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Single-cell mRNA-seq methods have scaled to allow routine 
transcriptome-scale profiling of thousands of cells per experi-
mental run. Although single cell mRNA-seq approaches 

provide insights into many different biological and biomedical 
problems, high sequencing costs prohibit the broad application of 
single-cell mRNA-seq in many exploratory assays such as small-
molecule and genetic screens, and in cost-sensitive clinical assays. 
The sequencing bottleneck has led to the development of targeted 
mRNA-seq strategies that reduce sequencing costs by up to 90% 
by focusing sequencing resources on highly informative genes for 
a given biological question or an analysis1–5. Commercial gene- 
targeting kits, for example, reduce sequencing costs through selec-
tive amplification of specific transcripts using ~1,000 gene-targeting 
primers.

Cells modulate gene expression through the regulation of 
transcriptional programs or modules that contain multiple genes 
regulated by common sets of transcription factors1. Genes within 
transcriptional modules exhibit correlated gene expression due to 
co-regulation. Correlations in gene expression can enable the tran-
scriptional state of a cell to be reconstructed through the targeted 
mRNA profiling of a small number of highly informative genes1,3. 
However, such targeted sequencing approaches require computa-
tional methods to identify highly informative genes for specific bio-
logical questions, systems or conditions. A range of computational 
approaches, including differential gene expression analysis and 
principal components analysis (PCA), can be applied to identify 
highly informative genes1. Yet, current methods for defining mini-
mal gene sets are computationally expensive to apply to large single-
cell mRNA-seq datasets and often require heuristic user-defined 
thresholds for gene selection6,7. As an example, computational 
approaches based on matrix factorization (PCA, non-negative 
matrix factorization) are typically applied to complete datasets and 
therefore are computationally intensive when datasets scale into 
the millions of cells8. Furthermore, gene set selection after matrix 
factorization requires heuristic strategies for thresholding coef-
ficients in gene vectors extracted by PCA or non-negative matrix  

factorization, and then querying whether the selected genes retain 
core biological information.

Inspired by active learning9 approaches, here we develop a com-
putational method that selects minimal gene sets capable of reliably 
identifying cell types and transcriptional states through an active 
support vector machine classification task (ActiveSVM)10,11. The 
ActiveSVM algorithm constructs a minimal gene set through an 
iterative cell-state classification task. At each iteration, ActiveSVM 
applies the current gene set to classify cells into classes that are 
provided by unsupervised clustering of cell states, or by supplied 
experimental labels. The procedure analyzes cells that are mis-
classified with the current gene set and then identifies maximally 
informative genes that are added to the growing gene set to improve 
classification. Traditional active learning algorithms query an oracle 
for training examples that meet a criteria12. The ActiveSVM proce-
dure actively queries the output of an SVM classifier for cells that 
classify poorly, and then performs a detailed analysis of the mis-
classified cells to select maximally informative genes. By selecting 
minimal gene sets through a well-defined classification task, we 
ensure that the gene sets discovered by ActiveSVM retain biological 
information.

The central contribution of ActiveSVM is that the method can 
scale to large single-cell datasets with more than one million cells as 
the procedure focuses computational resources on poorly classified 
cells. As the algorithm only analyzes the full transcriptome of cells 
that classify poorly with the current gene set, the method can be 
applied to discover small sets of genes that can distinguish between 
cell types at high accuracy even in datasets with over a million pro-
filed cells. We demonstrate that ActiveSVM can analyze a mouse 
brain dataset with 1.3 million cells in only hours of computational 
time. In addition to scaling, the ActiveSVM classification paradigm 
generalizes to a range of single-cell data analysis tasks, including 
the identification of disease markers, genes that respond to Cas9 
perturbation and region-specific genes in spatial transcriptomics.

To demonstrate the performance of ActiveSVM, we apply the 
method to a series of single-cell genomics datasets and analysis 
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tasks. We identify minimal gene sets for cell-state classification 
in human peripheral blood mononuclear cells (PBMCs)13, the 
megacell mouse brain dataset14, and the Tabula Muris mouse tis-
sue survey15. We identify disease markers that distinguish healthy 
and multiple myeloma patient PBMCs16. To highlight the general-
ity of the method, we apply ActiveSVM to identify genes impacted 
by Cas9-based gene-knock down in perturb-seq17 and demonstrate 
that ActiveSVM can identify gene sets that mark specific spatial 
locations of a tissue through analysis of spatial transcriptomics 
data18. Gene sets constructed by ActiveSVM are both small and 
highly efficient, for example, classifying human immune cell types 
within PMBCs using as few as 15 genes and classifying 55 cell-
states in Tabula Muris with <150 genes. The gene sets we discover 
include both classical markers and genes not previously established 
as canonical cell-state markers. Conceptually, ActiveSVM demon-
strates that active sampling strategies can be applied to enable the 
scaling of algorithms to the large datasets generated single-cell 
genomics.

Results
Overview of ActiveSVM feature selection. We developed a com-
putational that applies a support vector machine classifier to iden-
tify compact gene sets that distinguish cell-states in single-cell data 
(Fig. 1 and Supplementary Algorithm 1). The ActiveSVM proce-
dure starts with an empty gene set, an empty cell set, and a list of 
candidate genes and cells. The algorithm iteratively selects genes 
and classifies cells using identified genes by training a SVM model 
to classify the cell types according to labels. The algorithm identi-
fies cells in the dataset that classify poorly given the current gene 
set, and uses misclassified cells to select additional genes to improve 
classification accuracy on the entire dataset. Gene selection specifi-
cally identifies genes that will maximally rotate the SVM margin 
(see Methods).

ActiveSVM constructs minimal gene sets through iterative 
rounds of classification and gene selection based on a set of cell 
labels. The computational efficiency of the algorithm emerges 
because ActiveSVM only performs full transcriptome analysis on 
cells that classify poorly given the current gene set. The cell-classi-
fication and gene selection strategies are discussed formally in the 
Methods. ActiveSVM depends on cell labels that can be derived 
from unsupervised analysis, experimental metadata or biological 
knowledge of cell-type marker genes. We supply min-complexity 
and min-cell versions of ActiveSVM algorithm. The min-complexity  
algorithm samples a fixed number of misclassified cells and directly 

uses them as the cell set to select the next gene. The min-cell algo-
rithm reuses the misclassified cells selected in previous iterations to 
reduce the total number of required cells.

