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Chiral topographic instability in shrinking 
spheres

Fan Xu    1  , Yangchao Huang1, Shichen Zhao1 and Xi-Qiao Feng    2 

Many biological structures exhibit intriguing morphological patterns adapted 
to environmental cues, which contribute to their important biological 
functions and also inspire material designs. Here, we report a chiral wrinkling 
topography in shrinking core–shell spheres, as observed in excessively 
dehydrated passion fruit and experimentally demonstrated in silicon core–
shells under air extraction. Upon shrinkage deformation, the surface initially 
buckles into a buckyball pattern (periodic hexagons and pentagons) and then 
transforms into a chiral mode. The neighbouring chiral cellular patterns can 
further interact with each other, resulting in secondary symmetry breaking 
and the formation of two types of topological network. We develop a core–
shell model and derive a universal scaling law to understand the underlying 
morphoelastic mechanism and to effectively describe and predict such chiral 
symmetry breaking far beyond the critical instability threshold. Moreover, 
we show experimentally that the chiral characteristic adapted to local 
perturbation can be harnessed to effectively and stably grasp small-sized 
objects of various shapes and made of different stiff and soft materials. Our 
results not only reveal chiral instability topographies, providing fundamental 
insights into the surface morphogenesis of the deformed core–shell 
spheres that are ubiquitous in the real world, but also demonstrate potential 
applications of adaptive grasping based on delicate chiral localization.

Morphological pattern formation across length scales is energetically 
favourable for thin-walled living matter such as fruits1,2, vegetables3, 
leaves4–6, embryos7, organs8, tumours9 and brains10, where spontaneous 
symmetry breaking during growth or dehydration is normally consid-
ered to be a crucial factor in their complex wrinkling topography6,11,12. 
For example, pollen grains of angiosperm flowers exhibit self-folding 
when exposed to a dry environment to prevent further desiccation13. 
Growth-induced residual stress accumulates during tumour progres-
sion, driving the global buckling collapse of blood and lymphatic ves-
sels, which makes the vascular delivery of anticancer drugs ineffective9. 
Symmetry breaking in evolving wrinkling patterns during brain develop-
ment results in the thickness difference between gyri and sulci, which 
is closely linked to neurodevelopment disorders such as lissencephaly, 
polymicrogyria, autism spectrum disorders and schizophrenia14. In 

terms of its practical use, symmetry breaking in the formation of surface 
morphology patterns has found ever-increasing applications in various 
fields, such as micro/nanofabrication of flexible electronic devices15,16, 
surface self-cleaning and anti-fouling17, synthetic camouflaging skins18, 
shape-morphing soft actuators19 and adaptive aerodynamic drag con-
trol20. The precise prediction, control and manipulation of reversible 
instability morphologies would be key for relevant applications.

Prior works3,12,21–23 on morphological pattern formation in stressed 
spherical core–shells, a typical structure omnipresent in nature and 
industrial technologies, have demonstrated a variety of intriguing 
topographies such as dimple, buckyball and labyrinth modes. Here, 
we report a chiral instability topography in core–shell spheres. We 
observed that a drying passion fruit (Passiflora edulia Sims) initially 
buckles into a periodic buckyball pattern consisting of hexagons and 
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where D = Efh3f /[12(1 − ν
2
f )]  and Jf = Efhf/(1 − ν2f )  stand for, respec-

tively, the flexural and extensional rigidities of the shell, and Lf rep-
resents the dimensionless elastic matrix. The membrane strain 
tensor and curvature tensor are denoted by γ and K, respectively. 
The elastic behaviour of the core can be described by a Winkler-type 
foundation25,26 as

Πs =
1
2∬

Ωs

Ksw2 dxdy, (2)

in which Ks = Es√p2 + q2/2R  denotes the stiffness of the core23,27, w 
stands for deflection, Es = Es/(1 − ν2s ), and p and q represent the wave-
numbers along the latitude and longitude directions, respectively.

