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Many biological structures exhibit intriguing morphological patterns adapted
to environmental cues, which contribute to theirimportant biological
functions and also inspire material designs. Here, we report a chiral wrinkling
topography inshrinking core-shell spheres, as observed in excessively
dehydrated passion fruit and experimentally demonstrated in silicon core-
shells under air extraction. Upon shrinkage deformation, the surface initially
buckles into abuckyball pattern (periodic hexagons and pentagons) and then
transformsinto a chiral mode. The neighbouring chiral cellular patterns can

further interact with each other, resulting in secondary symmetry breaking
and the formation of two types of topological network. We develop a core-
shellmodel and derive a universal scaling law to understand the underlying
morphoelastic mechanism and to effectively describe and predict such chiral
symmetry breaking far beyond the critical instability threshold. Moreover,
we show experimentally that the chiral characteristic adapted to local
perturbation can be harnessed to effectively and stably grasp small-sized
objects of various shapes and made of different stiff and soft materials. Our
results not only reveal chiralinstability topographies, providing fundamental
insights into the surface morphogenesis of the deformed core-shell

spheres that are ubiquitous in the real world, but also demonstrate potential
applications of adaptive grasping based on delicate chiral localization.

Morphological pattern formation across length scales is energetically
favourable for thin-walled living matter such as fruits'?, vegetables?,
leaves', embryos’, organs®, tumours’ and brains'’, where spontaneous
symmetry breaking during growth or dehydration is normally consid-
ered to be a crucial factor in their complex wrinkling topography®''2,
For example, pollen grains of angiosperm flowers exhibit self-folding
when exposed to a dry environment to prevent further desiccation®.
Growth-induced residual stress accumulates during tumour progres-
sion, driving the global buckling collapse of blood and lymphatic ves-
sels, which makes the vascular delivery of anticancer drugs ineffective’.
Symmetry breakingin evolving wrinkling patterns during brain develop-
ment results in the thickness difference between gyri and sulci, which
is closely linked to neurodevelopment disorders such as lissencephaly,
polymicrogyria, autism spectrum disorders and schizophrenia'. In

terms of its practical use, symmetry breaking in the formation of surface
morphology patterns has found ever-increasing applications in various
fields, such as micro/nanofabrication of flexible electronic devices™",
surface self-cleaning and anti-fouling”, synthetic camouflaging skins®,
shape-morphingsoft actuators'” and adaptive aerodynamic drag con-
trol?°. The precise prediction, control and manipulation of reversible
instability morphologies would be key for relevant applications.

Prior works*>”** on morphological pattern formationin stressed
spherical core-shells, a typical structure omnipresent in nature and
industrial technologies, have demonstrated a variety of intriguing
topographies such as dimple, buckyball and labyrinth modes. Here,
we report a chiral instability topography in core-shell spheres. We
observed that a drying passion fruit (Passiflora edulia Sims) initially
buckles into a periodic buckyball pattern consisting of hexagons and
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Fig.1|Evolution of wrinkling topography in excessive dehydration of
deformed passion fruit. a-h, Natural observations (a-d) and model predictions
(e-h) onday1(a,e), day 2 (b,f), day 4 (c,g) and day 7 (d,h). Upon shrinkage, the
core-shell spheres first buckle into a buckyball pattern (periodic hexagons and

pentagonsinband f) and then transform to a chiral ridge (g) and eventually to a
ridge network (h) with the coalescence of neighbouring chiral ridges. The core
experiences isotropic shrinking (Supplementary Sections Iand I1and Video 1).

pentagons, evolving into a chiral mode, and forms intriguing chiral
topological networks upon excessive shrinkage (Fig. 1). Inspired by
this natural phenomenon, we explored, both theoretically and experi-
mentally, the morphological pattern formation and evolution of highly
deformed core-shellspheres, especially the emergence of a chiral pat-
ternand chiral ridge networks with symmetry breaking at the advanced
bifurcation. We established a mathematical model and a scaling law
to capture the chiral instability of core-shell spheres and explored
apotential application of perturbation-adaptive chiral localization.