Identifying minimal gene sets in single-cell mRNA-seq data with 
ActiveSVM. We tested our ActiveSVM feature selection method 
on four single-cell mRNA-seq datasets: a dataset of PBMCs13, the 
megacell 1.3-million-cell mouse brain dataset14, the Tabula Muris 
mouse tissue survey dataset15 and a multiple myeloma human dis-
ease dataset16. We later demonstrated generalization of the strategy 
to additional types of single-cell data analysis, including a perturb-
seq dataset where genes impacted by Cas9-based genetic perturba-
tion17 and a spatial transcriptomics dataset by seqFish+ (ref. 18).

For each analysis, we show the classification accuracy of the 
test set along with the number of genes we select. We also com-
pare the classification performance to several widely used feature 
selection methods, including conventional SVM and strategies that 
apply correlation coefficients, mutual information19, a χ2 test20, fea-
ture importance by decision tree21 and uniform random sampling 
of genes (the null strategy), showing that ActiveSVM obtains the 
highest accuracy. Additionally, ActiveSVM considerably reduces 
time and memory consumption, especially for large datasets such as 
the megacell 1.3-million-cell mouse brain dataset (Supplementary 
Table 1). All of the comparison methods select genes one by one 
and select a new gene with the largest score in terms of the cor-
responding evaluation functions while using the same number of 
cells as our method. However, all methods randomly sample cells 
at each iteration without an active learning approach. In each 
experiment, the dataset was first preprocessed and normalized 
using standard single-cell genomics strategies (see Methods). The 
details about algorithm parameters optimization are provided in the 
Supplementary Information, and the parameters for each dataset 
are given in Supplementary Tables 2–4. The entire dataset was then 
randomly split into training and test sets with the sizes of 80% and 
20%, respectively.

Active feature selection on human PBMC data. To test the per-
formance of ActiveSVM, we applied the method to extract clas-
sifying gene subsets for human PBMCs. We analyzed a single-cell 
transcriptional profiling dataset for 10,194 cells13 with 6,915 genes. 
We used Louvain clustering22 to identify T-cells, activated T and NK 
cells, B-cells and monocytes.

Both the min-cell and min complexity strategies identified  
gene sets that classify the five major cell-types at greater than 85% 
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Fig. 1 | Description of ActiveSVM feature selection. At the nth step, an n-D SVM using only already-selected genes is trained to select a certain number 
of misclassified cells, which is the cell selection step. In the gene selection step, the least classifiable cells are taken as the training set. Based on this 
training set, N – n (n + 1)-D SVMs are trained, where n dimensions are the genes already selected and the last dimension is one of the previously unselected 
candidate genes. We would then obtain N – n weights w′ corresponding to N – n unselected genes as well as N – n margin rotation angles θ between every 
w′ and the original weight w of the n-D SVM. The gene with the maximum rotation of margin is selected for the next round.
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accuracy with as few as 15 total genes (Fig. 2a–c). In addition to 
enabling cell-type classification of the dataset, the ActiveSVM gene 
sets provide a low-dimensional space in which to analyze the data. 
A key benefit of the active learning strategy is that a relatively small 
fraction of the dataset is analyzed, so that the procedure can gene
rate the gene sets while only analyzing 298 cells (Fig. 2d). In the 
min-cell strategy, at each iteration, a specific number of misclas-
sified cells (c = 100) are selected but the total number of cells used 
does not increase in increments of 100, as some cells are repeatedly 
misclassified and are thus repeatedly used for each iteration.

The ActiveSVM procedure generates gene sets that contain 
known markers, each plotted individually in a t-SNE grid (Fig. 2e,f).  
For instance, MS4A1 and CD79 are well-established B-cell markers, 
and IL7R and CD3G are well-established T-cell markers. However, 
we also find genes that are not commonly used as markers, but 
whose expression is cell-type specific. For instance, we find highly 
monocyte-specific expression of FPR1, which encodes an N-formyl 
peptide receptor recently discovered to be the receptor for plague 
effector proteins23. We also find T-cell/NK-cell specific expres-
sion of a long non-coding RNA, LINC00861, whose function is 
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genes overlaid on t-SNE plot.

Nature Computational Science | VOL 2 | June 2022 | 387–398 | www.nature.com/natcomputsci 389

http://www.nature.com/natcomputsci


Articles NATuRE COMpuTATiOnAl SciEncE

unknown but has been correlated with better patient outcome in 
lung adenocarcinoma24. The marker genes are generally highly spe-
cific for individual cell types, but some mark multiple cell types (for 
example, MARCH1, which marks monocytes and B-cells).

Scaling of ActiveSVM to million cell, mouse brain dataset. To 
demonstrate the scaling of the ActiveSVM feature selection method 
to large single-cell mRNA-seq datasets, we applied the method to 
extract compact gene sets from the the megacell demonstration 
dataset14, which was collected by 10x Genomics as a scaling demon-
stration of their droplet scRNA-seq technology. The dataset contains 
full transcriptome mRNA-seq data for 1.3 million cells from the 
developing mouse brain profiled at embryonic day 1814. The dataset 
is one of the largest single cell mRNA-seq datasets currently avail-
able. The size of the dataset has been a challenge for data analysis, 
and a previous analysis paper was published that developed subsam-
pling methods that extract marker genes and cell-types by extract-
ing subsets of of a dataset containing ~100,000 cells8. We found that 
it was possible to run ActiveSVM on a conventional laptop. We 
analyzed the megacell dataset on an AWS instance r5n.24xlarge to 
decrease computational time, on which ActiveSVM ran in 69 min 
and 243 min for the min-complexity and min-cell strategies, respec-
tively. By comparison, the other methods listed required more than 
four days to run all 1.3 million cells on the same AWS instance 
(Supplementary Table 1); furthermore, ActiveSVM's peak memory 
usage is 2,111 MB, whereas the other methods all consume more 
than 78,600 MB in the same AWS instance (Supplementary Table 1).

