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The instantaneous reproduction number, denoted Rt at time t, 
is an important and popular temporal measure of the trans-
missibility of an unfolding infectious disease epidemic1. This 

parameter defines the average number of secondary infections 
generated by a primary one at t, providing a critical threshold for 
delineating growing epidemics (Rt > 1) from those likely to become 
controlled (Rt < 1). Estimates of Rt derived from surveillance data 
are widely used to evaluate the efficacies of interventions1,2 (for 
example, lockdowns), forecast upcoming disease burden3,4 (for 
example, hospitalizations), inform policy-making5 and improve 
public health awareness6.

The reliability of these estimates depends fundamentally on the 
quality and timeliness of the surveillance data available. Practical 
epidemic monitoring is subject to various errors or imperfections 
that can obscure or bias inferred transmission dynamics7. Prime 
among these are under-reporting and reporting delays, which can 
scale and smear Rt estimates, potentially misinforming public health 
authorities8,9. Under-reporting causes some fraction of infections to 
never be reported, while delays redistribute reports of infections 
incorrectly across time. The ideal data source for estimating Rt is 
the time series of new or incident infections, It.

Unfortunately, infections are difficult to observe directly and 
proxies such as reported cases, deaths, hospitalizations, prevalence 
and viral surveys from wastewater must be used to gauge epidemic 
transmissibility5,10. Each of these data streams provides a noisy 
approximation to the unknown It but with distinct and important 
relative advantages. We focus on the most popular ones: the epi-
demic curve of reported cases Ct at t, and that of death counts Dt, 
and investigate how their innate noise sources differentially limit Rt 
inference quality.

Ct records the most routinely available data, that is, counts of new 
cases11, but is limited by delays and under-reporting. Ascertainment 
delays smear or reorder the case incidence and may emerge from 
fixed surveillance capacities, weekend effects and lags in diagnos-
ing symptomatic patients (for example, the time from infection to 
a positive test)8,12. Delays may be classed as occurred but not yet 

reported (OBNR), when source times of delayed cases eventu-
ally become known (there delays cause right censoring of the case 
counts), or what we term never reported (NEVR), when source 
times of past cases are never uncovered13–15.

Case under-reporting or underascertainment strongly distorts 
the true, but unknown, infection incidence curve, altering its size 
and shape9,16. Temporal fluctuations in testing intensity, behavior-
based reporting (for example, by severity of symptoms)17, unde-
tected asymptomatic carriers and other surveillance bottlenecks can 
cause underascertainment or inconsistent reporting18,19. Constant 
reporting (CONR) describes the situation when the case detection 
fraction or probability is stable. We term the more realistic sce-
nario in which this probability varies appreciably with time variable 
reporting (VARR).

Dt counts newly reported deaths attributable to the pathogen 
being studied and is also subject to under-reporting and reporting 
delays, but with two main differences10. First, death reporting delays 
incorporate an extra lag for the intrinsic time it takes an infection 
to culminate in mortality (this also subsumes hospitalization peri-
ods). Second, apart from the under-reporting fraction of deaths, 
there is another scaling factor known as the infection–fatality ratio 
(ifr), which defines the proportion of infections that result in mor-
tality1,20. We visualize how the noise types underlying case and death 
curves distort infection incidence in Fig. 1.

Although the influences of surveillance latencies and underascer-
tainment fractions on key parameters, such as Rt, are known8,19,21,22 
and much ongoing work attempts to compensate for these noise 
sources10,23–25, there exists no formal framework for assessing and 
exposing how they inherently limit information available for esti-
mating epidemic dynamics. Most studies utilize simulation-based 
approaches (with some exceptions, for example, refs. 9,22) to character-
ize surveillance defects. While invaluable, these preclude generalizable 
insights into how epidemic monitoring shapes parameter inference.

Here we develop one such analytic framework for quantifying 
the information within epidemic data. Using Fisher information 
theory we derive a measure of how much usable information an  
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epidemic time series contains for inferring Rt at every time. This 
yields metrics for cross-comparing different types of surveillance 
time series, as we are able to explicitly quantify how under-reporting 
(both CONR and VARR) and reporting delays (exactly for OBNR 
with a tight upper bound for NEVR) degrade available information. 
As this metric only depends on the properties of surveillance (and 
not Rt or It), we extract simulation-agnostic insights into what are 
the least and most detrimental types of surveillance noise.

We prove for constrained mean reporting fractions and mean 
delays that it is preferable to minimize variability among report-
ing fractions but to maximize the variability of the reporting delay 
distribution such that a minority of infections face large delays but 
the majority possess short lags to notification. This proceeds from 
standard experimental design theory applied to our metric, which 
shows that the information embedded within an epidemic curve 
depends on the product of the geometric means of the reporting 
fractions and cumulative delay probabilities corrupting this curve. 
This central result also provides a non-dimensional score for sum-
marizing and ranking the reliability of (or uncertainty within) dif-
ferent surveillance data for inferring pathogen transmissibility.

Finally, we apply this framework to explore and critique a com-
mon claim in the literature, which asserts that death curves are more 
robust for inferring transmissibility than case curves. This claim is 
usually made for acute infectious diseases such as COVID-19 and 
pandemic influenza1,20, where cases are severely under-reported, 
with symptom-based fluctuations in reporting. In such settings it 
seems plausible to reason that deaths are less likely undercounted 
and more reliable for Rt inference. However, we compute our met-
rics using COVID-19 reporting rate estimates18,26 and discover few 
instances in which death curves are definitively more informative or 
reliable than case counts.

While this may not rule out the possibility of having a more reli-
able death time series, it elucidates and exposes how the different 
noise terms within the two data sources corrupt information and 
presents a methodology for exploring these types of questions more 
precisely. We illustrate how to compute our metrics practically using 
empirical COVID-19 and Ebola virus disease (EVD) noise distri-
butions and outline how other common data such as hospitaliza-
tions, prevalence and wastewater virus surveys conform to our 
framework. Hopefully the tools we develop here will improve quan-
tification of noise and information and highlight key areas where 
enhanced surveillance strategies can maximize impact.

Results
Methods overview. We summarize the salient points from Methods 
and outline the main arguments that underpin all subsequent 
Results sections. Our analysis is centered on the renewal model27, 
which is widely applied to describe the dynamics of epidemics 
of COVID-19, EVD, influenza, dengue, measles and many oth-
ers21. This model posits that It are Poisson (Pois) distributed with 
a mean that is the product of Rt and total infectiousness (Λt). Here 
Λt defines how past infections engender new ones on the basis of w, 
the generation time distribution of the pathogen. In equation (9) 
and Supplementary Table 1 we provide precise definitions of these 
variables (as well as others later in the text).

An important problem in infectious disease epidemiology is the 
estimation of Rt across the duration of an epidemic5. However, as 
infections cannot be observed, we commonly have to infer Rt from 
noisy proxies such as the time series of reported cases or deaths. 
These can be described by generalized renewal models that include 
terms for practical noise sources such as under-reporting and delays 
in reporting28. We define these models in equations (1) and (2) and 
detail the properties of various noise sources in Methods. Our aim 
is to understand and quantify how much information for inferring 
Rt, as a fraction of what would be available if infections were observ-
able, can be extracted from these proxies.

