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Amyotrophic lateral sclerosis (ALS) is a neurodegenera-
tive disease with a complex pathophysiology resulting in 
heterogeneous symptoms and progression1,2. The median 

length of survival from symptom onset is approximately three 
years; however, some individuals survive decades with the disease3. 
Longitudinal functional clinical metrics have gained widespread 
use as a tool to measure ALS progression. These clinical metrics, 
such as the Revised ALS Functional Rating Scale (ALSFRS-R), are 
a proxy for disease progression. However, they are imperfect mea-
sures. Individuals are often evaluated at different stages of their 
disease, making comparisons across patients challenging4. While 
people with ALS invariably decline over time, some of the measures 
can increase for short durations or reach plateaus5. Additionally, 
the metrics of clinical disease progression are based on subjec-
tive assessments of patients’ daily functioning, such as the ability 
to climb stairs ‘normally’ or ‘slowly’, which introduces a potential 
source of error6. Furthermore, interventions such as percutaneous 
endoscopic gastronomy and non-invasive ventilation can affect 
these clinical metrics. The interconnectedness of function and the 
variability in the measurement of these clinical metrics present 
challenges in modeling ALS progression.

The heterogeneity of ALS makes it difficult to determine if a 
disease-modifying therapy is effectively slowing progression7,8. 
Traditional modeling approaches have dealt with the complexities 
in ALS by first assuming that ALS outcome measures, particularly 
the ALSFRS-R, progress in a linear fashion9–11. Many ALS clini-
cal trials use changes in the linear slope of ALSFRS-R over time 
or changes in ALSFRS-R from baseline as primary endpoints12–14. 
For example, edaravone was approved in the USA on the basis of 

a 2.5 ALSFRS-R point difference in decline between the treatment 
and control arms over 6 months (ref. 14), and the estimated effect 
from the ALS sodium phenylbutyrate–taurursodiol clinical trial was 
a change in slope of 0.42 points per month12. Large global crowd-
sourcing analyses designed to produce better models for clinical tri-
als have also assumed a linear decline in ALSFRS-R15,16.

Despite the widespread use of linear models in predicting patient 
progression, there is evidence that ALS progression can be nonlin-
ear and can vary across disease severity17–19. Several approaches have 
been proposed to deal with nonlinearity in the context of clinical 
trials. For example, nonlinear parametric models, which assume 
a particular shape of the trajectory in advance, have been used to 
capture these complexities. One notable example is the D50 model, 
which represents the progression of ALS with a two-parameter 
sigmoid20,21. However, by requiring a particular parametric form, 
these models are restricted to identifying prespecified trajectory 
shapes17,18,22–24, which may not represent the actual heterogeneity in 
disease progression patterns. Models such as the mixed model for 
repeated measures can be used in conjunction with unstructured 
time and covariance structures that reduce reliance on parametric 
assumptions; however, these models can suffer from being statisti-
cally underpowered, especially in clinical cohorts with sparse lon-
gitudinal data25.

Less attention has been paid to a more fundamental question: 
are there common patterns of clinical progression in ALS? If such 
patterns exist, they could be used to improve patient stratifica-
tion, which can impact clinical trial planning8,26. Defining distinct 
clusters can also enable research aiming to identify disease mecha-
nisms that contribute to modulating disease progression in ALS. 
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Heterogeneity in the clinical progression of ALS may reflect envi-
ronmental or genetic modifiers of disease, and robustly character-
izing heterogeneity in progression patterns can aid in the search for 
these modifiers. Current clustering efforts for disease progression 
patterns are limited by requiring parametric assumptions in their 
cluster assignments or outcome measures15,19,24. There is a need for 
computational methods that can flexibly identify patient clusters 
with minimal assumptions.

To model the full complexity of ALS progression, we turned to 
computational methods that are more flexible than traditional para-
metric models. We propose a framework for aggregating patient tra-
jectories into clusters using Gaussian processes27,28 and determining 
the number of clusters using a Dirichlet process mixture model29,30. 
We also modify this mixture of Gaussian processes model to incor-
porate prior clinical knowledge. For example, since patients with 
ALS are expected to decline over time, we incorporate monotonic 
biases into our model, which encourage declining trajectories to be 
identified but also allow for the detection of patterns that do not fit 
prior expectations.

We show that this method can improve the characterization of 
ALS progression patterns, identifying clusters of participants with 
similar trajectories from longitudinal clinical scores. The nonlinear 
progression patterns are robust to sparse data and consistent across 
study populations, and correspond to survival outcomes. While 
we focus on clinical ALS outcome measures, we also demonstrate 

that the method can analyze Alzheimer’s and Parkinson’s data. Our 
results provide an advance in modeling progression patterns in ALS 
and other diseases.

Results
Modeling approach. We developed a mixture of Gaussian pro-
cesses model with strong inductive bias towards monotonic decline 
(MoGP) to characterize patterns in disease progression (Extended 
Data Fig. 1). The model leverages two Bayesian non-parametric 
methods: Gaussian process regression27,28 and Dirichlet process clus-
tering29,30. Gaussian process regression does not require the specifi-
cation of a particular functional form, but instead learns trajectories 
from data, enabling the model to capture a wide variety of possibly 
nonlinear progression patterns. Dirichlet process clustering can be 
used to identify clusters from data when it is difficult to specify an 
expected number of clusters a priori. The use of Dirichlet processes 
is motivated by the uncertainty in the existence and number of ALS 
progression subtypes and avoids restrictive modeling assumptions.