On the megacell dataset, the ActiveSVM procedure discovered 
gene sets that achieve ~90% classification accuracy with only 50 
genes while analyzing fewer than 1,000 cells (Fig. 3a–c). The pro-
cedure discovered a series of cell-state specific marker genes that 
extend prior analysis (Fig. 3d–f). For example, the analysis in ref. 8  
identified marker genes through subsampling and a past biologi-
cal work, and the ActiveSVM analysis discovered several of the 
same markers as the past work (Reln, Vim, Igfbp7) (Fig. 3e,f). 
Furthermore, ActiveSVM extended on the work by identifying 
additional markers that correlate with the previous analysis, as well 
as the marker genes of additional cell states (Fig. 3g). The devel-
opment of radial glial cells in particular has been of intense recent 
interest as they are the stem cells of the mouse and human neocorti-
ces25. Careful molecular analysis has defined markers of radial glial 
cells such as Vim. ActiveSVM identified a group of genes whose 
expression correlates with Vim across the mouse brain at embry-
onic day 18, including diazepam binding inhibitor (Dbi, an Acyl-
CoA binding protein), Hmgb2 and Ptn8. The Vim-correlated gene 
network includes additional transcription factors, Hmgb225, as well 
as a core group of genes, Ptn and Fabp7 (which are also brain lipid 
binding proteins), and two components of a radial glia-signaling 
network25–27, which has been identified as a core regulatory module 
supporting the proliferation and stem cell state in the radial glial 
cell population.

The neural progenitor transcription factor Neurod6 marked a 
separate cell population that we identified to contain genes such as 
Neurod2 and Sox11 (transcription factors), Nfib and Nfix (glial tran-
scription factors), and the receptor glutamate ionotropic receptor 
AMPA-type subunit 2 (Gria2) (Fig. 3e–g). The marker genes observed 
in Neurod6-expressing cells were anticorrelated with the Vim-
correlated markers, which suggests that ActiveSVM identified two 
distinct regulatory modules. Structurally, the tubulin proteins Tuba1b 
and Tuba1a were expressed in Vim and Neurod6 populations, respec-
tively. In addition to genes correlated or anticorrelated with existing 
markers, ActiveSVM identified markers of additional cell popula-
tions, such as Meg3, a long non-coding RNA expressed in cluster 2.

Broadly, the analysis of the megacell mouse brain dataset 
demonstrates that ActiveSVM scales to analyze a large dataset  
with >1 million cells. The analysis of such large datasets has been  

challenging with conventional approaches that attempt to store the 
entire set in memory for analysis. Past analysis of the 10x Genomics 
Megacell dataset found that subsamples with greater than 100,000 
cells would yield an out-of-memory error on a server node with 64 
cores, a 2.6 GHz processor and 512 GB of RAM8. Through iterative 
analysis, ActiveSVM identifies known marker and regulatory genes, 
genes that correlate with known markers, and genes of additional 
cell populations that could provide a starting point for future exper-
imental investigations.

Gene sets for cell-type classification in mouse tissue survey. In 
addition to analyzing a dataset with a large number of total cells, we 
sought to benchmark ActiveSVM's feature selection performance 
on a dataset with a large number of distinct cell types. We applied 
ActiveSVM to the Tabula Muris mouse tissue survey, a droplet-
based scRNA-sequencing dataset that contains 55,656 single cells 
across 58 annotated cell types and 12 major tissues15. For each cell, 
8,661 genes are measured. We used the supplied cell-type labels in 
our analysis, agnostic of tissue type. Cells labeled macrophage from 
the spleen are thus considered to belong to the same class as those 
labeled macrophage from the mammary gland.

Even with a large number of cell types, ActiveSVM can construct 
gene sets that achieve high accuracy (>90%) compared with other 
methods (Fig. 4a and Supplementary Fig. 1a). To construct a gene 
set of size 500, ActiveSVM feature selection used fewer than 800 
unique cells (Supplementary Fig. 1c) or an average of 14 cells per 
cell type. We were able to recreate the clustering patterns from the 
original data (Fig. 4b and Supplementary Fig. 1b) when analyzing 
the cells within the low-dimensional t-SNE space spanned by the 
selected 150 genes (Fig. 4c,d) or 500 genes (Supplementary Fig. 1d).

Our approach allowed us to construct a set of marker genes able 
to identify mouse cell types across disparate tissues (Fig. 4e and 
Supplementary Fig. 1e). Even when analyzing a large number of 
cell types, we were able to identify highly cell type-specific genes 
such as: (1) CD3D, a well-established T-cell marker; (2) transfer-
rin (TRF), which is selectively secreted by hepatocytes28 or (3) 
galectin-7 (LGALS7), which is specific for basal and differentiated 
cells of stratified epithelium29. However, given the functional over-
lap between different cell types, the genes within our set include 
many that mark multiple cell types. For instance, H2-EB130, a 
protein important in antigen presentation, is expressed in B-cells 
and macrophages, both of which are professional antigen present-
ing cells. Our analysis also identified cell type-specific expression 
for a number of poorly studied genes, such as granulocyte- and 
hepatocyte-specific expression of 1100001G20RIK (also known as 
Wdnm-like adipokine), which has previously only been associated 
with adipocytes31.

Minimal gene sets for identifying multiple myeloma patients. To 
analyze ActiveSVM as a tool for the discovery of disease-specific 
markers, we used single-cell data from peripheral blood immune 
cells collected from two healthy donors and four patients who 
have been diagnosed with multiple myeloma16, an incurable cancer 
of plasma cells (known as myeloma cells) that over-proliferate in 
the bone marrow. Although myeloma cells are typically the target 
of analysis as they are the causative agent of disease, peripherally 
circulating immune cells also contain signatures of disease, includ-
ing a depleted B-cell population32,33, an increased myeloid-derived 
suppressor cell count34 and T-cell immunosenescence33,35. We 
sought to further define transcriptional markers that distinguish 
healthy peripheral immune cells from the cells of multiple myeloma 
patients. We performed feature selection using heterogeneous pop-
ulations of cells labeled only by disease state; the dataset contains 
35,159 cells with 32,527 genes.

