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Machine-guided path sampling to discover 
mechanisms of molecular self-organization

Hendrik Jung    1,6, Roberto Covino    2,6, A. Arjun3, Christian Leitold4, 
Christoph Dellago4, Peter G. Bolhuis3 & Gerhard Hummer    1,5 

Molecular self-organization driven by concerted many-body interactions 
produces the ordered structures that define both inanimate and living 
matter. Here we present an autonomous path sampling algorithm that 
integrates deep learning and transition path theory to discover the 
mechanism of molecular self-organization phenomena. The algorithm uses 
the outcome of newly initiated trajectories to construct, validate and—if 
needed—update quantitative mechanistic models. Closing the learning 
cycle, the models guide the sampling to enhance the sampling of rare 
assembly events. Symbolic regression condenses the learned mechanism 
into a human-interpretable form in terms of relevant physical observables. 
Applied to ion association in solution, gas-hydrate crystal formation, 
polymer folding and membrane-protein assembly, we capture the many-
body solvent motions governing the assembly process, identify the  
variables of classical nucleation theory, uncover the folding mechanism  
at different levels of resolution and reveal competing assembly pathways. 
The mechanistic descriptions are transferable across thermodynamic states 
and chemical space.

Understanding how generic yet subtly orchestrated interactions 
cooperate in the formation of complex structures is the key to steer-
ing molecular self-assembly1,2. As computer experiments, molecular 
dynamics (MD) simulations promise us atomically detailed and unbi-
ased views of self-organization processes3. However, most collective 
self-organization processes are rare events that occur on timescales 
many orders of magnitude longer than the fast molecular motions 
limiting the MD integration step. The system spends most of the time in 
metastable states, and the infrequent and rapid stochastic transitions 
between states are rarely resolved in unbiased MD simulations, if at all. 
These transition paths (TPs) are the very special trajectory segments 
that capture the reorganization process. Learning molecular mecha-
nisms from simulations requires computational power to be focused 
on sampling TPs4 and distilling quantitative models from them5. Due 
to the high dimensionality of configuration space, both sampling and 
information extraction are exceedingly challenging in practice. Our 

algorithm addresses both challenges at once. It autonomously and 
simultaneously builds quantitative mechanistic models of complex 
molecular events, validates the models on the fly and uses them to accel-
erate the sampling by orders of magnitude compared with regular MD.

Results
Algorithm for physics-based mechanism learning
Statistical mechanics provides a general framework to obtain low-
dimensional mechanistic models of self-organization events. In this 
Article, we focus on systems that reorganize between two states A 
and B (assembled or disassembled, respectively), but generalizing 
to an arbitrary number of states is straightforward. Each TP con-
necting the two states contains a sequence of snapshots capturing 
the system during its reorganization. Consequently, the transition 
path ensemble (TPE) is the mechanism at the highest resolution. As 
the transition is effectively stochastic, quantifying its mechanism 

Received: 15 February 2023

Accepted: 10 March 2023

Published online: 24 April 2023

 Check for updates

1Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany. 2Frankfurt Institute for Advanced Studies, 
Frankfurt am Main, Germany. 3van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands. 4Faculty of Physics, 
University of Vienna, Vienna, Austria. 5Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany. 6These authors contributed 
equally: Hendrik Jung, Roberto Covino.  e-mail: gerhard.hummer@biophys.mpg.de

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-023-00428-z
http://orcid.org/0000-0002-2159-0391
http://orcid.org/0000-0003-0884-0402
http://orcid.org/0000-0001-7768-746X
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-023-00428-z&domain=pdf
mailto:gerhard.hummer@biophys.mpg.de


Nature Computational Science | Volume 3 | April 2023 | 334–345 335

Article https://doi.org/10.1038/s43588-023-00428-z

repeated sampling, preferably by efficient computer simulation. 
However, if one can repeatedly prepare a real system with satisfac-
tory control over the initial conditions, one can learn to predict the 
likely fate of this system given the observed and controlled initial 
conditions using our framework.

Sampling TPs for rare events and learning the associated com-
mittor function pB(x) are two outstanding and intrinsically connected 
challenges. Given that TPs are exceedingly rare in a very high-dimen-
sional space, an uninformed search is futile. However, TPs converge 
near transition states7, where the trajectory is least committed with 
pA(x) = pB(x) = 1/2. For Markovian and time-reversible dynamics P(TP|x), 
the probability for a trajectory passing through x to be a TP, satisfies 
P(TP|x) = 2pB(x)(1 − pB(x)), that is, the committor determines the prob-
ability of sampling a TP11. The challenges of information extraction and 
sampling are thus intertwined.

requires a probabilistic framework. We define the committor pS(x) 
as the probability that a trajectory enters state S first, with S = A or B,  
respectively, where x is a vector of features representing the start-
ing point X in configuration space, and pA(x) + pB(x) = 1 for ergodic 
dynamics. The committor pB reports on the progress of the reaction 
A → B and predicts the trajectory fate in a Markovian way6,7, making it 
the ideal reaction coordinate8,9. In the game of chess, one can think of 
the committor as the probability of, say, black winning for given initial 
board positions in repeated games10. The minimal requirements for 
applications beyond molecular simulations are (1) that a quantity akin 
to a committor exists and (2) that the dynamics of the system can be 
sampled repeatedly, at least in the forward direction. The probability 
of different possible events (A, B, …) should thus be encoded at least 
in part (and thus learnable in terms of) the instantaneous state X of 
the system and the dynamics of the system should be amenable to 
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Fig. 1 | Learning the assembly mechanism of ions in water. a, Mechanism 
learning by path sampling. The method iterates between sampling transition 
paths from a configuration x between metastable states A and B (left), and 
learning the committor pB(x) (right). A neural network function of molecular 
features (x1 to x4) models the committor. The log predictor forming the last 
layer is not shown. At convergence, symbolic regression distills an interpretable 
expression that quantifies the molecular mechanism in terms of selected features 
(x1, x2) and numerical constants (a, c) connected by mathematical operations 
(here: +, −, ×, exp). b, Snapshots along a TP showing the formation of a LiCl ion 
pair (right to left) in an atomistic MD simulation. Water is shown as sticks, Li+ as 
a small sphere and Cl− as a large sphere. Atoms are colored according to their 
contribution to the reaction progress from low (blue) to high (red), as quantified 
by their contribution to the gradient of the reaction coordinate q(x|w). c, Self-
consistency. Counts of the generated (blue line) and expected (orange dashed 

line) number of transition events. The green line shows the cumulative difference 
between the observed and expected counts. The inset shows a zoom-in on the 
first 1,000 iterations. d, Validation of the learned committor. Cross-correlation 
between the committor predicted by the trained network and the committor 
obtained by repeated sampling from molecular configurations on which the 
committor model was not trained. The average of the sampled committors 
(blue line) and their s.d. (orange shaded) were calculated in bins of the learned 
committor indicated by the vertical steps. For reference, the red line indicates the 
identity. e, Transferability of the learned committor. Representation of transfer 
learning, and cross-correlations between sampled committors for NaCl and NaI 
ion pairing and predictions of committor from a model trained on data for LiCl 
and adjusted by transfer learning using only 1,000 additional shooting outcomes 
each. Colors and s.d. (indicated by orange shading) are as in d.
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To tackle these dual challenges, we designed an iterative algorithm 
that builds on transition path theory9 and transition path sampling 
(TPS)12 in the spirit of reinforcement learning. The algorithm learns the 
committor of rare events in complex many-body systems by repeatedly 
running virtual experiments and uses the knowledge gain to improve 
the sampling of TPs (Fig. 1a). In each experiment, the algorithm selects 
a point X from which to shoot trajectories—propagated according to 
the unbiased dynamics of the physical model—to generate TPs. To 
ensure detailed balance of TPS, the algorithm selects structures from 
the current transition path to initiate shooting moves with redrawn 
Maxwell–Boltzmann initial velocities. After repeated shots from differ-
ent points X, the algorithm compares the number of generated TPs with 
the expected number based on its knowledge of the committor at that 
point. Only if the prediction is poor, the algorithm retrains the model on 
the outcome of all virtual experiments, which prevents overfitting. As 
the predictive power of the mechanistic model increases, the algorithm 
becomes more efficient at sampling TPs by choosing initial points near 
transition states, that is, according to P(TP|x).