We pursue this aim by adapting concepts from statistical theory 
and information geometry. We first construct the log-likelihood 
function of the parameter time series Rτ

1 := {Rt : 1 ≤ t ≤ τ}, with τ as 
the present or last observation time and t scaled in units (for exam-
ple, weeks) so that each Rt can be assumed independent. This func-
tion is ℓ(Rτ

1) =
∑

τ
t=1 ℓ(Rt) with ℓ(Rt) := logP(It | Rt) computed from the 

Poisson distribution of the renewal model. Equation (10) results 
and admits the maximum likelihood estimates (MLEs) R̂t for all t 
as its maxima. The reliability of these MLEs is characterized by the 
Fisher information (FI) of Rτ

1 from the time series or curve of inci-
dent infections Iτ

1 := {It : 1 ≤ t ≤ τ}. We also often compute FI values 
under the robust transform Rt = 2

√
Rt , which has useful statistical 

properties29.
Larger FI values imply smaller asymptotic uncertainty around 

the MLEs30. We obtain FI(Rt), the FI of Rt, in equation (11) by evalu-
ating the average curvature of the log-likelihood function. We then 
formulate the total information, T(Iτ

1), as a product of FI(Rt) terms 
across t as equation (12). This follows from the independence of the 
Rt variables and is a measure of the reliability of the infection time 
series. It is also delimits the maximum possible precision around the 
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Fig. 1 | Under-reporting and delayed reporting noise. We simulate true 
infection incidence It over t (in days) from a renewal model (equation (9) 
with Ebola virus dynamics) with reproduction number Rt that switches 
from supercritical to subcritical spread due to an intervention. a, Under-
reported case curves (50 realizations, various colors) with reporting 
fractions sampled from the distribution P(ρt) for sample fraction ρt plotted 
in the inset (mean sample fraction is ρ̄). b, Delays in case reports (50 
realizations, various colors) from the distribution P(δx) for delay δx (in days) 
plotted in the left-hand inset (mean delay is δ̄). We also provide the true 
Rt as the right-hand inset (red). The main question of this study is how we 
quantify which of scenarios a or b incurs the larger loss of the information 
originally available from It, ideally without simulation.
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MLEs of Rt for any time series. Since Iτ
1 is often unobservable, T(Iτ

1) is 
generally not computable and is a theoretical maximum. However, 
our subsequent results circumvent this issue.

Using the models of equations (1) and (2), we employ this same 
recipe of constructing a log-likelihood and computing MLEs and 
FI values, but now for practical time series or data streams that are 
corrupted by under-reporting and delays. This yields equations 
(13)–(18), which contain the ingredients for deriving the total infor-
mation in case, death and any other incidence data that is related to 
Iτ
1 via a generalized renewal model (this includes prevalence, hospi-

talizations and virus abundance found in wastewater). We derive a 
key result for T(Cτ

1) in equation (3), showing exactly how case data 
Cτ
1 := {Ct : 1 ≤ t ≤ τ} cause a loss in Rt estimate reliability.

Building on this expression we develop metrics η(Cτ
1) and θ(Cτ

1) 
in equations (4) and (5), which effectively quantify T(C

τ

1)

T(Iτ
1)

 that is, the 
level of informativeness of case data relative to true infections. The 
smaller these metrics are, the more information is lost due to sur-
veillance noise. Importantly, these metrics are analytic, require no 
knowledge of Iτ

1 or the generation time distribution (both are diffi-
cult to observe) and are interpretable, since each noise type contrib-
utes a separate geometric mean term. Further, they play an integral 
role in defining the statistical complexity of the generalized renewal 
model describing that time series, as we find in equation (6).

Repeating the above recipe we derive analogous metrics for 
death data Dτ

1 := {Dt : 1 ≤ t ≤ τ}, by characterizing the ratio T(D
τ

1)

T(Iτ
1)

 in 
equations (7) and (8). We can similarly compute ratios for hospital-
izations, prevalence and viral wastewater data by inputting appro-
priate delay and under-reporting terms. We complete our results by 
including empirical estimates of case and death noise sources within 
our framework to compare T(C

τ

1)

T(Iτ
1)

 and T(D
τ

1)

T(Iτ
1)

 for COVID-19 and EVD 
and hence determine whether case or death data are likely more 
reliable for inferring Rτ

1.

Renewal models with noisy observations. We denote the empirically 
observed or reported number of cases at time step or unit t, subject to 
noise from both under-reporting and reporting delays, as Ct with Cτ

1 
as the epidemic case curve. This curve is obtained from routine out-
break surveillance and is a corrupted version of the true incidence Iτ

1 
(ref. 10), modeled by equation (9). These noise sources (see Methods 
for statistical descriptions) are parametrized by reporting fractions 
ρτ
1 := {ρt : 1 ≤ t ≤ τ} and a delay distribution δ := {δx: x ≥ 0}. Here 

ρt is the fraction of infections reported as cases at t and δx the prob-
ability of a lag from infection time to case report of x units.

We assume that these noise sources are estimated from auxil-
iary line-list or contact tracing data12,31. As a result, we can construct 
equation (1) as in ref. 25 (Methods). Note that if noise source esti-
mates are unavailable then Rτ

1 becomes statistically non-identifiable 
or ill-defined.

Ct ∼ Pois
( t
∑

x=1
δt−xρxΛxRx

)

. (1)

This noisy renewal model suggests that Ct (unlike It) contains partial 
information about the entire time series of reproduction numbers 
for x ≤ t as mediated by the delay and reporting probabilities. Perfect 
reporting corresponds to ρx = 1 for all x, δ0 = 1 (with all other δx = 0) 
and means Ct → It. Models (1) and (2) in Methods are obtained by 
individually removing noise sources from equation (1).

Other practical epidemic surveillance data such as the time 
series of new deaths or hospitalizations conform to the framework 
in equation (1) either directly or with additional effective delay 
and under-reporting stages20. The main one we investigate here is 
the count of new deaths (due to infections) across time, which we 
denote Dτ

1. The death curve involves a reporting delay that includes 
the intrinsic lag from infection to death. We let γ := {γx: x ≥ 0} rep-
resent the distribution of lag from infection to observed death and 
στ
1 := {σt : 1 ≤ t ≤ τ} be the fraction of deaths that is reported.

An important additional component when describing the chain 
from Iτ

1 to Dτ
1 is ifrt, which is the probability at t that an infection 

culminates in a death event10. Fusing these components yields as a 
model for Dt

Dt ∼ Pois
( t
∑

x=1
ifrxγt−xσxΛxRx

)

. (2)

In a later section we explain how analogs of equations (1) and (2) 
also fit other data streams such as hospitalizations and prevalence. 
Some studies1,32 replace this Pois formulation with a negative bino-
mial (NB) distribution to model extra variance in these data. In 
Supplementary Notes we show that this does not disrupt our sub-
sequent results on the relative informativeness of surveillance data, 
but the NB formulation is less tractable and unsuitable for extract-
ing generalizable, simulation-free insights.

Reliability measures for surveillance data. We analyze the infor-
mation in the generalized renewal models of equations (1) and 
(2) by computing the FI for each Rt or its transform Rt = 2

√
Rt  
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Fig. 2 | The information loss in under-reporting. We investigate the 
effective information metric (θ(Cτ

1 )) for VARR strategies with reporting 
fraction ρt drawn from Beta distributions with different shapes. Smaller 
values of θ(Cτ

1 ) indicate more substantial information losses. a, Changes 
in θ(Cτ

1 ) with the mean reporting probability ( ρ̄) and its variance var(ρt) 
(inset, where each color indicates the various schemes with a given ρ̄). 
The gray line (dashed) is the optimal CONR protocol. b, The Beta sampling 
distributions and their resulting var(ρt) and θ(Cτ

1 ) (inset). The most 
and least variable reporting strategies for a given ρ̄ are in blue and red, 
respectively.
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(see Methods for details). This is denoted FC(.) for case data, and 
as derived in Methods (equation (15)) allows us to obtain the total 
information, T(Cτ

1), contained in those data about the parameter 
time series Rτ

1 or Rτ
1 as a product across t of FC(.) terms. This total 

information, T(Cτ
1), relates inversely to the smallest joint uncer-

tainty around unbiased estimates of all our parameters33. As larger 
T(Cτ

1) implies reduced overall uncertainty, this is a rigorous mea-
sure of the statistical reliability of noisy data sources for inferring 
pathogen transmissibility.