We compared the classification accuracy for ActiveSVM with 
the other methods (Fig. 5a and Supplementary Fig. 2a) and found 
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Fig. 3 | Scaling of ActiveSVM feature selection to 1.3-million-cell mouse brain dataset. a, The test accuracy of the min-complexity strategy that selects 
50 genes using 20 cells each iteration. b, The test accuracy of the min-cell strategy that selects 50 genes using 100 cells each iteration. c, The total 
number of unique cells used versus gene set size with both the min-complexity and min-cell strategies. d, The t-SNE plots of the entire filtered dataset with 
ten classes by k-means clustering. e, Expression level of the gene markers from previously published analysis overlaid on a t-SNE plot. f, Expression level of 
the gene markers selected by ActiveSVM overlaid on a t-SNE plot, where the first row are the genes that have similar distribution with gene markers from 
previously analysis and other genes are new markers correlated with the classification target. g, Correlation matrix of literature markers (y-axis) from  
ref. 8 versus ActiveSVM selected genes (x-axis).
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that ActiveSVM achieved high accuracy in a limited number of 
steps and consistently outperformed the other methods using both 
random and balanced sampling. Non-overlapping cell-type clus-
ters were identified for healthy and multiple myeloma cells in the 
original dataset in t-SNE projections (Fig. 5b and Supplementary  
Fig. 2b). As few as 449 cells are acquired when using the min-cell 
strategy (Supplementary Fig. 2c). The non-overlapping clusters are 
replicated in t-SNEs constructed from 40 genes selected using both 
the min-complexity (Fig. 5c,d) and min-cell (Supplementary Fig. 2d)  
strategies. Minimal gene sets were sufficient to separate multiple 
myeloma from healthy samples in t-SNE representations of the data 
using the min-complexity strategy with and without cell balancing.

ActiveSVM identified both known and markers of multiple 
myeloma within the peripheral blood immune cells (Fig. 5e and 
Supplementary Fig. 2e). Our analysis identified TPT1, which has 
been associated with multiple myeloma in the past36, and RACK1 
(also known as GNB2L1), a scaffolding protein that coordinates 

critical functions such as cell motility, survival and death, and is 
broadly upregulated in peripheral immune cells from multiple 
myeloma patients. Although this gene has been previously associ-
ated with myeloma cells37, its regulation had not been reported in 
peripherally circulating immune cells. The procedure also identi-
fies multiple members of the S100 calcium-binding protein family  
(S100A8, S100A9, S100A6 and S10084)38–40 as members of the 
genes sets that separate multiple myeloma versus healthy samples. 
The S100 protein family defines a module of genes that are associ-
ated with the induction of stress-response pathways. A recent study 
found that S100A4 expression correlates with poor patient survival 
in mulitple myeloma, and that S100A8 and S100A9 are markers 
that correlate with poor response of multiple myeloma patients to 
treatment with proteasome inhibitors and the histone deacetylase 
inhibitor panobinostat39. The result demonstrates that ActiveSVM 
can automatically define groups of genes that have clinical associa-
tion with disease progression and treatment outcome. The minimal 
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gene sets generated by ActiveSVM could provide useful targeted 
sequencing panels for a variety of clinical tasks.

Identifying genes impacted by Cas9 perturbation. The analyses 
above demonstrated that ActiveSVM identifies minimal gene sets 
for cell-state identification across a range of single-cell mRNA-seq 
datasets. We next demonstrate that ActiveSVM provides a more 
general analysis tool, with potential applications to a range of sin-
gle-cell genomics analysis tasks. To demonstrate generalization of 
ActiveSVM-based gene set selection across single-cell genomics 
tasks, we applied the method to identify marker genes in two addi-
tional applications: perturb-seq and spatial transcriptomics.

Perturb-seq is an experimental method for performing Cas9-
based genetic screens with single-cell mRNA-seq read-outs. In 
perturb-seq, cells are induced with pooled libraries of guide RNA’s 
that target the Cas9 protein to cut and silence specific genes3,17. 
Individual cells stochastically take-up specific guide RNAs, whereas 
Cas9 cuts and silences targeted genes in the genome. Following the 

perturbation experiment, single-cell mRNA-seq is applied to read 
both the transcriptome of each cell and the identity of the deliv-
ered sgRNA through sequencing. The advantage of the perturb-seq 
method is that many knock-out experiments can be performed 
simultaneously. However, a challenge is that noise impacts the mea-
surement of guide RNA identify and, furthermore, the cutting of the 
genome by the Cas9 molecule is not complete. Due to measurement 
and experimental noise, identifying the impact of genetic perturba-
tion on a cell population can be challenging, and various methods 
have been developed to boost signal3.

We applied ActiveSVM to identify a minimal gene set as well 
as downstream effects of transcription factor knock-down in per-
turb-seq data collected from mouse dendritic cells with transcrip-
tion factor knock-downs17. We focused our analysis on knock-down 
Cebp (a pioneering transcription factor in mouse dendritic cells) 
stimulated for 3 h with lipopolysaccharide (LPS), a signal that mim-
ics bacterial infection. ActiveSVM identified minimal gene sets  
(50 genes) that achieved about 80% classification accuracy on the 
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Cebp sgRNA cell label with the class-balancing strategy. ActiveSVM 
performed better than the competing methods on this noisy dataset, 
even if ActiveSVM only used a small subset of data while compari-
son methods performed on the entire dataset (Fig. 6a,b).

The discovered gene set contains two modules of correlated 
genes (Fig. 6c,d). Gene expression distributions for cells in trans-
duced versus non-transduced cells demonstrated that the modules 
represented two groups of genes. One group (including Pf4, Ccl4, 
Ccl6, Lyz2) was repressed by Cebp knock-down, whereas the other 
(including Ccl17, Cd74, H2-Ab1) was activated by Cebp knock-
down (Fig. 6d). In both cases, the identified gene sets contained 

known targets of Cebp, the perturbed transcription factor. For 
example, ferritin, heavy polypeptide 1 (Fth1), Cst3, Tmsb4x, Lgals3, 
Ccl4 and Cd74 are all previously identified as direct binding targets 
of Cebp as determined by Chip-seq41. As Cebp knock-down leads to 
both up- and down-regulation of genes, the results suggest that the 
factor can play both activating and repressive roles consistent with 
prior literature42.

