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Uncertainty-driven dynamics for active 
learning of interatomic potentials

Maksim Kulichenko    1  , Kipton Barros1,2, Nicholas Lubbers3, Ying Wai Li3, 
Richard Messerly1, Sergei Tretiak    1,2,4, Justin S. Smith    1,5   & 
Benjamin Nebgen    1 

Machine learning (ML) models, if trained to data sets of high-fidelity 
quantum simulations, produce accurate and efficient interatomic potentials. 
Active learning (AL) is a powerful tool to iteratively generate diverse data 
sets. In this approach, the ML model provides an uncertainty estimate along 
with its prediction for each new atomic configuration. If the uncertainty 
estimate passes a certain threshold, then the configuration is included in the 
data set. Here we develop a strategy to more rapidly discover configurations 
that meaningfully augment the training data set. The approach, uncertainty-
driven dynamics for active learning (UDD-AL), modifies the potential 
energy surface used in molecular dynamics simulations to favor regions 
of configuration space for which there is large model uncertainty. The 
performance of UDD-AL is demonstrated for two AL tasks: sampling the 
conformational space of glycine and sampling the promotion of proton 
transfer in acetylacetone. The method is shown to efficiently explore the 
chemically relevant configuration space, which may be inaccessible using 
regular dynamical sampling at target temperature conditions.

Machine learning (ML) is a firmly established approach in chemical sci-
ence that demonstrates great promise for the acceleration of physical 
simulations. A particular strength of ML models is a robust representa-
tion of the potential energy surfaces of molecular and materials systems 
when trained to large and diverse data sets of high-fidelity quantum 
chemistry simulations. For example, ML-based potentials1–11 approach 
ab initio12,13 or density functional theory (DFT)14 levels of accuracy at 
a computational cost near that of classical force fields15–17. In recent 
years, various ML models, such as neural networks (NNs)18–25, Gaussian 
approximation potentials26, spectral neighbor analysis potentials27, 
moment tensor potentials28 and symmetric gradient domain ML29,30, 
have demonstrated remarkable success in the field of atomic-scale 
discovery.

No matter how sophisticated the ML model architecture, however, 
the quality and diversity of the training data remain crucial for ultimate 
model accuracy. Therefore, training sets for ML potentials need to span 

as much phase (structural) space as possible to perform meaningful 
simulations. Additionally, the training set needs to be as diverse as 
possible to avoid overfitting towards excessively represented train-
ing data (such as near-equilibrium configurations in MD trajectories).

Entropy-maximization techniques31,32 help to partially overcome 
these problems by maximizing the structural diversity of a data set. 
When acquiring new data, these methods are focused on the structural 
dissimilarity compared to existing data. However, these methods usu-
ally require training of a separate Gaussian process model and rely on 
the structural representation in latent space. There are other oppor-
tunities for improvement as well. Active learning (AL)33,34 attempts to 
expand the data set in areas where the ML model is most uncertain, 
which leads to more rapid model improvement. Another feature of AL is 
that it can employ physically meaningful dynamical trajectories for the 
sampling of configurations. In this Article we demonstrate how to keep 
these benefits of AL, while accelerating the rate of new data collection.
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acquisition, UDD helps substantially reduce the MD simulation time 
required to enter the high-uncertainty region. Most importantly, the 
proposed approach enables efficient conformational and configura-
tional sampling at low-T conditions, making this approach essential 
for temperature-sensitive molecules. UDD assists in sampling the 
chemically relevant subspace of high-energy space, which contains 
important data such as transition states.

The value of the proposed approach is demonstrated here in two 
test cases. First, UDD-AL is used for conformational sampling of a 
glycine molecule. We find that the bias potential technique generates 
a diverse data set covering both low- and high-energy regions. As we 
show in the Results, this contrasts with high-T MD-AL, which tends 
to skip over low-energy regions. Second, in tests with acetylacetone 
at low-T conditions, the bias potential is observed to encourage the 
sampling of the phase space relevant to a proton transfer. Here we find 
that, in contrast with regular high-T MD, the bias potential technique 
encourages the reactive transition with very little distortion to the 
distribution of other degrees of freedom in the system.

Results
Uncertainty-driven dynamics for active learning (UDD-AL)
Before introducing UDD-AL, let us first set the context by reviewing 
the related method of metadynamics. Here, CVs s(q) are user-defined 
structural parameters being scanned by external Gaussian bias poten-
tials. Usually, (3N − 6)-dimensional (where N is the number of atoms) 
atomic coordinates q of the simulated system are mapped to CVs, s(q). 
The corresponding energy function, Emetadynamics, is defined as

Emetadynamics(s, t) = ∑
kτ<t

W(kτ)exp [−
NCV

∑
i=1

1
2b2

i

(si − si(q(kτ)))2], (1)

where bi is the width of the Gaussian function for the ith collective 
variable, W(kτ) is the height of the Gaussian at the simulation time 
t = kτ, which is constant in the case of standard metadynamics, τ is the 
deposition rate of the Gaussian functions, k is the step number and  
NCV is the number of CVs. During simulations, more Gaussians are 
added, thus discouraging the system to go back to its previous steps.

