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Harnessing low dimensionality to visualize 
the antibody–virus landscape for influenza

Tal Einav    1,3  , Adrian Creanga2,3, Sarah F. Andrews2, Adrian B. McDermott    2 
& Masaru Kanekiyo    2

Antibodies constitute a key line of defense against the diverse pathogens we 
encounter in our lives. Although the interactions between a single antibody 
and a single virus are routinely characterized in exquisite detail, the inherent 
tradeoffs between attributes such as potency and breadth remain unclear. 
Moreover, there is a wide gap between the discrete interactions of single 
antibodies and the collective behavior of antibody mixtures. Here we 
develop a form of antigenic cartography called a ‘neutralization landscape’ 
that visualizes and quantifies antibody–virus interactions for antibodies 
targeting the influenza hemagglutinin stem. This landscape transforms the 
potency–breadth tradeoff into a readily solvable geometry problem. With 
it, we decompose the collective neutralization from multiple antibodies 
to characterize the composition and functional properties of the stem 
antibodies within. Looking forward, this framework can leverage the 
serological assays routinely performed for influenza surveillance to  
analyze how an individual’s antibody repertoire evolves after vaccination  
or infection.

A key problem in immunology is to discover antibodies that can pro-
tect against a wide range of viruses. However, it is difficult to quantify 
the inherent tradeoff between antibody potency (how well a virus is 
neutralized) and breadth (how many different viruses are neutralized). 
This tradeoff is especially important for rapidly evolving viruses such 
as influenza, where we seek antibodies that are both highly potent and 
broadly neutralizing1–3. Because these goals can be mutually exclu-
sive, and because characterizing new antibodies is time- and resource-
intensive, we need a framework that extrapolates the behavior of a few 
antibodies to describe other phenotypes.

The situation is further complicated in the context of multiple 
(polyclonal) antibodies, as in our immune system. With every infection 
or vaccination against the influenza virus, our antibody repertoire 
is reshaped, leading to a complex immune landscape whose ability 
to protect us from past and current strains is difficult to quantify4,5. 
Although much effort has been devoted to measuring individual anti-
bodies and predicting the effectiveness of their combinations6–9, the 
inverse problem using a mixture’s collective behavior to characterize 

the antibodies within is intractable without a framework to enumer-
ate all antibody–virus interactions. In this Article we create such a 
framework, which provides a unique perspective to computationally 
dissect mixtures.

To that end, we characterize antibody–virus interactions based 
on the techniques of antigenic cartography10,11 and antibody finger-
printing12. Antigenic cartography creates a low-dimensional map from 
hemagglutination inhibition titers that quantifies the tradeoffs in 
how potently and broadly sera can inhibit different groups of viruses. 
Although this technique imposes a structure for how sera can behave, 
it is unable to characterize the antibodies within a given serum nor 
predict the level of inhibition offered when sera are pooled together. 
Moreover, hemagglutination inhibition only characterizes antibodies 
binding to the head of influenza hemagglutinin (HA) and neglects anti-
bodies targeting the HA stem, which generally inhibit a broader set of 
viruses1 and which are being assessed in clinical trials as therapeutics13.

A complementary method that partially offsets these drawbacks 
is antibody fingerprinting, which links the behavior of individual 
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are presented in Supplementary Fig. 1c). These measurements allow 
us to construct a neutralization landscape where the relative distance 
between an antibody and virus dictates the antibody’s potency (Fig. 1b).  
As more viruses and antibodies are added, they lock into a fixed con-
figuration, aside from global translations, rotations and reflections.

Using these antibody–virus interactions, we created a neutraliza-
tion landscape for the HA stem, with H1N1 and H3N2 viruses colored 
from lightest-to-darkest hues (oldest to more recent strains, Fig. 1c). 
A distance d between an antibody and virus translates into an IC50 of 
10−10 + d M (where 1 μg ml−1 = 6.6 × 10−9 M for the immunoglobulin-G (IgG) 
antibodies considered here), so that greater distance represents expo-
nentially decreasing inhibitory action. We quantified the error of the 

antibodies and antibody mixtures. The neutralization of large panels 
of antibodies is first clustered to identify patterns or ‘fingerprints’12. 
By applying this process in reverse, neutralization from polyclonal 
sera can be decomposed to identify constituent antibodies from the 
original panel.

In this Article we create a neutralization landscape that charac-
terizes the interaction between HA-stem-targeting antibodies and 
influenza viruses. This approach pushes beyond cartography and 
fingerprinting in three key ways. First, as in cartography, we apply 
multidimensional scaling to antibody–virus measurements and project 
them into two dimensions (2D), but we do so at the level of individual 
antibodies rather than sera. By shifting the focus to antibodies, we 
quantify neutralization in absolute units without normalization fac-
tors, and we avoid the tendency of polyclonal sera to disrupt the map 
structure by drawing together antigenically distinct viruses. Moreover, 
whereas the composition of sera is generally unknown, and hence 
antigenic maps represent an amalgam of antibodies targeting multi-
ple antigenic sites, the composition and binding site of an individual 
antibody can be precisely quantified, resulting in a more accurate and 
interpretable landscape.

Second, this landscape serves as a discovery space for new antibod-
ies and viruses. We empirically demonstrate that a 2D distance function 
(or metric) characterizes the >1,000 antibody–virus interactions we 
measured. By positing that other stem antibodies and viruses will 
be well characterized on the observed landscape, we can enumerate 
the range of antibody behaviors. For example, we can visualize the 
potency–breadth tradeoff (quantifying how antibodies inhibiting 
more diverse viruses must have decreased neutralization) and predict 
the maximal potency of an antibody against any set of mapped viruses.