Results

Theory

To understand the underlying mechanism and to effectively predict
the morphogenesis process, we consider an elastic spherical shell sup-
ported by a soft core. Upon shrinkage, the shell buckles elastically to
relieve the compressive stress while the core concurrently deforms to
maintain perfect bonding at the interface. In shallow shell theory*, the
coordinates of the core-shell system can be Cartesianinatangent plane
(orcurvilinearand orthogonal). This framework can only describe a part
of the spherical geometry (Extended DataFig.1), butitis competent here
for theoretical analyses. The thickness of the surface layer is denoted
by h¢, while the radius of the system is represented by R. The Young’s
modulus and Poisson’s ratio of the surface layer are denoted by £;and v,
respectively, while £, and v, are the corresponding material properties
of the soft core. The elastic strain energy /7;in the shell can be written
asthe sum of the bending energy /1,., and membrane energy /1., thus

IIy = Ilpen + Imem
L _ _
= I o (DKTL K +Jy" Lry) dxdy
= l—z)ffnf (K)Z( + I + 2ViKKy + —"fKZ )dxdy

211 o, (V2 + V3 + 2vpay + S0 ) dxdy,

where D = Ech?/[12(1 - v})] and J; = E¢he/(1 - v?) stand for, respec-
tively, the ﬂexural and extensnonal rigidities ofthe shell, and L;rep-

resents the dimensionless elastic matrix. The membrane strain
tensor and curvature tensor are denoted by y and K, respectively.
The elastic behaviour of the core can be described by a Winkler-type

foundation®? as
1 2
=5 Kw?* dx dy, 2)
2

inwhich K, = E;7/p? + g2/2R denotes the stiffness of the core””, w
stands for deflection, E, = E/(1 — v2),and p and g represent the wave-
numbers along the latitude and longitude directions, respectively.

The critical buckling of a core-shell sphere upon shrinkage is
analogous to the hydrostatic instability of a spherical shell where
an isotropic stress state remains in the pre-buckling stage, that s,
044045 =—0, inwhich 6,4 is the Kronecker delta, o denotes the external
hydrostatic pressure and the Greek indices a and S take valuesin{l, 2}.
According toKoiter’s theory*, elastic stability is primarily determined
by the second variation of the total potential energy (/1= 1; + I1,), and
one obtains the equilibrium partial differential equations by using the
divergence theorem,

1 1 +Vf
Uy + E(l—vf)uyy+§(1+vf)uﬂ

— Wx=0,
uyy+%(l—vf)v,xx+§(1+vf)uyxy—ﬂw‘y 0, o

DV4w — Jr(+ve) (
R

w
Uy +U, —2;) + Ohe(W o + W )
+Kw=0,
whereacommainasubscriptdenotes a partial derivative. Asanansatz,

we consider the following forms for the displacements in the critical
buckling state:
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Fig.2| Comparison of theoretical and numerical results. a, The critical scaling law (Methods) for the hexagonal-to-chiral mode transition. Our
hexagonal wrinkling wavelength £, as a function of the dimensionless parameter theoretical predictions agree well with FEM simulations, where C, denotes
Cs = (Es /Ef)(R/hf)mthat characterizes the modulus ratio and curvature.b, A theslope.
u = Asin(px/R) cos(qy/R), Although the critical buckling condition can be predicted ana-
lytically by using stability analysis, the secondary bifurcation with
v = Bcos(px/R)sin(qy/R), (4)  the hexagonal-to-chiral mode transition in the post-buckling stage

w = Ccos(px/R) cos(qy/R),

inwhich A, Band Crefer to the amplitudes of waves. Substituting equa-
tions (4) into equations (3) and minimizing with respect to k= p*+ ¢?,
one obtains the critical conditions for the onset of wrinkling:

h? ER
k2 — kg —1=0,

4c2R2C" 4Fche
2
[ S K2 )
E ke | 42R2 T Fehgke
2zR
Cop = —
7 Ve

where k., 0.,and £, denote, respectively, the critical wavenumber, the

compressive stress and the wavelength, ¢ = ,/3(1 - v%) . Here, we

define a key dimensionless parameter C; = (ES/Ef)(R/hf)e’/2 that

characterizes the stiffness ratio of core-shells and the geometric
curvature to classify pattern selection. Once the critical wavenumber
k. issolved, the theoretical buckling stress and wavelength can be cal-
culated (Fig. 2a). During the natural dehydration process of passion
fruit, the moduliof both the surface layer and the soft core may become
larger (meaning that the surface layer and the core becomestiffer), but
we observed that the wrinkling wavelength in experiments (Fig. 1 and
Supplementary Video 1) remains almost unchanged, and this critical
wavelength £, has someinherent (yetimplicit) relation with the modu-
lusratio E/E;(equation (5)). Therefore, itisreasonable to approximate
inthe calculation that the modulus ratio E/E;remains relatively constant
upon dehydration. Note that, although both natural and numerical
observations (Fig. 1b,f) show that the buckyball pattern consisting of
hexagons and pentagons covers the whole sphere (non-developable
surface), the prevailing buckling mode in core-shell spheres is hex-
agonal. Also within the shallow shell framework (a part of sphere)*, it
is an analytical challenge to apply both hexagons and pentagons to
describetheentire spherical surface. Hence, we assume this dominant
hexagonal mode (displacement field) in equation (4), and the critical
wrinkling condition based on our theory shows good agreement with
numerical simulations. Equation (5), in fact, covers the classical buckling
case of a spherical shell without a core (K = 0), for which there are
explicitsolutions for the critical threshold, thatis, o, = Esh¢/cR, ky = 2cR/h;

and ¢y = m\/2Rhg/c.

remains atheoretical challenge. Here, we derived a scaling law to pro-
vide furtherinsight into such chiral symmetry breaking far beyond the
critical threshold (Methods). We assumed that each Y-shaped ridge in
the wrinkling hexagons can be regarded as a bilayer system and thus
that the chiral ridge instability of core-shell spheres can be simplified
as the buckling of bilayered plates under compression. Minimization
ofthe systemenergy leads to chiral strains that obey the linear relation
in Fig. 2b, confirmed by numerical simulations.

Computation

To trace the whole post-buckling topographic evolution, we applied
thefinite element method (FEM) by accounting for various geometric
and material parameters (Supplementary Section Il). The main chal-
lenge liesinthe solution of nonlinear equations, since multiple solution
branches in the post-buckling regime can be connected via multiple
bifurcations. Moreover, for instabilities that are extremely localized
(for example, the ridge network shown in Fig. 1c,d), there must exist
alocal transfer of elastic strain energy from one part of the system to
the neighbouring regions, and global solution methods may encounter
difficulties in convergence. To solve this difficulty, we implemented a
pseudodynamicalgorithm by introducing velocity-dependent damping
and inertial terms, which can be naturally viewed as a perturbation to
allow the calculation to pass through the unstable transitions and to
trigger chiral symmetry breaking (Methods). The bifurcation portraits
of the dimensionless deflection |w|/h;for various core-shell spheres
with different C, upon shrinkage are plotted in Fig. 3. Periodic bucky-
ball (with hexagons prevailing) wrinkling patterns with supercritical
bifurcation emerge initially at the critical thresholds. Upon further
shrinkage, hexagonal-to-chiral mode transitions occur, where Y-shaped
ridges in the wrinkling hexagons may buckle into chiral ridges. Neigh-
bouring chiral cellular modes can further interact with each other to
form two types of topological network. While symmetry is eventually
brokenwith further shrinkage, leading to universal hexagonal-to-chiral
mode transitions, different C, values result in different critical thresh-
olds and wavelengths for the buckyball (with hexagon dominating)
buckling mode.

Experiment

Guided by this theoretical understanding, we next designed a
demonstrative experiment to harness such an instability mecha-
nism to achieve pattern tunability, by using liquid silicone that can
solidify into any desired shape in a well-designed mould. We made a
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Fig. 3| Bifurcation diagrams of post-buckling morphology evolutionsin
core-shell spheres with different C; upon shrinkage. a-f, Diagrams for C,
values of12.7 (a), 9.09 (b), 7.07 (c), 3.98 (d), 3.18 (e) and 2.55 (f), showing the
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buckyball pattern (with hexagons prevailing) (i) and chiral ridge networks (ii
and iii). Excess shrinkage leads to advanced symmetry breaking of the buckyball
mode, transforming into the chiral mode and the chiral ridge network eventually.

spherical shell with a hexagonal pattern on the surface, a cavity and
asmall hole (diameter ~4 mm) for air extraction to induce shrinkage
(Methods). Since silicone has a much lower elastic modulus than
passion fruit, the smooth shell structure does not buckle into hex-
agonal patterns (cannot reach the advanced bifurcation range shown
in Fig. 3) but exhibits global deformation upon pressure loading
condition by air extraction (Methods and Supplementary Video 5).