We first consider the OBNR delay case under VARR reporting 
rates. Since the FI matrix under OBNR delays is diagonal, with each 
element given by equation (15), we can adapt equation (12) to derive

T(Cτ
1) =

τ
∏

t=1

√

FC(Rt) =

τ
∏

t=1

√

ρtFτ−tΛt. (3)

Here we have applied the Rt = 2
√
Rt  transformation to show that 

the total information in this noisy stream can be obtained with-
out knowing Rt. In the absence of this transform we would have 
∏τ

t=1

√

ρtFτ−tΛtR−1
t .

Since Cτ
1 is a distortion of the true infection incidence Iτ

1 we nor-
malize equation (3) by equation (12) to develop a reliability metric, 
η(Cτ

1) := T(Cτ
1)T(Iτ

1)
−1. This is given in the following equation and 

valid under both Rt and Rt.

0 ≤ η(Cτ
1) =

τ
∏

t=1

√

ρtFτ−t ≤ 1. (4)

We can relate this reliability measure to a fixed, effective report-
ing fraction, θ(Cτ

1), which causes an equivalent information loss. 
Applying equation (4), we obtain η(Cτ

1) =
√

θ(Cτ
1)

τ , which yields 
the following equation. Here, G(.) indicates the geometric mean of 
its arguments over 1 ≤ t ≤ τ.

θ(Cτ
1) =

τ
∏

t=1

τ
√

ρtFτ−t = G(ρt)G(Fτ−t). (5)

Equation (5) is a central result of this work. It states that the total 
information content of a noisy epidemic curve is independently 
modulated by the geometric mean of its reporting fractions, G(ρt)
, and that of its cumulative delay probabilities, G(Fτ−t). Moreover, 
equation (5) provides a framework for gaining analytic insights into 
the separate influences of both noise sources from different surveil-
lance data and for ranking the overall quality of these diverse data. 
For example, from the properties of geometric means, we know that 
G(.) is bounded by the smallest and largest noise terms across t. 
Importantly, equation (5) has no dependence on Λt, which is gener-
ally unknown and sensitive to difficult-to-infer changes in the gen-
eration time distribution34.

Equation (5) applies to OBNR delays exactly and upper bounds 
the reliability of data streams with NEVR delays (see Methods for 
derivation). Tractable results for NEVR delays are not possible and 
would necessitate numerical computation of Hessian matrices of 
− logP(Cτ

1 |Rτ
1) (we outline the log-likelihoods and other equations 

for a τ = 3 example in Supplementary Notes). However, we find that 
the equation (5) upper bound is tight for two elementary settings. 
The first is under a constant or deterministic delay of d, that is, 
δx=d = 1. Equation (1) reduces to Ct ~ Pois(ρt−dΛt−dRt−d). As each Ct 
only informs on Rt−d, OBNR and NEVR delays are the same and are 
corrected by truncation. Degenerate delays such as these can serve 
as useful elements for constructing complex distributions35.

The second occurs when transmissibility is constant or stable, 
that is, Rt = R for all t. This applies to inferring the basic reproduc-
tion number (R0) during initial phases of an outbreak5. We can sum 
equation (15) to obtain FC(R) =

∑τ

t=1 ρtFτ−tΛtR−1 for OBNR 
delays. We can calculate the FI for NEVR delays from equation 
(16), which admits a derivative ∂ℓ(R)

∂R =

∑τ

t=1 CtR−1 − Fτ−tρtΛt 
and hence an FI and MLE that are precisely equal to those for 
OBNR delays (derived in Methods). This proves a convergence in 
the impact of two fundamentally different delay noise sources and 
emphasizes that noise has to be contextualized with the complex-
ity of the signal to be inferred. Simpler signals, such as a station-
ary R that remains robust to the shifts and reordering of Iτ

1 caused 
by delays, may be notably less susceptible to fluctuations in noise 
probabilities.

Ranking noise sources by their information loss. The metric 
proposed in equation (5) provides a general framework for scor-
ing proxies of incidence (for example, epidemic case curves, death 
counts, hospitalizations and others) using only their noise probabil-
ities and without the need for simulations. We explore the implica-
tions of equation (5) for both understanding noise and ranking these 
proxies. The geometric mean decomposition allows us to separately 
dissect the influences of under-reporting and delays. We start by 
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applying experimental design theory36,37 to characterize the best and 
worst noise types for inferring effective reproduction numbers.

We consider G(ρt), the geometric mean of the reporting prob-
abilities across time. If we assume the mean sampling fraction 
ρ̄ =

1
τ

∑τ

t=1 ρt is fixed (for example, by some overall surveillance 
capacity) then we immediately know from design theory that 
ρ̄ = argmax

ρ
G(ρt). This means that of all the possible distributions 

of sampling fractions fitting that constraint, ρ, CONR with 
probability ρ̄ is the most informative38. This result supports earlier 
studies recognizing that CONR is preferred to VARR, although they 
investigate estimator bias and not information loss9,21.

Accordingly, we also discover that the worst sampling distri-
bution is maximally variable. This involves setting ρt ~ 1 for some 
time subset S such that 

∑

t∈S
ρt = τρ̄ with all other ρt ~ 0 (we use 

approximate signs as we assume non-zero sampling probabilities). 
Relaxing this constraint, equation (5) presents a framework for com-
paring different reporting protocols. We demonstrate these ideas 
in Fig. 2, where ρt ~ Beta(a, b), that is, each reporting fraction is a 
sample from a Beta distribution. Reporting protocols differ in (a, b) 
choices. We select 104 ρt samples from each of 2,000 distributions 
with 10−1 ≤ b ≤ 102 and a computed to fulfill the mean constraint ρ̄.  
Variations in the resulting θ(Cτ

1) metrics indicate the influence of 
reporting fraction uncertainties under this mean.

Figure 2a shows that θ(Cτ
1) generally increases with the mean 

reporting probability ρ̄. However, this improvement can be dena-
tured by the variance, var(ρt), of the reporting scheme (inset, where 
each color indicates the various schemes with a given ρ̄). The 
CONR scheme is outlined with a grey line (dashed), and as derived 
is the most informative. Figure 2b confirms our theoretical intuition 
on how var(ρt) reduces total information, with the extreme (worst) 
sampling scheme outlined above in blue and the most stable proto-
col in red. There are many ways to construct ρt protocols. We chose 
Beta distributions because they can express diverse reporting prob-
ability shapes using only two parameters.

Similarly, we investigate reporting delays via G(Fτ−t), the geomet-
ric mean of the cumulative delay or latency distribution across time. 
Applying a mean delay constraint ¯δ =

∑

x≥0xδx =
∑τ

t=1(1− Fτ−t) 
(for example, reflecting operational limits on the speed of case noti-
fication), we adapt experimental design principles. As we effectively 
maximize an FI determinant (see derivation of equation (5)) our 
results are termed D optimal38. These suggest that max

δ
G(Fτ−t) is 

achieved by cumulative distributions with the most uniform shape. 
These possess the largest δ0 within this constraint. Delay distribu-
tions with substantial dispersion (for example, heavy tails) attain 
this optimum while fixed delays (where δx∼¯δ = 1 and 0 otherwise) 
lead to the largest information loss under this constraint.