Finally, inspired by antibody fingerprinting, we develop a tech-
nique to decompose the collective neutralization from a mixture and 
characterize the antibodies within. Whereas previous efforts only 
detected specific patterns from known antibodies14, our approach 
considers a range of stem antibody behaviors extrapolated via the 
landscape. Using this rich set of behaviors, we determine the minimal 
number of stem antibodies (along with their full neutralization profile 
and stoichiometry) that could generate the observed signal from a mix-
ture. Moreover, the neutralization landscape can remove the effects of 
non-HA-stem antibodies, and we validate such decompositions against 
14 mixtures of HA head + stem antibodies. In this way, the neutralization 
landscape can peer into the influenza antibody response and quantify 
the stem antibodies within.

Results
Quantifying the spectrum of influenza antibody 
neutralization
Antigenic cartography utilizes metric multidimensional scaling to 
coalesce individual interactions (the ability of one antibody to inhibit 
one virus strain) into a global map15. As a helpful geographic analogy, 
multidimensional scaling transforms pairwise distances between cities 
to create a state map (Supplementary Fig. 1). When cities are replaced 
by viruses and antibodies, the same procedure generates a map where 
the concentration of an antibody required to neutralize a virus is solely 
dictated by its distance to that virus, with smaller distances signifying 
more potent neutralization.

We assembled a virus panel comprising 24 H1N1 influenza strains 
collected between 1933 and 2018 and 27 H3N2 strains collected from 
1968 to 2019 (Supplementary Fig. 2 and Supplementary Table 1). Neu-
tralization was measured against 27 HA-stem-targeting antibodies  
(Fig. 1a; 17 previously published in ref. 16 and 10 newly measured anti-
bodies) representing major lineages of broadly neutralizing antibodies 
elicited by vaccination17–19. We determined the concentration of each 
antibody needed to neutralize every virus by 50% (the half-maximal 
inhibitory concentration, IC50), and the available reagents were suffi-
cient to measure most antibody–virus pairs (1,148/1,377 = 85%, raw data 
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Fig. 1 | Neutralization landscape for the influenza hemagglutinin stem. a, Virus 
neutralization was measured for antibodies targeting the influenza HA stem. 
b, Example showing how neutralization is transformed into a distance d on the 
landscape. An antibody with greater neutralization (smaller IC50) against a virus 
is placed closer to that virus. The light-gray antibody is positioned 1, 2 or 3 units 
away from the viruses, and the dark-gray antibody is 1 unit away from all three 
viruses. c, Neutralization landscape of the HA stem quantifying the interactions 
between monoclonal antibodies (gray) and viruses (hues of green/blue, with 
darker hues representing more recent viruses). Throughout this work, landscapes 
are portrayed using a 2D Euclidean coordinate system where distance d between 
each antibody–virus pair corresponds to a neutralization IC50 = 10−10 + d M, so 
that gridlines represent a 10× drop in neutralization. Average error represents 
the mean fold-difference between the landscape IC50 values and measurements. 
Supplementary Fig. 1 presents the raw data and the correspondence between 
shading and virus name; this color scheme is used consistently throughout this 
work. d, Examples of how a virus or antibody is positioned. Red circles represent 
the expected distance d = 10 + log10(IC50/1 M), and an antibody or virus must lie as 
close as possible to the intersection of all circles.
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antibody and virus coordinates by computing the fold error between 
the landscape IC50 values and the measured IC50 values for all antibody–
virus pairs (for example, ICPredict

50 = 10−9 M and ICMeasure
50 = 2 × 10−9 M 

has a fold error of two), with a lower limit of 1-fold error for a landscape 
that perfectly represents the data (Methods). The 2D stem landscape 
had an 〈error〉 of 2.4-fold, comparable to the approximately 2-fold 
accuracy of the neutralization assay.

Surprisingly, when we remade the landscape in different dimen-
sions, the error only decreased by 10% in 3D, although it more than 
tripled in 1D (Supplementary Fig. 3). Moreover, as described in the 
following section, the 2D landscape has better predictive power than 
higher dimensions. Accordingly, we opted to represent the data in 2D. 
We further showed that our method outperforms other dimensionality 
reduction techniques (Methods).

The resulting 2D landscape is described by 2 × (27 antibodies + 51 
viruses) = 156 coordinates representing the 1,148 antibody–virus meas-
urements (compressing the data to 156/1,148 = 15%). To visualize the 
structure of the data that enables this compression, we draw circles 
of radius d = 10 + log10(IC50/1 M) around several antibodies measured 
against a virus. This virus must lie as close as possible to all circles, and 
its location can be determined via least-squares minimization (Fig. 1d, 
left panel). Antibodies and viruses are treated symmetrically, so an anti-
body is similarly fixed using its neutralization against multiple viruses 
(Fig. 1d, right panel). We note that the circles shown in Fig. 1d represent 
a small fraction of available data, with each virus constrained by 20 
measurements and each antibody constrained by 40 measurements, on 
average. Error analysis shows that antibody and virus coordinates are 
tightly determined (Supplementary Fig. 2 and Supplementary Table 1).

Predicting the neutralization of new antibodies or viruses
The success of multidimensional scaling suggests that the interac-
tions between stem antibodies and influenza viruses have a simple 
underlying structure. As with all dimensionality reduction techniques, 
this approach is expected to interpolate accurately (for example,  
given an antibody’s neutralization against several mapped viruses, 
we can predict its behavior against all other mapped viruses) yet 
extrapolate poorly (for example, predicting neutralization against a 
new antibody or virus). Previous efforts have focused exclusively on 
interpolation10,20, but we postulated that a neutralization landscape 
constrains the space of antibody–virus interactions sufficiently to 
make extrapolation possible.