The critical buckling of a core–shell sphere upon shrinkage is 
analogous to the hydrostatic instability of a spherical shell where 
an isotropic stress state remains in the pre-buckling stage, that is, 
σαβδαβ = −σ, in which δαβ is the Kronecker delta, σ denotes the external 
hydrostatic pressure and the Greek indices α and β take values in {1, 2}. 
According to Koiter’s theory24, elastic stability is primarily determined 
by the second variation of the total potential energy (Πt = Πf + Πs), and 
one obtains the equilibrium partial differential equations by using the 
divergence theorem,

u,xx +
1
2
(1 − νf)u,yy +

1
2
(1 + νf) v,xy −

1+νf
R
w,x = 0,

v,yy +
1
2
(1 − νf) v,xx +

1
2
(1 + νf)u,xy −

1+νf
R
w,y = 0,

D∇4w − Jf(1+νf)
R

(u,x + v,y − 2w
R
) + σhf(w,xx +w,yy)

+Ksw = 0,

(3)

where a comma in a subscript denotes a partial derivative. As an ansatz, 
we consider the following forms for the displacements in the critical 
buckling state:

pentagons, evolving into a chiral mode, and forms intriguing chiral 
topological networks upon excessive shrinkage (Fig. 1). Inspired by 
this natural phenomenon, we explored, both theoretically and experi-
mentally, the morphological pattern formation and evolution of highly 
deformed core–shell spheres, especially the emergence of a chiral pat-
tern and chiral ridge networks with symmetry breaking at the advanced 
bifurcation. We established a mathematical model and a scaling law 
to capture the chiral instability of core–shell spheres and explored 
a potential application of perturbation-adaptive chiral localization.

Results
Theory
To understand the underlying mechanism and to effectively predict 
the morphogenesis process, we consider an elastic spherical shell sup-
ported by a soft core. Upon shrinkage, the shell buckles elastically to 
relieve the compressive stress while the core concurrently deforms to 
maintain perfect bonding at the interface. In shallow shell theory24, the 
coordinates of the core–shell system can be Cartesian in a tangent plane 
(or curvilinear and orthogonal). This framework can only describe a part 
of the spherical geometry (Extended Data Fig. 1), but it is competent here 
for theoretical analyses. The thickness of the surface layer is denoted 
by hf, while the radius of the system is represented by R. The Young’s 
modulus and Poisson’s ratio of the surface layer are denoted by Ef and νf, 
respectively, while Es and νs are the corresponding material properties 
of the soft core. The elastic strain energy Πf in the shell can be written 
as the sum of the bending energy Πben and membrane energy Πmem thus

Πf = Πben +Πmem

= 1
2
∬

Ωf
(DKT Lf K + JγT Lf γ)dxdy

= D
2
∬

Ωf
(κ2x + κ2y + 2νfκxκy +

1−νf
2
κ2xy)dxdy

+ Jf
2
∬

Ωf
(γ2x + γ2y + 2νfγxγy +

1−νf
2
γ2xy)dxdy,

(1)
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Fig. 1 | Evolution of wrinkling topography in excessive dehydration of 
deformed passion fruit. a–h, Natural observations (a–d) and model predictions 
(e–h) on day 1 (a,e), day 2 (b,f), day 4 (c,g) and day 7 (d,h). Upon shrinkage, the 
core–shell spheres first buckle into a buckyball pattern (periodic hexagons and 

pentagons in b and f) and then transform to a chiral ridge (g) and eventually to a 
ridge network (h) with the coalescence of neighbouring chiral ridges. The core 
experiences isotropic shrinking (Supplementary Sections I and II and Video 1).
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u = A sin(px/R) cos(qy/R),

v = B cos(px/R) sin(qy/R),

w = C cos(px/R) cos(qy/R),

(4)

in which A, B and C refer to the amplitudes of waves. Substituting equa-
tions (4) into equations (3) and minimizing with respect to k = p2 + q2, 
one obtains the critical conditions for the onset of wrinkling:

h2f
4c2R2

k2cr −
EsR
4Efhf

√kcr − 1 = 0,

σcr
Ef

= 1
kcr

+ h2f
4c2R2

kcr +
KsR2

Efhfkcr
,

ℓcr =
2𝜋𝜋R
√kcr

,

(5)