This may seem counterintuitive, as deterministic delays best pre-
serve information outside of that delay and can be treated by trun-
cating the observed epidemic time series: for example, for a fixed 
weekly lag we can ignore the last week of data. However, this causes 
a bottleneck. No information is available for that truncated week, 
eliminating any possibility of timely inference (and making epi-
demic control difficult39). In contrast, a maximally dispersed delay 
distribution slightly lags the majority of cases, achieving the mean 
constraint with large latencies on a few cases. This ensures that, 
overall, we gain more actionable information about the time series.

We illustrate this point in Fig. 3, where we verify the usefulness 
of equation (5) as a framework for comparing the information loss 
induced by delay distributions of various shapes and forms. We 

model δ as NB(k, ¯δ
¯δ+k ), with k describing the dispersion of the 

delay. Figure 3a demonstrates how our θ(Cτ
1) metric varies with k 

(30 values taken between 10−1 and 102) at various fixed mean con-
straints (3 ≤ ¯δ ≤ 30, each given as a separate color). In line with the 

theory, we find that decreasing k (increasing dispersion of the delay 
distribution) improves information at any given ¯δ.

The importance of both the shape and mean of reporting delays is 
indicated in the inset as well as by the number of distributions (seen 
as intersects of the dashed black line) that result in the same θ(Cτ

1). 
Figure 3b plots corresponding cumulative delay probability distribu-
tions, validating our assertion from design theory that the best delays 
(blue, with metric in inset) are dispersed, forcing the cumulative 
probability of reporting delays up to τ − t time units (Fτ−t) high very 
early on (maximizing δ0 and leading to the most uniform shape). In 
contrast, the worst delay distributions are more deterministic (red, 
larger k). These curves are for OBNR delays and upper bound the 
performance expected from NEVR delays except for the settings 
described in the previous section, where the two types coincide.

Comparing different epidemic data streams. Our metric (equa-
tion (5)) not only allows the comparison of different under-report-
ing schemes and reporting delay protocols (Ranking noise sources 
by their information loss) but also provides a common score for 
assessing the reliability or informativeness of diverse data streams 
for inferring Rτ

1. The best stream, from this information theoretic 
viewpoint, maximizes the product of the geometric means G(.) 
of the Fτ−t and ρt. Many common surveillance data types used for 
inferring pathogen transmissibility have been modeled within the 
framework of equation (1) and therefore admit related θ(.) metrics. 
Examples include time series of deaths, hospitalizations, the preva-
lence of infections and incidence proxies generated from viral sur-
veys of wastewater.

We detail death count data in the next section but note that 
its model, given in equation (2), is a simple extension of equation 
(1). Hospitalizations may be described similarly with the ifr term 
replaced by the proportion of infections hospitalized and the intrin-
sic delay distribution now defining the lag from infection to hospi-
tal admission5. The infection prevalence conforms to equation (1) 
because it can be represented as a convolution of the infections with 
a duration of infectiousness distribution, which essentially contrib-
utes a reporting delay40. Viral surveys also fit equation (1). They 
offer a downsampled proxy of incidence, which is delayed by a shed-
ding load distribution defining the lag before infections are detected 
in wastewater41. Consequently, our metrics are widely applicable.

While in this study we focus on developing methodology for esti-
mating and contrasting the information from the above surveillance 
data, we find that our metric is also important for defining the com-
plexity of a noisy renewal epidemic model. Specifically, we rederive 
equation (5) as a key term of its description length (L). Description 
length theory evaluates the complexity of a model from how suc-
cinctly it describes its data (for example, in bits)33,42. This measure 
accounts for model structure and data quality and admits the approx-
imation LC ∼ −ℓ(ˆRτ

1) +
p
2 log

m
2π

+ log
∫

det
[ 1
mFC(Rτ

1)
]

dRτ
1. Here 

the first term indicates model fit by assessing the log-likelihood at 
our MLEs ˆRτ

1. The second term includes data quality through the 
number of parameters (p) and data size (m). The final term defines 
how model structure shapes complexity with the integral across the 
parameter space of Rτ

1.
This formulation was adapted for renewal model selection 

problems in ref. 43 assuming perfect reporting. We extend this 
and show that our proposed total information T(Cτ

1) plays a cen-
tral role. Given some epidemic curve Cτ

1 we can rewrite the pre-
vious integral as − p

2 logm+ log
∏τ

t=1
∫
√

FC(Rt) dRt and 
observe that m = p = τ. It is known that under a robust transform 
such as Rt = 2

√
Rt  this integral is conserved33,37. Consequently, 

∫
√

FC(Rt) dRt =
√

FC(Rt)
∫ 2

√

Rmax
0 1 dRt with Rmax as some 

maximum value that every Rt can take. Combining these expres-
sions we obtain the following equation, highlighting the importance 
of our total information metric.
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LC ∼ −ℓ(ˆRτ

1) +
τ

2 log 2Rmax
π

+ logT(Cτ
1). (6)

If we have two potential data sources for inferring Rτ
1 then we 

should select the one with the smaller LC value. Since the middle 
term in equation (6) remains unchanged in this comparison, the 
key points when comparing model complexity relate to the level 
of fit to the data and the total FI of the model given those data42. 
Our metrics therefore play a central role when comparing different  
data streams.

Are COVID-19 deaths or cases more informative? In the above 
sections we developed a framework for comparing the information 
within diverse but noisy data streams. We now apply these results 
to better understand the relative reliabilities of two popular sources 
of information about transmissibility Rτ

1: the time series of new 
cases Cτ

1 and of new death counts Dτ
1. Both data streams have been 

extensively used across the ongoing COVID-19 pandemic to better 
characterize pathogen spread5. Known issues stemming from fluc-
tuations in the ascertainment of COVID-19 cases18,19 have motivated  

some studies to assert Dτ
1 as the more informative and hence trust-

worthy data for estimating Rτ
1 (refs. 1,20).

These works have reasonably assumed that deaths are more 
likely to be reliably ascertained. Case reporting can be substantially 
biased by testing policy inconsistencies and behavioral changes (for 
example, symptom-based healthcare seeking). In contrast, given 
their severity, deaths should be less likely to be underascertained5. 
However, no analysis, as far as we are aware, has explicitly tested 
this assumption. Here we make some progress towards better com-
prehending the relative merits of the two data streams. We start by 
computing ratios of our metric in equation (5) for both Cτ

1 and Dτ
1 

via equations (1) and (2).
This results in θ(Cτ

1) = G(ρt)G(Fτ−t) for cases and, by anal-
ogy, θ(Dτ

1) = G(σtifrt)G(Hτ−t) for deaths. In the same way that ρt 
defines the proportion of infections reported as cases, the product 
σtifrt defines the proportion of infections that are reported as deaths. 
This follows because ifrt is the fraction of infections that engender 
deaths and σt is the proportion of those deaths that are reported. 
Hτ−t :=

∑τ−t
x=0 γx describes the cumulative probability of delays 

from infection to death up to τ − t time units in duration.
Using shorthand Cτ

1 � Dτ
1 for when θ(Cτ

1) ≥ θ(Dτ
1) that is, ≽ 

indicates greater than or equal to with respect to total information, 
we obtain the following equation. We rearrange terms to obtain 
reporting fractions and delays on different sides by decomposing 
the geometric mean of a product into products of the geometric 
means in each term.

Cτ
1 � Dτ

1 : G

(

ρt
σtifrt

)

≥ G

(

Hτ−t
Fτ−t

)

. (7)

Equation (7) states that cases are more informative when the geo-
metric mean of the case to death reporting fractions is at least as 
large as that of the death and case cumulative delays. Studies prefer-
ring death data effectively claim that the variation in ρt (which we 
proved in a previous section always decreases the geometric mean 
for a given mean constraint) is sufficiently strong to mask the influ-
ences of ifrt, σt and any expected variations in those quantities.