Our analysis of the Perturb-seq data demonstrates that 
ActiveSVM can be applied as a useful tool for the identification 
of genes modulated by perturb-seq experiments. ActiveSVM can 
return minimal genes sets that contain functional information. 
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Moreover, perturb-seq has been a main application of gene-target-
ing approaches3. ActiveSVM could therefore provide a method for 
identifying minimal gene sets that can be applied to increase the 
scale of perturb-seq data collection.

Defining brain region markers with spatial transcriptomics. 
Finally, to further demonstrate the generality of the ActiveSVM 
approach, we applied the procedure to identify minimal gene sets 
for classification of cells by spatial location in spatial transcrip-
tomics data. Spatial transcriptomics is an emerging method for 
measuring mRNA expression within single cells while retaining 
spatial information and cellular proximity within a tissue. As an 
example, in SeqFish+, an imaging-based spatial transcriptomics 
method, cells are imaged in their tissue environment and mRNA 
transcripts are counted using single-molecule imaging of mRNA 
spots18. In all spatial transcriptomics applications, a common goal 
is the identification of genes that mark specific spatial locations 
within a tissue sample. Furthermore, spatial imaging methods are 
commonly limited by imaging time. Although Seqfish+ can profile 
10,000 mRNA molecules per cell, the identification of reduced gene 
sets would reduce imaging time and throughput.

We applied ActiveSVM to identify genes associated with specific 
spatial locations in the mouse brain. We used a seqFISH+ dataset in 
which the authors profile 10,000 mRNA molecules in seven fields 
of view (FOV) in the mouse brain18. Fields of view correspond with 
spatially distinct regions of the mouse cortex as well as the subven-
tricular zone and choroid plexus. We used the spatial location labels 
provided by ref. 18 to identify seven different brain locations (FOVs 
1–5 correspond with cortex layers 2/3 through layer 6; FOV 6 with 
subventricular zone, and FOV 7 with choroid plexus). Applying 
the spatial location labels as class labels, we applied ActiveSVM to 
identify genes that could allow classification of single cells by their 
location in one of the seven classes and to define marker genes that 
correspond to specific spatial locations.

We identified gene sets of <30 genes that enabled location clas-
sification with greater than 85% accuracy with min-complexity 
strategy (Extended Data Fig. 1a,b). ActiveSVM used only ten cells 
at each iteration but worked better than comparison methods who 
performed on the entire dataset (Extended Data Fig. 1b–d). In the 
spatial application, the result means that the ~30 genes are suffi-
cient to classify single cells as belonging to one of the seven spatial 
classes. In Extended Data Fig. 1e, we show the mean expression of 
identified genes across cortical fields of view corresponding to a 
sweep through cortical layers 2/3 through 6 as well as the subven-
tricular zone and the choroid plexus. Our analysis identifies mark-
ers Prex1 that are specific to the upper cortical layers of the brain. 
Efhd2, a calcium-binding protein linked to Alzheimer’s disease and 
dementia, was similarly expressed in lower cortical layers43. Finally, 
Pltp, a phospholipid transfer protein, was localized to the choroid 
plexus. In Extended Data Fig. 1e, we show the spatial distribution 
of these genes including their mean expression across regions, 
violin plots documenting expression distribution, and renderings 
of the single cells within the field of view and the relative expres-
sion of each gene. The spatial analysis demonstrates that a broad 
range of different experimental variables can be applied as labels. 
In each case ActiveSVM discovers genes that allow classification of 
cells according to labels and identifies interesting genes. Regional 
gene marker identification is a major task in seqFish data analysis 
and ActiveSVM is able to identify genes enriched in different brain 
regions automatically. Such spatial information could provide inter-
esting insights into disease processes mediated by genes like Efhd2.

Discussion
In this paper we introduce ActiveSVM as a feature selection proce-
dure for discovering minimal gene sets in large single-cell mRNA-
seq datasets. ActiveSVM extracts minimal gene sets through an 

iterative cell-state classification strategy. Conceptually, we refer to 
our strategy as active as it actively explores a dataset, identifying 
maximally informative cells for analysis. ActiveSVM specifically 
selects cells that fall within the margin of the SVM classifier and 
uses these poorly classified cells to search for maximally informa-
tive genes (features). In the machine learning literature, an algo-
rithm is conventionally called active when it can directly query an 
oracle for data examples that meet a criteria12,44. In the tradition 
of active learning, our ActiveSVM procedure queries the SVM 
classifier for cells that have been misclassified and then expends 
computational resources to analyze all genes within that limited 
subset of cells to discover informative genes; thus, although our 
algorithm cannot query the biological system directly for cells that 
meet a specific criteria, the algorithm queries the dataset itself for  
informative examples.

Biologically, a recent work highlights the presence of a low-
dimensional structure within the transcriptome1; the structure 
emerges in gene expression data as cells modulate their physiologi-
cal state through gene expression programs or modules that con-
tain large groups of genes. As genes within transcriptional modules 
have highly correlated expression, measurements performed on a 
small number of highly informative signature genes can be suffi-
cient to infer the state of a cell45. Low-dimensional structures can 
be exploited to decrease measurement and analysis costs, as a small 
fraction of the transcriptome must be measured to infer the cellular 
state. We developed ActiveSVM as a scalable strategy for extracting 
high-information content genes within a sharply defined task: cell-
state classification.

The ActiveSVM approach has several limitations in the cur-
rent implementation. First we have developed ActiveSVM using a 
single classification method—the support vector machine—as the 
computational engine. Active learning methods can be applied 
more broadly to additional classification strategies such as neural 
network-based classification, as well as other types of analysis such 
as data clustering and gene regulatory network inference. Second, 
the method currently applies a supervised learning task—cell-state 
classification—to construct a minimal gene set. In datasets without 
explicit cell-state labels, we derive labels from unsupervised clus-
tering of data. The active sampling strategy could be extended to 
a wider range of applications including fully unsupervised analysis 
methods and differentiation trajectory analysis. Third, in the cur-
rent implementation, ActiveSVM selects single genes at each round. 
In some cases, highly informative gene pairs or triples might exist 
that can only be discovered through explicit combinatorial strate-
gies that search for combinations of genes that increase classifica-
tion accuracy at each iteration.