where kcr, σcr and ℓcr denote, respectively, the critical wavenumber, the 

compressive stress and the wavelength, c = √3(1 − ν2f ) . Here, we 

define a key dimensionless parameter Cs = (Es/Ef)(R/hf)
3/2

 that 

characterizes the stiffness ratio of core–shells and the geometric 
curvature to classify pattern selection. Once the critical wavenumber 
kcr is solved, the theoretical buckling stress and wavelength can be cal-
culated (Fig. 2a). During the natural dehydration process of passion 
fruit, the moduli of both the surface layer and the soft core may become 
larger (meaning that the surface layer and the core become stiffer), but 
we observed that the wrinkling wavelength in experiments (Fig. 1 and 
Supplementary Video 1) remains almost unchanged, and this critical 
wavelength ℓcr has some inherent (yet implicit) relation with the modu-
lus ratio Es/Ef (equation (5)). Therefore, it is reasonable to approximate 
in the calculation that the modulus ratio Es/Ef remains relatively constant 
upon dehydration. Note that, although both natural and numerical 
observations (Fig. 1b,f) show that the buckyball pattern consisting of 
hexagons and pentagons covers the whole sphere (non-developable 
surface), the prevailing buckling mode in core–shell spheres is hex-
agonal. Also within the shallow shell framework (a part of sphere)24, it 
is an analytical challenge to apply both hexagons and pentagons to 
describe the entire spherical surface. Hence, we assume this dominant 
hexagonal mode (displacement field) in equation (4), and the critical 
wrinkling condition based on our theory shows good agreement with 
numerical simulations. Equation (5), in fact, covers the classical buckling 
case of a spherical shell without a core (Ks = 0), for which there are 
explicit solutions for the critical threshold, that is, σ0 = Efhf/cR, k0 = 2cR/hf 
and ℓ0 = 𝜋𝜋√2Rhf/c.

Although the critical buckling condition can be predicted ana-
lytically by using stability analysis, the secondary bifurcation with 
the hexagonal-to-chiral mode transition in the post-buckling stage 
remains a theoretical challenge. Here, we derived a scaling law to pro-
vide further insight into such chiral symmetry breaking far beyond the 
critical threshold (Methods). We assumed that each Y-shaped ridge in 
the wrinkling hexagons can be regarded as a bilayer system and thus 
that the chiral ridge instability of core–shell spheres can be simplified 
as the buckling of bilayered plates under compression. Minimization 
of the system energy leads to chiral strains that obey the linear relation 
in Fig. 2b, confirmed by numerical simulations.

Computation
To trace the whole post-buckling topographic evolution, we applied 
the finite element method (FEM) by accounting for various geometric 
and material parameters (Supplementary Section II). The main chal-
lenge lies in the solution of nonlinear equations, since multiple solution 
branches in the post-buckling regime can be connected via multiple 
bifurcations. Moreover, for instabilities that are extremely localized 
(for example, the ridge network shown in Fig. 1c,d), there must exist 
a local transfer of elastic strain energy from one part of the system to 
the neighbouring regions, and global solution methods may encounter 
difficulties in convergence. To solve this difficulty, we implemented a 
pseudodynamic algorithm by introducing velocity-dependent damping 
and inertial terms, which can be naturally viewed as a perturbation to 
allow the calculation to pass through the unstable transitions and to 
trigger chiral symmetry breaking (Methods). The bifurcation portraits 
of the dimensionless deflection ∣w∣/hf for various core–shell spheres 
with different Cs upon shrinkage are plotted in Fig. 3. Periodic bucky-
ball (with hexagons prevailing) wrinkling patterns with supercritical 
bifurcation emerge initially at the critical thresholds. Upon further 
shrinkage, hexagonal-to-chiral mode transitions occur, where Y-shaped 
ridges in the wrinkling hexagons may buckle into chiral ridges. Neigh-
bouring chiral cellular modes can further interact with each other to 
form two types of topological network. While symmetry is eventually 
broken with further shrinkage, leading to universal hexagonal-to-chiral 
mode transitions, different Cs values result in different critical thresh-
olds and wavelengths for the buckyball (with hexagon dominating) 
buckling mode.