To test this hypothesis, we withheld all measurements from one 
antibody and recreated the neutralization landscape. We then quan-
tified whether some point on the map could still describe this anti-
body. In other words, do the unoccupied regions of the landscape  
predict the behavior of potential antibodies? Using six measurements, 
we triangulated the withheld antibody and compared its predicted 
versus measured neutralization against the remaining 45 viruses  
(Fig. 2a and Methods).

We repeated this analysis, withholding each of the 27 antibodies 
in turn and predicting the left-out antibody’s complete neutralization 
profile (taking special care with the bounded measurements; Methods). 
Collectively, 65% of the 600 predicted IC50 values had ≤2-fold error, and 
90% had ≤4-fold error (Fig. 2b and left distribution in Fig. 2c). When we 
similarly withheld and triangulated a virus, we found that 80% of the 
resulting predictions had ≤4-fold error (Fig. 2c). Moreover, we found 
that a 2D landscape predicts a withheld antibody or virus better than 
lower or higher dimensions (Supplementary Fig. 3a).

As a more ambitious test, we next withheld multiple antibodies and 
viruses. We removed the ten most recent viruses (isolated between 2010 
and 2020), representing the practical scenario where past strains are 
used to infer the behavior of future variants. In addition, we assessed 
whether the landscape remained stable when antibodies from an entire 
region were depleted. Thus, we removed ten antibodies (37% of our 
set) from either the left half or right half of the map. In each scenario,  

we triangulated every entry as described above, using six measure-
ments to predict the remaining data. In all cases, we found that 80% of 
predictions had ≤4-fold error, demonstrating that the map can robustly 
infer new antibody or virus behavior (Fig. 2c).

In our initial dataset of 1,148 antibody–virus measurements, most 
predictions fell within 4-fold of the measurements (much smaller than 
the 2,000-fold range of IC50 values across the dataset). However, 16 
measurements exhibited >10-fold error, suggesting that those few 
measurements may be outliers. To test this, we remeasured these 
16 interactions and found that, upon remeasurement, their error 
decreased from 22-fold to 6-fold on average, much closer to the land-
scape predictions (Supplementary Fig. 4; all figures in this Article 
utilize these remeasured values). To test for false negatives, we also 
remeasured 54 interactions with <10-fold error (already in line with our 
predictions) and found that the measurements were mostly identical 
and their error minimally changed from 2-fold to 3-fold on average 
(Supplementary Fig. 4). Thus, by quantitatively analyzing the dataset 
with our landscape, we could identify and correct outliers.

Although the above analysis suggests that our specific dataset is 
well described by a 2D landscape, we cannot know how these results 
will generalize as more antibodies and viruses are added. In particular, 
stem antibodies that are not broadly neutralizing or viruses from other 
subtypes may require a landscape with different dimensionality or a 
different distance metric. As a first step to testing the generality of our 
approach, we analyzed an external dataset, where the neutralization of 
four additional stem antibodies not in our panel were measured against 
13 viruses21. We first showed that triangulation with six viruses could 
predict the remaining measurements with 2.6-fold accuracy, demon-
strating that these antibodies conform to the underlying structure 
of our landscape (Supplementary Fig. 5). We then used the positions 
of our mapped viruses to extend their dataset, predicting 36 new IC50 
values for each antibody (Supplementary Fig. 5).

Antibody–virus distance quantifies the potency–breadth 
tradeoff
Although it is well known that stem antibodies tend to neutralize a 
broader set of viruses than head antibodies22, precisely quantifying 
the inherent tradeoff between antibody potency and breadth remains 
an open problem. Using the neutralization landscape, we transform 
this challenging biological question into a straightforward geometry 
problem (Supplementary Fig. 1e).

A key mathematical property of the landscape is that the anti-
body–virus distance forms a metric. In other words, our intuition for 
Euclidean geometry applies—for example, the antibody with the most 
potent neutralization (lowest IC50) against two viruses would lie exactly 
between them, minimizing the distance to either virus.

This set-up is readily generalized to multiple viruses to answer a 
question that is intractable without a reference set for antibody behav-
ior: how potently could any antibody neutralize N viruses? (Formally, 
what is the minimum ICmin

50  such that an antibody only exhibits 
IC50s ≤ ICmin

50  against all N viruses?) On the landscape, this optimal 
antibody lies at the center of the smallest circle bounding all N viruses.

To demonstrate this process, we considered the optimal antibody 
targeting all H1N1 or H3N2 vaccine strains from the 2004–2005 to 
2018–2019 seasons (Methods). The optimal H3N2-specific antibody 
(blue in Fig. 3a) has a predicted ICmin

50 = 4 × 10−10 M, around 20× better 
than the best antibody in our panel (gray antibody 315-09-1B12) with a 
measured ICpanel

50 = 70 × 10−10 M  (Fig. 3a). In contrast, the optimal 
H1N1-specific antibody (green) has ICmin

50 = 3 × 10−10 M, only 2.5× better 
than the ICpanel

50 = 10 × 10−10 M from our best antibody (gray, antibody 
CR9114). If each point on the map describes a potential antibody, then 
groups searching for better stem antibodies against these viruses 
should expect only marginal gains from additional H1N1-targeting 
antibodies, but far greater potential for finding more potent H3N2-
targeting antibodies.
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We can similarly assess how well a single antibody simultaneously 
neutralizes both the H1N1 and H3N2 vaccine strains. Because of the 
differences between these two subtypes, we expect that this enlarged 
breadth must come at the cost of decreased potency. Indeed, the neu-
tralization landscape predicts that a stem antibody can only exhibit 
ICmin