The algorithm learns from its repeated attempts by using deep 
learning5,13,14 in a self-consistent way. We model the committor 
pB(x) = 1/(1 + e−q(x|w)) with a neural network15 q(x|w) of weights w. With 
this choice, q is an invertible function of pB, and we can view both 
functions as the reaction coordinate. In each attempt to generate a 
TP, the algorithm propagates two trajectories, one forward and one 
backward in time, by running MD simulations4. In case of success, one 
trajectory first enters state A and the other B, jointly forming a new 
TP. In this Bernoulli coin-toss process, the algorithm learns from both 
successes and failures. The negative log-likelihood5 for k attempts 

defines the loss function l(w|θ) = ∑k
i=1 log(1 + esiq(xi|w)) , where si = 1  

if trajectory i initiated from Xi enters A first, and si = −1 if it enters B 
first. The training set θ contains the k feature vectors xi associated 
with the shooting points Xi and outcomes si. By training the network 
q(x|w) to minimize the loss l(w|θ), we obtain a maximum likelihood 
estimate of the committor5 that is differentiable and enables sophis-
ticated analysis methods16.

We then use symbolic regression17 to condense the molecular 
mechanism into a human-interpretable form (Fig. 1a) and gain physical 
insight. First, an attribution analysis of the trained network identifies 
a small subset z of the input coordinates x that dominate the outcome 
of the network prediction. Then, symbolic regression distills explicit 
mathematical expressions qsr(z|wsr) by using a genetic algorithm that 
searches both function and parameter spaces to minimize the loss 
l(wsr|θ) on the training set θ independent of the preceding neural net-
work training, where the subscript ‘sr’ indicates symbolic regression. 
The resulting analytical expressions provide us with a list of hypotheses 
for quantitative models of the physics governing the molecular assem-
bly process. For further examination, these hypotheses are ranked by 
a combination of statistical likelihood (that is, how well they account 
for all available data) and mathematical complexity.

Ion assembly in solution
The formation of ion pairs in water is a paradigmatic assembly pro-
cess controlled by many-body interactions in the surrounding solvent 
medium. Even though MD can efficiently simulate the process, the col-
lective reorganization of water molecules challenges the formulation 
of quantitative mechanistic models to this day18 (Fig. 1b).
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Fig. 2 | Interpretable multi-ion model of the assembly mechanism of ions in 
water. a, Input relevance for all 179 input coordinates used for deep learning. The 
first 176 describe the geometry of water molecules around cations and anions. 
The remaining ones are the interionic distance rion and the Lennard-Jones 
parameters, with σ the ion size. b, Schematic depiction of the most important 
solvent reorientation. The symmetry function x7 reports the water oxygen atoms 
(O, in blue) geometry at 0.1 nm around the cation (in pink) (see the box for the 
definition of x7, where rij and rik are the distances between the central cation i and 
oxygen atoms j and k, and ϑijk is the angle formed by the central cation and two 
oxygen atoms). c, Pareto plot of all models distilled by symbolic regression. Each 
dot corresponds to an alternative model qsr(z|wsr), colored according to the 
number of input coordinates (Nin) it uses. The red cross identifies the optimal 

model at the knee of the Pareto front. d, Multi-ion model from symbolic 
regression describing the assembly mechanism of LiCl, LiI, NaCl, NaI, CsCl and 
CsI in water. The model, q (rion,σ, x7, x15;σw), is a function of the interionic 
distance (rion and ion size σ in units of the water size parameter σw = 0.315 nm) and 
the geometry of water around the cations (x7 and x15). e, Validation of the 
multi-ion assembly model by cross-correlation between untrained sampled 
committors and the prediction for each ionic species separately, here shown for 
LiCl and CsCl (see Extended Data Fig. 4a for all remaining species). The average of 
the sampled committors (blue line) and their s.d. (orange shaded) were 
calculated in bins of the learned committor indicated by the vertical steps. For 
reference, the red line indicates the identity.
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The algorithm quickly learned how to optimally sample the for-
mation of ion pairs. For lithium (Li+) and chloride (Cl−) ion pairs in 
water (Fig. 1b,c), the network used the interionic distance rLiCl and  
220 molecular features x1, …, x220 that describe the angular arrange-
ment of water oxygen and hydrogen atoms at a specific distance from 
each ion19. These coordinates provide a general representation of 
the system that is invariant with respect to physical symmetries and 
exchange of atom labels. After the first 500 iterations, the predicted 
and observed numbers of TPs agree (Fig. 1c). Sampling is about ten 
times faster than conventional TPS (Extended Data Fig. 1). We note 
that this speed-up is achieved entirely by improving the efficiency 
of sampling new transition paths and without bias on the underlying 
dynamics. We further validated the learned committor function by 
checking its predictions against independent simulations. From 1,000 
configurations not used in training, we initiated 500 independent simu-
lations each and estimated the sampled committor pB as the fraction of 
trajectories first entering the unbound state. Predicted and sampled 
committors are in quantitative agreement (Fig. 1d).

Counter to a common concern for machine learning models, 
the learned mechanism is general and, with minimal adjustments, 
describes the assembly of chemically distinct ionic species. We per-
formed transfer learning on five additional systems by allowing modi-
fications in only the last linear layer of the trained network containing a 
single neuron (Fig. 1e and Extended Data Fig. 2). A very limited amount 
of new simulated transitions is sufficient to adjust the network contain-
ing the LiCl committor to correctly predict the committor for LiI, NaCl, 
NaI, CsCl and CsI.

We also built multi-ion models extending across chemical space. 
As reporters on ion size and energetics, we included the parameters 
particle size σ and dispersion energy ϵ of the Lennard-Jones potential in 
the feature vectors x. We found that models trained on the combined TP 
statistics for different ion-pair combinations can inter- and extrapolate 
in chemical space, making reasonable predictions for the association 
mechanism of ion species it has not trained on (Extended Data Fig. 3).

Interpretable mechanism across chemical space
Solvent rearrangements play a critical role in determining ion assembly. 
Attribution analysis for a model trained on LiCl, LiI, NaCl, NaI, CsCl and 
CsI assembly simultaneously identified the interionic distance rion and 
the Lennard-Jones parameters as crucial (Fig. 2a). In addition, the sym-
metry functions describing the geometry of water molecules around the 
cation control the assembly mechanism. As the most important of the 
176 molecular features used to describe the solvent, x7 quantifies oxy-
gen anisotropy at a radial distance of 0.1 nm from the cations (Fig. 2b).  
For successful ion-pair assembly, these inner-shell water molecules 

need to open up space for the incoming anion. The importance of 
inner-shell water rearrangement is consistent with a visual analysis 
that highlights atoms in a TP according to their contribution to the 
committor gradient (Fig. 1b).