Like metadynamics, the UDD-AL method modifies the physical  
energy by adding a bias potential, Ebias. Here, however, Ebias will be 
defined in terms of the model uncertainty rather than CVs. Such  
uncertainty estimates can be used to assist in the sampling of atomistic 
data45. In the QBC approach, an ensemble of NN potentials is trained, 
and the level of agreement between the NN predictions serves as the 
estimate of overall model uncertainty.

Here, as an argument of bias energy function, Ebias(σ2E), we use  
the metric of ensemble disagreement, σ2E, in the predicted energies, 
which is defined as

σ2E =
1
2

NM

∑
i
(Êi − ̂E)2, (2)

where Êi is the energy predicted by an ensemble member, ̂E  is its  
ensemble average, and NM is the number of ensemble members (M), 
that is, NN potentials. Here, ensembles of ANI potentials are prepared 
using an eightfold cross-validation split of the data set, which yields 
NM = 8 ensemble members (Methods). In previous applications  
of QBC-based AL, new data are collected when the uncertainty  
estimator ρ (standard deviation normalized by the square root of the 
number of atoms)

ρ = √2/NMNA σE (3)

exceeds a threshold, where NA is the number of atoms in a configura-
tion. The justification of this metric is available in ref. 37.

AL33–35 aims to iteratively collect diverse training data sets address-
ing any weaknesses identified in an ML model prediction. For this,  
it is necessary to estimate uncertainty for a model’s predictions36–46.  
A well-established practical strategy for AL with NN potentials is  
‘query by committee’47 (QBC), where the estimate of uncertainty is the 
disagreement between a collection of models within an ensemble. 
Typically, there are five to ten NNs in an ensemble, and these share the 
same architecture and hyperparameters but, crucially, use a different 
initial randomization of the model parameters prior to training, as 
well as different splits of the training/validation data. It is empirically 
observed that the variance of the ensemble predictions correlates 
well with actual prediction error37, suggesting that the prediction task 
requires extrapolation beyond the range of the training data. In the 
QBC strategy, if this ensemble variance is observed to be large, then 
the training set will be augmented with new quantum simulation data.

AL estimates uncertainty in properties predicted for structures 
generated by an underlying sampler at each iteration. Molecular 
dynamics (MD) is the most popular method for sampling chemically 
meaningful potential energy surfaces. Without the uncertainty estima-
tor, if we were simply running MD and picking random frames, even 
sampling at high temperature T would result in a lot of unnecessary 
DFT or other expensive ab initio data. The NN potential is not highly 
accurate at initial AL iterations. Thus, the resulting trajectory itself 
might be less physically relevant than the one obtained via DFT-based 
MD. However, as the NN potential improves during the AL procedure, 
the non-biased MD trajectory will be extremely similar to that obtained 
with DFT-MD. However, MD is susceptible to trapping in near-minimum 
conformations and only rarely enters chemically important regions 
such as transition states, which are key data for reactive simulations 
of chemical processes. In general, capturing thermodynamically rare 
events is a challenging task for any sampler. Metadynamics48–51 is an 
effective method of potential-energy-surface exploration, which oper-
ates on the concept of collective variables (CVs). However, CVs require 
manual selection, and their number is limited in practice. Choosing 
reasonable degrees of freedom to represent a reaction requires intui-
tion and is a step where human error can produce errors. Furthermore, 
by choosing special degrees of freedom, the user has implicitly biased 
the kind of structures that will be sampled, potentially removing from 
the sampling space critical pathways. Therefore, this approach is not 
suitable for automatic sampling.

In this Article, following the idea of QBC and ensemble uncertainty, 
we propose an AL sampling algorithm biased towards regions of high 
uncertainty—uncertainty-driven dynamics (UDD). Due to model ran-
dom initializations and the stochastic nature of training, regions of 
chemical space with low ensemble uncertainty will typically arise when 
similar regions are prevalent in the current training data set, such that 
every member of the ensemble is making an accurate inference. Thus, 
biasing MD in the direction of high ensemble uncertainty encourages 
the dynamics to visit new configurations, which are relevant for improv-
ing the diversity of the training set. Although the exact error may be 
under- or overpredicted by the ensemble uncertainty, the ensemble 
uncertainty will still identify relatively high-uncertainty structures to 
include in the AL data set, and UDD will still drive simulations towards 
these high-uncertainty structures. Biasing towards regions of large 
model uncertainty is also a strategy employed by Bayesian optimiza-
tion52,53, which has been used successfully for the global optimization 
of atomic structures54,55. UDD-AL differs from Bayesian optimization 
in its intended purpose, which is to produce a diverse training data set  
of quantum simulation data; ML potentials trained to these data  
should generalize effectively to a wide range of chemical and  
configuration space.