Our approach includes notable improvements over previous 
MoGP models28,31,32, in that we incorporate clinical knowledge rel-
evant to ALS progression. Specifically, we implement a monotonic 
inductive bias as well as clinically informed parameter priors for 
Gaussian process regression and Dirichlet process clustering com-
ponents. Each component of the model is discussed in more detail 
in Methods.
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Fig. 1 | Identifying trajectory clusters with varying patterns of decline, using a mixture of Gaussian processes model. The 24 largest clusters (out of 92) 
from PRO-ACT are shown. The first-year slope is calculated as the difference between 48 and the mean cluster score 1 yr after symptom onset, divided by 
the time from symptom onset. n indicates the number of ALS patients in each cluster. The shaded area indicates the 0.95 confidence interval.
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Elucidating ALS disease progression trajectory patterns. We 
sought longitudinal ALSFRS-R scores from a wide range of sources. 
The model was evaluated on five study populations (Supplementary 
Tables 1 and 2). Three observational studies were used, Answer ALS 
(AALS) (https://www.answerals.org/), the Emory ALS Clinic data-
base (EMORY)3 and the ALS/MND Natural History Consortium 
database (NATHIST)33, and two overlapping clinical trial datas-
ets, the Pooled Resource Open-Access ALS Clinical Trials (PRO-
ACT)34,35 and the Clinical Trial of Ceftriaxone in ALS (CEFT)13,36.

To characterize patterns in ALS progression, we first applied 
MoGP to PRO-ACT, which is the largest publicly available dataset 
of ALSFRS-R scores (Fig. 1 and Extended Data Fig. 2). The analy-
sis identified diverse clusters, including some clusters identifying 
slow-progression populations (Fig. 1n) and others capturing faster-
progression groups (Fig. 1r).

Notably, in many cases, the patterns of decline were highly 
nonlinear, with some following sigmoidal (Fig. 1d,k), convex (Fig. 
1m,u,v) and concave (Fig. 1o,q) curves. Linear patterns were also 
detected in some clusters (Fig. 1g,j,t). To estimate how well a lin-
ear model fit in the first year generalizes to subsequent timepoints, 
we computed the slope of the mean function of each cluster in 

the first year after symptom onset (‘first-year slope’). This is rel-
evant to previous studies that utilize a first-year slope calculation, 
including previous ALS DREAM Challenges15,16. While this first-
year slope closely reflects actual trajectories for the linear clusters  
(Fig. 1g,j,t), for others it is either an overestimation (Fig. 1i,k,l,o,x) 
or an underestimation (Fig. 1s,v), indicating nonlinearity in the 
trajectory pattern. These errors in the first-year estimations can be 
large; for instance, it overestimates the disease trajectory in cluster 
K by 24.20 ALSFRS-R points and underestimates the trajectory in 
cluster V by 9.48 ALSFRS-R points when both are evaluated 3 yr 
after symptom onset. This diversity highlights the complexity of 
progression trajectories in ALS. Analysis of other study populations 
(Extended Data Figs. 3–6) also revealed many clusters that were 
highly nonlinear.

Identifying nonlinear patterns across heterogeneous studies. We 
compared the performance of MoGP against two other approaches, 
which assume that progression is linear. A standard model in the 
field is to calculate linear slopes fit to patient data with an onset 
anchor37 (slope model: SM). The slope model is fit to each patient 
separately and does not identify clusters. We also benchmarked our 
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Fig. 2 | Estimating nonlinearity of trajectories. a, Cumulative distribution function (CDF) of root mean squared error (RMSE) between a participant’s 
predicted cluster membership and cluster model mean. P values calculated with two-sided Kolmogorov–Smirnov two-sample tests between MoGP and 
LKM distributions, and between MoGP and SM distributions. b, A subset of nonlinear clusters from PRO-ACT visualized; n indicates the number of ALS 
patients per cluster. The shaded area indicates the 0.95 confidence interval.
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model against a mixture of Gaussian processes model with a lin-
ear kernel (linear kernel model: LKM). The LKM retains the ability 
to cluster trajectories using a Dirichlet process but does not allow 
for nonlinear functions, allowing us to separate the contribution of 
clustering and the assumption of linearity in our models.

For all study populations, the error was lower in the MoGP 
model than in the LKM and SM (Fig. 2a). Across the populations, 
using the MoGP reduced error by more than one ALSFRS-R point 
as compared with the LKM for at least 27.16% of participants; at 
least 8.33% of patients have an improvement in accuracy greater 
than two ALSFRS-R points (Supplementary Table 3). Importantly, 
the error of the MoGP was lower even though the LKM used a larger 
number of clusters to model the data (Supplementary Table 6). It is 
also notable that the MoGP, which identified clusters as large as 88 
participants, was able to match or outperform the patient-specific 
SM (Fig. 2a and Supplementary Table 4), which would have been 
expected to markedly outperform MoGP if substantial nonlinear 
structure did not exist in the data. The results are replicated across 
the five different datasets, suggesting that complex nonlinearity is a 
common feature of ALS progression and is not a unique feature of 
a single dataset.

The clusters with the most substantial nonlinearity often fol-
lowed sigmoidal trajectory patterns, with varying inflection points 
(Fig. 2b). In some of these clusters, patients had slow progression 
for a period of time, followed by a consistent sharp decline. This 
pattern of progression appears consistent with a sudden loss of 
ability to carry out functions that we refer to as a ‘functional cliff ’. 
In other cases, the pattern is more consistent with a rapid period 
of decline followed by a slower phase. Since there are many set-
tings in which patient-specific parametric models are very useful, 
we compared our model with a patient-specific sigmoidal model 
(SG)20. Somewhat surprisingly, despite the fact that the MoGP 

models groups of patients, rather than individuals, MoGP outper-
forms a patient-specific sigmoid model by one or more ALSFRS-R 
points for 4.20–9.43% of patients across the studies (Supplementary  
Table 5). This indicates that, while a sigmoidal model captures 
much of the nonlinearity, it does not represent the full complexity 
of progression patterns.

MoGP clusters varied considerably in their rates of progres-
sion and the stability of their progression patterns. MoGP enables 
the characterization of each of these properties through the mean 
function slope and kernel function length-scale parameters 
respectively, both of which are learned and optimized through 
the training process. The model provides estimates for each of 
these parameters, and these can be used to approximate similar-
ity between clusters depending on the desired clustering property 
(Extended Data Fig. 7).