50 = 30 × 10−10 M  against these vaccine strains, at least 10× less 
potent than the ICmin

50  values for the H1N1-specific or H3N2-specific 
antibodies described above. As expected, the best panel antibody that 
simultaneously neutralizes these H1N1 and H3N2 viruses has 
ICpanel

50 = 140 × 10−10 M (FI6v3); that is, ~5× worse that the predicted 
optimal antibody (Fig. 3b). These results emphasize that even broadly 
neutralizing antibodies may have a ‘neutralization ceiling’ against 
sufficiently diverse viruses, and that there is an inherent cost to neutral-
izing more strains.

This process is readily extended to any group of viruses, as well 
as to the more general question of how potently N1 antibodies could 
neutralize N2 viruses. Using the landscape, we can not only compute 
the optimal IC50, but also the specific neutralization profile against 
each virus on the panel.

As a technical note, a metric requires a triangle inequality. Because 
we only define the distance dAb–V = 10 + log10(IC50/1 M) between an anti-
body (Ab) and virus (V), the usual triangle inequality becomes the 
quadrilateral inequality

dAb−V ≤ dAb−V + dAb−V + dAb−V (1)

where Ab and V represent any other antibody or virus (Supplementary 
Fig. 6a). As with the traditional triangle inequality, this relationship 
codifies the notion that the distance between any Ab and V must be 

shorter than the next shortest route through Ab and V. Altogether, 
there are 400,000 combinations of Ab, Ab, V and V that can be directly 
tested against equation (1) using the antibody–virus measurements 
(without requiring the neutralization landscape). We find that this 
inequality is satisfied in 99% of cases, demonstrating that our measure-
ments are well described by the Euclidean metric. This empirical obser-
vation must be continually affirmed with future measurements.

Isolating the neutralization of a stem antibody within a 
mixture
By enumerating the behaviors of a stem antibody, the neutralization 
landscape can also detect neutralization patterns from non-stem anti-
bodies and remove those signals. For example, given the combined 
neutralization from an HA head + stem antibody mixture, we can isolate 
the stem-derived neutralization (Fig. 4a). This represents a key step 
towards serum deconvolution (characterizing the epitopes and neu-
tralization profiles of antibodies within serum), which is a necessary 
step in the many ongoing efforts to elicit broad antibodies that can 
grant potent and durable protection against infection.

Although antibody–virus distance on the landscape corresponds 
to neutralization, the distance between two viruses (V1 and V2) can be 
interpreted as constraining how differently any stem antibody can 
neutralize both strains. In the extreme example where these viruses 
have identical HA stems and lie on the same coordinate (dV1–V2 = 0), 
every stem antibody will identically neutralize V1 and V2. Thus, if a 
head + stem antibody mixture neutralizes V1 far more potently than 
V2 (for example, with IC50 values of 10−10 M and 10−7 M, respectively), 
this discrepancy must be caused by the head antibody increasing the 
mixture’s neutralization (decreasing its IC50) against V1. The stem 
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Fig. 2 | Extrapolating new antibody behavior. a, Left: we withhold an antibody 
(315-23-1C09, boxed in red) from our dataset and recreate the neutralization 
landscape. Middle: the location of the withheld antibody is triangulated on the 
new landscape using a few measurements. Right: the neutralization against 
the remaining viruses is predicted using antibody–virus distance. Gridlines 

represent a 10× drop in neutralization. b, The 600 predicted versus measured 
IC50 values after withholding every antibody in our panel. c, We withhold either 
antibodies or viruses (1 or 10 of each), triangulate each entity using a subset of 
measurements, and predict the remaining measurements. In b and c, the shaded 
band represents ≤4-fold error, where 1-fold error represents an exact prediction.
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antibody alone should exhibit the same IC50 value of ≥10−7 M against 
both viruses (a value larger than 10−7 M is possible if the head antibody 
increases the mixture’s neutralization against both viruses).

More generally, given a distance dV1–V2 between two viruses, 
any stem antibody (Ab) will obey |dAb–V1 − dAb–V2| ≤ dV1–V2 (Fig. 4b) or 
equivalently

IC50,V1

IC50,V2
≤ 10dV1−V2 . (2)

Given the combined neutralization from a head + stem mixture, 
we consider every pair of measurements (IC50, V1, IC50, V2) and determine 
whether their ratio exceeds 10dV1−V2. If equation (2) is satisfied, the 
measurements remain unchanged. Otherwise, the smaller value (say 
IC50, V2) is bounded below as per equation (2) (IC50, V2 ≥ IC50,V1 × 10−dV1−V2, 
Supplementary Fig. 6b,c; see Methods for how we account for noise in 
the measurements by requiring more than a 10-fold discrepancy).

To test this process, we created nine antibody mixtures (seven 
containing 1 head + 1 stem antibodies and two containing 2 head + 1 
stem antibodies) and measured them against our virus panel (N = 321 
data points, Supplementary Fig. 7). As an example, we consider one 
mixture where the stem antibody is H1N1-specific and does not neu-
tralize any H3N2 viruses, whereas the head antibody neutralizes a few 
H1N1 and H3N2 strains (head antibody C05 + stem antibody CR6261). 
In combination, these two antibodies moderately neutralized some 
H3N2 viruses with an IC50 of ≤10−8 M (Fig. 4c, left panel, red circles 
around the blue viruses), whereas others showed no detectable neu-
tralization (a gold disk around a virus represents the lower bound 
measurement, IC50 > 10−7 M, outside our range of detection). The stem 
antibody should lie outside any gold disk while lying on the red circles 
representing IC50 values within our range of detection. As expected, no 
point on the landscape can satisfy these constraints in the left panel of 
Fig. 4c, demonstrating that a stem antibody alone cannot give rise to 
the neutralization from this head + stem mixture.