One can regard the uncertainty-based bias potential as being 
similar to metadynamics in the sense that the sampling trajectories 
are pushed towards less-visited configurational regions. Here, how-
ever, CVs need not be defined. We show that within MD-based AL data 
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Here we seek to construct a bias energy, Ebias(σ2E), that favors  
configurations with larger uncertainties. ρ ∝ σE. Such configurations 
are expected to correlate with regions that are under-represented  
in the training data. A reasonable choice is the Gaussian function:

Ebias(σ2E) = A [exp (−
σ2E

NMNAB2 ) − 1]. (4)

The magnitude A and width B of the biasing should be selected 
empirically. The bias potential goes to zero in the absence of uncer-
tainty, Ebias(0) = 0. Configurations with large uncertainty, ρ ≫ B, are 
favored by a bias energy of magnitude Ebias ≈ −A. Forces derived from 

the bias potential are strongest when the uncertainty ρ is of the same 
order as the parameter B.

The combined potential ̂E + Ebias is used to define a UDD. In applica-
tions to AL, the overall strategy will be denoted UDD-AL. The schematic 
workflow of UDD-AL is depicted in Fig. 1a. It should be compared to  
the usual MD-based approach (MD-AL), which does not incorporate 
the Ebias term.

Determining reasonable values for A and B is an important pre-
liminary step for the UDD approach. Although the method is fairly 
insensitive to A and B, extremely poor choices of A and B can render 
the approach less efficient. The optimal parameters A and B will be 
context-dependent. For example, our applications to glycine and 
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Fig. 1 | Comparison of UDD-AL and MD-AL approaches for a glycine test case. 
a, Schematic representation of the UDD-AL workflow. ens., ensemble. b, Average 
MD time required to meet the uncertainty criterion versus AL iteration for four 
different MD simulation types: 350 K MD-AL, blue; 600 K MD-AL, green; 1,000 K 
MD-AL, cyan; 350 K UDD-AL, orange. c, Energy distribution histograms of four 
data sets sampled by the 350 K MD-AL (blue), 600 K AL MD-AL (green), 1,000 K 
MD-AL (cyan) and 350 K UDD-AL (orange). Data from iterations 0–14 are omitted 
because the bias energy term is turned off, or the temperature is not increased at 

this stage. d, Comparison of potential energy r.m.s.e. obtained on the 50-ns test 
set versus AL iteration (that is, training set size, 16 new glycine conformations 
per iteration). The legend shows the r.m.s.e. for models trained on data from the 
entire AL procedure. e, Normalized energy distribution histograms of the 50-ns 
test set (red) and training set sampled by 350 K MD-AL (blue). Lines in b and d are 
averaged over three ensembles, each trained on data from an independent AL 
procedure.
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acetylacetone tests, discussed below, suggest that the bias magnitude 
A should be at least of the order of the energy barriers of interest. 
The bias width B can be selected by considering the magnitude of the  
bias force contribution. When B is too low, the bias forces are very large 
and disrupt the dynamics completely. When B is too large, the bias 
potential is very smooth and does not play a large role in the dynam-
ics. We selected B empirically and found that the ratio r (equation (5)) 
of bias force magnitude to true interatomic force magnitude on the 
selected samples during the initial iterations (1st to 14th in the case of 
glycine) of MD-AL is ~0.36:

r = 1
NSNA

Structures
∑
I

Atoms
∑
J

||FbiasIJ ||
||FtrueIJ ||

. (5)

Here, NS is the number of structures collected during the initial 
iterations, NA is the number of atoms, Fbias

IJ  is the bias force acting on 
atom J in structure I, and F true

IJ  is the interatomic force acting on atom J 
in structure I. We thus suggest that B should be selected to approxi-
mately replicate this ratio on data selected by an initial phase of MD-AL.

The effective bias forces on an atom at position r can be calculated 
using the chain rule

− ∂
∂r

Ebias(σ2E) = −Ebias(σ2E)
′ ∂
∂r

σ2E (6)

and

− ∂
∂r

σ2E = −
M
∑
i
(Êi − ̂E) ∂

∂r
(Êi − ̂E) =

M
∑
i
(Êi − ̂E)( f̂i − ̂f ), (7)

where f̂i denotes the force vector predicted by an ensemble member, 
and ̂f  is the ensemble-averaged prediction.

Glycine conformational space sampling
The glycine molecule is shown in Fig. 1a. We are interested in sampling 
the conformational space without bond-breaking events, using various 
AL protocols. As shown in ref. 56, this smallest amino acid is a challeng-
ing data acquisition task because of the various conformational minima 
on its potential energy surface. Dihedral rotations of –NH2 and –COOH 
groups correspond to barriers of 2.5–3.5 kcal mol−1, depending on the 
initial conformation. Our numerical tests have shown that a bias mag-
nitude A that is approximately five times higher than the average bar-
rier of interest provides the best results for the glycine test. It helps 
keep the bias potential effectively high at higher uncertainty values, 
since it decays exponentially with the uncertainty increase. It also helps 
overcome possible barrier bottlenecks caused by overestimation of 
the barrier heights by the ML model. The geometries near the global 
energy minimum (GM) of glycine are already present in the initial train-
ing set, and each sampling MD simulation starts with this kind of struc-
ture. Depending on the AL iteration, near-GM structures have a value 
of ρ of 0.024 ± 0.005kcal ×mol−1 × NA

−1/2 (σE = 0.15 ± 0.03 kcal mol−1). 
We thus selected A equal to 15.4 kcal mol−1, which corresponds to a bias 
potential of ~15.0 kcal mol−1 at near-GM values of ρ (with 
B = 0.12 kcal mol−1). We further increased A by 15% at the 140-ps time 
step if the uncertainty criterion was not met at this simulation stage. 
Our tests also show that the best results are achieved for B close to the 
near-GM uncertainty, σE. Here we use B = 0.12 kcal mol−1 for glycine.