Experiment
Guided by this theoretical understanding, we next designed a 
demonstrative experiment to harness such an instability mecha-
nism to achieve pattern tunability, by using liquid silicone that can 
solidify into any desired shape in a well-designed mould. We made a 
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scaling law (Methods) for the hexagonal-to-chiral mode transition. Our 
theoretical predictions agree well with FEM simulations, where C1 denotes  
the slope.
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spherical shell with a hexagonal pattern on the surface, a cavity and 
a small hole (diameter ~4 mm) for air extraction to induce shrinkage 
(Methods). Since silicone has a much lower elastic modulus than 
passion fruit, the smooth shell structure does not buckle into hex-
agonal patterns (cannot reach the advanced bifurcation range shown 
in Fig. 3) but exhibits global deformation upon pressure loading 
condition by air extraction (Methods and Supplementary Video 5).  

To focus on the chiral bifurcation and to facilitate instability mor-
phology control at this bifurcation, we fabricated artificial hexago-
nal patterns on the shell surface. We extracted air slowly (~2 mL s−1) 
from the sample to control the pressure (~10 kPa) so that a state of 
homogeneous compression could be perfectly achieved. Notably, 
these well-designed hexagonal networks on the surface of the sample 
buckle into chiral patterns (Fig. 4a–d and Supplementary Video 2),  
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Fig. 3 | Bifurcation diagrams of post-buckling morphology evolutions in 
core–shell spheres with different Cs upon shrinkage. a–f, Diagrams for Cs 
values of 12.7 (a), 9.09 (b), 7.07 (c), 3.98 (d), 3.18 (e) and 2.55 (f), showing the 

buckyball pattern (with hexagons prevailing) (i) and chiral ridge networks (ii 
and iii). Excess shrinkage leads to advanced symmetry breaking of the buckyball 
mode, transforming into the chiral mode and the chiral ridge network eventually.
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analogous to the observation of highly dehydrated passion fruits and 
model predictions (Fig. 1). Furthermore, we can flexibly control the 
position of local chiral networks by imposing external perturbation 
as illustrated in Fig. 4e–h (Methods and Supplementary Video 3), con-
sistent with FEM simulations in Fig. 4i–l. These experiments not only 
demonstrate a hexagonal-to-chiral mode transition, consistent with 
our theoretical predictions, but also shed light on rational designs of 
controllable chiral patterns.

Adaptive grasping
Based on these insights, we show that this perturbation-induced 
chiral instability can be harnessed to effectively and stably grasp 
small-sized objects with different geometries and made of differ-
ent stiff or soft materials. The object to grasp acts as a local pertur-
bation when in contact with the hexagonal-patterned shell and is 
then adaptively locked by the induced local chiral networks. Similar 
to the aforementioned experimental setup, we fabricated a hemi-
spherical shell with a hexagonal surface pattern as the main body of 
the gripper. A small hole was made at the bottom of the cap for air 
extraction. Then, the whole gripper was fixed onto a lifting frame 
to steadily control the movement. When the curved hemispherical 
cap touches the target, the contact perturbation-induced symmetry 
breaking triggers chiral network localization. The chiral pattern and 
the interface friction spontaneously adapt to the interactions at the 
contacting areas, which are naturally influenced by the shape and 
stiffness of the object, so that different objects can be grasped by 
this smart locking together with air extraction (Fig. 5, Supplementary 

Fig. 4 and Video 4). When we restored the pressure difference, that is, 
inflated the cap cavity, the chiral networks elastically reverted back 
to hexagons, releasing the grasped object. The contrast experiments 
showed that the hemispherical caps with a smooth surface (no chi-
ral instability) could not grasp those objects at all (Supplementary  
Video 5), supporting the critical role of the chiral network localiza-
tion in the grasping process.