As described above, we use the neutralization landscape to remove 
the effects of the head antibody. Given the proximity of the H3N2 virus 
with no detectable neutralization (gold disk) to the H3N2 viruses with 
moderate neutralization (red circles), we correctly predict that the 
head antibody is responsible for this moderate neutralization. Thus, we 

apply equation (2), which increases the H3N2 IC50 values and changes 
them to lower bounds (represented by gold disks in the right panel of 
Fig. 4c). Notably, the H1N1 IC50 values were unchanged by this process, 
because the stem antibody’s neutralization dominated against these 
viruses, and hence the mixture’s H1N1 neutralization obeyed the con-
straints of the landscape.

With the head neutralization removed, we can triangulate the 
stem antibody on our map, as discussed in the previous section  
(Fig. 2a). In this way, we can characterize a stem antibody without know-
ing its individual neutralization profile nor the number or properties 
of the head antibodies in the combination. For our example mixture, 
the predicted stem antibody (Fig. 4c, red antibody) lies near the true 
position of the stem antibody (gray), with an average 1.5-fold error 
between the predicted and measured IC50 values across the virus panel. 
We repeated this analysis for our nine antibody mixtures, combining 
either one or two head antibodies with a stem antibody, and found an 
〈error〉 ranging between 1.5- and 5.2-fold (mean of 3.4-fold; Fig. 4d and 
Supplementary Fig. 10).

Characterizing antibody mixtures with multiple stem 
antibodies
Given the range of behaviors for a single stem antibody (represented 
by each point on the landscape), we can predict how multiple stem 
antibodies act in concert, paving the way to explore a polyclonal anti-
body response (the purview of this section). In the reverse direction, 
we can use the collective neutralization from multiple stem antibodies 
to determine the number, stoichiometry and neutralization profiles of 
the constituent antibodies (discussed in the following section).

To that end, we construct a biophysical model that calculates a 
mixture’s neutralization based on the neutralization of each individual 
antibody. Because the stem antibodies in our panel all target the same 
region of the HA stem17,23,24, we treat their binding as competitive, where 
only one antibody can bind to an HA monomer at a time (Fig. 5a). For 
two stem antibodies with individual neutralizations IC(1)

50 and IC(2)
50 , a 

mixture containing a fraction f1 of the first antibody and f2 = 1 − f1 of the 
second antibody will have

ICMixture
50 = (∑j fj/IC

(j)
50)

−1
, (3)

with this same equation holding for mixtures containing more anti-
bodies (Methods).

To test this competitive binding model, we created four 
stem + stem antibody mixtures and measured them against our virus 
panel (N = 165 data points). Using the individual IC50 values against each 
virus, we find tight agreement between the predicted and measured 
mixture IC50 values, with 98% of predictions exhibiting ≤4-fold error 
(Fig. 5b). On the landscape, such mixtures will neutralize a larger region 
(Fig. 5c, solid lines) than either antibody alone (dashed lines). In this 
way, we can use the competitive binding model to predict and visualize 
the behavior of general stem mixtures.

Characterizing the stem antibodies within general mixtures
By combining the results from the two previous sections, namely 
removing the neutralization of head antibodies and enumerating the 
behavior of multiple stem antibodies, we can decompose antibody 
mixtures with multiple head or stem antibodies. In essence, decom-
position detects neutralization signatures that are impossible for a 
monoclonal antibody to achieve (for example, potent neutralization 
against viruses far apart on the landscape). In such cases, we search 
for the minimum number of antibodies that give rise to the apparent 
neutralization profile.

As an example, we measured the collective neutralization from a 
mixture of two stem antibodies against our virus panel (Fig. 5d, gray 
antibodies; CR6261 + CR8020, 50/50% composition). The algorithm 
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scans through all possible configurations of n = 1, 2, 3… antibodies on 
the landscape and determines which one best describes the mixture, 
terminating once the fold error no longer appreciably decreases with 
additional antibodies (Supplementary Figs. 8 and 9 and Methods). 
This correctly predicted two stem antibodies (Fig. 5d, red), although 
with a 10/90% composition. The circle surrounding each antibody 
represents this fractional composition, so that the gray circles have 
the same radius whereas the red circle of the antibody on the left of the 
landscape (representing 90% composition) is larger than the red circle 
of the antibody on the right (10% composition). The areas covered by 
these circles represent ≥50% neutralization when the total mixture 
concentration equals a fixed amount we chose as 10−8.5 M. The deviation 
between the predicted and actual coordinates is partially compensated 
by predicting an uneven composition, so that the average fold error 
between the measured and predicted IC50 values against all viruses is 
1.9-fold, comparable to experimental error. This demonstrates that 
the antibody response can be partially degenerate—where different 
mixtures exhibit similar behavior—as both the 50/50% composition of 

gray antibodies and the 90/10% composition of red antibodies exhibit 
similar neutralization.