Symbolic regression provides a quantitative and interpretable 
multi-ion model of the assembly mechanism. In independent symbolic 
regressions, we varied the number of inputs and the complexity pen-
alty. We then selected models in a Pareto plot (Fig. 2c). Models at the 
knee of the Pareto front offer good trade-offs between model quality, 
as measured by the loss, and model complexity, as measured by the 
number of mathematical operations.

The distilled multi-ion model is interpretable and provides physi-
cal insight into the assembly of monovalent ions in water (Fig. 2d). 
In the leading term in q, a scaled ion-size parameter σ is subtracted 
from the interionic distance, consistent with physical intuition. In the 
second term, ion size nonlinearly modulates the descriptor x7 of water 
geometry close to the cations (Fig. 2b). In the last term, x15 reports 
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on solvation farther away unmodulated by ion identity. Despite its 
simplicity, the reduced model is accurate for all monovalent ion spe-
cies considered here (Fig. 2e and Extended Data Fig. 4a). A symbolic 
regression model focusing on the assembly of LiCl only shows that we 
can trade less generality for higher accuracy (Extended Data Fig. 4b–d).

Gas-hydrate crystal formation
At low temperature and high pressure, a liquid mixture of water and 
methane organizes into a gas hydrate, an ice-like solid20. In this phase 
transition, water molecules assemble into an intricate crystal lattice 
with regularly spaced cages filled by methane (Fig. 3a). Despite com-
mercial relevance in natural gas processing, the mechanism of gas-
hydrate formation remains incompletely understood, complicated by 
the many-body character of the nucleation process and the competition 
between different crystal forms20. Studying the nucleation mechanism 
is challenging for experiments and, due to the exceeding rarity of the 
events, impossible in equilibrium MD.

Within hours of computing time on a single graphics processing 
unit (GPU), the algorithm extracted the nucleation mechanism from 
2,225 TPs showing the formation of methane clathrates, correspond-
ing to a total of 445.3 μs of simulated dynamics. The trajectories were 
produced by extensive TPS simulations at four different tempera-
tures, and provided a pre-existing training set for our algorithm21. We 
described molecular configurations by using 22 features commonly 
used to describe nucleation processes (Supplementary Table 1). We 
considered the temperature T at which a TP was generated as an addi-
tional feature, and trained the committor model on the cumulative 
trajectories. We showed that the learned committor as a function of 
temperature is accurate by validating its predictions for 160 independ-
ent configurations (Fig. 3b). Generative models recently constructed 
distribution functions at temperatures not sampled22. By leaving out 
data at T = 280 K or 285 K in the training, we show that the learned com-
mittor satisfactorily interpolates and extrapolates to thermodynamic 
states not sampled (Extended Data Fig. 5).

Temperature T is the most critical factor for the outcome of a 
simulation trajectory, followed by the number nw of surface water 
molecules and the number nc of 51262 cages, defined by the presence 
of 12 pentagons (512) and two hexagons (62) (Fig. 3c). All three variables 
play an essential role in the classical theory of homogeneous nuclea-
tion21. The activation free energy ΔG for nucleation is determined by the 
size of the growing nucleus, parameterized by the amount of surface 
water and—in case of a crystalline structure—the number of 51262 cages. 
Temperature determines, through the degree of supersaturation, the 
size of the critical nucleus, the nucleation free energy barrier height 
and the rate.

Symbolic regression distilled a mathematical expression revealing 
a temperature-dependent switch in the nucleation mechanism. The 
mechanism is quantified by q(nw, nc, T) (Fig. 3d and Supplementary 
Table 1). At low temperatures, the size of the nucleus alone decides 
on growth. At higher temperatures, the number of 51262 water cages 
gains in importance, as indicated by curved iso-committor surfaces  
(Fig. 3d). This mechanistic model, generated in a data-driven way, 
reveals the switch from amorphous growth at low temperatures to 
crystalline growth at higher temperatures21,23.

Polymer folding at different resolutions
Proteins, nucleic acids and polymers can spontaneously self-organ-
ize by folding into ordered structures. Applied to the coil-to-crystal 
transition of a homopolymer24,25, the algorithm readily identified 
the previously elusive mechanism at different levels of resolution 
(Extended Data Fig. 6). At low resolution, we used a select set of 36 
physical characteristics averaged over the polymer. Attribution analy-
sis followed by symbolic regression represented the committor as a 
nonlinear function of orientational order Q6 and potential energy 
U alone, which proved highly predictive (Fig. 4 and Extended Data 

Fig. 6a). At high resolution, deep learning produced a committor 
function of comparable quality in a space of 384 general descriptors 
representing the local environment of each polymer bead (Extended 
Data Fig. 6b) in terms of the number of neighbors, the local bond-
order parameter q6 and the connection coefficients cij that measure 
the correlation between the local environments of beads i and j. The 
algorithm thus learned accurate committor representations in terms 
of both many general and few system-specific features, and distilled 
the latter into a compact and physically insightful function of orien-
tational order and energy.

Competing pathways for membrane-protein complex 
assembly
Membrane-protein complexes play a fundamental role in the organi-
zation of living cells. Here we investigated the assembly of the trans-
membrane homodimer of the saturation sensor Mga2 in a lipid bilayer 
in the quasi-atomistic Martini representation (Fig. 5a)26. In extensive 
equilibrium MD simulations, the spontaneous association of two 
Mga2 transmembrane helices has been observed, yet no dissociation 
occurred in approximately 3.6 ms (equivalent to more than 6 months 
of calculations)26.

Path sampling is naturally parallelizable, which enabled us to 
sample nearly 4,000 dissociation events in 20 days on a parallel super-
computer (Fig. 5b). The time integration of MD trajectories incurs 
the highest computational cost and is only parallelizable to a limited 
degree. However, a single instance of the algorithm can simultaneously 
orchestrate virtual experiments on an arbitrary number of copies of 
the physical model (by guiding parallel Markov chain Monte Carlo 
(MC) sampling processes), and learn from all of them by training on 
the cumulative outcomes.

We featurized molecular configurations using contacts between 
corresponding residues along the two helices and included, for refer-
ence, a number of hand-tailored features describing the organization 
of lipids around the proteins27 (Extended Data Fig. 7 and Supplemen-
tary Table 2). We validated the model against committor data for 548 
molecular configurations not used in training, and found the predic-
tions to be accurate across the entire transition region between bound 
and unbound states (Fig. 5c).
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molecular configurations of the polymer at pB = 0, 0.5 and 1. Polymer beads are 
colored according to their value of q6, from white (low values) to dark orange 
(high values). b, Validation of the learned committor. Cross-correlation between 
the committor predicted by the trained network and the committor obtained by 
repeated sampling from molecular configurations on which the algorithm did 
not train. The average of the sampled committors (blue line) and their s.d. 
(orange shaded) were calculated in bins of the learned committor indicated by 
the vertical steps. For reference, the red line indicates the identity.
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In a remarkable reduction of dimensionality, symbolic regression 
achieved an accurate representation of the learned committor as a 
simple function of just two amino acid contacts (Fig. 5d and Extended 
Data Fig. 8). Symbolic regression provides us with a list of hypoth-
eses for quantitative models of the physics governing the molecular 
assembly process (Supplementary Table 3). These hypotheses are 
ranked by a combination of statistical likelihood (that is, how well 
they account for all available data) and their mathematical complex-
ity. Among the expressions at the knee of the Pareto plot, that is, 
with comparable predictive power and complexity, we chose the one 
offering a clear interpretation in terms of two competing assembly 
mechanisms described by the formation of contacts starting on one 
helix terminus or the other.