Clustering trajectories on the basis of the optimized slope and 
length-scale parameters reveals interesting patterns (Extended 
Data Fig. 7). The dominant clinical progression patterns in ALS are 
sigmoidal fast progression (Extended Data Fig. 7b, 17.48% of indi-
viduals), stable slow progression (Extended Data Fig. 7e, 17.38%), 
unstable slow progression (Extended Data Fig. 7f, 32.98%) and 
unstable medium progression (Extended Data Fig. 7d, 30.82%). As 
might have been expected, some types of progression were associ-
ated with specific sites of onset. Clusters with fast sigmoidal progres-
sion have the highest percentage of individuals with bulbar onset 
(30.14% of individuals), while those with stable slow progression 
have the highest percentage of individuals with limb onset (76.97%) 
(Supplementary Table 8).

Overall, the MoGP model promotes the ability to learn these 
complex disease progression trajectories better than currently used 
clinical models, while stratifying patients to reveal common pat-
terns of disease.
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Fig. 3 | Evaluating robustness of cluster assignments with sparse datasets. a,c, MoGP, LKM and SM were trained on interpolated data and RMSE was 
calculated between withheld data and the mean predicted trajectory. b,d, Models were trained on right-censored data. P values were calculated with 
a Wilcoxon signed-rank one-sided test. The box plot represents the interquartile range around the mean; whiskers indicate the proportion (1.5) of the 
interquartile range past the low and high quartiles to extend the plot whiskers. Points outside the whisker range represent outlier samples. Number of 
patients evaluated: a, n = 1,327 patients for all comparisons; b, 0.25 yr, n = 2,786; 0.5 yr, n = 2,465; 1 yr, n = 1,379; 1.5 yr, n = 261; 2 yr, n = 135; c, n = 228 for all 
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Evaluating the robustness of the clusters to sparse data. As clinical 
data for ALS patients are often incomplete or sparse, we sought to 
evaluate MoGP performance in these settings. We tested robustness 
using PRO-ACT, which is the largest of our sources and is a com-
pendium of data from several clinical trials. We also tested robust-
ness using data from CEFT, which is a small clinical cohort within 
PRO-ACT that may be more representative of common clinical set-
tings. We compared MoGP’s performance against LKM and SM.

We first evaluated the model’s ability to recreate randomly with-
held data points (‘interpolation’). Across all interpolated tests for 
PRO-ACT, we found that the clusters identified by MoGP had lower 
reconstruction error than the LKM (Fig. 3a, P ≤ 1 × 10−4), and a 
lower error than the SM when 50% and 75% of training data are 
included (Fig. 3a, P ≤ 1 × 10−3). These trends persisted when com-
pared with CEFT (Fig. 3c).

One of the most common uses for trajectory modeling is to pre-
dict future ALSFRS-R scores. We therefore evaluated the model’s 
ability to predict future ALSFRS-R scores for patients with right-cen-
sored data (‘prediction’). In clinical trials, these predictions are often 
made with the SM. For PRO-ACT, when only three or six months of 
data from baseline were provided, the SM and LMK were the most 
accurate (Fig. 3b). However, when one or more years of training 
data were provided, the MoGP model outperformed the LKM and 
SM (Fig. 3b, P ≤ 1 × 10−2, except for 1.5 yr, where P = 1.34 × 10−1 for 
SM), and more accurately predicted future disease progression by 
more than 0.22, 0.41 and 1.28 ALSFRS-R points at 1, 1.5 and 2 yr 
respectively. This trend was strengthened in CEFT, in which six 

months of training data were sufficient to see an improvement in 
progression forecasting (Fig. 3d, P ≤ 1 × 10−1).

For the majority of comparisons, the MoGP identified fewer 
clusters per mixture model than the SM or LKM, indicating that the 
lower reconstruction error was not due to overfitting of the cluster 
assignments (Supplementary Fig. 1).

Transferring trajectories across study populations. Because ALS 
is heterogeneous and characteristics of study populations can differ 
considerably, it is important to test whether trajectory models cap-
ture patterns that are consistent across populations. To answer this 
question, we trained MoGP on a large database (‘reference model’) 
and used it to predict patient trajectories in other study populations 
that varied in data collection frequency and follow-up period. We 
benchmarked the MoGP results against models in which both the 
test and training sets were derived from the same study population 
(‘study-specific models’). The study-specific models allow us to 
evaluate possible overfitting of the reference model. If the reference 
model was overfit, we would expect it to have a much higher error 
than the study-specific models.

We found that the reference model, trained on PRO-ACT, dem-
onstrated strong performance on external datasets, indicating that 
the trajectory clusters are not overfit to the reference model data 
(Fig. 4a). Importantly, we found that for all test datasets the reference 
model outperformed the study-specific models (Fig. 4b, P = 0.0312 
for AALS, CEFT, EMORY; P = 0.0625 for NATHIST). AALS had the 
lowest error when the reference model was used (2.16 ALSFRS-R 
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points), followed by CEFT (2.25), EMORY (2.32) and NATHIST 
(2.59) (Fig. 4b). These errors were similar to the baseline error  
(1.88 ALSFRS-R points) when the reference model was tested on the 
held-out data from PRO-ACT, the study on which it was trained. 
We additionally benchmarked the model against a reference model 
for which the cluster labels were randomly shuffled. This random-
ized control had a mean error of 11.74 ALSFRS-R points, which was 
much higher than the errors of the reference models. Given that 
CEFT is a subset of PRO-ACT, it is interesting that the CEFT study-
specific model had a higher error than its reference model coun-
terpart; these results suggest that the larger size of the PRO-ACT 
dataset may allow it to capture trajectories more accurately. The ref-
erence model’s ability to outperform all of the study-specific models 
is strong evidence that the trajectory patterns identified by MoGP 
are transferable across ALS study populations.

Corresponding survival outcomes with trajectory clusters. Next, 
we evaluated if the MoGP clusters, which were trained only on 
ALSFRS-R data, were able to reflect the duration of patient survival 
from symptom onset to death. The results of the Kaplan–Meier 
analysis are presented in Fig. 5. Some clusters (Fig. 5c,e) reflected 
longer survival durations, with very few deaths recorded, while 
other clusters reflected shorter durations. For example, cluster D 
had a median survival of 2.90 yr from symptom onset, correspond-
ing to faster progression (Fig. 5d,i). Of all pairwise combinations 
of clusters, 63.40% corresponded to differential survival outcomes 
when MoGP was used. By contrast, when LKM was used 50.99% 
of pairwise combinations of clusters corresponded to differential 
survival outcomes (P < 0.05). These results demonstrate that incor-
porating nonlinearity improves the correspondence of clusters to 
survival outcomes and provides evidence that these progression 
clusters are clinically relevant.