Discussion
We have unveiled chiral-mode symmetry breaking during excessive 
shrinkage of core–shell spheres, which can be formulaically described 
and precisely predicted by our theories and computations, in good 
agreement with carefully designed experiments. Beyond the critical 
buckyball wrinkling, chiral ridges emerge on the curved surfaces upon 
excess deformation, and the neighbouring chiral cellular Y-shaped 
modes can further interact with each other to form advanced chiral 
topological networks. The critical buckyball wrinkling conditions 
can be obtained analytically by using linear stability analysis, while 
strong nonlinearity (both geometric and material) in the post-buckling 
regime of shrinking spheres results in considerable difficulties in the 
theoretical predictions of advanced bifurcations and their associated 
morphological patterns. Consequently, theoretical analyses on sec-
ondary and multiple bifurcations of chiral instability have to resort to 
dimensional analysis (scaling law) based on certain simplified models. 
From the computational standpoint, the major challenge in extremely 
shrinking spheres at large strain is the solution of highly nonlinear 
equations. The most classical solution method to solve nonlinear static 
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e f g h

i j k ll j k

Fig. 4 | Air extraction-induced chiral topography on curved surfaces.  
a–d, The experimental formation of a chiral ridge network with continuous air 
extraction, showing the hexagonal-to-chiral mode transition with increasing 
shrinkage of core–shells (Supplementary Video 2). e–l, The localization of 

tunable chiral networks on curved surfaces (Supplementary Video 3) triggered 
by a perturbation (poke by a rod) in experiments (e–h), consistent with numerical 
simulations (i–l).
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problems is the path-following continuation technique such as that 
of Riks, while numerical convergence cannot always be ensured for 
extreme wrinkling problems upon large deformations, since a large 
number of solution branches can be connected via multiple bifurca-
tions. This fact motivated us to apply the dynamic relaxation method 
to leap over some localized energy barriers in the nonlinear evolution 
paths, while the dynamic method cannot straightforwardly predict 
subcritical bifurcations and hysteresis. Making progress in both theo-
retical and computational analyses of multiple bifurcations in highly 
nonlinear evolution paths might require more advanced mathematical 
approaches.

Inspired by the chiral instability topography induced by local 
perturbation, we demonstrated an exemplar application of target-
adaptive grasping based on chiral localization, while future work may 
take advantage of smart active materials such as hard-magnetic soft 
materials and liquid-crystal elastomers to enhance multifunctional 
designs under multiphysics stimuli. Our results not only provide 
physical insights into the wrinkling topography of highly deformed 
core–shell spheres by a universal law but also pave a promising way for 
realizing multifunctional surfaces by harnessing fruitful topography 
on curved geometry.

Methods
Dimensional analysis of chiral instability
We carried out dimensional analysis to predict the chiral bifurcation 
of core–shell spheres (Extended Data Fig. 1) upon dehydration 

(equivalent to thermal shrinkage). Based on the experimental observa-
tions and numerical calculations, we assumed that each cellular ridge 
before chiral instability can be viewed as a layered plate and thus the 
chiral bifurcation of a cellular ridge can be simplified as the buckling of 
a bilayer subject to shrinking strain (Extended Data Fig. 1c). Such a plate-
like ridge has length L and thickness t and comprises an upper layer of 
width hf and a lower layer of width hs. Each layer has a Young’s modulus 
Eζ, Poisson’s ratio νζ and bending stiffness Dζ = Eζt3/[12(1 − ν2ζ )] ,  
where ζ is ‘f’ or ‘s’.

The bending energies of the upper and lower layers can be 
expressed as

𝒫𝒫b
f = Df

2 ∬
Ω1

[(uf,zz + uf,yy)
2 + 2 (1 − νf) (u2f,yz − uf,zzuf,yy)]dΩ1, (6)

𝒫𝒫b
s = Ds

2 ∬
Ω2

[(us,zz + us,yy)
2 + 2 (1 − νs) (u2s,yz − us,zzus,yy)]dΩ2, (7)

where uf and us denote, respectively, the out-of-plane deflection of the 
upper and lower layers, while Ω1 and Ω2 represent the area of the mid 
surface of the upper and lower layer, respectively.