To focus on the chiral bifurcation and to facilitate instability mor-
phology control at this bifurcation, we fabricated artificial hexago-
nal patterns on the shell surface. We extracted air slowly (-2 mLs™)
from the sample to control the pressure (-10 kPa) so that a state of
homogeneous compression could be perfectly achieved. Notably,
these well-designed hexagonal networks on the surface of the sample
buckle into chiral patterns (Fig. 4a-d and Supplementary Video 2),
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Fig. 4| Air extraction-induced chiral topography on curved surfaces.

a-d, The experimental formation of a chiral ridge network with continuous air
extraction, showing the hexagonal-to-chiral mode transition with increasing
shrinkage of core-shells (Supplementary Video 2). e-1, The localization of

A_k_ Chiral ridge network

tunable chiral networks on curved surfaces (Supplementary Video 3) triggered
by aperturbation (poke by arod) in experiments (e-h), consistent with numerical
simulations (i-1).

analogous to the observation of highly dehydrated passion fruits and
model predictions (Fig. 1). Furthermore, we can flexibly control the
position of local chiral networks by imposing external perturbation
asillustratedin Fig.4e~h (Methods and Supplementary Video 3), con-
sistent with FEM simulations in Fig. 4i-I. These experiments not only
demonstrate a hexagonal-to-chiral mode transition, consistent with
our theoretical predictions, but also shed light on rational designs of
controllable chiral patterns.

Adaptive grasping

Based on these insights, we show that this perturbation-induced
chiral instability can be harnessed to effectively and stably grasp
small-sized objects with different geometries and made of differ-
ent stiff or soft materials. The object to grasp acts as a local pertur-
bation when in contact with the hexagonal-patterned shell and is
then adaptively locked by the induced local chiral networks. Similar
to the aforementioned experimental setup, we fabricated a hemi-
spherical shell with a hexagonal surface pattern as the main body of
the gripper. A small hole was made at the bottom of the cap for air
extraction. Then, the whole gripper was fixed onto a lifting frame
to steadily control the movement. When the curved hemispherical
cap touchesthetarget, the contact perturbation-induced symmetry
breaking triggers chiral network localization. The chiral patternand
theinterface friction spontaneously adapt to the interactions at the
contacting areas, which are naturally influenced by the shape and
stiffness of the object, so that different objects can be grasped by
thissmartlocking together with air extraction (Fig. 5, Supplementary

Fig.4 and Video 4). When we restored the pressure difference, thatis,
inflated the cap cavity, the chiral networks elastically reverted back
to hexagons, releasing the grasped object. The contrast experiments
showed that the hemispherical caps with a smooth surface (no chi-
ral instability) could not grasp those objects at all (Supplementary
Video 5), supporting the critical role of the chiral network localiza-
tion in the grasping process.

Discussion

We have unveiled chiral-mode symmetry breaking during excessive
shrinkage of core-shell spheres, which can be formulaically described
and precisely predicted by our theories and computations, in good
agreement with carefully designed experiments. Beyond the critical
buckyball wrinkling, chiral ridges emerge on the curved surfacesupon
excess deformation, and the neighbouring chiral cellular Y-shaped
modes can further interact with each other to form advanced chiral
topological networks. The critical buckyball wrinkling conditions
can be obtained analytically by using linear stability analysis, while
strong nonlinearity (both geometric and material) in the post-buckling
regime of shrinking spheres results in considerable difficulties in the
theoretical predictions of advanced bifurcations and their associated
morphological patterns. Consequently, theoretical analyses on sec-
ondary and multiple bifurcations of chiral instability have toresort to
dimensional analysis (scaling law) based on certain simplified models.
From the computational standpoint, the major challenge in extremely
shrinking spheres at large strain is the solution of highly nonlinear
equations. The most classical solution method to solve nonlinear static
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Fig. 5| Topographic grasping experiments on objects of different geometry, size and material. a-j, Grasping of different objects: diamond (a,b), nut (c), screw
(d), mungbean (e), soyabean (f), blueberry (g), heart-shaped candy (h), irregular shaped glass (i) and glass ball (j). The chiral deformation enables effective, target-

adaptive grasping (Supplementary Video 4).

problems is the path-following continuation technique such as that
of Riks, while numerical convergence cannot always be ensured for
extreme wrinkling problems upon large deformations, since a large
number of solution branches can be connected via multiple bifurca-
tions. This fact motivated us to apply the dynamic relaxation method
toleap over somelocalized energy barriers in the nonlinear evolution
paths, while the dynamic method cannot straightforwardly predict
subcritical bifurcations and hysteresis. Making progressinboth theo-
retical and computational analyses of multiple bifurcations in highly
nonlinear evolution paths might require more advanced mathematical
approaches.