We performed a similar analysis for all our antibody mixtures, 
which included (1) 27 monoclonal stem antibodies, (2) 11 mixtures con-
taining two antibodies (four stem + stem and seven head + stem) and 
(3) three mixtures containing three antibodies (two head + head + stem 
and one head + stem + stem; Supplementary Fig. 7). As above, we 
blinded ourselves to both the number and type of antibodies in each 
mixture, computationally removed any head antibody neutralization 
(even for mixtures containing only stem antibodies), determined 
which set of stem coordinates best characterized the neutralization 
profile, and compared the resulting neutralization against the true 
mixture compositions.

Across all mixtures, the collective neutralization from the stem 
antibodies was well characterized by these decompositions, with 
~3-fold error for the monoclonal antibodies and two-antibody mixtures 
and 4‒5-fold error for the three-antibody mixtures (Fig. 5e,f). For 23/27 
monoclonal antibodies, the decomposition correctly predicted a single 
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neutralization from a head + stem mixture (#7 in Supplementary Fig. 10) cannot 
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stem antibody, although four antibodies were overfit as two-antibody 
mixtures due to deviations between landscape distances and measure-
ments. Decompositions for 10/11 of the two-antibody mixtures and 3/3 
of the three-antibody mixtures predicted the correct number of stem 
antibodies. Notably, in every mixture containing more than one stem 
antibody, we identified the unique antibodies, even when they were as 
close as 1.5 units apart on the landscape (mixtures 8–11 and mixture 14 
in Supplementary Fig. 10).

For the 13/14 mixtures with the correct number of imputed stem 
antibodies, we can further assess the predicted stoichiometry and neu-
tralization profile of each stem antibody within the mixture. Because 
we remove neutralization from HA head antibodies, our algorithm 
computes the abundance of each remaining stem antibody relative 

to the stem-directed response. Hence, the eight mixtures with a sin-
gle stem antibody were (by definition) correctly predicted to have 
that antibody comprise 100% of the stem response (Supplementary 
Fig. 10d). The remaining mixtures all had two stem antibodies with 
50/50% stem-targeting composition; four mixtures were predicted 
with ~75/25% and one with 90/10% stoichiometry. In addition, the dis-
tance between the predicted stem antibodies and their true landscape 
positions was 0.8 ± 0.4 map units (corresponding to six-fold deviations 
in IC50), which we note is relatively small compared to the 2,000-fold 
range of IC50 values across our dataset.

Collectively, these results suggest that, in most cases, a mix-
ture’s neutralization profile can uniquely identify the number of stem 
antibodies within (36/41 ≈ 90% of cases). However, distinct mixtures 
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values are predicted using the neutralization of each individual antibody. The 
gray shading represents ≤4-fold error, where 1-fold error represents an exact 
prediction. c, Regions of ≥50% neutralization for a two-antibody mixture 
(outlined in solid lines) versus the neutralization of each individual antibody 
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mixture. d, Using a mixture’s neutralization titers, we predict the number, 
stoichiometry and neutralization profiles of the stem antibodies within. One 
such stem + stem mixture is shown (gray antibodies, mixture 8 in Supplementary 
Fig. 10), together with the predicted decomposition (red). Circles around 
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the mixture (Methods). Average error represents the fold-difference between 
the collective neutralization predicted by the inferred stem antibodies and 
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can give rise to similar neutralization profiles, even when measured 
against a panel of 51 diverse viruses. The frequency of such degen-
erate mixtures, as well as the positions of additional viruses whose 
measurements would break these degeneracies, can be quantified by 
enumerating all possible mixtures on the landscape.

Discussion
Since the advent of Fourier analysis in the 1800s, the ability to break 
signals into simple underlying components has revolutionized scien-
tific disciplines ranging from complex analysis to image reconstruction. 
Recently, live cells were imaged using six fluorescent probes whose 
emission spectra heavily overlapped, so that the net luminescence was 
a cacophony of signals25. By characterizing each probe’s spectrum, the 
total signal could be unmixed, enabling six regions of live cells to be 
simultaneously imaged. In the context of antibody–virus interactions, 
the challenge of unmixing lies both in enumerating the spectrum of 
antibody–virus behaviors as well as in decomposing the collective 
inhibition of multiple antibodies.

The neutralization landscape we create quantifies the limits of 
antibody–virus interactions. Universal vaccine efforts aiming to elicit 
broadly neutralizing HA-stem antibodies should consider how broad 
they want this response to be, given the inverse relationship between 
breadth and potency. As another application, identifying which amino 
acids in the HA stem are associated with changes in virus antigenicity 
(that is, changes in the virus position in the neutralization landscape) 
will facilitate the design of HA-stem-based vaccines able to elicit spe-
cific immunological phenotypes.

By systematically enumerating the range of behaviors for individ-
ual stem antibodies, the landscape can decompose simple polyclonal 
mixtures—even if they include antibodies binding to other epitopes 
such as the HA head—and quantify their fractional composition and 
neutralization profiles. Fundamentally, the information driving these 
predictions is in the positions of the viruses on the landscape. When 
a mixture’s neutralization diverges from the possible profiles of a 
monoclonal antibody, it not only suggests that the mixture must be 
polyclonal, but also presents a way to quantify the functional proper-
ties of the antibodies within the mixture.