Although ActiveSVM currently focuses on the reduction of 
computational costs, we hope in the future to apply active sampling 
strategies directly at the point of measurement. In genomics, mea-
surement resources often limit the scale of data acquisition. Single-
cell mRNA-seq measurements are currently limited by sequencing 
and reagents costs. Similarly, spatial genomics methodologies are 
limited by imaging time. In future work we aim to develop strate
gies that can improve the on-line acquisition of single-cell data 
through active sampling. Active strategies could be implemented 
at the point of measurement by only sequencing or imaging the 
content of cells that meet a criteria, for example, cells identified as 
within a tumor microenvironment. Even more broadly, it might be 
possible to increase the information content of measurements by 
actually inducing biological systems to generate highly informative 
examples through designed experimental perturbations.

Methods
Identification of maximally informative cells. We formalize the ActiveSVM 
procedure and define mathematical rules that encode our specific gene and cell-
selection strategies. In single-cell gene expression data we use x(j)i ∈ R to denote 
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the measurement of the jth gene of the ith cell. We assume that the classification 
labels are given and consider that dataset {xi, yi}i∈{1,…,N} contains N cells with 
total M genes, where xi = [x(j)i ]j∈{1,…,M}

 and yi ∈ Z are labels. The labels could 
be binary or multiclass, and can be derived from clustering. We also denote the 
gene expression vector of ith cell with part of genes as x(D)i = [x(j)i ]j∈D, where 
D ⊂ {1, …, M}; we use J and I to refer to the set of selected genes and cell set.

We adopt the SVM classifier notation of one observation is 
hw,b(x(D)i ) = g(wTx(D)i + b) for any i ∈ {1, 2, …, N} and D ⊂ {1, 2, …, M} with 
respect to observation x ∈ R

|D|, where w ∈ R
|D| and b ∈ R are the margin and 

bias, respectively. Here, g(z) = 1 if z ≥ 0, otherwise g(z) = −1; the loss function is the 
Hinge loss46, lossi = max{0, 1 − yi(wTx(D)i + b)}, where yi ∈ R is the ground-
truth label of observation xi.

For the cell-selection strategy, we identify cells with the largest SVM 
classification loss. In SVM classification, samples separable in n-D are also 
separable in (n + 1)-D, as they are at least separated by the same boundary with 
zero at the (n + 1)th dimension; thus, to improve the classification accuracy with 
a new gene, we should only consider the misclassified cells. We identify such cells 
through analysis of the dual form of the classical SVM classification problem. After 
solving the primal optimization problem of soft margin SVM, we have the dual 
optimization problem with a non-negative Lagrange multiplier αi ∈ R for each 
inequality constraint47.

max
α

N∑

i=1
αi −

1
2

N∑

i1 ,i2=1
yi1 yi2 αi1 αi2 < x(J)i1 , x(J)i2 >

s.t. 0 ≤ αi ≤ C
N∑

i=1
αiyi = 0

(1)

Here x(J)i  refers to the measurement of the ith cell with all selected genes, and 
C ∈ R is a hyperparameter we set to control the trade-offs between size of margin 
and margin violations when samples are non-separable.

We solve the optimal solution α* and apply the Karush–Kuhn–Tucker dual-
complementarity conditions48 to obtain the following results where w ∈ R

|J| and 
the intercept term b ∈ R are optimal.

α∗

i = 0 ⇒ yi(wTx(J)i + b) > 1

α∗

i = C ⇒ yi(wTx(J)i + b) < 1

0 < α∗

i < C ⇒ yi(wTx(J)i + b) = 1.

(2)

Therefore, for each cell, the Lagrange multiplier αi indicates whether the cell 
falls within the SVM margin defined by the vector w; αi > 0 means yi(wTxi + b) ≤ 1, 
that is, cells are on or inside the SVM margin. Hence we can directly select cells 
with αi > 0. In practice, we typically only select cells with αi = C, which indicates 
incorrectly classified cells.

Using this mathematical formulation, we develop two different versions of 
the ActiveSVM procedure, the min-complexity strategy and min-cell strategy, 
for distinct goals. The min-complexity strategy minimizes the time and memory 
consumption when computational resources are restricted or where a user desires 
to reduce run time. In the min-complexity strategy, a fixed number of cells is 
sampled among all misclassified cells and used as the cell set for gene selection in 
each iteration. A small number of cells can therefore be analyzed at each round 
and typically only few cells might be selected repeatedly. The two strategies are 
discussed in more detail below. We also developed random and balanced strategies 
for sampling cells across a series of cell-states with varying cell membership.

Gene selection by maximizing margin rotation. To select maximally informative 
genes at each round, we analyze misclassified cells and identify genes that would 
induce the largest rotation of the classification margin. Our procedure is inspired by 
the active learning method, Expected Model Change12. We quantify rotation of the 
margin by calculating the twist angle induced in w when we add a new dimension 
(gene) to the classifier. Assume J is the set of genes we have selected so far. Once we 
add a gene into the ∣J∣-dimensional data space, the parameter w will have one more 
dimension. The rotation of margin measures how much w twists after adding the 
new dimension compared with the weight in the previous iteration.

Specifically, assume J is the set of genes we have selected so far. We derive 
the corresponding w from the optimal solution α* (ref. 47). After solving the dual 
optimization problem (1), we have:

w =
∑

i∈I
α
∗

i yix
(J)
i . (3)

We then pad w with zero to get a ∣J + 1∣-dimensional weight wpadded, whose first 
∣J∣ dimensions is w and the ∣J + 1∣th dimension is zero.

For each candidate gene j, we train a new ∣J + 1∣-dimensional SVM model and 
have weight wj, where j ∈ {1, …, M}⧹J. That is to say, for candidate gene j, we solve 

the dual optimization problem (4) and find a new optimal multiplier α*(j). Note that 
we only use the selected cells here, i1, i2 ∈ I.

max
α

∑

i∈I
α
(j)
i −

1
2

∑

i1 ,i2∈I
yi1 yi2 α

(j)
i1 α

(j)
i2 ⟨x(J∪{j})

i1 , x(J∪{j})
i2 ⟩

s.t. 0 ≤ α
(j)
i ≤ C

∑

i∈I
α
(j)
i yi = 0

(4)

Then we have wj as shown in equation (5):

wj =
∑

i∈I
α
∗(j)
i yix(J∪{j})

i (5)

The angle θj between wj and wpadded is the expected angle the margin rotates, 
corresponding to the jth candidate gene. Then the jth gene with largest angle θj will 
be selected. We measure the angle between two vectors using cosine similarity49:

ϑj = arccos cos ϑj = arccos
⟨wj, wpadded⟩

∥ wj ∥∥ wpadded ∥
(6)

Thus, a new gene, which maximizes ϑj, is selected to maximize the expected  
model change.