We next compare the two AL approaches—UDD-AL and MD-AL—for 
the task of collecting a data set of the glycine conformational space. 
Each AL iteration performs 16 MD simulations with a 200-ps time limit 
and 1-fs steps (MD simulations section). An ensemble of NN potentials 
for the first AL iteration is trained on the initial data set of 125 conform-
ers, spanning the near-equilibrium structures of the glycine GM. At 
each subsequent AL iteration, the MD simulation employs an ensemble 

of ANI-type NN potentials (Active learning section and ref. 57), trained 
on the initial data and data accumulated on all previous AL iterations. 
The starting geometries for the MD simulations and the initial training 
set contain only near-equilibrium geometries of a glycine GM (Fig. 2a). 
Stated differently, NNs have no initial information about higher-energy 
conformers, and the MD simulations have to reach them from the bot-
tom of the potential energy surface. Each MD simulation is terminated 
when the system meets the uncertainty selection criterion ρ of 
0.35 kcal ×mol−1 × NA

−1/2 (Active learning section). If the MD simula-
tion reaches the time limit, then the structure from the trajectory with 
the highest uncertainty is selected. DFT reference data (MD simulations 
section) are then computed for the final conformations and added to 
the training set for the next iteration of the AL process.

Figure 1b shows the average MD simulation time required to meet 
the uncertainty criterion in different AL approaches with respect to AL 
iteration. The MD-AL at low-T conditions (350 K) reaches the MD time 
limit at approximately the 20th iteration, and is continued until the 
final AL iteration (Fig. 1b, dark blue line). This means that the specified 
uncertainty criterion is almost never met, and the sampler returns the 
geometry of the maximum available uncertainty from the MD trajec-
tory. The uncertainty bias potential is introduced in low-T (350 K) MD 
simulations (orange line). We do not activate the bias potential at earlier 
AL iterations for two reasons. First, the low-T MD-AL (Fig. 1b, dark blue 
line) does not reach the MD simulation time limit up to the 15th to 20th 
iterations. Thus, at this stage, the regular MD-AL manages to acquire 
new data satisfying the uncertainty criterion. Second, the NN potential 
might be unstable or not smooth at earlier iterations due to the lack of 
data. Therefore, the bias is activated at the 15th iteration to avoid mov-
ing systems towards unphysical configurations. When the uncertainty 
bias potential is on (the UDD-AL regime), it reduces the number of MD 
steps needed to meet the desired uncertainty. Moreover, the MD time 
limit plateau is still not reached until the final iteration.

Perhaps the most common way to accelerate sampling of high-
energy states is to run high-T MD. Thus, to illustrate the difference 
between the bias potential and a simple temperature increase, we 
also compared the low-T 350 K UDD-AL with the high-T MD-ALs at 
600 K and 1,000 K simulation conditions (Fig. 1b). As in the case of 
UDD-AL sampling, the temperature is increased at the 15th iteration. 
The 600 K MD-AL approaches the MD time limit at approximately the 
40th iteration, whereas UDD-AL reaches the time limit plateau by the 
end of the AL procedure. Thus, 600 K MD-AL does not perform as well 
as UDD-AL in terms of simulation time. On the other hand, the 1,000 K 
MD-AL (cyan line) exhibits faster sampling, and the average MD time 
does not exceed 35 ps, even at the last AL iteration.

The energy ranges sampled by each AL approach are shown in  
Fig. 1c. As expected, the high-T MD-AL data (green and cyan histograms) 
span wider energy ranges than the low-T 350 K MD-AL (blue histogram). 
What is interesting is that the energy distribution of data from the 350 K 
UDD-AL (orange histogram) is very similar to the shape of the 600 K 
MD-AL data. An advantage of UDD-AL is that many fewer MD steps are 
required to collect these samples.