We projected all sampled TPs on the plane defined by these two 
contacts, calculated the distances between them and performed a 
hierarchical trajectory clustering (Fig. 5e). TPs organize in two main 
clusters that reveal two competing assembly pathways with the initial 
helix contact at the top (Fig. 5f) or the bottom (Fig. 5g). Unexpect-
edly27, helix–dimer geometry alone predicts assembly progress, 
which implies that the lipid ‘solvent’ is implicitly encoded in the 
interhelical pairwise contacts, unlike the water solvent in ion-pair 
formation18. As in polymer folding and ion binding, a sufficiently 
large space of general geometric features thus proved sufficient for 
the construction of fully predictive committors by deep learning. 
This finding is consistent with embedding theory28 and implies that 

the use of a small but sufficient number of general features is as effec-
tive as collective variables based on physical and chemical intuition.

Discussion
Machine-guided trajectory sampling is general and can immedi-
ately be adapted to sample many-body dynamics with a notion of 
‘likely fate’ similar to the committor. This fundamental concept of 
statistical mechanics extends from the game of chess10 over pro-
tein folding3,7 to climate modeling29. The simulation engine—MD in  
our case—is treated as a black box and can be replaced by other 
dynamic processes, reversible or not. Both the statistical model 
defining the loss function and the machine learning technology can 
be tailored for specific problems. More sophisticated models will 
be able to learn more from less data or incorporate experimental 
constraints. Simpler regression schemes5 can replace neural net-
works15 when the cost of sampling trajectories severely limits the 
volume of training data.

Defining the boundaries of the metastable states, as required by 
our method, can be non-trivial. To refine the state definitions, the com-
mittor framework can be used in an iterative way, starting from a very 
conservative one, obtaining a rough estimate of the committor, and 
then extending the states to values of the committor close to 0 and 1.  
A related problem is the presence of unassigned metastable states that 
result in long transition paths. Here, machine learning approaches 
aimed at state discovery may provide a solution.
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Fig. 5 | Competing pathways of transmembrane dimer assembly in lipid 
membrane. a, Snapshots during a Mga2 dimerization event (right to left). The 
transmembrane helices are shown as orange surfaces, the lipid molecules in gray 
and water in cyan. b, Self-consistency. Cumulative counts of the generated (blue 
line) and expected (orange dashed line) number of transitions. The green curve 
shows the cumulative difference between the observed and expected counts.  
c, Validation of the learned committor. Cross-correlation between the committor 
predicted by the trained network and the committor obtained by repeated 
sampling from molecular configurations on which the committor model was not 
trained. The average of the sampled committors (blue line) and their s.d. (orange 
shaded) were calculated in bins of the learned committor indicated by the 

vertical steps. For reference, the red line indicates the identity. d, Schematic 
representation of the two most relevant coordinates, the interhelical contacts at 
positions 9 and 22. e, Hierarchical clustering of all TPs. Dendrogram as a function 
of TP similarity (dynamic time warping, see ‘Mga2 transmembrane dimer 
assembly in lipid membrane’ in Methods) calculated in the plane defined by 
contacts 9 and 22 (two main clusters: blue, orange). f,g, Path density (gray 
shading) for the two main clusters in e , calculated in the plane defined by 
contacts 9 and 22. For each cluster, one representative TP is shown from unbound 
(yellow) to bound (red). The isolines of the committor, as predicted by the 
symbolic regression qB(x9, x22) = − exp(x29) log(x9 −

x9
log(x22)

), are shown as 
labeled solid lines.
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As our method does not use un-physical forces to speed up the 
sampling, its applicability is limited to processes for which the transi-
tion paths are short enough so that the underlying simulation engine 
can sample a reasonable number of them. This limitation is not dra-
matic as the duration of TPs depends only weakly on barrier height. If 
needed, our method can also be used with biased potential surfaces 
to accelerate the dynamics.

Experimental validation of assembly mechanism can come from 
direct observation, for example, by single-molecule experiments, or 
by perturbation, for example, by changing the thermodynamic state 
or the chemical composition. For the former, the simulations would 
make predictions of observables along the assembly routes. For the 
latter, the effect of the perturbation on the assembly process would 
have to be recapitulated in the simulations. As an example, changes in 
temperature altered the rate and the pathway of clathrate nucleation21.

Machine-guided mechanism discovery30 readily integrates 
advances in machine learning applied to force fields19,31, sampling32–34 
and molecular representation19,31,35. Increasing computational power 
and advances in symbolic artificial intelligence will enable algorithms 
to distill ever-more-accurate mathematical descriptions of the complex 
processes hidden in high-dimensional data36. As shown here, machine-
guided sampling and model validation combined with symbolic regres-
sion can support the scientific discovery process.

Methods
Maximum likelihood estimation of the committor function
The committor pB(x) is the probability that a trajectory initiated at 
configuration X with Maxwell–Boltzmann velocities reaches the  
(meta)stable state B before reaching A. Trajectory shooting thus  
constitutes a Bernoulli process. We expect to observe nA and nB trajec-
tories to end in A and B, respectively, with binomial probability  
p(nA,nB|x) = (nA+nB

nA
)(1 − pB(x))

nApB(x)
nB. For k shooting points xi, the com-

bined probability defines the likelihood ℒ = ∏k
i=1 p(nA(i),nB(i)|xi). Here 

we ignore the correlations that arise in fast inertia-dominated transi-
tions for trajectories shot off with opposite initial velocities11,18. We 
model the unknown committor with a parametric function and esti-
mate its parameters w by maximizing the likelihood ℒ (refs. 5,15).  
We ensure that 0 ≤ pB(x) ≤ 1 by writing the committor in terms of a 
sigmoidal activation function, pB[q(x|w)] = 1/(1 + exp[−q(x|w)]) . Here 
we model the log-probability q(x|w) using a neural network15 and rep-
resent the configuration with a vector x of features. For N > 2 states S, 
the multinomial distribution provides a model for p(n1, n2, . . . , nN|x), 
and writing the committors to states S in terms of the softmax activa-
tion function ensures normalization, ∑N

S=1 pS = 1 . The loss function 
l(w|θ) used in the training is the negative logarithm of the likelihood ℒ.

Training points from transition path sampling
TPS4,12 is a powerful Markov chain MC method in path space to sample 
TPs. The two-way shooting move is an efficient proposal move in TPS4. 
It consists of randomly selecting a shooting point XSP on the current 
TP χ according to probability psel(XSP|χ), drawing random Maxwell–
Boltzmann velocities, and propagating two trial trajectories from XSP 
until they reach either one of the states. Because one of the trial trajec-
tories is propagated after first inverting all momenta at the starting 
point, that is, it is propagated backward in time, a continuous TP can 
be constructed if both trials end in different states. Given a TP χ, a new 
TP χ′ generated by two-way shooting is accepted into the Markov  
chain with probability37pacc(χ′|χ) = min(1,psel(XSP|χ′)/psel(XSP|χ)) . If the 
new path is rejected, χ is repeated.