As an ansatz, we consider the following forms for the deflections 
in the chiral buckling state:

uf = Φf (z) sin
𝜋𝜋

L y, (8)
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Fig. 5 | Topographic grasping experiments on objects of different geometry, size and material. a–j, Grasping of different objects: diamond (a,b), nut (c), screw 
(d), mung bean (e), soya bean (f), blueberry (g), heart-shaped candy (h), irregular shaped glass (i) and glass ball (j). The chiral deformation enables effective, target-
adaptive grasping (Supplementary Video 4).
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us = Φs (z) sin
𝜋𝜋

L y, (9)

where the functions Φf(z) and Φs(z) can be expanded into series of 
exponential decay functions as

Φf (z) = ∑
i
Afi (kfiz) , (10)

Φs (z) = ∑
i
Asi (ksiz) , (11)

where kfi and ksi are coefficients of the following order:

kfi ∼ ksi ∼
1
L , (12)

and the displacement continuity condition is satisfied at the interface 
of upper and lower layers, that is, Φf(hs) = Φs(hs).

According to equations (8) to (12), one obtains

u,zz ∼ u,yy ∼ u,yz. (13)

Substituting equation (13) into equations (6) and (7), the bending 
energies read

𝒫𝒫b
f ∼ Eft3

L4 ∬
Ω1

[∑
i
Afi (kfiz) sin (

πy
L )]

2

dydz ∼ Eft3hf
L3 a1, (14)

𝒫𝒫b
s ∼ Est3

L4 ∬
Ω2

[∑
i
Asi (ksiz) sin (

𝜋𝜋y
L )]

2

dydz ∼ Est3hs
L3 a2, (15)

in which a1 = ∬[∑iAfi (kfi z̃hf) sin (𝜋𝜋ỹ)]
2dỹdz̃, 

a2 = ∬[∑iAsi (ksi z̃hs) sin (𝜋𝜋ỹ)]
2dỹdz̃, ỹ = y/L and z̃ = z/hζ.

The membrane energy can be determined by the in-plane strains 
given by (note that, for simplicity, the subscript ζ has been omitted)

ε0yy =
∂v
∂y

+ 1
2 (

∂u
∂y )

2

+ εsh, (16)

ε0zz =
∂w
∂z

+ 1
2 (

∂u
∂z )

2
+ εsh, (17)

ε0yz = 0, (18)

where εsh is the thermal shrinking strain, and v and w represent the in-
plane displacements in the mid surface along the y and z directions, 
respectively, the order of which can be determined by minimizing the 
membrane energy. Consequently, the in-plane displacements in the 
mid surface can be approximated as v = By and w = Cz, in which B and 
C refer to the slopes of variation.

The membrane energies of the upper and lower layers can be 
expressed as

𝒫𝒫m
f = Eft

2(1−ν2f )
∬

Ω1
{[(ε0yy)f + (ε0zz)f]

2
+ 2 (1 − νf)

[(ε0yz)
2

f
+ (ε0yy)f(ε

0
zz)f]}dΩ1,

(19)

𝒫𝒫m
s = Est

2(1−ν2s )
∬

Ω2
{[(ε0yy)s + (ε0zz)s]

2
+ 2 (1 − νs)

[(ε0yz)
2

s
+ (ε0yy)s(ε

0
zz)s]}dΩ2.

(20)

According to equations (8) to (12) and (16) to (18), the membrane ener-
gies read

𝒫𝒫m
f ∼ Eftεsh

L2 ∬
Ω1

[∑
i
Afi (kfiz) sin (

𝜋𝜋y
L )]

2

dydz ∼ Efhftεsh
L a1, (21)

𝒫𝒫m
s ∼ Estεsh

L2 ∬
Ω2

[∑
i
Asi (ksiz) sin (

𝜋𝜋y
L )]

2

dydz ∼ Eshstεsh
L a2. (22)

Since the upper and lower layers buckle simultaneously, combining 
equations (14), (15), (21) and (22) leads to

𝒫𝒫b
f + 𝒫𝒫m

f ∼ 𝒫𝒫b
s + 𝒫𝒫m

s , (23)

namely,

(Efhft
3

L3 + Efhftεsh
L )a1 ∼ (Eshst

3

L3 + Eshstεsh
L )a2. (24)

Note that a1/a2 is a non-negative constant. Based on calculations and 
equation (24), the scaling law yields the following explicit form for the 
chiral shrinking strain εc:

C1 (
Efhft3
L3 + Efhftεc

L ) = (Eshst
3

L3 + Eshstεc
L ) , (25)

where C1 = 0.029 is a fitting coefficient. The scaling law in equation 
(25) agrees well with finite element simulations for chiral bifurcation 
(Fig. 2b).