After completing the entire AL procedure, the final models are 
trained on 1,280 glycine conformers collected during the procedure 
(+125 conformers in the initial training set). To access the accuracy of 
the four models, we use a test set of 50,000 glycine structures from  
a 50-ns MD simulation via an ANI-1ccx potential run at 400 K with a 
0.5-fs time step19. The relatively low T of 400 K for this test set was 
chosen to effectively sample the low-energy conformational space 
of glycine. Here, we aim to test whether low-temperature 350 K UDD-
AL can not only sample the same low-energy space, but also sample 
higher-energy conformers in the same temperature regime. The 
difference between 350 K and 400 K temperatures arises from the  
fact that we want to speed up the generation of the 50-ns test set  
without a substantial change in the population of conformers. 
As depicted in Fig. 1d, all models perform reasonably well, with 
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root-mean-square error (r.m.s.e.) of less than 0.3 kcal mol−1. How-
ever, the r.m.s.e. of the model trained on low-T 350 K MD-AL data is  
slightly, yet systematically, lower than the r.m.s.e. for the other  
models, with a difference of ~0.11 kcal mol−1. This is probably because 
MD simulations tend to oscillate in near-equilibrium positions, which 
is why this test set is dominated by low-energy geometries. The low-T 
350 K MD-AL, in turn, densely spans a narrow low-energy range, which 
might explain the slightly better performance of this model on a test 
set derived from a 50-ns MD. Indeed, the normalized histograms in 
Fig. 1e show that this seemingly large 50-ns test set spans the energy 
region closest (but even lower) to the one covered by the low-T 350 K 
MD-AL data.

Note that the 50-ns test set is a MD trajectory with no AL involved, 
whereas the MD-AL data comprise structures with high uncertainties. 
High uncertainty usually corresponds to a higher energy due to poor 
sampling in normal low-T MD. In other words, the 50-ns MD test set is 
biased towards near-equilibrium oscillations, but the MD-AL data are 
selectively augmented with higher-energy isomers. A similar r.m.s.e. 
shift is observed for low-energy rotations of the –COOH and –NH2 func-
tional groups (Extended Data Fig. 1). Accordingly, the various models 
should also be tested on higher-energy pathways.

To illustrate what types of chemical process appear in the system, 
and how each sampling method covers them, we next visualize the 
glycine conformational space using dimensionality reduction. We 
project samples to a two-dimensional (2D) plane using the Uniform 
Manifold Approximation and Projection (UMAP)58 technique, where 
each conformation is characterized by the 672-dimensional vector of 
activations (concatenated atomic environment vectors) in the first 
layer of an independent pre-trained ANI-1x model19. Figure 2a shows 
the 50-ns MD data set spanning four low-lying glycine conformers rep-
resented by four regions in 2D space. Torsional conformations, a N–H 

bond scan and a C=O bond scan are depicted in Fig. 2b,c to illustrate 
the structural profiles in 2D space.

Figure 2d–f depicts the four data sets visualized over the 50-ns 
test set. Figure 2d provides a visual comparison of data sampled by 
MD-AL and UDD-AL at 350 K. Both data sets cover the 50-ns MD data 
reasonably well. However, there are two key differences. First, a high-
energy configurational space (points inside the green oval in Fig. 2d) is 
more densely sampled in the UDD-AL data set. There are 289 points in 
this non-equilibrium region in the UDD-AL sampling, compared to 105 
points in the 350 K MD-AL. Second, UDD-AL encountered a new confor-
mational path in the top right corner of Fig. 2d that was not accessed 
by 350 K MD-AL. This region corresponds to rotation of the –OH group 
around the C–O bond, which is a distinct conformational transition, 
and a high-energy profile with a barrier of 15 kcal mol−1.

Figure 2e presents a visual comparison of the sampling perfor-
mance of MD-ALs at 350 K and 600 K. The 2D representation of 600 K 
data is quite similar to the one for the 350 K UDD-AL data: there are 290 
data points inside the inner circled region and a good coverage of the 
–OH rotation region. As expected, MD-AL at the extreme temperature 
of 1,000 K (Fig. 2f) samples the inner high-energy region even more 
densely (394 data points), as well as the –OH rotation region. This, how-
ever, comes at a cost. The low-energy region in the lower left of Fig. 2f 
clearly demonstrates a lack of sampling. This is the primary deficiency 
of using high-T MD: as the temperature increases, the system spends 
less time near low-energy regions, because in these regions the kinetic 
energy is typically the greatest. It will therefore be possible to ‘skip over’ 
regions of high stability, thus resulting in a poor data coverage of the 
near-equilibrium region. On the other hand, UDD-AL sampling does 
not run this risk, by sufficiently sampling any relevant region.

Accordingly, Fig. 2 shows that the UDD-AL is an efficient, balanced 
way of sampling the chemical space, reaching most of the high-energy 
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Fig. 2 | Two-dimensional representation of the glycine conformational space 
processed by the UMAP dimensionality-reduction technique. a, The 50-ns 
test set. The heat map represents the relative DFT energy. Glycine insets denote 
the corresponding conformational region. Atom colors: H, blue; C, gray; N, pink;  
O, red. b–d, Data sets and scans are placed over the 50-ns test set (gray).  
b, Conformational paths through –COOH (cyan and purple) and –NH2 (red and 