Characterizing patterns of decline in alternative ALS measures. 
In addition to ALSFRS-R scores, there are other important clinical 
metrics that can be used to monitor ALS disease progression. One 
is forced vital capacity, which is a spirometer-based measure of lung 
function and has been used as an indicator of survival and disease 
progression38. Furthermore, while the ALSFRS-R total is commonly 
used as an aggregate measure, its component subscores measuring 
fine motor, gross motor, bulbar and respiratory function can also 
be analyzed to identify subscore-specific patterns. When we applied 
MoGP to forced vital capacity and ALSFRS-R subscores from PRO-
ACT, we saw that the nonlinearity persisted in these domains. The 
nonlinear trajectories were particularly pronounced for forced vital 
capacity and bulbar function (Fig. 6).

A key advance of this work is the identification of clusters of 
patients, which can be used to investigate genetic or environmen-
tal causes that may underlie ALS progression. For instance, the 
C9orf72 repeat expansion is the most common of the known causes 
of ALS, and it is associated with faster-progression ALS, as indi-
cated by reduced survival39,40. However, even among patients who 
share this common genetic cause of ALS, there is some evidence of 
uncharacterized heterogeneity in ALS progression patterns41. As an 
example use-case, we asked if MoGP can be used to stratify patients 
who carry this repeat expansion. We analyzed data from AALS, a 
study population with both clinical and molecular data available. 
The patients with the C9orf72 repeat expansion did not correspond 
to a single cluster, supporting the hypothesis of heterogeneous pro-
gression within this group. As more data accumulate, such analyses 
could aid in the search for genetic or environmental variables that 
modify the aggressiveness of C9orf72.

Revealing patterns in Alzheimer’s and Parkinson’s endpoints. 
The MoGP approach can be applied to functional rating scales that 
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are widely used in other neurodegenerative diseases. We applied 
MoGP to the Alzheimer’s Disease Assessment Scale—Cognitive 
Subscale (ADAS-Cog-13 (refs. 42,43). The model showed a range of 
disease progression patterns, with varying severities of progression 
(Extended Data Fig. 8a and Supplementary Fig. 5). The majority 
of the largest clusters showed linear trajectories, in which the first-
year slope appropriately captured later progression; clusters E and 
H, while largely linear, deviate from the first-year slope, showing 
counterexamples to this trend. It is noteworthy that the clusters 
varied substantially in the rates of conversion of mild cognitive 
impairment (MCI) to Alzheimer’s disease. Ninety percent of those 
in cluster F had an MCI diagnosis at baseline, compared with 5.26% 
in cluster G (Supplementary Table 9).

Similarly to ALS and Alzheimer’s disease, Parkinson’s disease 
is heterogeneous in its symptom presentation and progression, 
which creates challenges in therapeutic discovery. Unlike ALS 
and Alzheimer’s disease, there are widely used medications for 
Parkinson’s disease that can provide symptomatic relief, although 
they do not slow or stop the progression of the disease44. We char-
acterized patterns in motor decline by applying MoGP to Part III 
of the Movement Disorder Society—Unified Rating Scale (MDS-
UPDRS)45 using only data from the ‘off state’, that is, when not 
affected by medications. MoGP identified a number of progression 
trajectories (Extended Data Fig. 8b and Supplementary Fig. 6), with 
some showing stability of motor scores (clusters C, F), while others 
showed clear motor function decline (clusters A, B, D).

Interesting trends emerged from this analysis. Over 90% of 
individuals in clusters with an unstable slow progression pattern 
(Supplementary Fig. 8 and Supplementary Table 10) had tremor-
dominant (TD)46 Parkinson’s disease, as opposed to postural insta-
bility/gait difficulty (PIGD). In contrast with previous studies of the 
linearity of MDS-UPDRS scores47, our results also point to nonlin-
ear complexity in some clusters (clusters C, E, G) (Extended Data 
Fig. 8b). These analyses demonstrate that MoGP’s flexibility enables 
it to characterize long-term heterogeneity in time-series metrics in 
a number of diverse clinical settings.

Discussion
The improved performance of an MoGP model over the slope and 
linear kernel models indicates that linear models are insufficient to 
capture the heterogeneity in ALS disease progression. While some 

patients do indeed have linear trajectories, a substantial portion of 
patients have nonlinear trajectories. Our work also finds that, while 
a simple parametric nonlinear model—a two-parameter sigmoid—
is better than a linear model, it still fails to capture the full range 
of patient trajectory patterns, motivating the use of non-parametric 
models that can capture both linear and nonlinear trajectories.

Previous work has suggested that the functional cliff patterns 
seen here may be a result of inconsistencies in the ALSFRS-R or 
issues related to the ordinal scale used in ALSFRS-R as opposed 
to a linearly weighted interval scale48,49. However, the consistency 
of MoGP-identified patterns across different study populations 
suggests that the patterns are not the result of deficiencies in the 
ALSFRS-R. Critically, we also observed nonlinear patterns in vital 
capacity scores, which are measured independently of ALSFRS-R 
scores. These findings support the view that nonlinearity is reflec-
tive of changes in patient function and not problems in measure-
ment. These findings also have implications for the analysis of 
clinical trials, many of which use ALSFRS-R and vital capacity met-
rics as primary or secondary endpoints. In many trajectory clusters, 
functional cliffs or sigmoidal patterns in disease progression may 
obscure the detection of therapeutic efficacy if linear models are 
used. Our results support accounting for nonlinearity when evalu-
ating ALS clinical trial efficacy, with particular salience for clinical 
trials that are 1 yr in duration or longer.