Inspired by the chiral instability topography induced by local
perturbation, we demonstrated an exemplar application of target-
adaptive grasping based on chiral localization, while future work may
take advantage of smart active materials such as hard-magnetic soft
materials and liquid-crystal elastomers to enhance multifunctional
designs under multiphysics stimuli. Our results not only provide
physical insights into the wrinkling topography of highly deformed
core-shell spheresby a universal law but also pave apromising way for
realizing multifunctional surfaces by harnessing fruitful topography
on curved geometry.

Methods

Dimensional analysis of chiral instability

We carried out dimensional analysis to predict the chiral bifurcation
of core-shell spheres (Extended Data Fig. 1) upon dehydration

(equivalent tothermal shrinkage). Based on the experimental observa-
tionsand numerical calculations, we assumed that each cellular ridge
before chiral instability can be viewed as a layered plate and thus the
chiral bifurcation of a cellular ridge can be simplified as the buckling of
abilayer subject to shrinking strain (Extended Data Fig. 1c). Sucha plate-
like ridge has length L and thickness ¢ and comprises an upper layer of
width h.and alower layer of width h,. Each layer has a Young’s modulus
E;, Poisson’s ratio v; and bending stiffness D; = E£2/[12(1-v})],
where is‘f’or’s’.

The bending energies of the upper and lower layers can be
expressed as

D, 2
j?b = {ﬂ [(uf,zz + uf,yy) +2(1-wv) (u?yz - uf,zzuf,yy)] dey, (6)
e

b

2
2 = 25 /f [(us,ZZ Fgy) +2(1-vy) (u;yz - us,zzusxyy)] do,, @
2,

where u.and u,denote, respectively, the out-of-plane deflection of the
upper and lower layers, while Q, and Q, represent the area of the mid
surface of the upper and lower layer, respectively.

As an ansatz, we consider the following forms for the deflections
inthe chiral buckling state:

ur = ; (2)sin ’L—’y, ®)
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ug, = d¢ (2)sin ’Zry, 9)

where the functions @¢(z) and @,(z) can be expanded into series of
exponential decay functions as

b5 (2) = ZAfi (kqi2) (10)
b, (2) = Z Asi (ksiz) , (11)
where k;; and k; are coefficients of the following order:
1
ki ~ ksi~ 7. 12)

andthedisplacement continuity conditionis satisfied at the interface
of upper and lower layers, that is, @y(h,) = @,(h;).
Accordingto equations (8) to (12), one obtains

Uy ~ Uy ~ Uy, (13)

Substituting equation (13) into equations (6) and (7), the bending
energiesread

2~ Eft/] [ZAf, kf,z)sm(nl—y)] dydz h

14)

b

a,, 1s)

2
3
[ZAS, (ksi2) sm(Ty)] dydz ~ EChs

= 1 [Z A (kszhe) sin ()] d dz,
a=[r [Z Asi (ksizhs) sin (ﬂ'y)] dydz, y

The membrane energy can be determined by the in-plane strains
given by (note that, for simplicity, the subscript {has been omitted)

inwhich g

=y/Land z = z/h;.

2
v 1(ou
0 = — -_— —
=5 tal5) v ae)
a 0
szoz_ aw <6_Z> + Eshs (17)
e =0, (18)

yz

where g, is the thermal shrinking strain, and vand w represent the in-
plane displacements in the mid surface along the y and z directions,
respectively, the order of which can be determined by minimizing the
membrane energy. Consequently, the in-plane displacements in the
mid surface can be approximated as v =By and w = Cz, in which Band
Crefer to the slopes of variation.