Knowing the committor, it is possible to increase the rate at which 
TPs are generated by biasing the selection of shooting points towards 
the transition state ensemble37, that is, regions with high reactive prob-
ability p(TP|X). For the two-state case, this is equivalent to biasing 
towards the pB(x) = 1/2 isosurface defining the transition states with 
q(x) = 0. To construct an algorithm that selects new shooting points 

biased toward the current best guess for the transition state ensemble 
and that iteratively learns to improve its guess based on every newly 
observed shooting outcome, we need to balance exploration with 
exploitation. To this end, we select the new shooting point X from  
the current TP χ using a Lorentzian distribution centered around the 
transition state ensemble, psel(X|χ) = 1/ ∑

x′∈χ
[(q(x)2 + γ2)/(q(x′)2 + γ2)],  

where larger values of γ lead to an increase of exploration. The Lor-
entzian distribution provides a trade-off between production effi-
ciency and the occasional exploration away from the transition 
state, which is necessary to sample alternative reaction channels.

With the learned committor function, one can optimize the defi-
nition of the state boundaries. An initially tight state definition can 
be softened by moving the boundaries outward to, say, pB(x) = 0.1 
and pB(x) = 0.9. This loosening leads to shorter TPs and speeds up  
the sampling.

Real-time validation of committor model prediction
The relation between the committor and the transition probability11 
enables us to calculate the expected number of TPs generated by shoot-
ing from a configuration X. We validate the learned committor on-the-
fly by estimating the expected number of transitions before shooting 
from a configuration and comparing it with the observed shooting 
result. The expected number of transitions nexp

TP  calculated over a win-
dow containing the k most recent two-way shooting4 attempts is 
nexp
TP = ∑k

i=1 2(1 − pB(xi, i))pB(xi, i) , where pB(xi, i) is the committor esti-
mate for trial shooting point Xi at step i before observing the shooting 
result. We initiate learning when the predicted (nexp

TP ) and actually  
generated (ngen

TP ) number of TPs differ. We define an efficiency  
factor, αeff = min(1, (1 − ngen

TP /n
exp
TP )

2
), where a value of zero indicates per-

fect prediction (Extended Data Fig. 9). By training only when necessary, 
we avoid overfitting. Here we used αeff to scale the learning rate in the 
gradient descent algorithm. In addition, no training takes place if αeff is 
below a certain threshold (specified further below for each system).

Neural network architectures
Molecular mechanisms can be described at different levels of resolu-
tion. One can use many high-resolution features that quantify local 
properties or fewer low-resolution features that measure global prop-
erties. While high-resolution features tend to be readily available, the 
choice of meaningful low-resolution features relies on physical under-
standing. With a focus on rare molecular events, we aimed to arrange 
features in a resolution hierarchy, going from Cartesian coordinates of 
atomic positions—the highest possible resolution—to a single quantity, 
the committor.

We designed the neural networks in this study to encourage them 
to learn the resolution hierarchy of features. Neural networks have 
shown the ability to learn low-resolution features from high-resolution 
ones, for example, when used in image recognition. From a practical 
point of view, the layer width of our networks is constantly decreasing, 
moving from inputs to output. In addition, as the learned features 
become increasingly global (and therefore less redundant) while going 
to deeper layers, we decrease the dropout probability moving up in the 
network. This is also reflected in the different architecture used for 
the clathrate formation where, due to the already coarse-grained and 
system-specific features, we used a comparatively simple pyramidal 
feed-forward network.

Distilling explicit expressions for the committor
In any specific molecular process, we expect that only a few of the many 
degrees of freedom actually control the transition dynamics. We iden-
tify the inputs to the committor model that have the largest role in 
determining its output after training. To this end, we first calculate a 
reference loss, lref = l(w, θ), over the unperturbed training set to com-
pare with the values obtained by perturbing every input one by one38. 

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 3 | April 2023 | 334–345 341

Article https://doi.org/10.1038/s43588-023-00428-z

We then average the loss l(w, θ̃i) over ≥100 perturbed training sets θ̃i  
with randomly permuted values of the input coordinate i in the batch 
dimension. The average loss difference Δli = ⟨l(w, θ̃i)⟩ − lref is large if the 
ith input strongly influences the output of the trained model, that is, 
it is relevant for predicting the committor.

In the low-dimensional subset consisting of only the most rele-
vant inputs z (the ones with the highest Δli), symbolic regression 
generates compact mathematical expressions that approximate the 
full committor. Our implementation of symbolic regression is based 
on the Python package dcgpy39 and uses a genetic algorithm with a 
(N + 1) evolution strategy. In every generation, N new expressions are 
generated through random changes to the mathematical structure 
of the fittest expression of the parent generation. A gradient-based 
optimization is subsequently used to find the best parameters for 
every expression. The fittest expression is then chosen as parent for 
the next generation. The fitness of each trial expression pB(z) is meas-
ured by lsr(wsr|θ) ≡ − logℒ[pB(zsp)] + λC, where we added the regulari-
zation term λC to the log-likelihood (see ‘Maximum likelihood 
estimation of the committor function’) to keep expressions simple 
and avoid overfitting. Here λ > 0 and C is a measure of the complexity 
of the trial expression, estimated in our case by the number of math-
ematical operations.

Symbolic regression will produce expressions of differing com-
plexity depending on the regularization strength. We select expres-
sions with a reasonable trade-off between simplicity and accuracy using 
a Pareto plot (Fig. 2c), in which we plot the complexity (measured as the 
number of mathematical operations) against the accuracy (measured 
as the loss on validation data). By scanning a range of λ values, we can 
identify models at the Pareto front for further analysis.

Assembly of ion pairs in water
We investigated the formation of monovalent ion pairs in water to 
assess the ability of the algorithm to accurately learn the committor for 
transitions that are strongly influenced by solvent degrees of freedom. 
We used six different system set-ups (LiCl, LiI, NaCl, NaI, CsCl and CsI), 
each consisting of one cation and one anion in water.

All MD simulations were carried out in cubic simulation boxes 
using the Joung and Cheatham force field40 together with TIP3P41 water. 
Each simulation box contained a single ion pair solvated with 370 TIP3P 
water molecules. We used the openMM MD engine42 to propagate the 
equations of motion in time steps of Δt = 2 fs with a velocity Verlet 
integrator with velocity randomization43 from the Python package 
openmmtools. After an initial NPT equilibration at constant pressure 
P = 1 bar and constant temperature T = 300 K, all production simula-
tions were performed in the NVT ensemble at a constant volume V 
and a constant temperature of T = 300 K. The friction was set to 1 ps−1. 
Non-bonded interactions were calculated using a particle mesh Ewald 
scheme44 with a real-space cut-off of 1 nm and an error tolerance of 
0.0005. Each TPS simulation (consisting of MD simulations and neural 
network training) was carried out on half a node using one Xeon Gold 
6248 central processing unit (CPU) in conjunction with one RTX5000 
GPU. In TPS, the associated and disassociated states were defined 
according to interionic distances (see Supplementary Table 4 for the 
values for each ionic species).