With this approach, we take a step towards one of the central chal-
lenges in immunology, namely, using the collective neutralization from 
a mixture of antibodies to characterize the specific antibodies within. 
Although in this work we only decomposed mixtures with two or three 
antibodies, the success of the similar antibody fingerprinting method-
ology12 suggests that our approach can be applied to more complex 
polyclonal sera. Indeed, recent studies have shown that the human 
antibody response against one strain of influenza is often dominated 
by ≤5 antibody clonotypes26 and in extreme cases by approximately 
one antibody27, and such ‘approximately monoclonal’ sera could be 
decomposed to characterize the dominant antibodies within. This 
opens a number of applications, including the following. (1) HA-stem 
vaccine performance could be quantified in terms of both the fraction 
of elicited antibodies that are on-target as well as the neutralization pro-
file of those antibodies28–32. (2) Combining a neutralization landscape 
with a binding landscape (using antibody–virus dissociation constants) 
could quantify both neutralizing and non-neutralizing components of 
an antibody repertoire33. (3) Given the inherently limited supply of each 
serum sample, we could rationally design the closest approximating 
antibody mixture using known antibodies, enabling broader studies of 
promising mixtures and facilitating the development of therapeutics.

This decomposition is inherently limited by the diversity of viruses 
used to probe a mixture. Our approach uses each virus as a ‘sensor’ 
for nearby antibodies, so viruses should be widely spaced across 
the landscape to detect all possible antibodies. Due to experimental 
noise and the inaccuracy of the 2D representation, decomposition 
may only detect the dominant and distinct antibody signatures. An 
antibody comprising a small fraction of serum will minimally affect 

its neutralization and hence cannot be reliably detected. Moreover, 
antibodies with similar neutralization profiles may be represented by 
a single effective antibody. These cases add to degeneracy—a highly 
understudied feature of the antibody response—where combinations 
of different antibodies give rise to similar functional responses.

An open question is whether the 2D Euclidean landscape presented 
here will suffice as more viruses and antibodies are added to the map. 
More complex datasets may require higher-dimensional maps, a more 
complex metric or separate maps for antibodies binding to different 
antigenic sites.

Although the HA-stem neutralizing antibodies used in this study 
all bind to the canonical stem super-epitope17,23,24, antibodies targeting 
a new membrane-proximal stem epitope have recently been discov-
ered34,35. Future work can explore whether their behavior is captured by 
the existing landscape, or if a separate map is required for each epitope. 
It also remains to be seen whether there are portions of the landscape 
that antibodies or viruses cannot occupy (for example, because of viral 
fitness or antibody polyreactivity).

Looking forward, the analysis presented here serves as a stepping 
stone to track the stem antibody response over time and predict how 
antibody repertoires respond to a pathogen. How will the stem response 
evolve after multiple vaccinations or infections, and is there a path 
dependence to antibody development or is all the relevant information 
contained within the current antibody repertoire27,36–40? The neutraliza-
tion landscape reframes this biological problem into a geometry prob-
lem, where antibody evolution can be studied as a dynamical system 
with perturbations imposed by vaccinations and infections.

Methods
The following sections briefly describe the steps to create the neutrali-
zation landscape and decompose antibody mixtures. The Supplemen-
tary Information contains more extensive descriptions.

Measuring virus neutralization
We utilized existing antibody–virus neutralization measurements 
from ref. 16 (which measured (17 antibodies) × (49 viruses)) with new 
antibody–virus measurements carried out in this work. The devel-
opment of replication-restricted reporter (R3) influenza viruses has 
been described in ref. 16. Briefly, the influenza PB1 viral segment was 
modified to encode a fluorescent reporter (mKate2 or TdKatushka2S), 
which replaced most of the coding region of the PB1 gene. R3 viruses 
can be propagated only in cells expressing PB1 in trans. For the influenza 
neutralization assay, PB1-expressing MDCK-SIAT1 cells suspended in 
OPTIMEM (Thermo Fisher) were seeded in 384-well plates (Greiner) at 
150,000 cells ml−1 (20 μl per well), 1–2 h before infection. A 25-μl volume 
of each neutralization mixture, consisting of equal parts pre-titrated 
R3 influenza virus and four-fold serial dilutions of antibodies prepared 
in OPTIMEM containing 2 μg ml−1 TPCK-treated trypsin (Millipore 
Sigma), was transferred to wells in quadruplicate. The initial antibody 
concentrations after virus dilution were 25 μg ml−1.

Control wells of virus-alone and diluent-alone were included on 
each plate. Fluorescent foci were counted at 18–24 h post infection 
using a Celigo instrument (Nexcelom) with customized red filter to 
detect mKate2/TdKatushka2 reporter signals. Percent neutralization 
was calculated by constraining the virus-alone control to 0% and the 
diluent-alone control to 100% neutralization. We fit a curve of antibody 
concentration versus neutralization using a four-parameter nonlinear 
model in Prism (GraphPad), which determined the 50% inhibitory 
concentration, IC50. No statistical methods were used to pre-determine 
sample sizes. We included as many antibodies and viruses as possible, 
given the available reagents.

Constructing the neutralization landscape
We transformed each neutralization IC50 into map distance 
(d = 10 + log10(IC50/1 M)) and performed multidimensional scaling, 
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numerically minimizing the mean-squared difference between each 
antibody–virus pair’s landscape distance and desired distance. The 
resulting 2.2-fold error (shown in the bottom right of Fig. 1c) means 
that given any measured IC50 between an antibody–virus pair, the 
corresponding neutralization determined by the landscape will lie 
between IC50/2.2 and IC50 × 2.2, on average.

Decomposing defined antibody mixtures
Using the neutralization landscape, we can decompose the collective 
neutralization from antibody mixtures to characterize the individual 
antibodies within. We first use the landscape to remove the neutraliza-
tion signature of antibodies that do not target the HA stem. Next, we 
determine the optimal antibody mixtures (combination of points on 
the map) that recapitulate the resulting neutralization profile. Decom-
position proceeds by characterizing a mixture using an increasing 
number of antibodies, halting once the addition of another antibody 
no longer markedly decreases the decomposition error.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this Article.