Multiclass ActiveSVM. For multiclass classification, the SVM is handled 
according to a one-versus-the-rest scheme, where a separate classifier is fit for 
each class, against all other classes. Margin rotation is represented as the sum 
of weight components in each class dimension. Hence with Z classes, we get 
Z weight components corresponding to Z one-versus-the-rest classification 
decision boundaries. Assume the weight component for class z of the previous 
∣J∣-dimensional SVM model is w(z). Denote the ∣J + 1∣-dimensional weight after 
zero-padding of w(z) as w(z)

padded and the new ∣J + 1∣-dimensional weight component 

of class z with jth gene as w(z)
j , where z ∈ 1, …, Z. We then have:

ϑ
(z)
j = arccos cos ϑ

(z)
j = arccos

⟨w(z)
j , w(z)

padded⟩

∥ w(z)
j ∥∥ w(z)

padded ∥

(7)

ϑj =

Z∑

z=1
ϑ
(z)
j (8)

Min-cell and min-complexity cell selection strategies. In the min-cell strategy, to 
reduce the number of unique cells required, the misclassified cells already used in 
previous steps are given the highest priority to be reselected. The min-cell strategy 
therefore attempts to reuse cells across rounds of iteration and aims to minimize 
the total number of unique cells we acquire during the entire procedure. The 
min-cell strategy can be applied to limit the number of cells required to perform 
the analysis in settings where cell acquisition might be limiting, including in the 
analysis of rare cell populations or in clinical datasets.

For the min-cell strategy, assume we select c cells for each iteration and there 
are a + b misclassified cells at the current iteration, where a cells have been used at 
least once in previous iterations, whereas b cells are new cells. If a ≥ c, we do not 
need to add any new cells to current cell set. If a < c, we sample c − a cells among 
the b new cells. The algorithm then uses the whole selected cell set for the next 
gene selection step. When using the min-cell strategy, cells tend to be reused many 
times and the curve of number of unique cells we acquire converges to a fixed 
value along with the number of genes we select. In experiments, the number of 
cells selected for each step, c, is a hyperparameter set by the user. Typically, the 
parameter can be set to a small number using the min-complexity strategy, as a 
sufficient number of new cells is considered in the procedure. Selecting a small 
number of cells each round reduces computational complexity. In the min-cell 
strategy it can be advantageous to select a larger number of total cells to guarantee 
diversity of training cells while still bounding the total number of cells used.

Balancing cell sampling across cell classes. In addition to the min-cell and 
min-complexity options, we also include two version of cell sampling strategies. 
The first one is uniform, random sampling. Another option is class-balanced 
sampling, which can be applied to balance sampling across a series of cell classes. 
In the balanced strategy we sample a fixed number of cells from each cell class, 
whereas for classes with insufficient cells we sample all of the cells in the class. 
Mathematically, assume there are Z classes and S is the set of all misclassified cells  
this step. We should sample c′ cells from a candidate cell set S′ for the current 
iteration. In min-complexity strategy, c′ = c and the candidate cell set S′ should  
be S itself. For the min-cell strategy, c′ = c − min{c, |I ∩ S|}, where I is the 
cell set before current iteration, and the candidate cell set S′ = S \ I . Assume 
S′ = ∪

Z
z=1S′z, where S′z are the set of cells in class z and |S′z| ≤ |S′(z+1)|  
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for any z ∈ {1, 2, ... , Z − 1}. We sample cells in order from class 1 to class Z and  
denote Pz as the union set of all selected cells from all classes after class z. Then  
for class z, if |S′z| ≤ (|S′| − |Pz−1|)/(Z − z + 1), we select all cells in S′z.  
Otherwise, if |S′z| > (|S′| − |Pz−1|)/(Z − z + 1), we randomly sample 
(|S′| − |Pz−1|)/(Z − z + 1) cells in S′z. The procedure repeats for all classes and 
then we have PZ as the cells we select at this iteration.

Incorporation of cell labels derived from unsupervised analysis, experimental 
conditions or biological knowledge. The goal of ActiveSVM is to discover 
minimal gene sets for extracting biological information from single-cell datasets. 
To define minimal gene sets, we apply a classification task in which we find genes 
that enable a SVM classifier to distinguish single cells with different labels (yi). In 
practice, explicit cell-type labels are often not known for a dataset. An extremely 
common work-flow in single-cell genomics applies Louvain clustering algorithms 
to identify cell classes and visualizes these cell classes in UMAP or t-SNE plots50,51. 
The cell clusters that are output by clustering work-flows in commonly used single-
cell analysis frameworks provide a natural set of labels for downstream analysis. 
In fact, ActiveSVM can then identify specific marker genes for interpreting the 
identified cell-clusters and determining their biological identify. More broadly, 
cell-class labels can be quite general including the identity of a genetic perturbation 
(Fig. 6), the spatial location of a cell (Extended Data Fig. 1). We can imagine the 
application of ActiveSVM to a broad set of additional labels including membership 
to a differentiation trajectory or lineage tree52.

Memory complexity of ActiveSVM. One of the key contribution of ActiveSVM is 
that it substantially saves memory usage because only a small part of data is used at 
each iteration. The entire dataset can be stored in disk and the algorithm only loads 
two small matrices into memory, a N × ∣J∣ matrix of all cells with the currently selected 
genes and a ∣I∣ × M matrix of the cell set with all genes. The memory complexity is 
O(M + N), whereas the memory complexity of algorithms using the entire dataset 
is at least O(MN). The min-cell strategy minimizes the total number of unique cells 
acquired to reduce the cost of data measurement, acquisition and storage.