Numerical method
We performed finite element simulations in commercial software 
Abaqus based on parameters similar to experimental observations. 
Since the deformation of core–shell spheres can be large (up to 30% 
shrinking strain), we applied the widely used hyperelastic neo-Hookean 
(nHk) constitutive law for both the surface layer and the soft core, while 
more sophisticated hyperelastic constitutions such as the Mooney–
Rivlin (MR) model were also examined but showed trivial quantitative 
differences that did not change the substantial nonlinear mechanism 
of the instability problem. The elastic strain energy density function 
of the nHk model is defined as

ΨnHk = C10 (I1 − 3) + 1
D1

(J − 1)2, (26)

in which C10 = E/4 (1 + ν) and D1 = 6 (1 − 2ν) /E are material parameters. 
The volume change reads J = det(F), where F is the deformation gradi-
ent tensor. The first strain invariant reads I1 = tr(FT ⋅ F). We coupled 
eight-node hexahedral volume (C3D8R) elements for the soft core and 
thin shell (S4R) elements for the surface layer by using a ‘tie’ constraint 
at the interface. Mesh convergence was carefully examined for all 
simulations. The main challenge is the solution of the nonlinear equa-
tions, as numerous post-buckling solution branches can be connected 
via multiple bifurcations23,28. Therefore, we applied the dynamic relaxa-
tion method to allow the calculation to pass through the unstable 
transitions, which introduces velocity-dependent damping (C) and 
artificial inertial (M) terms into the static equilibrium equation 
(R(U, λ) = 0), leading to

Md2U
dt2

+ CdU
dt

+ R(U, λ) = 0, (27)

where R is the residual force, U denotes unknown variables and λ rep-
resents an incremental loading parameter. Realistic definitions of 
mass and damping were not necessary; thus, we set these quantities 
to obtain optimal convergence of t → U(t) for large values of time t (no 
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physical meaning here). When the model is stable (quasi-static), viscous 
energy dissipation remains quite small such that the artificial damp-
ing does not notably perturb the solution. When the system tends to 
be dynamically unstable, nodal velocities increase, and thus, part of 
the elastic strain energy released can be dissipated by the damping. 
A shrinkage load (equivalent to thermal expansion or residual strain) 
was applied to the core while the surface layer was loading free, which 
can be expressed as

εsh = αΔTI with ΔT < 0, (28)

where α, ΔT and I stand for the thermal expansion coefficient, tempera-
ture change and second-order identity tensor, respectively. The shrink-
age load εsh can also be characterized by an isotropic residual strain 
εsh = εres = −λI. In the numerical calculations shown in Fig. 1e–h, we took 
R/h = 50 and Cs = (Es/Ef)(R/hf)

3/2 = 9.09.

Experimental method for realizing functional chiral surfaces
To realize flexible tunability of chiral patterns and to further harness 
the hexagonal-to-chiral mode transition for achieving smart surfaces, 
we designed demonstrative experiments based on air extraction from 
silicon core–shell spheres. The simple experimental system consists 
of two combined hemispherical caps with a channel connecting the 
internal cavity and an external tube for air extraction. To achieve a hex-
agonal network on the surface of the hemispherical cap, we designed a 
mould with a hexagonal network by applying three-dimensional print-
ing technology. Then, we poured in two-part liquid silicone (Hongyejie 
Technology Co. Ltd.) in 1:1 mass ratio. Liquid silicone needs to stand 
for 3 hours at 25 °C to cure fully. To create a cavity in the centre of 
the sample, we applied a hemispherical lid with a diameter slightly 
smaller than the outer diameter to cover the bottom of the mould when 
the liquid silicone was curing. After the liquid silicone had cured and 
was demoulded, we glued two identical hemispherical caps together. 
The typical parameters of the samples were an outer diameter of 
2R = 70 mm, a diameter of the inner cavity of 2r = 58 mm and a hex-
agonal cellular length of L = 4.33 mm, height of H = 2.61 mm and thick-
ness of t = 0.75 mm. The experimental procedure to realize functional 
chiral surfaces is illustrated in Extended Data Fig. 2. The inner cavity 
of the samples was pumped out and depressurized to create a state of 
homogeneous shrinkage. To demonstrate the effects of shrinkage on 
the hexagonal-to-chiral mode transition, we slowly exhausted the air in 
the samples to mimic dehydration-induced shrinkage of passion fruit. 
When the samples deformed elastically to certain values, the hexagonal 
network lost stability and buckled into a chiral topography (Fig. 4a–d). 
Note that this mode transition is reversible when the air re-enters the 
sample and the pressure difference is restored. To further illustrate 
the tunability of the chiral localization, we applied a small disturbance 
(poke by a rod) somewhere on the surface to trigger the hexagonal-to-
chiral mode transformation (Fig. 4e–h) while the sample was subjected 
to homogeneous shrinkage, which was in good agreement with finite 
element simulations (Fig. 4i–l). This strategy can provide enlighten-
ment for the design of programmable functional surfaces such as 
adaptive grasping based on chiral localization.