Proponents of using death data to infer Rτ
1 recognize that the 

infection-to-death delay (with cumulative distribution Hτ−t) is 
appreciably larger in mean than corresponding reporting lags from 
infection (Fτ−t) and therefore unsuitable for real-time estimation 
(where this extra lag denatures recent information as we showed in 
earlier sections). We allow for all of these adjustments. We assume 
that the ifr is constant (maximizing G(ifrt)) and that death ascer-
tainment is perfect (σt = 1). Even for purely retrospective estimation 

with correction for delays we expect G
(

Hτ−t
Fτ−t

)

≤ 1. We set this to 1, 

maximizing the informativeness of Dτ
1.

Combining these assumptions we reduce equation (7) to the fol-
lowing equation. This presents a sufficient condition for case data to 
be more reliable than the death time series.

Cτ
1 � Dτ

1 : G(ρt)ρ̄∈[0.07,0.38] ≥ ifr ∼ 0.01. (8)

Here we choose a relatively large ifr for COVID-19 of 1% (ref. 44). Case 
reporting fraction estimates range from about 7% to 38% (ref. 18),  
which we apply to constrain ρ̄, the mean ρt. Inputting these esti-
mates, we examine possible ρt sampling distributions under the 
Beta(a, b) formulation from earlier sections. Our main results are 
in Fig. 4. We take 104 samples of ρt from each of 2,000 distributions 
parametrized over 10−1 ≤ b ≤ 102 with a set to satisfy our ρ̄ reporting 
constraints.

Figure 4a plots our metric against these constraints and the ifr 
threshold. Whenever θ(Cτ

1) ≥ ifr we find that case data are more 
reliable. This appears to occur for many possible combinations of ρt.  
The inset charts the proportion of Beta distributions that cross 
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Fig. 4 | The relative information in epidemic case data and death counts. 
Using θ(Cτ

1 ) we compare the information in case curves Cτ
1  and death 

counts Dτ
1  under assumptions that lead to equation (8). We examine 

various case reporting strategies parametrized as Beta distributions 
with ρ̄ from 0.07 to 0.38 (ref. 18) and compare the resulting θ(Cτ

1 ) 
against the equivalent from deaths (which reduces to just the infection–
fatality ratio, θ(Dτ

1 ) = ifr). a, θ(Cτ
1 ) for reported case data at different 

ρ̄ (each color represents a fixed ρ̄) as compared with ifr (black dashed 
threshold). The best reporting strategy is in gray. Inset: proportion of case 
reporting distributions from the main plot for which θ(Cτ

1 ) > ifr. b, Those 
distributions P(ρt) at the ends of the empirical ρ̄ range with red indicating 
when θ(Cτ

1 ) > ifr.
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the threshold. This varies from about 45% at ρ̄ = 0.07 to 90% at 
ρ̄ = 0.38. While these figures will differ depending on how likely 
a given level of variability is, they offer robust evidence that death 
counts are not necessarily more reliable. Even when deaths are per-
fectly ascertained (σt = 1) the small ifr term in Dτ

1 means that 99% 
of the original incidence data are lost, contributing appreciable 
uncertainty.

These points are reinforced by the design choices we have made, 
which inflate the relative information in the death time series. In 
reality, σt < 1, ifr < 0.01, neither is constant44,45 and the uncertainty 
we include around ρ̄t is wider than that inferred in ref. 18. Our results 
are therefore resilient to uncertainties in noise source estimates. 
Figure 4b displays the distributions of our sampling fractions, with 
red (blue) indicating which shapes provide more (less) information 
than death data (equation (8)). Our results also hold for both real-
time and retrospective analyses, as we ignored the noise induced by 
the additional delays that death data contain (relative to case 

reports) when we maximized G
(

Hτ−t
Fτ−t

)

.

Consequently, death data cannot be assumed, without rigorous 
and context-specific examination, to be generally more epidemio-
logically meaningful. For example, while Dτ

1 is unlikely to be more 
reliable in well mixed populations, it may be in high-risk settings 
(for example, care homes) where the local ifr is notably larger. 
Vaccines and improved healthcare, which substantially reduce ifr 
values in most contexts, will make death time series less informative 
about Rτ

1. However, pathogens such as Ebola virus, which induce 
large ifr parameters, might result in death data that are more reliable 
than their case counts. We explore these points and demonstrate the 
practical applicability of our metrics in the next section.

Practical applications of information metrics. Our metrics pro-
vide an interpretable, simulation-agnostic and easily computable 
approach to quantifying the relative reliability of different epidemic 
time series. Because θ(.) is independent of usually unknown Rt and 
Λt terms, it is robust to generation time misspecification and only 
requires estimates of noise terms for its calculation (hence no epi-
demic curve simulations are needed). Moreover, it depends purely 
on the geometric means of noise variables, which can be decom-
posed such that the influence of any noise source is clearly inter-
preted from the magnitude of its specific mean (see equation (5)).

These properties make θ(.) of practical use and we illustrate the 
benefits of our methodology using COVID-19 and EVD examples. 
In contrast to Fig. 4 where we maximized the information in deaths 
and minimized that from cases to bolster our rejection of the asser-
tion that death data are definitively more informative, here we focus 
on inputting empirical noise distributions derived from real data. 
When distributions are unavailable we describe noise uncertainties 
via maximum entropy distributions based on what estimates are 
available (these are geometric, Geo, if a mean is given and uniform, 
Unif, over 95% credible intervals).

For COVID-19 we once again examine if death data are 
more reliable. From equation (7) we conclude Cτ

1 � Dτ
1 if 

G(ρt)
G(σt)G(ifrt) ≥

G(Hτ−t)
F0 . This follows as F0 = δ0 = minG(Fτ−t) and 

ensures (if we are using NEVR delays) that we do not take ratios of 
upper bounds, as G(Hτ−t) already bounds the information in the 
infection-to-death delay. If delays are OBNR then equation (7) will 
be exact. We model ρt ~ Unif(0.06, 0.08) (ref. 18), δx ∼ Geo( 1

1+10.8 ) 
(ref. 46), σt ∼ Unif( 1

1.34 ,
1

1.29 ) (ref. 45), ifrt ∼ Unif( 0.53100 ,
0.82
100 ) (ref. 44) 

and γx ∼ NB( 1
1+1.1 ,

21
21+ 1

1+1.1
) (ref. 47) and sample from these 

distributions 104 times. We compute the terms in the inequality above 
and represent the relative information as log θ(Cτ

1)− log θ(Dτ
1) for 

easy visualization.
This leads to the top panel of Fig. 5. Despite our use of the small-

est reporting proportions from ref. 18 we find that death data are less 

reliable. For EVD, we test the alternative hypothesis that case data 
are less reliable in the bottom panel of Fig. 5. We decide Dτ

1 � Cτ
1 

if G(ρt)
G(σt)G(ifrt) ≥ H0, as we know H0 = γ0 = minG(Hτ−t) and 

maxG(Fτ−t) = 1. We let σt = 1 (no estimates were easily available) 

and model ρt ~ Unif(0.33, 0.83) (ref. 16), ifrt ~ Unif(0.69, 0.73) (ref. 48) 
and γx ∼ NB(1.5, 21.4

21.4+1.5 ) (roughly from ref. 48). The negative 

values of log θ(Cτ
1)− log θ(Dτ

1) in Fig. 5 suggest EVD death data 
as the more informative source. However, this can easily change if 
σt ≪ 1, as the difference is not as strong as for COVID-19.