Our work also demonstrates how existing clinical databases 
in ALS can be leveraged to enable the characterization of disease 
progression in sparse datasets from different study populations. A 
MoGP model trained on the PRO-ACT database accurately pre-
dicted trajectories for clinical datasets from AALS, EMORY, CEFT 
and NATHIST datasets. The transferability of MoGP-identified 
clusters across the datasets indicates that the trajectory cluster pat-
terns are robust to batch effects due to clinician or site differences, 
and may reflect underlying disease processes. One of the proper-
ties of the Dirichlet process model underlying MoGP clustering is 
that it will naturally scale the number of identified clusters within 
a given dataset depending on the number of samples in that data-
set; we can use a reference model on a clinical cohort of any size. 
This non-parametric property of the model underlies the differ-
ence in the total number of clusters found in the varying datasets. 
Conversely, when it is useful to analyze fewer clusters the trajecto-
ries can easily be grouped together on the basis of their mean slope 
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and length scale, revealing dominant modes of disease progression. 
The identification of these clusters creates an opportunity to search 
for molecular, environmental or other factors that may modify dis-
ease progression.

As in many clinical studies, the datasets and therefore the pro-
gression patterns in this analysis are influenced by both selection 
bias and attrition bias. Selection bias refers to the sample of the 
population that is included in each study. Studies such as AALS, 
which require enrollment and consent to undergo additional 
monitoring, tend to be biased towards slower-progressing ALS. 
The EMORY dataset, which has a high percentage of enrollment 
from the clinic, is likely to be more reflective of a clinical popu-
lation, although it reflects a group of patients with higher rates of 
progression on average. Overall though, observational studies tend 
to have less standardized frequencies of data collection and sparser 
measurements. On the flip side, clinical trial datasets typically col-
lect extensive longitudinal data, but because of enrollment criteria 
can be skewed towards faster-progression individuals. The varia-
tion in ages of onset and prevalence of sites of onset differ across 
clinical cohorts, which can indicate additional potential selection 
biases. Other variables that can be used to evaluate selection bias 
but were partially missing or unavailable across our studies include 
diagnostic delay, forced vital capacity, frontotemporal dementia and 
C9orf72 status. Attrition bias also plays a strong role in ALS datas-
ets, given the rapid pace of disease progression, with patient moni-
toring becoming increasingly difficult in late-stage disease; this bias 
may particularly affect the tail end of the identified trajectory pat-
terns. Given the large sample size in our study, and the consistency 
of the patterns across datasets, we expect that we are sampling the 
clinical population as broadly as possible, although future work will 
involve determining the extent to which these trajectories remain 
consistent in new datasets.

Ultimately, by identifying clusters of patients who have simi-
lar disease progression trajectories, these models could be used to 
identify molecular correlates that may be associated with ALS pro-
gression subtypes. While this work focuses on ALSFRS-R and vital 
capacity, the field of ALS has identified a growing number of molec-
ular biomarkers and clinical metrics in which progression is poorly 
understood50,51. This paper points to the complexity of disease pro-
gression in ALS and the necessity of more accurately accounting 
for heterogeneous trajectory patterns in clinical trial models and 
research studies.

Methods
Study populations. ALS data in this study were collected from five cohorts: PRO-
ACT, CEFT, AALS, EMORY and NATHIST (Supplementary Tables 1 and 2). All 
scores used for this analysis are clinician reported. The populations varied in size, 
with PRO-ACT having the largest total number of participants (2,923 participants 
with at least three ALSFRS-R visits recorded). The populations differed in the 
median number of months followed (between 11 and 17 months) and the median 
frequency of clinical visits (between four and nine visits). The median slope 
between the populations also varied, with CEFT and EMORY having the fastest-
progression populations (−0.84 and −0.89 ALSFRS-R points/month, respectively), 
and AALS having the slowest-progression population (−0.55 ALSFRS-R points/
month). CEFT had a median of 16.80 months of follow-up, while PRO-ACT had a 
median of 11.95 months, indicating that CEFT participants likely comprise some of 
the longest subject records in PRO-ACT. The differences between the populations 
allowed us to measure the robustness of our model to data collection methods, 
frequency of clinical visits and duration of follow-up.

Modeling approach. We characterize disease progression in ALS using a 
framework for identifying trajectory patterns from longitudinal data. While 
previous work on disease progression modeling has focused on patient-specific 
prediction models16,52,53, a critical advance of this work is the characterization 
of distinct and large trajectory clusters. Furthermore, we provide a principled 
approach to characterizing the shapes of disease progression patterns in ALS, 
which leverages Bayesian non-parametric methods to minimize the number of 
assumptions that are required for regression models. We show that this method 
can flexibly be applied to a number of functional clinical measures for progressive 
diseases. Each component of the model is detailed further below. Further 

details, including the mathematical specification of the model, can be found in 
Supplementary notes.

The modeling approach of clustering over temporal progression patterns 
has been shown to improve the characterization of disease progression in other 
conditions. For example, Peterson et al. demonstrated the use of an autoregressive 
Gaussian process model for predicting metrics of Alzheimer’s progression54; 
however, the model made a fundamentally different assumption about the 
structure of the data—that there is a single global progression type, and that 
each patient follows a noisy version of this global progression type—which is 
an assumption that does not capture the full heterogeneity of ALS phenotypes. 
Furthermore, the model requires fixed time intervals of visits, which are not 
available in many clinical ALS datasets54. Zhao et al. present a related clustering 
approach in multiple sclerosis, although their model relies heavily on prior 
domain knowledge on how to group patients into subgroups, which has not as yet 
been clearly defined in ALS55. Other models, such as additive Gaussian process 
regression56, can be used to characterize patterns in time-series data, although they 
lack the ability to stratify patients into disease subtypes.

Gaussian process regression. Gaussian process regression allows the identification 
of nonlinear trajectory patterns while making minimal assumptions about the 
shape of the trajectory functions27,28. A Gaussian process is specified by a mean 
function and a covariance kernel. Because we expect ALS trajectories to be smooth 
functions with no discontinuities, our MoGP model uses a squared exponential 
kernel. The squared exponential kernel has two parameters: the signal variance, 
which determines the average distance of the function from the mean, and 
the length scale, which specifies the smoothness of the function. Each of these 
parameters is determined during the learning phase using the training data.