Data availability
Details on how the experimental data were obtained are provided in the 
Methods. The final antibody–virus neutralization dataset used in this 
work is provided in the source data as well as in the associated GitHub 
repository (https://github.com/TalEinav/NeutralizationLandscape)41. 
Source data are provided with this paper.

Code availability
The associated GitHub repository (https://github.com/TalEinav/Neu-
tralizationLandscape) contains a Mathematica notebook that recreates 
all plots and analysis in this work41.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Plate image acquisition: Celigo v4.

Data analysis Neutralization data was analyzed using GraphPad Prism 8. All subsequent data analysis was performed using Mathematica (Version 13.0.0). 
The supplementary notebook contains the full analysis and reproduces all plots from this work.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The antibody-virus neutralization dataset used in this work combined existing measurements from Creanga et al. [Reference #16] for (17 antibodies)×(49 viruses) 
with new measurements carried out in this work. The resulting dataset is provided in the Source Data, together with data used to create all main text and 
supplemental figures. 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size This work required few choices for sample size. We created the Neutralization Landscape using as large a panel of monoclonal antibodies 
(n=27) and viruses (n=51) as possible. We similarly created multiple antibody mixtures (n=14), choosing diverse sets of antibodies that would 
be positioned at different locations on the landscape.

Data exclusions No data was excluded from our analysis.

Replication We validated the antibody-virus landscapes using different subsets of our dataset (Figure 2). We validated the decomposition of antibody 
mixtures using the 27 monoclonal antibodies in our panel as well as 14 mixtures of these antibodies (Figures 4 and 5).

Randomization For leave-one-out analysis (Figure 2, bottom row of Figure S3), we used an antibody's neutralization against 6 viruses to predict its 
neutralization against the other 45 viruses in our panel. As described in SI Section "Extrapolating the Behavior of New Antibodies," selection of 
these six viruses was partly random: we randomly chose 3 H1N1 viruses and 3 H3N2 viruses to triangulate an antibody, but biased the 
selection towards viruses that were spread out along their y-coordinates to ensure that each selection provided complementary information. 
In all of our other analysis, we used the entire antibody-virus dataset and hence had no need for randomization

Blinding For the computational analysis, blinding for the leave-one-out or leave-some-out analyses was done by randomly drawing from available 
samples. Experimenters were blinded to experimental conditions whenever possible; readout of the neutralization assays was not performed 
with blinding, as these experiments often require subtle real-time adjustment to ensure optimal data collection.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used All  antibodies used in the study were made recombinantly by cloning antibody heavy and light chains into the respective mammalian 

expression vectors. Antibodies were produced in mammalian cells (Expi293 cells) by transient transfection of expression vectors and 
purified by protein A affinity chromatography. The sequence, specificity, and function were verified for each antibody.  
 
The influenza HA-targeting antibodies used in this work are listed in Table S1. These include: 
22-1B08; 02-1D09; 04-1D10; 15-5E04; 55-1D06; 21-1A10 (this study) 
315-19-1D12; 315-23-1C09; 315-55-1E08; and 315-55-1E11 (Creaga et al., Nat Commun 2021) 
54-4H03; 58-6F03 (Wu et al., Cell Host & Microbe 2020) 
310-33-1F04, 310-33-1G06 (Kanekiyo, et al., Nat Immunol. 2019) 
315-02-1H01 (Corbett et al., mBio 2019) 
315-02-1F07; 315-09-1B12; 315-27-1C08; 315-53-1A09; 315-53-1B06; 315-53-1F12; 13-1B02; 02-1B02 (Andrews et al., Sci Immunol 
2017) 
MEDI8852 (Kallewaard et al., Cell 2016) 
CT149 (Wu et al., Nat Commun 2015) 
F005-126 (Iba et al., J Virol 2014) 
C05 (Ekiert et al., Nature 2012) 
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CR9114 (Dreyfus et al., Science 2012) 
CR8020 (Ekiert et al., Science 2011) 
FI6v3 (Corti et al., Science 2011) 
CH65 (Whittle et al., PNAS 2011) 
5J8 (Krause et al., J Virol 2011) 
F045-092 (Ohshima et al., J Virol 2011) 
CR6261 (Throsby et al., Plos One 2008)

Validation Validation is described in detail in Nature Communications manuscript by Creanga et al. 2021 [https://doi.org/10.1038/
s41467-021-21954-2]. All the antibodies used in the study were tested for their reactivity and specificity by ELISA, BLI using a set of 
recombinant HAs, or virus neutralization assays with multiple subtype viruses prior to use in the study.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes

Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents


	Harnessing low dimensionality to visualize the antibody–virus landscape for influenza

	Results

	Quantifying the spectrum of influenza antibody neutralization

	Predicting the neutralization of new antibodies or viruses

	Antibody–virus distance quantifies the potency–breadth tradeoff

	Isolating the neutralization of a stem antibody within a mixture

	Characterizing antibody mixtures with multiple stem antibodies

	Characterizing the stem antibodies within general mixtures


	Discussion

	Methods

	Measuring virus neutralization

	Constructing the neutralization landscape

	Decomposing defined antibody mixtures

	Reporting summary


	Acknowledgements

	Fig. 1 Neutralization landscape for the influenza hemagglutinin stem.
	Fig. 2 Extrapolating new antibody behavior.
	Fig. 3 The neutralization profile of an optimal antibody against any set of mapped viruses.
	Fig. 4 Characterizing a single stem antibody within head + stem mixtures.
	Fig. 5 Characterizing mixtures with multiple stem antibodies.