dark blue) rotations. c, N–H (red) and C=O (cyan) bond length scans. d, Comparison 
of training sets sampled by 350 K MD-AL (blue) and 350 K UDD-AL (orange). The 
green oval denotes the inner high-energy region. Red triangles denote the scan of 
the –OH rotation around the C–O bond. e, Comparison of training sets sampled 
by 350 K MD-AL (blue) and 600 K MD-AL (green). f, Comparison of training sets 
sampled by 350 K MD-AL (blue) and 1,000 K MD-AL (cyan).
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points achieved with 1,000 K MD sampling, but without losing data 
density in low-energy regions. However, alone, it is not clear that 
biased sampling presents advantages over unbiased high-T sampling;  
UDD-AL appears to sample similar configurations to the 600 K MD-AL. 
Therefore, we performed additional tests of high-energy pathways 
that illuminate the differences between the 600 K MD-AL and 350 K 
UDD-AL. A discussion of the high-energy profiles—angle and bond 
scans—is provided in Supplementary Section 2. The overall trend  
is that the 350 K UDD-AL model exhibits much better accuracy than 
the model trained on low-T 350 K MD-AL data. When comparing the 
UDD-AL with 600 K and 1,000 K MD-AL models, the former results  
in better, or at least comparable, accuracy.

In Supplementary Section 3 we also provide a detailed  
overall assessment of the performance of the sampling strategy by 
cross-testing the associated models on the data from all sampling 
strategies. Supplementary Table 2 summarizes the r.m.s.e. values of 
the four models on the test sets accumulated by each AL sampler: 350 K 
MD-AL, 350 K UDD-AL, 600 K MD-AL and 1,000 K MD-AL. When testing 
models on data sets that are not generated by the same corresponding 
sampler, the UDD-AL model outperforms all other models.

Ultimately, when looking at a variety of bond rotations and 
stretches, the most accurate energy profile changes depending on 
the energy range of the specific scan. Low-energy profiles tend to be 
modeled better by the low-T data set, whereas higher-energy scans 
are accessed better by the higher-T data set. However, the UDD-AL 
sampling method yields a model that performs well on a wide range 
of energy profiles, while also maintaining a low error on the held-out 
test set for each sampling method (Supplementary Table 2). This dif-
ference suggests that UDD-AL is able to avoid the higher-energy and 
less chemically relevant structural distortions, which are typical at 
very high temperatures. Meanwhile, chemically relevant structures 
present in the UDD-AL data set enable efficient extrapolation to the 
higher-energy structures present in the 1,000 K MD-AL data. As can 
be seen in Fig. 3, the shapes of the interatomic distance distributions 
in UDD-AL closely mimic the sharp distributions in low-T 350 K MD-AL, 
although with a larger standard deviation. This deviation, however, is 
lower than in the 600 K and 1,000 K MD-AL data sets, which span a wider 
distance range. This, in turn, further suggests that the UDD sampler 
tends to avoid random distortions found in high-T regimes.

Proton transfer in acetylacetone
We further examine the performance and transferability of UDD for 
sampling of a reactive pathway in a larger molecule, an acetylacetone 
enol tautomer59, as depicted in Fig. 4a. We are interested, in particular, 
in the proton transfer between the two oxygen atoms, considering  
the proton position as a free variable. Instead of using AL techniques, 
here we use an ensemble of pre-trained ANI-1x interatomic poten-
tials19, which were not trained on bond-breaking reactions, and analyze  
trajectories from UDD and MD simulations. ANI-1x was trained at the 
wB97x DFT level of theory, yielding a barrier of 4.7 kcal mol−1. How-
ever, ANI-1x overestimates the barrier, giving a value of 6.3 kcal mol−1.  
This value is selected as bias magnitude A. Uncertainty values, ρ,  
of the near-equilibrium acetylacetone structures within the ANI-1x 
model are higher by an order of magnitude than those produced  
by the newly trained model for glycine. Accordingly, we set a higher 
value of bias width B = 0.45 kcal mol−1, this being an empirically adjusted 
parameter.

Figure 4b presents the log-normalized uncertainty ρ of the acety-
lacetone system with respect to the position of the proton. The dark 
region (near x = 0 Å and y = −1.5 Å) demonstrates that there is a high-
uncertainty region between oxygen atoms that corresponds to a proton 
transfer transition state. Figure 4c depicts the log-normalized relative 
potential energy (ANI-1x) of the system with respect to the position of 
the free proton. The dark region (near x = −0.5 Å and y = −1.5 Å) indi-
cates that the lowest energy corresponds to a proton position near the 
oxygen atom. This is an expected result, because the hydrogen bound 
to the oxygen atom is the most stable geometry. However, as shown 
in Fig. 4d, the energy minimum can be shifted to the central position 
between oxygen atoms (dark region near x = 0 Å) when a bias potential 
is applied. For illustrative purposes, here we use a high value of bias 
magnitude A = 56.0 kcal mol−1. In practice, we use A = 6.3 kcal mol−1  
for the MD simulation discussed below.

We also analyzed the results from 0.5-ns trajectories obtained 
using UDD and regular MD simulation techniques. No proton transfer 
occurs during the regular 350 K MD simulation. Meanwhile, the uncer-
tainty bias can direct the proton towards a high-uncertainty region 
between two oxygen atoms (90 proton transitions are observed in the 
350 K UDD simulation). Finally, the unbiased high-T 620 K MD results  
in 48 proton transitions. Although at a lower rate compared to UDD,  
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Fig. 3 | Glycine interatomic distance distributions in the MD-AL and UDD-AL 
data sets. a–f, Comparisons of bond length distributions in the 350 K MD-AL 
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the increased temperature also facilitates proton transfer. Time traces 
of the two O–H distances are provided in Extended Data Fig. 2.