Monotonic inductive bias. Because ALS trajectories are expected to decline over 
time, we use a negative linear function in the Gaussian process models of MoGP. 
To further encourage declining trajectories, we modify the Dirichlet process 
clustering algorithm, such that an individual can only be placed in a cluster if their 
score at their initial visit is not substantially higher than the mean function of the 
current cluster at that point. We also impute an onset-anchor value, a maximum 
score of a clinical metric assigned to the date corresponding to symptom onset, 
which has been previously shown to improve prediction in ALS trajectories37.

Dirichlet process clustering. Dirichlet process mixtures29,30 can be used to identify 
clusters in data without needing to specify an expected number of clusters in 
advance. This unsupervised learning model begins by assuming that an infinite 
number of clusters can exist, and then narrows its prediction to a limited 
number of components best supported by the observed data. In our case, each 
mixture component is a function drawn from a Gaussian process. The resulting 
model clusters patient trajectories by probabilistically assigning them to those 
components that best explain them. The number of patients in each cluster is also 
learned from the model, and clusters can differ in size from each other. Through 
this data-driven approach, the algorithm can learn clusters of ALS patients who 
share disease progression patterns. The method can also predict the cluster 
membership and the disease progression pattern of a participant not included in 
the model, and provide an estimate of the confidence of this prediction.

Model evaluation. Evaluating trajectory nonlinearity. We evaluated how 
generalizable a linear model trained in the first year of disease progression is 
to subsequent data points, by calculating an anchored first-year slope. This 
was computed as the following: (48 − cluster mean function at 1 yr)/time from 
symptom onset. Anchoring indicates that a score of 48 (the maximum of the 
ALSFRS-R scale) is imputed at the time of symptom onset37. We compared our 
MoGP model against two benchmark linear models: an anchored slope model 
(SM), which is patient specific, and a mixture of Gaussian processes model with 
a linear kernel (LKM), which clusters patients using a linear parametric model. 
Additionally, to evaluate the extent to which a nonlinear parametric model 
represents ALS progression, we compared our model against a patient-specific two-
parameter sigmoidal model (SG)20.

Because we are proposing the use of a data-driven model, we aimed to be 
as conservative as possible in removing patients from the dataset so as to not 
introduce additional selection bias. For this analysis, participants were excluded 
from the model if fewer than three complete ALSFRS-R visits were recorded, the 
first visit was more than 7 yr from symptom onset or an increase of more than six 
points in ALSFRS-R between consecutive visits was recorded (Supplementary  
Table 1). The ALSFRS-R is an updated version of the previously used ALSFRS 
metric, and includes additional questions measuring dyspnea, orthopnea and 
respiratory insufficiency6. The ALSFRS-R measure was used here because it is the 
current standard in clinical trial analysis12–14. Seven years was selected as the point at 
which longitudinal data became sparse. Six ALSFRS-R points was selected because a 
jump such as this was unlikely to be seen unless there was a data-entry error.

For each model, the RMSE between a participant’s measured scores and 
their predicted cluster mean function were calculated. The RMSE was compared 
between the models; a lower RMSE indicates reduced error in that model and 
better model performance.
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Robustness to sparse data. We simulated sparsity by withholding data and assessed 
the model’s ability to perform two tasks: (1) interpolation of ALSFRS-R scores 
for a patient with randomly withheld data points, and (2) forecasting future 
ALSFRS-R disease progression for patients with right-censored data. We tested 
this using PRO-ACT and CEFT. To have sufficient longitudinal measurements, 
for interpolation experiments we only included participants with ten or more 
longitudinal ALSFRS-R visits, and for prediction experiments we only included 
participants with four or more visits (Supplementary Table 7).

The reconstruction error for each participant was calculated using the 
RMSE between the original withheld data points and predicted values from the 
mean function for the participant’s trajectory cluster. This was done across all 
interpolated tests, in which 25%, 50% and 75% of clinic visits per patient were 
provided as training data, with selections randomly interspersed across visits. We 
additionally evaluated the ability of MoGP to predict future progression by using 
right-censored data with varying numbers of training data (including visits within 
0.25, 0.5, 1, 1.5 and 2 yr since baseline visit).

Model generalizability. To evaluate whether clusters derived from one study 
population could be used to model external study populations, we trained a 
reference model and evaluated the transferability of this model to unseen ALS 
patient data. We predicted the cluster membership for each participant, and 
calculated the RMSE between the participant ALSFRS-R scores and the mean 
function of their predicted cluster.

We split all of our study populations into test and training datasets (60% train, 
40% test; repeated across five randomly split test–train datasets). For our reference 
MoGP model, we used the training data from PRO-ACT, which was chosen 
because it contained the largest number of samples and is publicly available. For 
AALS, EMORY, CEFT and NATHIST, we used the training data from each study 
to train a separate model (study-specific model). For each study’s remaining test 
data, we predicted the trajectory function using the reference model and the study-
specific model. To approximate the minimum error expected, we calculate the 
reconstruction error when the reference model is applied to the test set from PRO-
ACT, the same study on which it is trained (‘baseline error’). We also benchmark 
against the error when cluster labels on the reference model are randomly shuffled 
(‘random cluster assignment’).

Relationship to alternative outcome measures. We calculated the Kaplan–Meier 
survival probability curves for the largest MoGP clusters identified from PRO-
ACT. If no death was recorded, the participant was marked as censored using the 
latest date of a recorded ALSFRS-R score.

We trained MoGP models on forced vital capacity percentages (calculated as 
the maximum of three trials) and ALSFRS-R subscores (fine motor, gross motor, 
respiratory and bulbar domains). A maximum score of 100% was used for the 
forced vital capacity percentage model, and a maximum score of 12 was used for 
ALSFRS-R subscores.

We applied our method to ADAS-Cog-13 (refs. 42,43) from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI57). Individuals with a confirmed 
Alzheimer’s disease diagnosis at any point of the data collection were included in 
the model; this also included individuals who began the study with MCI and then 
converted to an Alzheimer’s disease diagnosis. To ensure sufficient longitudinal 
data, individuals with fewer than three longitudinal visits were excluded, with a 
total of 331 individuals included in the model. The correlation between the learned 
clusters and MCI to Alzheimer’s disease conversion was then calculated.