The committor of a configuration is invariant under global transla-
tions and rotations in the absence of external fields, and it is addition-
ally invariant with respect to permutations of identical particles. We 
therefore chose to transform the system coordinates from the Carte-
sian space to a representation that incorporates the physical symme-
tries of the committor. To achieve an almost lossless transformation, 
we used the interionic distance to describe the solute and we adapted 
symmetry functions to describe the solvent configuration45. Symmetry 
functions were developed originally to describe molecular structures 
in neural network potentials19,46, but have also been successfully used 
to detect and describe different phases of ice in atomistic simulations47. 

These functions describe the environment surrounding a central atom 
by summing over all identical particles at a given radial distance.  
The G2

i  type of symmetry function quantifies the density of solvent 
molecules around a solute atom i in a shell centered at rs

G2
i = ∑

j
e−η(rij−rs)

2
fc(rij),

where the sum runs over all solvent atoms j of a specific atom type, rij 
is the distance between the central atom i and atom j, and η controls 
the width of the shell. The function fc(r) is a Fermi cut-off defined as:

fc(r) = {
[1 + exp(αc(r − rcut − 1/√αc))]

−1 r ≤ rcut
0 r > rcut

,

which ensures that the contribution of distant solvent atoms vanishes. 
The scalar parameter αc controls the steepness of the cut-off. The G5

i  
type of symmetry function additionally probes the angular distribution 
of the solvent around the central atom i

G5
i = ∑

j,k>j
(1 + λ cos𝜗𝜗ijk)

ζe−η[(rij−rs)
2+(rik−rs)

2]fc(rik)fc(rij),

where the sum runs over all distinct solvent atom pairs, ϑijk is the angle 
spanned between the two solvent atoms and the central solute atom, 
the parameter ζ is an even number that controls the sharpness of the 
angular distribution, and λ = ±1 sets the location of the minimum with 
respect to ϑijk at π and 0, respectively. See Supplementary Table 5 for the 
parameter combinations used. We scaled all inputs to lie approximately 
in the range [0, 1] to increase the numerical stability of the training. In 
particular, we normalized the symmetry functions by dividing them by 
the expected average number of atoms (or atom pairs) for an isotropic 
distribution in the probing volume.

Type G2. The symmetry functions of type G2 count the number of sol-
vent atoms in the probing volume; the normalization constant ⟨N[G2

i ]⟩iso 
is therefore the expected number of atoms in the probing volume V(2)probe

⟨N[G2
i ]⟩iso = ρNV (2)

probe,

where ρN is the average number density of the probed solvent atom 
type. The exact probing volume for the G2 type can be approximated as

V(2)probe = ∫∞
0 dr∫π

0 dθ∫2π
0 dϕr2 sin(θ) exp(−η(r − rs)

2) fc(r)

≈ 8πr2s√2/η.

for small η and rcut > rs.

Type G5. The functions of type G5 include an additional angular  
term and count the number of solvent atom pairs located on opposite 
sides of the central solute atom. The expected number of pairs ⟨Npairs⟩iso 
can be calculated from the expected number of atoms in the probed 
volume ⟨Natoms⟩iso as ⟨Natoms⟩iso(⟨Natoms⟩iso − 1)/2. This expression is only 
exact for integer values of ⟨Natoms⟩iso and can even become negative if 
⟨Natoms⟩iso < 1. We therefore used an approximation which is guaranteed 
to be non-negative

⟨Npairs⟩iso ≈
⟨Natoms⟩

2
iso

2 .

The expected number of atoms ⟨Natoms⟩iso  can be calculated from  
the volume that is probed for a fixed solute atom and with one fixed 
solvent atom
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V(5)probe = 21−ζ ∫∞
0 dr∫π

0 dθ∫2π
0 dϕr2 sin(θ)(1 ± cos(ϕ))ζ exp(−η(r − rs)

2) fc(r)

= 21−ζV(2)probe
(2ζ−1)!!

ζ!

With the expectation that most degrees of freedom of the system 
do not control the transition, we designed neural networks that pro-
gressively filter out irrelevant inputs and build a highly nonlinear 
function of the remaining ones. We tested three different pyramidal 
neural network architectures ‘ResNet I’, ‘ResNet II’ and ‘SNN’, where 
names containing ‘ResNet’ indicate the use of residual units48,49 and 
‘SNN’ a self normalizing neural network architecture50 (see Supple-
mentary Tables 6–8 for the exact architectures used). The best per-
forming architecture is ‘ResNet I’ (see Supplementary Data File 1 for 
performance comparison of the different architectures for all ionic 
systems). ResNet I used a pyramidal stack of five pre-activation resid-
ual units, each with four hidden layers. The number of hidden units 
per layer is reduced by a constant factor f = (10/nin)

1/4  after every 
residual unit block and decreases from nin = 221 in the first unit to 10 
in the last. In addition, a dropout of 0.1fi, where i is the residual unit 
index ranging from 0 to 4, is applied after every residual block. Opti-
mization of the network weights is performed using the Adam gradient 
descent51. For all architectures, training was performed after every 
third TPS MC step for one epoch with a learning rate of lr = αeff10−3, if 
lr ≥ 10−4. The expected efficiency factor αeff was calculated over a win-
dow of k = 100 TPS steps. We performed all deep learning with custom 
written code based on Keras52. The TPS simulations were carried out 
using a customized version of openpathsampling53,54 together with 
our own Python module.

For the transfer training, the last layer with a single neuron (that is, 
the log predictor) of a model originally trained on LiCl was randomized 
and all other weights were kept fixed during the subsequent training 
on the shooting data for the other ionic species (LiI, NaCl, NaI, CsCl and 
CsI). Training was performed using the Adam optimizer with a learn-
ing rate of lr = 2.5 × 10−5. The test loss was calculated after every epoch 
on 20% of the data used as test set. The training was stopped when no 
decrease in the test loss was observed for more than 1,000 epochs. The 
model with the best test loss was then used.

For the extrapolation in chemical space (Extended Data Fig. 3),  
we set up a multi-ion neural network of architecture ‘ResNet I’. The 
model was trained on the shooting results for different pairs of ionic 
species simultaneously, as specified. It used the coordinates from 
the set ‘SF shortranged’ together with the ϵ and σ Lennard-Jones 
parameters of the force field to distinguish the different ionic spe-
cies. Training was performed with the Adam optimizer (lr = 10−3) 
using 10% of the data as test set. The training was terminated if the 
test loss did not decrease for 1,000 epochs and the model with the 
best test loss was then used.

We selected the seven most relevant coordinates identified by the 
multi-ion neural network as inputs for the multi-ion symbolic regres-
sions (Supplementary Tables 9–12). We used between 3 and 7 of these 
most relevant coordinates for independent symbolic regression runs 
using the regularization values λ = 0.001, λ = 0.0001 and λ = 0.00001. 
We then selected the expression reported in Fig. 2d using the Pareto 
plot in Fig. 2c.

We also selected the five most relevant coordinates identified 
from a neural network trained on LiCl for symbolic regression runs 
(Extended Data Fig. 4b–d). We regularized the produced expressions 
by penalizing the total number of elementary mathematical operations 
with λ = 10−6 and λ = 10−7.

The contributions of each atom to the committor in a particular 
system X (Fig. 1b) was calculated as the magnitude of the gradi-
ent of the reaction coordinate q(x) with respect to its Cartesian 
coordinates. All gradient magnitudes were scaled with the inverse  
atom mass.