A key difference between low-T UDD and regular high-T MDs can 
be observed when analyzing the oscillations of interatomic distances. 
High-T conditions will affect the entire molecule, causing larger dis-
tance deviations compared to low-T conditions. Indeed, the overall 
spread of O–H distances is comparable when using 350 K MD (Extended 
Data Fig. 2), but far wider with 620 K MD, even in segments of the  
trajectory without proton transfer. Further analysis of C–H distances 
in the molecule, shown in Fig. 4e,f, confirms this phenomenon.  
Figure 4e shows C–H distance distributions in the methyl group in 
350 K MD, 350 K UDD and 620 K MD simulations. The 620 K MD exhibits 
higher deviations from the equilibrium C–H bond length compared 
to low-T UDD. The standard deviation of the methyl C–H distance in 
620 K MD is 0.04 Å, versus 0.03 Å with 350 K UDD. Notably, the low-
T 350 K MD trajectory has a standard deviation of 0.03 Å, the same 
as for low-T UDD. The same picture holds for the central C–H bond 
described in Fig. 4f.

These observations confirm that, although high-T sampling  
promotes the activation of reactive pathways, it has a global effect on 
all degrees of freedom in the system, whereas the UDD technique allows 
us to sample the reactive pathway without substantial changes to the 

equilibrium distributions of other degrees of freedom. This is probably 
due to the composition of the ANI-1x training data, which has informa-
tion on non-equilibrium extended bonds. However, a hydrogen that is 
equidistant between two oxygen atoms is not commonly encountered 
in configurational data. Thus, the UDD potential promotes sampling 
of this specific region.

Discussion
The key advantage of UDD-AL over regular high-T sampling is that UDD-
AL facilitates the sampling of important under-represented chemi-
cal data, without the random structural distortions caused by high-T 
conditions. This feature can be used for efficient sampling of the con-
formational and/or configurational space of temperature-sensitive or 
metastable systems. Our tests also indicate that the bias potential can 
facilitate sampling of high-energy chemical space, without sacrificing 
the sampling of low-energy configurations. This means that UDD will 
produce robust data sets that are applicable to both lower-energy, 
near-GM data and high-energy chemical space, which usually corre-
sponds to important reactive structural data such as transition states 
and intermediates. One topic of future research could be the interface 
of the ML potential trained on UDD-AL data with weighted ensemble 
methods for obtaining the pathways and rates of chemical reactions.
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According to equations (4) and (7), including the bias potential 
has a negligible effect on the computational time, because σ2E, Êi and  
f̂i are calculated at each MD step in the ensemble-based AL. This  

makes the proposed approach applicable to a wide range of chemical 
systems, for example, for modeling larger molecules and bulk systems. 
It is possible that larger systems would also benefit from the application 
of uncertainty bias derived from force predictions.

In the glycine test case, because all the models used the same 
hyperparameters, it is possible that each model could perform better 
if individual hyperparameter searches were carried out. Data sets that 
cover a broader chemical space may need more learnable parameters 
to be flexible enough to fit the effectively larger degrees of freedom 
to which they are being trained. This will be a subject of future studies.

As the results show, the uncertainty-based bias potential is a prom-
ising technique for sampling rare events while being relatively faithful 
to the physical equilibrium distribution. The UDD is similar to meta-
dynamics48–51 in its use of a bias potential. However, one remarkable 
advantage of UDD compared to metadynamics is that UDD avoids the 
need to manually select CVs or to identify basins of attraction, which 
require a great deal of domain expertise and trial and error. In a way, 
it defines the best CV for the purpose of AL: training a more general 
and robust ML potential. The major limitation of UDD-AL is that the 
approach requires selection of two parameters: the bias magnitude 
and width. In this Article, these parameters are context-dependent 
and selected based on the height of barriers of interest and the ratio 
of bias/true interatomic forces. However, developing a method that 
can tune these algorithmically would be a productive future activity. 
Perhaps this problem could be reduced to the selection of just one 
parameter—bias magnitude—when using a linear bias function rather 
than exponential. Additionally, an algorithm for automatic selection 
of uncertainty criteria could improve the sampling efficiency.

After the completion of this study, we became aware of a closely 
related work60. In that study, the UDD is interfaced with the Atomic 
Cluster Expansion model. The authors achieved a good sampling of 
AlSi10 and polyethylene glycol, which highlights the versatility of the 
UDD-AL approach across ML methods and chemical compositions.