While we tried to keep estimates as realistic as possible, the 
point of Fig. 5 is to demonstrate how our metrics may be practically 
applied given noise estimates. Sampling from appropriate distribu-
tions means that we can propagate the uncertainty on these esti-
mates into our metrics. We provide open source code for modifying 
this template analysis to include any user-defined distributions at 
https://github.com/kpzoo/information-in-epidemic-curves. As 
high-resolution outbreak data collection initiatives such as Global.
health49 and REACT7 progress, enhancing surveillance and our 
quantification of noise sources, we expect our framework to grow 
in practical utility.

Discussion
Public health policy-making is becoming progressively data driven. 
Key infectious disease parameters6 such as instantaneous reproduc-
tion numbers and growth rates, fitted to heterogeneous outbreak 
data sources (for example, case, death and hospitalization inci-
dence curves), are increasingly contributing to the evidence base 
for understanding pathogen spread, projecting epidemic burden 
and designing effective interventions4,6,50. However, the validity and 
value of such parameters depends substantially on the quality of 
the available surveillance data1,7. Although many studies have made 
important advances in underscoring and correcting errors in these 
data12,31, a framework to directly and generally quantify epidemic 
data quality is needed.

We made progress towards such a framework by finding the 
total information, T(.), available from epidemic curves corrupted 
by reporting delays and under-reporting. These are predominant 
noise sources that limit surveillance quality and apply to common 
outbreak data for inferring pathogen transmissibility such as cases, 
death counts, hospitalizations, infection prevalence and wastewater 
virus surveys. By maximizing T(.), we minimize the overall uncer-
tainty of our transmissibility estimates, hence measuring the reli-
ability of this data stream. This approach yielded a non-dimensional 
metric θ(.) that allows analytic and generalizable insights into how 
noisy surveillance data degrade estimate precision.

Our framework provided insight into the nuances of noise, elu-
cidating how the mean and variability of delay and under-reporting 
schemes both matter. For example, fluctuating reporting proto-
cols with larger mean may outperform more stable ones at lower 
mean. Moreover, under mean surveillance constraints, our metrics 
revealed that constant under-reporting of cases minimizes loss of 
information, while constant delays in reporting maximize this loss. 
The first result bolsters conventional thinking9, while the second 
highlights the need for timely data39.

Because the reporting of cases can vary substantially when track-
ing acute diseases such as COVID-19, various studies have assumed 
death data to be more reliable5. Using our metrics, we were able to 
qualify this claim. We found that ifr acts as a reporting fraction with 
very small mean. Only the most severely varying case reporting pro-
tocols can cause larger information loss, suggesting that in many 
instances this assertion may not hold. Note that this analysis does 
not even consider the additional advantages that case data bring in 
terms of timeliness, and shows the ability of our framework to rank 
the quality of different data streams.
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However, there may be other crucial reasons for preferring to 
estimate pathogen spread from death data. For example, if extremely 
little is known about the level of reporting (very limited surveillance 
capacity might cause insurmountable case reporting fraction uncer-
tainties) or if a death-based reproduction number is itself of inter-
est as a severity indicator20. Our framework can also help inform 
these discussions by improving the precision of our reasoning about 
noise. This is exemplified by our EVD analysis, where we could 
show that the large ifr of the disease translated into death counts 
being the better data, provided their under-reporting is not large.

As hospitalization curves generally interpolate among the types 
of noise in case and death data, this might be the best a priori 
choice of data for inferring transmissibility. Some studies also pro-
pose to circumvent these ranking issues by concurrently analyz-
ing multiple data streams32,50. This then opens questions about how 
each data stream should be weighed in the ensuing estimates. Our 
framework may also help by quantifying the most informative parts 
of each contributing stream. A common way of deriving consensus 
weights individual estimates by their inverse variance51. As the FI 
defines the best possible inverse variance of estimates, our metrics 
naturally apply.

While our framework can enhance understanding and quan-
tification of surveillance noise, it has several limitations. First, 
it depends on renewal model descriptions of epidemics27. These 
models assume homogeneous mixing and that the generation time 
distribution of the disease is known. While the inclusion of more 
realistic network-based mixing may not improve transmissibility 
estimates52 (and this extra complexity may occlude insights), the 
generation time assumption may only be ameliorated through the 
provision of updated, high-quality line-list data34,49. However, our 
relative metrics in equations (4) and (5) and equations (7) and (8) 
are mostly robust to generation time distribution misspecifications 
(and even changes) as they do not depend on the Λt terms (these 
cancel out).

Further, our analysis is contingent on having estimates of the 
delays, underascertainment rates and other noise sources within 
data streams. These may be unavailable or themselves highly unreli-
able. If at least some information on their uncertainties is available 
we can propagate these into our metrics by replicating the Monte 
Carlo approach underlying our case studies. If no estimates are 

available then we cannot perform any analyses as Rt will not be iden-
tifiable. However, our framework can still be of use as a rigorous tes-
tbed for examining hypotheses on potential noise sources without 
extensive simulation.

Recent initiatives have aimed at improving the resolution and 
completeness of outbreak data7,49. Concurrently, estimating noise 
sources from both existing and novel data streams is a growing 
research area18,53. As a result, we expect that our metrics will only 
increase in practical utility and that concerns around the availability 
of noise estimates will diminish. We also assume that the time scale 
t chosen ensures that Rt parameters are independent. This may be 
invalid but in such instances we can append non-diagonal terms to 
FI matrices or use our metric as an upper bound.

Finally, we defined the reliability or informativeness of a data 
stream in terms of minimizing the joint uncertainty of the entire 
sequence of reproduction numbers Rτ

1. This is known as a D-optimal 
design36. However, we may instead want to minimize the worst 
uncertainty among the Rτ

1 (which may better compensate known 
asymmetries in inferring transmissibility54). Our framework can be 
reconfigured to tackle such problems by appealing to other design 
laws. We can solve this specific problem by deriving an E-optimal 
design, which maximizes the smallest eigenvalue of our FI matrix.

Methods
Renewal models and Fisher information theory. The renewal model27,35 is a 
popular approach for describing how infections dynamically propagate during the 
course of an epidemic. The number of new infections at t, It, depends on Rt, which 
counts the new infections generated per infected individual (on average), and Λt, 
which measures how many past infections (up to t − 1) will effectively produce 
new ones. This measurement weighs past infections by w. We define ws as the 
probability that it takes s time units for a primary infection to generate a secondary 
one. The distribution is then w = w∞

1 := {w1, w2, …, w
∞

}.
The statistical relationship between these quantities is commonly modeled 

as in the following equation, with Pois specifying a Poisson distribution21. This 
relationship only strictly holds if It is perfectly recorded both in size (no under-
reporting) and in time (no delays in reporting).

It ∼ Pois (ΛtRt) , Λt :=

t−1∑

x=1
wt−xIx. (9)

However, as infections are rarely observed, It is often approximated by proxies such 
as reported cases and w replaced with the serial interval distribution, describing 
the times between the onset of symptoms of those cases. Equation (9) has been 
widely used to model transmission dynamics of many infectious diseases, including 
COVID-195, influenza55 and EVD48.

A common and important problem in infectious disease epidemiology is the 
estimation of the latent variable Rt from the incidence curve of infections or some 
more easily observed proxy. If this time series persists during 1 ≤ t ≤ τ, then we 
aim to infer the vector of parameters Rτ

1 := {Rt : 1 ≤ t ≤ τ} from time series 
Iτ
1 := {It : 1 ≤ t ≤ τ} or its proxy (see Results for this more practical inference 

problem). We assume that time is scaled in units such that Rt can be expected 
to change (independently) at every t. This may be weekly for COVID-19 or 
malaria21,56 but monthly for rabies57. Note that w and It must be aggregated, as 
needed, to match these units. Related branching58 and moving-average models59 
feature similar aggregation.

