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INFECTIOUS DISEASES

Getting the most out of noisy surveillance data
A recent study proposes a metric to quantify how much information different types of epidemiological surveillance 
data, such as case counts and death counts, convey about the real-time transmission of an epidemic.

Lauren McGough

HIV, Ebola, H1N1 influenza, 
SARS-CoV-1, SARS-CoV-2 and 
monkeypox. These are just a few 

examples of pathogen outbreaks that have 
generated widespread public attention over 
recent decades. When a pathogen outbreak 
enters the public awareness, everybody 
wants to know: what are the chances that 
I will get infected? Individuals need to 
know how much transmission is occurring 
in their communities so they can decide 
whether to adjust their behavior to decrease 
their risk. The COVID-19 pandemic has 
driven home an essential limitation to 
transmission estimation: our estimates 
are only as good as the data on which 

they are based. Because we never directly 
observe transmission events at the moment 
they occur, we must infer underlying 
transmission from imperfect proxies, such 
as case reports, hospitalization counts and 
death counts. Different sources of data 
can paint different pictures of the state of 
an epidemic; how closely these pictures 
reflect reality depends on the changing 
landscape of our measurement capacities 
and our evolving understanding of the 
pathogen of concern. Ideally, researchers 
would know which data sources to use 
to make the most accurate and precise 
inferences. However, it is difficult to choose 
among several data streams when each is 

subject to its own trade-offs. As reported in 
Nature Computational Science, Kris Parag 
and colleagues use analytic calculations 
informed by information theory to derive 
a calculable, interpretable and pathogen-
agnostic metric that quantifies how much 
information different data streams convey 
about real-time transmission during an 
epidemic1.

The study measures transmission using 
the instantaneous reproductive number 
Rt (ref. 2). This number has an easily 
interpretable threshold at Rt = 1 — above 
this value the epidemic grows, whereas 
below this value the epidemic shrinks — 
and it has been frequently cited in public 
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Fig. 1 | Information loss depends on the type of data collected. a, Schematic of three courses of infection that are represented differently across data 
sources. Lag times are measured from the red exposure arrow. The first individual has an asymptomatic infection, never tests positive, infects others, and is 
never ascertained by cases, deaths or hospitalizations. This individual maintains a low level of susceptibility by developing only partial immunity. The second 
individual is infected by the first individual, quickly develops symptoms, tests positive upon being hospitalized, and dies from the disease. The case and the 
hospitalization are reported near-simultaneously; the death report is significantly more lagged. The third individual is infected by the second individual, tests 
positive early, is briefly hospitalized, avoids transmitting upon discharge (for example, by isolating), and recovers. The positive test report is less lagged than 
the hospitalization report, and the infection is never reflected in death counts. This individual develops strong immunity and is subsequently well protected 
from future infection. The inter-individual differences in infection timelines lead to different amounts of information lost in the data collection, and the 
differential outcomes have the potential to complicate calculations of future transmission. b, Schematic relating the curvature of the log likelihood of different 
data sources to their informativeness. In the first panel, none of the maximum likelihood estimates exactly equals the true value, including the estimate 
derived from the incident infection model, as neither the transmission model nor any of the observation models perfectly reflects reality. The data-derived 
log likelihoods are distinct from one another and broader than that of the incident infection model. The second panel demonstrates that the lower-curvature 
likelihoods have lower informativeness. Informativeness of the incident infection curve is set to one, as Parag et al. normalize the informativeness of a data 
source against that of the incident infection model.
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discourse as a measure of SARS-CoV-2 
transmission. Despite its popularity, Rt is 
not straightforward to calculate3. The value 
of Rt equals the number of new (incident) 
infections at time t divided by the current 
infectiousness of the individuals that 
generated those infections, taking into 
account variability based on how long 
ago each individual was infected. Neither 
the total number of infectious individuals 
nor the number of incident infections at a 
specific time is directly observable; these 
must be estimated using measurements 
reported at later times. One strategy 
that researchers (including Parag et al.) 
use to infer Rt from data is to define two 
probabilistic processes: the transmission 
process by which incident infections arise 
and an observation process by which 
incident infections appear in the data. 
They manipulate these probabilities to 
compute the time series of Rt that most likely 
generated the observed data (the maximum 
likelihood estimate)4.

Different forms of data are not 
equally informative because the distinct 
observation processes that produce them 
lose inequivalent information about 
infections (Fig. 1a). For example, the lags 
and imperfect ascertainment that prevent 
case counts from exactly encoding incident 
infections can be highly variable, as test 
availability changes and people take tests 
at different points in their infections. 
Death counts tend to be more consistently 
reported, with lags that depend more 
on biological factors (such as illness 
length) than external factors (such as test 
availability) compared to case counts, 
but the fraction of infections that death 
counts reflect is intrinsically limited by 
the infection fatality rate. The information 
lost in a measurement process directly 
corresponds to the uncertainty of the Rt 
estimate obtained from the data. Because 
we want our estimates of transmission to be 
as precise as possible, Parag et al. propose 

ranking different data sources according to 
the information they retain.

Parag and colleagues’ major contribution 
is an analytic derivation of a simple, 
conceptually interpretable metric for this 
information loss. They begin with the 
standard maximum likelihood estimate of 
the time series of Rt values, and then they 
go beyond the estimate by computing its 
uncertainty in terms of the shape of the 
likelihood function. The authors creatively 
import techniques from information 
theory; more specifically, they define 
informativeness in terms of the curvature 
of the (log) likelihood function (Fig. 1b), 
a well-known quantity also known as 
the Fisher information5. Higher Fisher 
information values indicate less uncertainty. 
The expression they obtain is conceptually 
enlightening: it is expressed in terms of 
two quantities — the fraction of infections 
reported over time and the lag distribution 
— which contribute independently via single 
numbers computed from their respective 
distributions.

The authors demonstrate the importance 
of quantifying uncertainty to inform choices 
of data sources through an example: they 
show that when the infection fatality ratio 
is low, as for SARS-CoV-2, case data can 
be preferable to death data, whereas the 
opposite can hold for a pathogen with a 
higher infection fatality ratio, such as Ebola. 
This result runs counter to previous claims 
that death data is generally preferred for 
SARS-CoV-2 because deaths are more 
consistently measured and reported than 
cases6. Specifically, the authors calculate a 
bound relating the informativeness of death 
counts to that of case counts, showing that 
even under idealized assumptions about 
death data, when the infection fatality rate is 
smaller than the geometric mean of the case 
under-ascertainment rates over a period of 
time, deaths are less informative than cases.

One major challenge for directly 
using the Fisher information metric to 

evaluate different data sources as it stands 
is that measurement noise is often poorly 
characterized and non-stationary. Although 
Parag and colleagues demonstrate that 
their conclusions are robust to this form of 
uncertainty, the issue remains that highly 
uncertain or mis-specified noise can bias 
the Rt point estimates, and this effect could 
dominate informativeness considerations. 
Additional information theoretic analyses 
could address this caveat by quantifying 
the relative importance of these two effects; 
this would close the gap between being 
able to estimate the informativeness of 
a data source given a model of how the 
data were generated, and evaluating the 
usefulness of different data streams when 
we lack trustworthy estimates of their lag 
distributions and reporting fractions over 
time.

Rt will remain an important transmission 
metric as epidemics caused by diverse 
pathogens spread through diverse host 
populations. As such, Parag et al.  
have paved the way for going forward  
with more informative estimates of  
pathogen transmission when faced  
with imperfect data. ❐
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