of significance α, ranging from α = 0.00001 to α = 0.05. For each value of 
α we computed the number of scores for which the P value for the correlation 
between the observed and predicted score was less than α. We also computed 
average correlation coefficient values across all significant scores at each α level. 
The number of significant scores and the average correlation coefficients, at each 
α level, for predictions based on each set of features, and for the different score 
categories, are plotted in Fig. 2.

Univariate correlations between connectivity and behavioral scores. To understand 
the anatomical relevance of the ReAl-LiFE connections predicting behavioral 

scores, we chose the five best predicted scores in the ‘cognition’ category. For each 
score, we identified the top connections that contributed most to the prediction, 
based on the β weight assigned to the connection by the SVR-RFE prediction 
model. For each such connection, we then computed three additional connectivity 
metrics: (1) the number of fibers post pruning with ReAl-LiFE, (2) streamline 
volume and (3) streamline length (voxels intersected). For each connection, we 
then computed univariate correlations between each of these connectivity metrics 
and the corresponding behavioral score. Univariate correlations (r and P values) 
are reported based on robust correlations. This procedure allowed us to identify 
connectivity metrics, strongly predictive of behavioral scores, that were most 
strongly correlated with the respective behavioral score.

Control analyses. We performed three control analyses for behavioral score 
predictions, with ReAl-LiFE connection weights as features.

Predicting five minimally correlated scores. To account for correlations among the 60 
behavioral scores, we selected a subset of five minimally correlated scores, following 
the same procedure as in ref. 13. We recapitulate their approach as follows. First, a 
pair of scores with an absolute correlation of less than 0.1 was chosen at random. 
Subsequently, three behavioral scores were selected, one at a time, so that each new 
score correlated minimally with the existing set of scores (|r| < 0.01). This procedure 
was repeated 100 times, resulting in 100 such sets of five minimally correlated scores. 
Finally, the subset of five scores with the least maximum absolute mutual correlation 
was selected. These scores corresponded to personality extroversion (HCP field: 
NEOFAC_E), emotion recognition (ER40HAP and ER40NOE), picture vocabulary 
(PicVocab) and processing speed (ProcSpeed); these five scores are not identical 
to those in ref. 13, possibly because, unlike their study, we employed age-adjusted 
scores, wherever these were available. In our analyses, these scores exhibited a non-
significant maximum absolute correlation of r = 0.059 (P = 0.403).

Controling for head motion confounds. To account for confounding of head motion 
on behavioral score predictions, we repeated predictions with the SVR-RFE model 
after regressing out the effects of motion parameters from the behavioral scores, 
again following a procedure closely similar to that of ref. 13. From each participant’s 
dMRI scan, six head-motion-related parameters were extracted: three parameters 
corresponding to rotations (about the x, y and z axes, respectively) and three 
parameters corresponding to translations (along the x, y and z axes, respectively). We 
fit a multiple linear regression model with the motion parameters as the independent 
variables to fit each behavioral score. Subsequently, the residual corresponding to 
each prediction was fit with the SVR-RFE model with ReAl-LiFE weights as features. 
If the residual could not be fit well, this would indicate that the inter-participant 
behavioral score variations could not be explained by structural connection features 
over and above what could be explained with the motion parameters alone.

Permutation test for RFE predictions. Finally, we corrected for a potential bias 
of the RFE algorithm toward positive prediction accuracies (r values). Because, 
at each iteration, the RFE algorithm selects features with the highest numerical 
value of the generalized cross-validation accuracy, average prediction accuracies 
across iterations could be positively biased. To control for this bias, we performed 
a random permutation test in which we shuffled participant labels 100 times 
across each behavioral score and structural connectivity feature and generated a 
null distribution of prediction accuracies (r values). Because generating the null 
distribution for each behavioral score is computationally expensive, each r value 
in the null distribution (100 permutations) was computed by averaging across, 
at most, ten iterations of the RFE algorithm. The P value was computed as the 
proportion of observations in the null distribution that were greater than the actual 
prediction accuracy (actual r value; Supplementary Fig. 5).

Statistical tests. Unless otherwise stated, all pairwise statistical comparisons were 
performed with the nonparametric Wilcoxon signed-rank test (for example, Fig. 1 
and Supplementary Fig. 2). Voxel-wise r.m.s.e.s post pruning with LiFE and ReAl-
LiFE (Supplementary Figs. 3 and 4) were compared using a Kolmogorov–Smirnov 
test. All correlations were computed based on ‘robust’ correlations: we report 
values of the ‘bend correlation’ (Fig. 2b–f,h and Supplementary Fig. 5), an approach 
that accounts for univariate outliers in the data23. Unless otherwise specified, 
multiple comparisons corrections were carried out with the Benjamini–Hochberg 
approach, at a significance level of P = 0.05. To compare the execution times of the 
GPU implementation of LiFE with those of the CPU implementation of LiFE as a 
function of the number of fibers Nf (Supplementary Fig. 1), we employed a two-
way analysis of variance with the implementation (CPU/GPU) and the number of 
fibers as factors. Effect sizes were quantified as Cohen’s d. Statistical significance 
values are reported as ***P < 0.001, **P < 0.01 and *P < 0.05.

Hardware and software specifications. All analyses described in this study were 
performed on a desktop computer with the following hardware and software 
specifications:
•	 CPU: eight cores; Intel(R) Xeon(R) CPU E5-2623 v3 @ 3.00 GHz
•	 GPU: one NVIDIA GeForce GTX 1080 Ti (or) AMD Radeon RX 580
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•	 RAM: DDR4, 4 × 16 GB 1,866 MHz (total 64 GB)
•	 Hard disk space: 447 GB (64 GB configured as swap)
•	 Operating system: Ubuntu 16.04
•	 Software: MATLAB R2017b (64 bit); CUDA toolkit 9.0.

We performed all our benchmarking experiments with only one CPU core 
and one GPU. GPU code binaries were compiled using the ‘nvcc’ compiler with 
the ‘-ptx’ flag. Because the original LiFE package was implemented in Matlab, 
integrating the CUDA or HIP implementation with the ReAl-LiFE package 
requires Matlab support for GPU computation. Matlab support is available 
for NVIDIA GPUs, but is currently unavailable for AMD GPUs (https://www.
mathworks.com/help/parallel-computing/gpu-support-by-release.html). The end-
to-end version of the code, integrated with ReAl-LiFE, is currently available for 
NVIDIA GPUs (Code availability section), and will be released for AMD GPUs as 
soon as Matlab support for the latter hardware becomes available.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
Dataset I has been deposited into a figshare repository19. Dataset S is a part of the 
original LiFE algorithm and can be accessed from the associated repository18. 
Dataset H and all HCP data can be accessed from the HCP database9. Dataset M is 
available on the Zenodo repository5. Source data are provided with this paper.

Code availability
The custom code for reproducing all figures is available on figshare19. The current 
version of the ReAl-LiFE algorithm is available on Code Ocean24. In addition, to 
streamline pruning, the code pipeline integrates with a standard atlas (HCP-MMP 
atlas9) to label brain regions connecting each pair of streamlines. The pipeline also 
integrates with the TractSeg tool25 for automated tract labeling.
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