Following the development in refs. 43,55, we solve this inference problem by 
constructing the incidence log-likelihood function ℓ(Rτ

1) = logP(Iτ
1 | Rτ

1) as in 
the following equation with Kτ as some constant that does not depend on any Rt. 
This involves combining Poisson likelihoods from equation (9) across time units 
1 ≤ t ≤ τ as in ref. 21.

ℓ(Rτ
1) =

τ∑

t=1
It log Rt − ΛtRt + Kτ . (10)

We compute the MLE of Rt as R̂t, which is the maximal solution of ∂ℓ(R
τ

1)

∂Rt
= 0. 

From equation (10) this gives R̂t = ItΛ−1
t  (ref. 27). Repeating this for all t we obtain 

estimates of the complete vector of transmissibility parameters Rτ
1 underlying Iτ

1.
To quantify the precision (the inverse of the variance, var) around these MLEs 

or any unbiased estimator of Rt we calculate the FI that Iτ
1 contains about Rt. This 

is FI(Rt) := E

[
−

∂2ℓ(Rτ

1)

∂R2
t

]
, where expectation E[.] is taken across the data Iτ

1 
(hence the subscript I). The FI defines the best (smallest) possible uncertainty 
asymptotically achievable by any unbiased estimate, R̃t. This follows from the 
Cramér–Rao bound30, which states that var(R̃t) ≥ FI(Rt)

−1. The confidence 
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Fig. 5 | The relative information in case and death data for EVD and 
COVID-19 case studies. We compute information metrics θ(.) for case 
(Cτ

1) and death (Dτ
1) time series using empirically derived under-reporting 

and delay noise distributions for COVID-19 (top panel) and EVD (bottom 
panel). See the main text for the specific distributions used, which account 
for the uncertainty in noise estimates (in the absence of knowledge of this 
uncertainty, maximum entropy distributions are applied). We take 104 
samples from each distribution and calculate the logarithmic difference 
log θ(Cτ

1 )− log θ(Dτ
1 ), with positive or negative values indicating when case 

or death data have the higher information content, respectively.

Nature Computational Science | VOL 2 | September 2022 | 584–594 | www.nature.com/natcomputsci 591

http://www.nature.com/natcomputsci


Articles NatuRe COmputatIOnal ScIence

intervals around R̃t converge to R̃t ± 1.96FI(Rt)
−

1
2. The FI also links to the 

Shannon mutual information that Iτ
1 contains about Rt (these measures are bijective 

under Gaussian approximations)60,61 and is pivotal to describing both model 
identifiability and complexity30,33.

Using the Poisson renewal log-likelihood in equation (10) we obtain the FI as 
the left-hand equality in the following equation. Observe that this depends on the 
unknown ‘true’ Rt.

FI(Rt) = ΛtR−1
t , FI(2

√
Rt) = Λt. (11)

This reflects the heteroscedasticity of Poisson models, where the estimate mean 
and variance are co-dependent. We construct a square root transform that 
uncouples this dependence43, yielding the right-hand formula in equation (11). 
We can evaluate FI(2

√
Rt) purely from Iτ

1. The result follows from the FI change 
of variables formula FI(Rt) = FI(Rt)

(
∂Rt
∂Rt

)2
 (ref. 30). This transformation has 

several optimal statistical properties29,37 and so we will commonly work with 

Rt := 2
√
Rt .

As we are interested in evaluating the informativeness or reliability of the 
entire Iτ

1 time series for inferring transmission dynamics we require the total FI 
it provides for all estimable reproduction numbers, Rτ

1. As we noted above, the 
inverse of the square root of the FI for a single Rt corresponds to an uncertainty 
(or confidence) interval. Generalizing this to multiple dimensions yields an 
uncertainty ellipsoid with volume inversely proportional to the square root of the 
determinant of the FI matrix33,37. This matrix has diagonals given by FI(Rt) and 
off-diagonals defined as E[− ∂2ℓ(Rτ

1)

∂RtRs
] for 1 ≤ t, s ≤ τ.

Maximizing this non-negative determinant, which we denote the total 
information T(Iτ

1) from the data Iτ
1, corresponds to what is known as a D-optimal 

design36. This design minimizes the overall asymptotic uncertainty around 
estimates of the vector Rτ

1. As the renewal model in equation (9) treats every Rt as 
independent, off-diagonal terms are 0 and T(Iτ

1) is a product of the diagonal FI 
terms. Transforming Rt → Rt we then obtain

T(Iτ
1) =

τ∏

t=1

√
FI(Rt) =

τ∏

t=1

√
Λt. (12)

If we work directly in Rt we obtain 
∏

τ
t=1 Λ

1
2
t R

−

1
2

t  instead. In two dimensions (that 
is, τ = 2) our ellipsoid becomes an ellipse and equation (12) intuitively means that 
its area is proportional to a product of lengths FI(R1)

−

1
2 FI(R2)

−

1
2, which factors 

in the uncertainty from each estimate.
We will use this recipe of formulating a log-likelihood for Rτ

1 given some 
data source and then computing the total information, T(.), it provides about 
these parameters to quantify the reliability of case, death and other Iτ

1 proxies for 
inferring transmissibility. Comparing data source quality will involve ratios of 
these total information terms. Metrics such as equation (12) are valuable because 
they measure the usable information within a time series and also delimit the 
possible distributions that a model can describe given these data (see refs. 33,62 for 
more on these ideas, which emerge from information geometry). Transforms such 
as Rt = 2

√
Rt  stabilize these metrics (that is, maximize robustness) to unknown 

true values29,37.

Epidemic noise sources and surveillance models. We investigate two important 
and common sources of noise, under-reporting and reporting delay, which limit 
our ability to precisely monitor Iτ

1, the true time series of new infections. We 
quantify how much information is lost due to these noise processes by examining 
how these imperfections degrade T(Iτ

1), the total information obtainable from Iτ
1 

under perfect (noiseless) surveillance for estimating parameter vector Rτ
1 (equation 

(12)). Figure 1 illustrates how these two main noise sources individually alter the 
shape and size of incidence curves.

(1) Under-reporting or underascertainment. Practical surveillance systems 
generally detect some fraction of the true number of infections occurring at 
any given t. If this proportion is ρt ≤ 1 then the number of cases, Ct, observed is 
generally modeled as Ct ~ Bin(It, ρt) (refs. 23,56), where Bin indicates the binomial 
distribution. The under-reported fraction is 1 − ρt and so Ct ~ Pois(ρtΛtRt). 
Reporting protocols are defined by choices of ρt. CONR is the simplest and most 
popular, assuming every ρt = ρ (ref. 21). VARR describes general time-varying 
protocols where every ρt can differ28.

(2) Reporting delays or latencies. There can be notable lags between an 
infection and when it is reported13. If δ defines the distribution of these lags 
with δx as the probability of a delay of x ≥ 0 time units, then the new cases 
reported at t, Ct, sums infections actually occurring at t but not delayed and 
those from previous days that were delayed10. This is commonly modeled as 
Ct ∼ Pois

(∑t−1
x=0 δxΛt−xRt−x

)
 (refs. 20,28) and means that true incidence It splits 

over future times as ~Mult(It, δ), where Mult denotes multinomial12. The Ct time 
series is OBNR if we later learn about the past It splits (right censoring), else we say 
data are never reported (NEVR).

We make some standard assumptions8,11,21,28 in incorporating the above noise 
sources within renewal model frameworks. We only consider stationary delay 

distributions, that is, δ and any related distributions do not vary with time, and we 
neglect co-dependences between reporting and transmissibility. Additionally, we 
assume that these distributions and all reporting or ascertainment fractions, that 
is, ρt and related parameters, are inferred from other data (for example, contact 
tracing studies or line lists)12. In the absence of these assumptions Rτ

1 would be 
non-identifiable and the inference problem ill-defined. In Results we examine how 
noise sources (1) and (2) in combination limit the information available about 
epidemic transmissibility.