Nucleation of methane clathrates
The learning algorithm was applied to an existing TPS dataset of meth-
ane-clathrate nucleation initially produced for ref. 21. It contains data 
for simulations carried out at four different temperatures T = 270 K, 
275 K, 280 K and 285 K (see Supplementary Table 14 for details). New 
simulations were performed to obtain the sampled committor values 
used in the validation. All committor simulations were performed with 
OpenMM 7.1.142 on NVIDIA GeForce GTX TITAN 1080Ti GPUs, shooting 
between 6 and 18 trajectories per configuration using the same simula-
tion protocol as in ref. 21.

We used 22 different features to describe size, crystallinity, struc-
ture and composition of the growing methane-hydrate crystal nucleus 
(Supplementary Table 1). In addition to the features describing molec-
ular configurations, we used temperature as an input to the neural 
networks and the symbolic regression. In a pyramidal feed-forward 
network with 9 layers, we reduced the number of units per layer from 
23 at the input to one in the last layer (Supplementary Table 15). The 
network was trained with the Adam optimizer with learning rate lr = 10−3 
on the existing TPS data for all temperatures, leaving out 10% of the 
shooting points as test data. We stopped the training after the loss on 
the test set did not decrease for 10,000 epochs and used the model 
with the best test loss. All neural network training was performed on a 
RTX6000 GPU. We used the three most relevant coordinates as inputs 
for symbolic regression runs with a penalty on the total number of 
elementary mathematical operations using λ = 10−5.

Polymer folding
We applied our machine learning algorithm on existing shooting data 
of polymer crystallization24,25. We used two different sets of features 
to describe the transition, a set of 35 low-resolution (coarse-grained) 
features that has also been used in previous work and a set of high-
resolution features describing each polymer bead on its own. The low-
resolution features contain a number of global measures such as the 
potential energy U and the Steinhardt bond-order parameters Q4 and 
Q6, descriptions of the local environment of selected polymer particles, 
various measures describing the structure of the polymer by counting 
chains and loops, and some selected distances (see Supplementary 
Table 16 for an exhaustive list). The high-resolution feature set consists 
of the number of connections, neighbors and the neighbor-averaged 
Lechner–Dellago Steinhardt bond-order parameters55 for each polymer 
bead, that is, each configuration corresponds to a feature vector with 
3 × 128 = 384 entries.

For both the high-resolution and the low-resolution description, 
we used pyramid shaped neural networks (Supplementary Tables 17 
and 18). In both cases, training was performed using the Adam gradient 
descent method with a learning rate lr = 10−3 using 20% of the data as 
test data. The models were saved and the test loss was calculated after 
every epoch. The training was stopped if the test loss did not decrease 
for 10,000 epochs. The model with the lowest test loss was then used 
as the final trained model. All neural network training was performed 
on an RTX6000 GPU.

We used between two and five of the five most relevant low-reso-
lution features as inputs in symbolic regression runs (Supplementary 
Tables 19–22). We regularized by penalizing the number of elementary 
mathematical operations with λ = 10−2, 10−3, 10−4, 10−5 and 10−6.

Mga2 transmembrane dimer assembly in lipid membrane
We used the coarse-grained Martini force field (v2.2)56–59 to describe the 
assembly of the alpha-helical transmembrane homodimer Mga2. All MD 
simulations were carried out with GROMACS v4.6.760–63 with an integra-
tion timestep of Δt = 0.02 ps, using a cubic simulation box containing 
the two identical 30-amino-acid-long alpha helices in a lipid membrane 
made of 313 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) 
molecules. The membrane spans the box in the x–y plane and was 
solvated with water (5,348 water beads) and NaCl ions corresponding 
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to a concentration of 150 mM (58 Na+, 60 Cl−). A reference tempera-
ture of T = 300 K was enforced using the v-rescale thermostat64 with 
a coupling constant of 1 ps separately on the protein, the membrane 
and the solvent. A pressure of 1 bar was enforced separately in the 
x–y plane and in z using a semiisotropic Parrinello–Rahman barostat65 
with a time constant of 12 ps and compressibility of 3 × 10−4 bar−1. Each 
MD simulation was carried out on a single compute node with two 
E5-2680-v3 CPUs and 64 GB memory. All neural network training was 
performed on an RTX6000 GPU.

To describe the assembly of the Mga2 homodimer, we used  
28 interhelical pairwise distances between the backbone beads of  
the two helices together with the total number of interhelical contacts, 
the distance between the helix centers of mass and a number of hand-
tailored features describing the organization of lipids around the two 
helices (Supplementary Table 2). To ensure that all network inputs  
lie approximately in [0, 1], we used the sigmoidal function 
f(r) = (1 − (r/R0)6)/(1 − (r/R0)12) with R0 = 2 nm for all pairwise distances, 

while we scaled all lipid features using the minimal and maximal values 
taken along the transition. The assembled and disassembled states are 
defined as configurations with ≥130 interhelical contacts and with 
helix–helix center-of-mass distances dCoM ≥ 3 nm, respectively.

The neural network used to fit the committor was implemented 
using Keras52 and consisted of an initial 3-layer pyramidal part in which 
the number of units decreases from the 36 inputs to 6 in the last layer 
using a constant factor of (6/36)1/2 followed by 6 residual units48,49, 
each with 4 layers and 6 neurons per layer (Supplementary Table 23). 
A dropout of 0.01 is applied to the inputs and the network is trained 
using the Adam gradient descent protocol with a learning rate of 
lr = 0.0001 (ref. 51).

To investigate the assembly mechanism of Mga2, we performed 
machine-guided sampling in parallel on multiple nodes of a high-
performance computer cluster. We ran 500 independent TPS chains 
guided by the current committor model. The 500 TPS simulations 
were initialized with random initial TPs. The neural network used to 
select the initial shooting points was trained on preliminary shooting 
attempts (8,044 independent shots from 1,160 different points). After 
two rounds (two steps in each of the 500 independent TPS chains), we 
updated the committor model by training on all new data. We retrained 
again after the sixth round. No further training was required, as indi-
cated by consistent numbers of expected and observed counts of TPs. 
We performed another 14 rounds for all 500 TPS chains to collect TPs 
(Fig. 5b). Shooting point selection, TPS set-up and neural network 
training were fully automated in Python code using MDAnalysis66,67, 
numpy68 and our custom Python package.

The input importance analysis revealed the total number of con-
tacts ncontacts as the single most important input (Extended Data Fig. 7).  
However, no expression generated by symbolic regression as a func-
tion of ncontacts alone was accurate in reproducing the committor. It is 
likely that ncontacts is used by the trained network only as a binary switch 
to distinguish the two different regimes—close to the bound or to 
the unbound states. By restricting the input importance analysis to 
training points close to the unbound state, we found that the network 
uses various interhelical contacts that approximately retrace a helical 
pattern (Extended Data Fig. 7). We performed symbolic regression on 
all possible combinations made by one, two or three of the seven most 
important input coordinates (Supplementary Table 3). The best expres-
sions in terms of the loss were selected using validation committor 
data that had not been used during the optimization. This validation 
set consisted of committor data for 516 configurations with 30 trial 
shots each and 32 configurations with 10 trial shots.

To asses the variability in the observed reaction mechanisms, 
we performed a hierarchical clustering of all TPs projected into the 
plane defined by the contacts 9 and 22, which enter the most accurate 
parametrization generated by symbolic regression. We then used 
dynamic time warping69 to calculate the pairwise similarity between 

all TPs for the clustering, which we performed using the scipy cluster-
ing module70,71. The path density plots (Fig. 5f,g) were histogrammed 
according to the number of paths, not the number of configurations, 
that is, the counter of each cell visited by a particular path was incre-
mented by one for this path.