We also applied our method to the MDS-UPDRS45 scale from the Parkinson’s 
Progression Markers Initiative dataset58. In contrast to ALS and AD, for Parkinson’s 
disease there are medications that can mitigate symptoms although not long-
term progression of the disease44. Because we were interested in characterizing 
progression patterns when not affected by medications, we focused on 
measurements of the MDS-UPDRS Part III in the off state, which is defined as 
either before the initiation of medication or after abstaining from medication for 
at least 12 h. Individuals with fewer than three longitudinal off-medication scores 
or a first visit more than 10 yr from symptom onset were excluded, with a total of 
397 individuals included in the model. We calculated the correlation between the 
clusters and Parkinson’s disease subtypes of PIGD and TD, with the designation of 
PIGD/TD calculated following the method previously described by Stebbins et al.46.  
For the purpose of analyzing the Parkinson’s disease subtype correlation with 
cluster membership, we focused on individuals with a stable PIGD/TD designation 
(one that does not change over the course of the disease).

Statistics and reproducibility. To compare the cumulative distribution function of 
the RMSE between a participant’s predicted cluster membership and cluster model 
mean, P values were calculated with Kolmogorov–Smirnov two-sample two-sided 
tests. For interpolation and prediction experiments, to determine if a model 
error had decreased between the LKM or SM and the MoGP, a Wilcoxon signed-
rank one-sided test was used. To assess trajectory consistency between reference 
models and study-specific models, a Wilcoxon signed-rank one-sided test was 
used. To calculate survival curves, a Kaplan–Meier estimator was used, with P 
values calculated via the logrank test with FDR correction. P values for cluster 
correlations were calculated using a hypergeometric test.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
A pretrained reference model for this study can be downloaded here: http://
fraenkel.mit.edu/mogp
Source Data for Figs. 2–4 and Extended Data Fig. 7 are available with this 
manuscript. Source Data for Fig. 1 and Extended Data Fig. 2 are available as 
a Python object from http://fraenkel.mit.edu/mogp. Other source data are 
unavailable at this time because they contain patient-level clinical data; however, all 
figures can be generated using the code provided, after downloading the datasets 
listed below.
Clinical data for this study can be obtained from the following sources.
AALS (ClinicalTrials.gov identifier NCT02574390) is available for download in 
the Answer ALS data portal (data.answerals.org). PRO-ACT can be downloaded 
from the PRO-ACT database (https://nctu.partners.org/ProACT). CEFT 
(ClinicalTrials.gov identifier NCT00349622) can be downloaded from National 
Institute of Neurological Disorders and Stroke (NINDS) (https://www.ninds.nih.
gov/Current-Research/Research-Funded-NINDS/Clinical-Research/Archived-
Clinical-Research-Datasets). EMORY is restricted access at this time due to 
containing information that could compromise patient privacy, but available with 
permission from Dr. Jonathan Glass (jglas03@emory.edu) for legitimate research. 
Response to requests will be provided within two weeks, all data provided will 
be fully de-identified, a DUA will need to be established and the source data 
will need to be acknowledged in any publications. NATHIST is available from 
the ALS/MND Natural History Consortium (https://www.data4cures.org/
requestingdata) with a summary of proposed data use, data elements requested 
and publication intent. The Parkinson’s Progression Markers Initiative can be 
downloaded, with a data use agreement, online application and compliance with 
publication policy (https://www.ppmi-info.org/access-data-specimens/download-
data). Applications for data access are reviewed by the Data and Publications 
Committee within one week of receipt. ADNI can be downloaded through the 
LONI Image and Data Archive (https://adni.loni.usc.edu/data-samples/access-
data/#access_data). Access is contingent on adherence to the ADNI Data Use 
Agreement and its publication policies. The application process includes the 
acceptance of a data use agreement and submission of an online application form. 
The application must include the investigator’s institutional affiliation and the 
proposed uses of the ADNI data. ADNI data may not be used for commercial 
products or redistributed in any way.

Code availability
We provide the Python code for the MoGP framework as well as a pretrained 
reference model that researchers can use to generate predictions of cluster 
membership and trajectory function from input patient data. We also provide a 
pip-installable Python package associated with this work (mogp). All code used 
for data processing, modeling and figure generation can be found at https://github.
com/fraenkel-lab/mogp. Code is also deposited on Zenodo (license BSD 3-Clause; 
https://doi.org/10.5281/zenodo.6744399)59.
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Extended Data Fig. 1 | Model Workflow. Input, training, and optimization of the Mixture of Gaussian Processes model.

Nature Computational Science | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci


Articles NATurE COmPuTATiOnAL SciEncEArticles NATurE COmPuTATiOnAL SciEncE

Extended Data Fig. 2 | Clusters spanning 90% of all individuals in PROACT. The first year slope is calculated as the difference between 48 and the mean 
cluster score one year after symptom onset, divided by the time from symptom onset. N indicates the number of ALS patients in each cluster. Shaded area 
indicates 0.95 confidence interval.
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Extended Data Fig. 3 | Clusters spanning 90% of all individuals in AALS. The first year slope is calculated as the difference between 48 and the mean 
cluster score one year after symptom onset, divided by the time from symptom onset. N indicates the number of ALS patients in each cluster. Shaded area 
indicates 0.95 confidence interval.
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Extended Data Fig. 4 | Clusters spanning 90% of all individuals in CEFT. The first year slope is calculated as the difference between 48 and the mean 
cluster score one year after symptom onset, divided by the time from symptom onset. N indicates the number of ALS patients in each cluster. Shaded area 
indicates 0.95 confidence interval.
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Extended Data Fig. 5 | Clusters spanning 90% of all individuals in EMORY. The first year slope is calculated as the difference between 48 and the mean 
cluster score one year after symptom onset, divided by the time from symptom onset. N indicates the number of ALS patients in each cluster. Shaded area 
indicates 0.95 confidence interval.
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Extended Data Fig. 6 | Clusters spanning 90% of all individuals in NATHIST. The first year slope is calculated as the difference between 48 and the mean 
cluster score one year after symptom onset, divided by the time from symptom onset. N indicates the number of ALS patients in each cluster. Shaded area 
indicates 0.95 confidence interval.
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Extended Data Fig. 7 | Dominant ALS progression patterns, identified using length-scale and negative mean function slope. Length-scale indicates 
trajectory stability; negative mean function slope corresponds to rate of progression. Learned model parameters from the PRO-ACT reference model are 
k-means clustered (Left plot; k=6, marker size corresponds to cluster size), with clusters ≥ N=5 visualized, and percentage of individuals that fall within 
each of the trajectory patterns are labeled (Right plots).
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Extended Data Fig. 8 | Identifying progression clusters from Alzheimer’s and Parkinson’s clinical measures. Eight largest clusters are visualized. N 
indicates number of individuals in each cluster. The first year slope is calculated as: (mean cluster at one year – mean cluster score at initial value), divided 
by the time from the initial value.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software used to collect data. 