The membrane energies of the upper and lower layers can be
expressed as

R = (Ert 1 {[( V) + (eﬁ,)z)f]2 +2(1-w)
19
(6 + ()2 o
m_ _E 2
B = 2(1—:'5)/]‘92 {[(859,\/) + (522)5] +2(1-v) o

[CARICANCAN|ELS

Accordingto equations (8) to(12) and (16) to (18), the membrane ener-
giesread

R Eftss" _/] [ZAf, (keiz sm( )] dydz ~ Eihetesn — g (1)
e L

™ Etss"/] [ZAS, S,z)sm )] dydz ~ Eshzt&h a.  (22)
2

Since the upper and lower layers buckle simultaneously, combining
equations (14), (15), (21) and (22) leads to

ﬁb +!me ~ :};b +jgm’ (23)
namely,
thf[3 thfl'é‘sh Eshst3 Eshstgsh
( IE i )al ~\= i a,. (24)

Note that a,/a, is a non-negative constant. Based on calculations and
equation (24), the scaling law yields the following explicit form for the
chiral shrinking strain .

(25)

C thf[3+thft€C _ E5h5t3 Eshstgc
BE L)\ r )

where C,=0.029 is a fitting coefficient. The scaling law in equation
(25) agrees well with finite element simulations for chiral bifurcation
(Fig.2b).

Numerical method

We performed finite element simulations in commercial software
Abaqus based on parameters similar to experimental observations.
Since the deformation of core-shell spheres can be large (up to 30%
shrinking strain), we applied the widely used hyperelastic neo-Hookean
(nHk) constitutive law for both the surface layer and the soft core, while
more sophisticated hyperelastic constitutions such as the Mooney-
Rivlin (MR) model were also examined but showed trivial quantitative
differences that did not change the substantial nonlinear mechanism
of the instability problem. The elastic strain energy density function
ofthe nHk model is defined as

(26)

1
Ynpk = Cro (h = 3) + D—U— 17,
1

inwhich C,, = E/4 (1 + v)and D; = 6 (1 — 2v) /E are material parameters.
Thevolume changereads J = det(F), where Fis the deformation gradi-
ent tensor. The first strain invariant reads /; = tr(F" - F). We coupled
eight-node hexahedral volume (C3D8R) elements for the soft core and
thinshell (S4R) elements for the surface layer by using a ‘tie’ constraint
at the interface. Mesh convergence was carefully examined for all
simulations. The main challenge is the solution of the nonlinear equa-
tions, as numerous post-buckling solution branches canbe connected
viamultiple bifurcations®*®, Therefore, we applied the dynamic relaxa-
tion method to allow the calculation to pass through the unstable
transitions, which introduces velocity-dependent damping (C) and
artificial inertial (M) terms into the static equilibrium equation
(R(U, 1) =0),leading to

d’u du

MS— +CS= +R(U, ) =

de " dr @

where Ris the residual force, U denotes unknown variables and A rep-
resents an incremental loading parameter. Realistic definitions of
mass and damping were not necessary; thus, we set these quantities
to obtain optimal convergence of ¢ > U(¢) for large values of time ¢ (no
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physical meaning here). When the modelis stable (quasi-static), viscous
energy dissipation remains quite small such that the artificial damp-
ing does not notably perturb the solution. When the system tends to
be dynamically unstable, nodal velocities increase, and thus, part of
the elastic strain energy released can be dissipated by the damping.
A shrinkage load (equivalent to thermal expansion or residual strain)
was applied to the core while the surface layer was loading free, which
canbe expressed as

&n = aATl with AT <O, (28)

where a, ATand Istand for the thermal expansion coefficient, tempera-
ture change and second-order identity tensor, respectively. The shrink-
age load g, can also be characterized by an isotropic residual strain
&= Ees = —Al Inthe numerical calculations shownin Fig. 1e-h, we took
R/h=50and C, = (E./E) R/ = 9.09.