Chiral topography for adaptive grasping
Based on the aforementioned experiment, we present a target-adaptive 
gripper which can grasp small objects based on a hexagonal-to-chiral 
mode transformation. Simple structure, easy control, shape adaptation 
and filterable grasping are prominent advantages of the chiral gripper. 
The gripper system consists of a hemispherical shell with hexagonal 
topography, an air channel and a lifting frame that can move up and 
down (Supplementary Fig. 3). The air channel and the hemispherical 
part constitute a cavity structure, the former being connected to an 
external exhaust device to trigger the hexagonal-to-chiral mode tran-
sition by air extraction. The lifting frame is combined with the cap to 

control the motion. The working principle of the gripper is introduced 
as follows: The lifting frame descends to make the gripper approach a 
target. When the hexagonal network on the curved surface touches the 
object, the contact perturbation triggers the hexagonal-to-chiral topo-
graphic deformation that can well fit with the targeted shape. Then, the 
exhaust device begins to pump air. With increasing air extraction, the 
chiral topography can lock the object tightly to achieve a stable grasp. 
Finally, the object leaves the desk when raising the lifting frame. When 
the pressure difference is restored, the chiral topography elastically 
reverts back to hexagonal networks, releasing the grasped object. We 
carried out topographic grasping experiments on stiff or soft objects 
of different shapes and sizes (Fig. 5 and Supplementary Fig. 4). Our 
experiments showed that the gripper can smartly and stably grasp vari-
ous small-sized objects. To further demonstrate the crucial role played 
by the chiral topography in robust grasping, we performed contrast 
experiments by making a hemispherical cap with a smooth surface. 
Except for the lack of the initial hexagonal network on the surface, the 
other parameters of the gripper remained exactly the same as in the 
aforementioned grasping experiments. With the smooth surface, the 
targets slid off, leading to failure of effective grasping (Supplementary 
Video 5). Our experiments not only prove the critical role of the chiral 
topography in effective, target-adaptive grasping but also shed light 
on smart gripper designs.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Source data for the FEM computations shown in Figs. 2 and 3 are avail-
able with this manuscript.

Code availability
The code used in this study can be obtained from Zenodo29.
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Extended Data Fig. 1 | Passion fruit (Passiflora edulia Sims). (a) Cross section. (b) Geometry of a core-shell sphere. (c) Schematic of chiral buckling of a Y-shaped 
cellular representative layered plate.

http://www.nature.com/natcomputsci


Nature Computational Science

Article https://doi.org/10.1038/s43588-022-00332-y

Extended Data Fig. 2 | Experimental process of realizing functional chiral 
topography. (a) Pour liquid silicone on a 3D printed mold with hexagonal 
network on the surface. (b) Create a cavity in the sample by using a hemispherical 
cover when the liquid silicone is curing. (c) A silicon hemispherical shell with 

hexagonal pattern on the surface. (d) Two hemispherical shells with hexagonal 
network are glued and can be separated, with a channel connecting the internal 
cavity and external tube for air extraction.
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