Data analysis We provide the python code for the MoGP framework as well as a pre-trained reference model that researchers can use to generate 
predictions of cluster membership and trajectory function from input patient data. We also provide a pip-installable Python package 
associated with this work (mogp). All code used for data processing, modeling, and figure generation can be found at: https://github.com/
fraenkel-lab/mogp. Code also is deposited on Zenodo (License: BSD 3-Clause; https://doi.org/10.5281/zenodo.6744399). 
 
Python version and specific package versions used for analysis listed below: 
Python: 3.7.3 
Packages: 
joblib: 1.0.0 
numpy: 1.19.4 
pandas: 1.3.1 
openpyxl: 3.0.5 
sas7bdat: 2.2.3 
seaborn: 0.11.1 
statannot: 0.2.3 
lifelines: 0.25.7 
statsmodels: 0.12.2 
mogp: 0.1.1 
jupyter: 1.0.0 
Gpy: 1.9.9 
scipy: 1.7.3 
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scikit-learn: 0.21.1 
sklearn: 0.0 
matplotlib: 3.1.1 
 
Computational environments: Model run on Azure and compute cluster.  
Azure specifications: Standard F32s_v2 machines (32 vCPUs, 64 Gb Mem) 
Cluster: 16 cores, 1 node, 10GB memory

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

A pre-trained reference model for this study can be downloaded here: http://fraenkel.mit.edu/mogp 
 
Source Data for Figures 2-4 and Extended Data Figure 7 are available with this manuscript. Source Data for Figure 1 and Extended Data Figure 2 are available as a 
Python object from http://fraenkel.mit.edu/mogp. Other source data are unavailable at this time due to containing patient-level clinical data; however, all figures 
can be generated using the code provided, after downloading the datasets listed below. 
 
Clinical data for this study can be obtained from the following sources: 
AALS (ClinicalTrials.gov Identifier: NCT02574390) is available for download in the AnswerALS data portal (data.answerals.org). PRO-ACT can be downloaded from the 
PRO-ACT database (https://nctu.partners.org/ProACT). CEFT (ClinicalTrials.gov Identifier: NCT00349622) can be downloaded from National Institute of Neurological 
Disorders and Stroke (NINDS) (https://www.ninds.nih.gov/Current-Research/Research-Funded-NINDS/Clinical-Research/Archived-Clinical-Research-Datasets). 
EMORY is restricted access at this time due to containing information that could compromise patient privacy, but available with permission from Dr. Jonathan Glass 
(jglas03@emory.edu) for legitimate research. Response to request will be provided within two weeks, all data provided will be fully de-identified, a DUA will need to 
be established, and the source data will need to be acknowledged in any publications. NATHIST is available from the ALS/MND Natural History Consortium (https://
www.data4cures.org/requestingdata) with a summary of proposed data use, data elements requested, and publication intent. PPMI can be downloaded, with a 
data use agreement, online application, and compliance with publication policy (https://www.ppmi-info.org/access-data-specimens/download-data). Applications 
for data access are reviewed by the Data and Publications Committee within one week of receipt. ADNI can be downloaded through the LONI Image and Data 
Archive (https://adni.loni.usc.edu/data-samples/access-data/#access_data). Access is contingent on adherence to the ADNI Data Use Agreement and their 
publication policies. The application process includes the acceptance of a Data Use Agreement and submission of an online application form. The application must 
include the investigator’s institutional affiliation and the proposed uses of the ADNI data. ADNI data may not be used for commercial products or redistributed in 
any way. 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Analysis was conducted using only de-identfied datasets from previously collected clinical cohorts. Data for this analysis was obtained from 
four large study populations. Three observational ALS studies were used: Answer ALS (N=456 patients; NCT02574390) the Emory ALS Clinic 
database (N=399 patients), the ALS/Natural History Consortia (N=907), and two overlapping clinical trial datasets: The Pooled Resource Open-
Access ALS Clinical Trials (N=2923 patients) and the Clinical Trial of Ceftriaxone in ALS (N=476; NCT00349622). 

Data exclusions Data was preprocessed prior to analysis to select participants with consistent, longitudinal data available. Participants were excluded from the 
model if fewer than three complete ALSFSR-R visits were recorded, the first visit was more than seven years from symptom onset, or an 
increase of greater than six points in ALSFRS-R between subsequent visits was recorded. These criteria were pre-established.

Replication We conducted extensive analysis to evaluate the robustness of our results. These included comparing model results across heterogeneous 
clinical cohorts, withholding data and evaluating the accuracy of reconstructing that data, and using test/train sets to evaluate model 
transferability between datasets. Our model demonstrates strong robustness across these settings, and these results are detailed in the 
manuscript.

Randomization Because our analysis does not compare a treatment and control group, randomization is not relevant to this study. For controlling for 
covariates: by including multiple large clinical cohorts, we were able to evaluate model performance across common sources of covariates in 
clinical data, such as variations in rate of progression in each cohort, frequency of clinical visits, size of the clinical study, and clinical sites. For 
analysis using test/train datasets, the splits were randomly assigned.
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Blinding CEFT was a blinded study (neither participants nor study staff will knew which treatment a participant  received).  PRO-ACT is  a large database 
that aggregates anonymized clinical trial data, without disclosing explicit blinding information. The observational studies used here were not 
blinded to any particular therapy.
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