Experimental method for realizing functional chiral surfaces
To realize flexible tunability of chiral patterns and to further harness
the hexagonal-to-chiral mode transition for achieving smart surfaces,
we designed demonstrative experiments based on air extraction from
silicon core-shell spheres. The simple experimental system consists
of two combined hemispherical caps with a channel connecting the
internal cavity and an external tube for air extraction. To achieve a hex-
agonal network on the surface of the hemispherical cap, we designed a
mould with ahexagonal network by applying three-dimensional print-
ingtechnology. Then, we poured intwo-partliquid silicone (Hongyejie
Technology Co. Ltd.) in 1:1 mass ratio. Liquid silicone needs to stand
for 3 hours at 25 °C to cure fully. To create a cavity in the centre of
the sample, we applied a hemispherical lid with a diameter slightly
smaller thanthe outer diameter to cover the bottom of the mould when
the liquid silicone was curing. After the liquid silicone had cured and
was demoulded, we glued two identical hemispherical caps together.
The typical parameters of the samples were an outer diameter of
2R =70 mm, a diameter of the inner cavity of 2r=58 mm and a hex-
agonal cellularlength of L = 4.33 mm, height of H = 2.61 mm and thick-
ness of t =0.75 mm. The experimental procedure to realize functional
chiral surfaces isillustrated in Extended Data Fig. 2. The inner cavity
of the samples was pumped out and depressurized to create a state of
homogeneous shrinkage. To demonstrate the effects of shrinkage on
the hexagonal-to-chiral mode transition, we slowly exhausted the airin
the samples to mimic dehydration-induced shrinkage of passion fruit.
Whenthe samples deformed elastically to certain values, the hexagonal
network lost stability and buckled into a chiral topography (Fig. 4a-d).
Note that this mode transition is reversible when the air re-enters the
sample and the pressure difference is restored. To further illustrate
the tunability of the chiral localization, we applied a small disturbance
(poke by arod) somewhere onthe surface to trigger the hexagonal-to-
chiralmode transformation (Fig. 4e-h) while the sample was subjected
to homogeneous shrinkage, which was in good agreement with finite
element simulations (Fig. 4i-1). This strategy can provide enlighten-
ment for the design of programmable functional surfaces such as
adaptive grasping based on chiral localization.

Chiral topography for adaptive grasping

Based onthe aforementioned experiment, we present atarget-adaptive
gripper which can grasp small objects based on a hexagonal-to-chiral
mode transformation. Simple structure, easy control, shape adaptation
and filterable grasping are prominent advantages of the chiral gripper.
The gripper system consists of a hemispherical shell with hexagonal
topography, an air channel and a lifting frame that can move up and
down (Supplementary Fig. 3). The air channel and the hemispherical
part constitute a cavity structure, the former being connected to an
external exhaust device to trigger the hexagonal-to-chiralmode tran-
sition by air extraction. The lifting frame is combined with the cap to

control the motion. The working principle of the gripperisintroduced
asfollows: Thelifting frame descends to make the gripper approacha
target. When the hexagonal network on the curved surface touchesthe
object, the contact perturbation triggers the hexagonal-to-chiral topo-
graphic deformation that can well fit with the targeted shape. Then, the
exhaust device begins to pump air. Withiincreasing air extraction, the
chiraltopography canlock the object tightly to achieve astable grasp.
Finally, the object leaves the desk when raising the lifting frame. When
the pressure difference is restored, the chiral topography elastically
reverts back to hexagonal networks, releasing the grasped object. We
carried out topographic grasping experiments on stiff or soft objects
of different shapes and sizes (Fig. 5 and Supplementary Fig. 4). Our
experiments showed that the gripper can smartly and stably grasp vari-
oussmall-sized objects. To further demonstrate the crucial role played
by the chiral topography in robust grasping, we performed contrast
experiments by making a hemispherical cap with a smooth surface.
Exceptforthelack of theinitial hexagonal network onthe surface, the
other parameters of the gripper remained exactly the same as in the
aforementioned grasping experiments. With the smooth surface, the
targets slid off, leading to failure of effective grasping (Supplementary
Video 5). Our experiments not only prove the critical role of the chiral
topography in effective, target-adaptive grasping but also shed light
onsmartgripper designs.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source datafor the FEM computations shown in Figs.2and 3 are avail-
able with this manuscript.

Code availability

The code used in this study can be obtained from Zenodo®.
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Extended Data Fig. 1| Passion fruit (Passiflora edulia Sims). (a) Cross section. (b) Geometry of a core-shell sphere. (c) Schematic of chiral buckling of a Y-shaped
cellular representative layered plate.
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Extended Data Fig. 2 | Experimental process of realizing functional chiral hexagonal pattern on the surface. (d) Two hemispherical shells with hexagonal
topography. (a) Pour liquid silicone on a 3D printed mold with hexagonal network are glued and can be separated, with achannel connecting the internal
network on the surface. (b) Create a cavity in the sample by using ahemispherical ~ cavity and external tube for air extraction.

cover when the liquid silicone is curing. (c) A silicon hemispherical shell with
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