FI derivations for practical data. We derive the FI of parameters Rτ
1 given the case 

curve Cτ
1 under the model of equation (1). This procedure mirrors that used above 

to obtain equation (12). We initially assume that reporting delays are OBNR, that 
is, we eventually learn the source time of cases at a later date. This corresponds 
to a right censoring that can be compensated for using nowcasting techniques13. 
Later we prove that this not only defines a practical noise model but also serves as 
an upper bound on the information available from NEVR delays, where the true 
timestamps of cases are never resolved. Mathematically, the OBNR assumption lets 
us decompose the sum in equation (1). We can therefore identify the component 
of Ct that is informative about Rx. This follows from the statistical relationship 
Ct | Rx ~ Pois(ẟt−xρxΛxRx).

As we are interested in the total information that Cτ
1 contains about every Rt 

we collect and sum contributions from every Ct. We can better understand this 
process by constructing the matrix Q in the following equation, which expands the 
convolution of the reporting fractions with the delay probabilities over the entire 
observed time series.

Q =

















δ0ρτ δ1ρτ−1 δ2ρτ−2 · · · δτ−1ρ1

0 δ0ρτ−1 δ1ρτ−2 · · · δτ−2ρ1

... 0 δ0ρτ−2
. . .

...

...
... 0

. . . δ1ρ1

0 0 · · · · · · δ0ρ1

















. (13)

We work with the vector μ =
[
μτ , μτ−1, …, μ1

]T with μt = ΛtRt and T denoting the 
transpose operation. Then Qμ = [E[Cτ ],E[Cτ−1], …,E[C1]]

T with E[Ct] as the 
mean of the reported case incidence at t.

The components of Cτ
1 that contain information about every Rt parameter 

follow from QTμ = [δ0ρτμτ, (δ0 + δ1)ρτ−1μτ−1, …, (δ0 + … + δτ−1)ρ1μ1]. The elements of 
this vector are Poisson means formed by collecting and summing the components 
of Cτ

1 that inform about [Rτ, Rτ−1, …, R1], respectively. Hence we obtain the key 
relationship in the following equation with Fτ−t :=

∑
τ−t
x=0 δx as the cumulative 

probability delay distribution.

Cτ
1 | Rt ∼ Pois (ρtFτ−tΛtRt) . (14)

The ability to decompose the row or column sums from Q into the Poisson 
relationships of equation (14) is a consequence of the independence properties of 
renewal models and the infinite divisibility of Poisson formulations.

Using equation (14) and analogs to Poisson log-likelihood definitions from 
equation (10) we derive the FI that Cτ

1 contains about Rt as follows:

FC(Rt) = ρtFτ−tΛtR−1
t . (15)

As in equation (11) we recompute the FI in equation (15) under the transform 
Rt = 2

√
Rt  to obtain FC(Rt) = ρtFτ−tΛt. It is clear that under-reporting and 

delays can substantially reduce our information about instantaneous reproduction 
numbers. As we might expect, if ρt = 0 (no reports at time unit t) or Fτ−t = 0 (all 
delays are larger than τ − t) then we have no information on Rt at all from Cτ

1. If 
reporting is perfect then ρt = 1, Fτ−t = 1 and FC(Rt) is equal to the FI from Iτ

1 in 
equation (11).

The MLE, R̂t, also follows from equation (14) (see subsections above) as 
(
∑

τ
x=t Cx | Rt)(ρtFτ−tΛt)

−1, with Cx ∣ Rt as the component of Cx containing 
information about Rt. By comparison with the MLE under perfect surveillance 
we see that (

∑
τ
x=t Cx | Rt)(ρtFτ−t)

−1 is equivalent to applying a nowcasting 
correction as in refs. 12,13. An important point to make here is that, while such 
corrections can remove bias, allowing inference despite these noise sources, they 
cannot improve on the information (in this case equation (15)) inherently available 
from the data. This is known as the data processing inequality63,64.

If we cannot resolve the components of every Ct from equation (1) as ∑t
x=1 Pois(δt−xρxΛxRx), then the reporting delay is classed as NEVR (that 

is, we never uncover case source dates). Hence we know Qμ but not QTμ. 
Accordingly, we must use equation (1) to construct an aggregated log-likelihood 
ℓ(Rτ

1) = logP(Cτ
1 | Rτ

1) =
∑

τ
t=1 logP(C

τ
1 | Rt). This gives the following equation 

with the aggregate term h(Rt
1) :=

∑t
x=1 δt−xρxΛxRx. We ignore constants that do 

not depend on any Rt in this likelihood.
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ℓ(Rτ
1) =

τ∑

t=1
Ct log h(Rt

1) − h(Rt
1). (16)

For every given Rt we decompose h(Rs
1) for s ≥ t into the form δs−tρtΛtRt + at, where 

at collects all terms that are not informative about this specific Rt. Here s ≥ t simply 
indicates that information about Rt is distributed across later times due to the 
reporting delays.

We can then obtain the FI contained in Cτ
1 about Rt by computing E[− ∂2ℓ(Rτ

1)

∂R2
t

]

, yielding the following equation (see Supplementary Notes for derivation details), 
with bt := at(δs−tρtΛtRt)

−1.

FC(Rt) =

τ∑

x=t
δx−tρtΛt(Rt + bx)−1. (17)

If we could decouple the interactions among the reproduction numbers then the 
bx terms would disappear and we would recover the expressions derived under 
OBNR delay types. Since bx is a function of other reproduction numbers, the 
overall FI matrix for Rτ

1 is not diagonal (there are non-zero terms from evaluating 
E[−

∂2ℓ(Rτ

1)

∂RtRx
]).

However, we find that this matrix can be reduced to a triangular form 
with determinant equal to the product of terms (across t) in equation (17). 
We show this for the example scenario of τ = 3 in Supplementary Notes. As a 
result, the FI term for Rt in equation (17) does behave like and correspond to 
that in equation (15). Interestingly, as bx ≥ 0, equation (17) yields the revealing 
inequality FC(Rt) ≤ ρtFτ−tΛtR−1

t . This proves that OBNR delays upper bound 
the information available from NEVR delays. Last, we note that robust transforms 
cannot be applied to remove the dependence of equation (17) on the unknown Rt 
parameters.

The best we can do is evaluate equation (17) at the MLEs R̂t. These 
MLEs emerge as the joint maxima of the set of coupled differential equations 
∂ℓ(Rτ

1)

∂Rt
=

∑
τ
x=t

Ix
bx+Rt

− δx−tρtΛt, that is, numerical solutions of equation (18) for 
all t.

τ∑

x=t
Cx(R̂t + bx)−1

= ρtFτ−tΛt. (18)

Here sums start at t as they include only time points that contain information about 
Rt. Expectation-maximization algorithms, such as the deconvolution approaches 
outlined in ref. 10, are viable means of computing these MLEs or equivalents. Note 
that the nowcasting methods used to correct for OBNR delays do not help here12 
and that for both OBNR and NEVR delays the cumulative probability terms 
must be aggregated to match chosen time units (for example, if empirical delay 
distributions are given in days but t is in weeks then Fx sums over 7x days).

Data availability
Source data for Figs. 1–5 are available with this manuscript.

Code availability
All data and source code (MATLAB v2021a) for reproducing the analyses and 
figures in this manuscript, as well as for applying the methodology we have 
developed here, are freely available at https://github.com/kpzoo/information-in-
epidemic-curves with a citable release at ref. 65. We include a template function (in 
MATLAB and R) that can be easily modified to compute our metrics with user-
defined noise estimates.
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