Data availability
Training set data and files to setup molecular dynamics simulations for 
the assembly of LiCl are included in the Code Ocean capsule72. Data to 
reproduce this study for all remaining systems (all remaining ions, poly-
mer, clathrate, and MGA2 transmembrane dimer) are publicly available 
in a Zenodo repository73. Source data are provided with this paper.

Code availability
An executable version of the ‘Artificial Intelligence for Molecular 
Mechanism Discovery’ (AIMMD) code is available in the Code Ocean 
software capsule72. The AIMMD code is also available at https://github.
com/bio-phys/aimmd as git repository.
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Extended Data Fig. 1 | Sampling efficiency compared to random selection 
two-way shooting TPS. Normalized autocorrelation function of the transition 
time tTP as a function of the number of Monte Carlo (MC) steps for TPS 
simulations on different ionic species, in which the shooting points were selected 
by the algorithm (red and green curves, independent runs) or by random uniform 
selection (orange and blue curve, independent runs). Each autocorrelation 
function was calculated over MC chains with a length of 100000 steps each. 

The decorrelation times of the Markov chains, defined as the points where 
the normalized autocorrelation functions reach the value e−1, are marked with 
dotted vertical lines in the same color as the respective autocorrelation function. 
Machine-guided sampling leads to decorrelation times of four MC steps in all 
cases, while for random uniform selection this value ranges between 20-60 steps 
depending on the ionic species.
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Extended Data Fig. 2 | Transfer learning of ion association in solution. 
Committor cross-correlation plots for models obtained by transfer training on 
different ionic species with varying number of training shooting points. The 
original model was trained on LiCl and is the same in all cases (see Fig. 1 for a 
committor cross-correlation plot of the original model predicting for LiCl).  
The model is of architecture ‘ResNet I’ and uses the inputs ‘SF longranged II’  
(see Supplementary Tables 5 and 6). Transfer training was done by randomizing 

the last layer of the original model with a single neuron and then training on the 
specified number of shooting points with data for each ionic system separately. 
The average of the sampled committors (blue line) +/- one SD (orange shaded) 
were calculated by binning the sampled committor in the range of the learned 
committor indicated by the vertical steps. For reference, the red line indicates  
the identity.
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Extended Data Fig. 3 | Committor validation of a multi-ion assembly models 
and extrapolation in chemical space. Shown are cross-correlations of sampled 
committors (x axis) and predicted committors (y axis) for models trained on 
different subsets of the six different ion pairs. (Row 1) Training on all six ion pairs 
(Li+ Cl−, Li+ I−, Na+ Cl−, Na+ I−, Cs+ Cl−, and Cs+ I−) simultaneously. (Row 2) Model 
trained without data for Li+, that is, excluding Li+ Cl− and Li+ I−. (Row 3) Model 
trained without data for Na+, that is, excluding Na+ Cl− and Na+ I−. (Row 4)  
Model trained without data for Cl−, that is, excluding Li+ Cl−, Na+ Cl−, and Cs+ Cl−. 
(Row 5) Model trained without data for I−, that is, excluding Li+ I−, Na+ I−, and Cs+ I−.  

All models are of architecture ‘ResNet I’ (see Supplementary Table 6). For all 
models, the different ionic species were distinguished by adding the ϵ and σ 
Lennard-Jones parameters of the force field as additional descriptors to the set 
‘SF shortranged’ (see Supplementary Table 5), which was used to describe the 
solvent around the ion pair. The average of the sampled committors (blue line) 
+/- one SD (orange shaded) were calculated by binning the sampled committor in 
the range of the learned committor indicated by the vertical steps. For reference, 
the red line indicates the identity.
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Extended Data Fig. 4 | Reduced interpretable models of ion assembly.  
a, Validation of multi-ion reduced model for additional four ion pairs. The 
average of the sampled committors (blue line) and their standard deviation 
(orange shaded) are calculated by binning along the predicted committor (red 
line: identity). b, Most important input coordinates determining the committor 
trained on association simulations of a single ionic pair, in this case LiCl (see 
also Supplementary Table 13 for a listing of the ten most relevant coordinates). 
c, Reduced models q0 and q1 describing association of Li+ Cl− in water obtained 

by symbolic regression at strict (λ = 10−6) and gentle regularization (λ = 10−7), 
respectively. Note that the first model does not depend on water degrees of 
freedom (see again Supplementary Table 13 for a description of the coordinates). 
d, Cross-correlation plots between untrained committor data and the symbolic 
regression predictions as independent validations of the accuracy of q0 and q1. 
The average of the sampled committors (blue line) +/- one SD (orange shaded) 
are calculated by binning along the predicted committor (red line: identity).
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Extended Data Fig. 5 | Interpolation and extrapolation in temperature for 
methane clathrate nucleation models. Cross-correlation between learned 
committor and the committor as obtained by repeated sampling on untrained 
configurations for two models which are trained on only three of the four 
temperatures available in the training set. (Left) Committor model trained 

only on data for T=270 K, 275 K, and 285 K to assess the ability of the model to 
interpolate to T=280 K. (Right) Model trained on data for T=270 K, 275 K, and 
280 K to assess the ability of the model to extrapolate to T=285 K. The red line 
represents the identity.
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Extended Data Fig. 6 | Committor of polymer folding as a function of high- 
and low-resolution features. a, Committor cross correlation on untrained 
configurations. b, Input relevance for neural networks trained on polymer 
nucleation data using low-resolution and high-resolution features, respectively. 
In a, the average of the sampled committors (blue line) and their standard 

deviation (orange shaded) were calculated by binning along the predicted 
committor (red line: identity). In b, the blue bars show the mean of n independent 
repetitions of the input importance analysis (n = 100 for high resolution features 
and n=250 for low resolution features), and the error bars indicate +/- one SD.
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Extended Data Fig. 7 | Input importance analyses for Mga2 transmembrane 
assembly. Input importance analyses by using all training points (top panel), 
and a subset with ncontacts < 0.01 (bottom panel), corresponding to training 

points close to the unbound state. The height of each bar is the mean over 50 
independent analyses (n = 50), while the bars indicate +/- one SD. All values are 
normalized to the largest importance in each set.
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Extended Data Fig. 8 | Committor cross correlation plot for symbolic 
regression expression for Mga2 assembly. Committor cross correlation plot 
for symbolic regression expression qB(x9, x22) = − exp(x29) log(x9 −

x9
log(x22)

)  

on untrained validation committor data of Mga2 transmembrane assembly.  
The expression is a function of interhelical contact 9 (x9) at the top of the two 

helices and contact 22 (x22) at the bottom (see Supplementary Tables 2 and 3). 
The average of the sampled committors (blue line) and their standard deviation 
(orange shaded) are calculated by binning along the predicted committor (red 
line: identity).
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Extended Data Fig. 9 | Training iterations for LiCl assembly. Training 
iterations for Li+ Cl− assembly. The blue line shows the learning rate calculated 
from the efficiency factor at every step, orange crosses show when training 
actually occurred. The inset shows the training loss per shooting point for  

every training. Only the first 26000 Monte Carlo steps are shown.  
The model uses the inputs ‘SF longranged II’ and is of architecture ‘ResNet I’  
(see Supplementary Tables 5 and 6).
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