Methods
Active learning
For the glycine simulations, we used the ANI deep learning model57  
to generate ensembles of NN potentials prepared using an  
eightfold cross-validation split of the data set. The empirical value  
of 0.23 kcal ×mol−1 × NA

−1/2  for the uncertainty selection criterion ρ, 
equation (3), provided in the original work on AL for organic mole-
cules37, turned out to be too low for the purposes of training on  
one chemical system. It causes unnecessarily dense sampling of  
the glycine conformational space, which, in turn, hinders the MD  
simulation in reaching higher-energy regions. We thus used a higher 
value of 0.35 kcal ×mol−1 × NA

−1/2 for this test case. Overall, automatic 
selection of uncertainty criteria is a non-trivial question that deserves 
a separate discussion and goes beyond the scope of this work. Each MD 
simulation was terminated when the system met the uncertainty  
selection criterion ρ.

The initial training set consisted of 125 glycine geometries that 
span the near-equilibrium structures of the glycine GM. These data 
were acquired from a separate 5-ps MD trajectory at 350 K with a  
0.5-fs time step, initialized from the glycine GM. Every 80th MD step was 
included in the initial data training set. The MD simulation for the initial 
training set was carried out using the pre-trained ANI-1x potential57.

MD simulations
In all discussed cases, the Langevin thermostat was used to main-
tain temperature, with a friction coefficient of 0.01 a.u. Each AL itera-
tion performed 16 MD simulations with a 1-fs time step and a limit of 
200,000 steps (200 ps). At each AL iteration, the MD was driven by an 

ensemble of ANI-type ML potentials, trained on initial data and data 
accumulated on previous AL iterations. The NN-based MD was inter-
faced with Atomic Simulation Environment code61. The final data set 
had 1,280 data points sampled in the AL procedure and 125 data points 
from the initial data set.

The set of seed geometries for MD simulations comprised 25 
structures that corresponded to near-equilibrium geometries of a 
glycine GM. These were selected as the first 25 structures from the 
initial training set. The AL sampler randomly selected one of them for 
each MD initialization. The energies and forces of the new conform-
ers were calculated using the ωB97X-D/cc-pVTZ62,63 level of theory, as 
implemented in PSI4 code64.

NN architecture
The parameters for the atomic environment vector57 (a numerical 
vector used to encode the atomic local environment in ANI) used dur-
ing the AL process were constant. Thirty-two evenly spaced shifting 
parameters were used for the radial part of the vector, with a 4.6-Å 
cutoff radius, and a total of eight radial and eight angular shifting 
parameters were used for the angular part, with a 3.5-Å cutoff radius. 
With four atom types, this gave 768 elements in the descriptor. The first 
atom-centered function was shifted to 0.8 Å from the atomic center. 
The ANI potential used in this work contained three hidden layers and 
had the architecture 768:32:16:8:1, where each number describes the 
number of neurons at each subsequent layer in the network.

The ANI potential used in this work contained three hidden layers 
and had the following architecture: 768:32:16:8:1. Gaussian activation 
functions were used in the hidden layers and linear activation in the 
final layer.

The data set was split in the ratio 14:1:1 for training, validation and 
testing. An initial learning rate of 0.001 was used with a batch size of 32. 
Early stopping was utilized in the training of each network, such that if a 
model failed to improve its validation set predictions within 50 epochs, 
then training was stopped. Learning rate annealing was utilized, so that 
if a model stopped early, training was restarted with a learning rate 
0.5 times that of the previous learning rate. Termination of training 
was achieved when the learning rate was less than 10−5. The Adam65 
optimizer was used to update the weights during training. More details 
on ANI-type potentials and the AL technique are provided in refs. 19,37,54.

For the final models, the average number of training epochs was 
695 on NVIDIA TITAN V GPUs with an average of 0.098 s per epoch. For 
acetylacetone MD simulations, a pre-trained ANI-1x model was used19.

A summary of training and prediction timings is provided in  
Supplementary Section 1.

Data availability
All data generated or analyzed during this study are available at  
https://doi.org/10.5281/zenodo.7526389 (ref. 66). Source data are  
provided with this paper.

Code availability
Compiled standalone software and source code for reproducing the 
analyses and figures in this paper, as well as for applying the method-
ology we have developed here, are freely available at https://github.
com/lanl/Active-Learning-Framework/tree/udd-al and https://doi.
org/10.5281/zenodo.7522399 (ref. 67).
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Extended Data Fig. 1 | Models’ performance on low-energy dihedral rotation 
profiles. a A relaxed potential energy scan of dihedral -COOH rotation in glycine 
generated from reference DFT (black) and models trained on 350 K MD-AL (blue), 
600 K MD-AL (green), 1000 K MD-AL (cyan), and 350 K UDD-AL (orange) data. 

Each figure also lists the RMSE, for each model compared to the reference DFT 
method. b Same as a but potential energy scan of dihedral -NH2 rotation. Atom 
colors: H – blue, C – gray, N – pink, O – red.
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Extended Data Fig. 2 | Comparison of proton transfer rates in regular MD and UDD simulations. Each subplot shows two O-H distances (blue and orange) in the 
acetylacetone molecule throughout the 0.5 ns MD simulation. a Regular 350 K MD. The legend corresponds to all three panels. b 350 K UDD (uncertainty-based bias 
potential applied). c Regular 620 K MD.
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