Time complexity of ActiveSVM. The time complexity of the complete procedure 
depends primarily on the training of SVM. The standard time complexity of SVM 
training is usually O(MN2)53. Assume that we plan to select k ∈ N genes in total 
and use the cell set Ii of poorly classified cells at ith iteration, where k, k2 ≪ M and 
∣Ii∣, ∣Ii∣2 ≪ N are constants the computational complexity of ActiveSVM is then:

O(

k∑

i=1
(i × N2

+ (M − i) × (i + 1) × |Ii|2)) ≈ O(N2
+ M).

The key reduction in total complexity occurs because each step is performed 
using N cells with of order k, k2 ≪ M genes or using order M genes with ∣Ii∣ cells. The 
polynomial O(MN2) is therefore reduced to two separate steps: O(N2) and O(M).

In practice, we implement ActiveSVM using the linear SVM library 
LIBLINEAR54, whose time complexity is O(MN); the corresponding time 
complexity of ActiveSVM with LIBLINEAR is:

O(

k∑

i=1
(i × N + (M − i) × (i + 1) × |Ii|)) ≈ O(N + M).

In the gene selection part, the margin rotation angles of all candidate genes 
can be computed in parallel, which also accelerates the algorithm. The complexity 
provides a substantial improvement in marker gene selection methods especially 
for large-scale datasets.

Computational Infrastructure. To analyze computational requirements of 
ActiveSVM, we performed analysis using an r5n.24xlarge, a type of EC2 virtual 
server instance on AWS, with 96 virtual central processing units and 768 GiB 
memory on Linux system. The instance allowed us to track run time and memory 
usage. As an example, for the largest dataset analysis, we applied ActiveSVM to 
select 50 genes on the largest dataset, mouse brain megacell dataset, which contains 
1,306,127 cells and 27,998 genes, using ActiveSVM and some other popular 
feature selected methods, including correlation coefficient, mutual information, 
feature importance by decision tree and conventional SVM. The peak memory 
usage of ActiveSVM is 2,111 MB, whereas other methods all consume more than 
78,600 MB. The run time of the min-complexity method is about 69 min, whereas 
that of the min-cell method is about 243 min. Each comparison method takes 
more than four days on the same server machine. The run time and peak memory 
usage of ActiveSVM on all six datasets are shown in Supplementary Table 1. The 
ActiveSVM package used for the brain megacell dataset loads only the selected 
genes and cells, into computer memory at each iteration, while the code for the 
other two experiments loads the entire dataset when calling the package. Pipelines 
demonstrating both settings are provided in the 'Code availability' section.

Data preprocessing. PBMC, Tabula Muris and multiple myeloma. The PBMC, 
Tabula Muris and multiple myeloma datasets were preprocessed for ref. 16 via 

column normalizaition. In each experiment, we removed the columns and rows 
where all values are zero. Subsequently, gene expression matrices were first-
columns normalized and log transformed. For a cell i, each gene x(j)i  (gene j in  

cell i) is first normalized as x̃(j)i =
x(j)i

∑M
i=1 x

(j)
i

 where M is the number of genes in 

the transcriptome; we then performed l2-normalization for each cell, which means 
scaling each cell vector individually to unit l2-norm.

Mega-cell dataset, perturb-seq and spatial transcritomics. We removed the 
columns and rows where all values are zero for Mega-cell, perturb-seq and spatial 
transcritomics. We then performed l2-normalization along each cell.

Calculation of Confidence Intervals. Confidence intervals were estimated using 
a proportion confidence interval55 as interval = z

√
ϵ∗(1−ϵ)

N ), where z = 1.96 for 
95% confidence and N is the number of cells and ϵ the observed error.

Data availability
All of the data used in the paper have been previously published. The PBMC 
Single-cell RNA-seq data have been deposited in the Short Read Archive under 
accession no. SRP073767 by the authors of ref. 13. Data are also available at http://
support.10xgenomics.com/single-cell/datasets. The original Tabula Muris dataset 
is available at https://figshare.com/projects/Tabula_Muris_Transcriptomic_
characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_
resolution/27733. The original multiple myeloma PBMC data, which contain two 
healthy donors and four multiple myeloma donors, are available at https://figshare.
com/articles/dataset/PopAlign_Data/11837097/3. The 10x Genomics Megacell 
dataset is available at http://support.10xgenomics.com/single-cell/datasets. The 
perturb-seq dataset17 is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSM2396856 The spatial transcriptomics data18 are available at https://
github.com/CaiGroup/seqFISH-PLUS. Source Data are provided with this paper.

Code availability
Our method is integrated as an installable Python package called ActiveSVC. 
The installation instructions and user guidance are shown at https://pypi.org/
project/activeSVC. The source codes of activeSVC and some demo examples 
are publicly available on GitHub at https://github.com/xqchen/activeSVC 
and Zenodo56. We also created a Google colaboratory project demonstrating 
three examples: the PBMC demo is at https://colab.research.google.com/
drive/16h8hsnJ3ukTWAPnCB581dwj-nN5oopyM?usp=sharing, the Tabula Muris 
demo is at https://colab.research.google.com/drive/1SLehIKIQqpjK6BzEKc9m0
y3uJ_LBqRzA?usp=sharing, and the PBMC cross-validation57 demo is at https://
colab.research.google.com/drive/1fhQ8GD3NyzB3w0vof9WimXK6BLqDNuDC?
usp=sharing.
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Extended Data Fig. 1 | Application of ActiveSVM to identify region specific marker genes in the mouse brain with spatial transcriptomic data. The 
results of classification where cells are labeled according to fields of view (FOV). (a-b) test accuracy with min-complexity strategy, where comparison 
methods use the same number of cells as ActiveSVM in (a) and use the entire dataset in (b). Fields of view 1-5 correspond to 5 regions of the mouse 
cortex, additional fields of view are labeled SVZ (subventricular zone) and ChP (choroid plexus). (c) t SNE of cell transcriptomes for all cells (d) number of 
cells used per iteration (e) Sample of identified genes where each sub-panel shows mean expression across FOV/brain regions for selected gene, a tSNE 
plot colored by expression of selected gene, a violin plot of single cell gene expression values for selected gene in FOV/brain region, and spatial plots of 
each field of view where dots represents cells in 2D imaging slice, cells are colored by intensity of selected gene and units are in millimeters.
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