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Advanced measurement and data storage technologies have enabled high-
dimensional profiling of complex biological systems. For this, modern 
multiomics studies regularly produce datasets with hundreds of thousands 
of measurements per sample, enabling a new era of precision medicine. 
Correlation analysis is an important first step to gain deeper insights into 
the coordination and underlying processes of such complex systems. 
However, the construction of large correlation networks in modern high-
dimensional datasets remains a major computational challenge owing 
to rapidly growing runtime and memory requirements. Here we address 
this challenge by introducing CorALS (Correlation Analysis of Large-scale 
(biological) Systems), an open-source framework for the construction and 
analysis of large-scale parametric as well as non-parametric correlation 
networks for high-dimensional biological data. It features off-the-shelf 
algorithms suitable for both personal and high-performance computers, 
enabling workflows and downstream analysis approaches. We illustrate the 
broad scope and potential of CorALS by exploring perspectives on complex 
biological processes in large-scale multiomics and single-cell studies.

The advancement of modern technologies, including single-cell1 and 
multiomics approaches2, wearable devices3, and integrated electronic 
health records4,5, have enabled an exciting era of precision medicine. 
These technologies regularly produce datasets with hundreds of 

thousands of variables (here referred to as features), allowing for 
unprecedented profiling of complex biological processes such as dis-
eases, pregnancy or healing2,6,7. Correlation analysis is typically the first 
step to gain insights into a complex system (56% of all papers on the 
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exceed computational resources as the dimensionality of the datasets 
increases. Current approaches for constructing correlation networks 
(Supplementary Section 5) either rely on specialized parallel pro-
cessing and high-performance-computing frameworks (for example, 
graphics processing units, MapReduce and so)13–17, focus on specialized 
correlation measures18,19 or address only limited aspects of time and 
memory requirements20–23.

Thus, here we introduce an open-source framework for high-
dimensional correlation analysis called CorALS (Correlation Analysis 
of Large-scale (biological) Systems). CorALS enables efficient correla-
tion computation, as well as top-k and differential correlation network 
approximations without requiring specialized software or hardware. 
We provide CorALS as an easy-to-use and extensible Python package. 
The corresponding routines are notably faster and require substan-
tially less memory than commonly employed methods, allowing for 

preprint server bioRxiv contain the word ‘correlation’). While errone-
ous data may skew correlation analyses8 and correlation does not imply 
causation, correlation analysis can guide coordinated subprocesses 
in complex systems for further investigation. Consequently, a broad 
range of algorithms have been developed for analyzing large-scale 
correlation networks from the perspective of topology, connectiv-
ity patterns or community structures9,10. In addition, extensive gene 
graphs and cell-to-cell relations derived from large-scale correlation 
networks are integrated in modern deep learning and graph neural 
network applications11,12.

Despite diverse applications, the construction of correlation net-
works for large datasets remains a major computational challenge 
(for example, for only n = 1, 000 features, at least 499,000 pairs need 
to be examined). As such, computation time and memory require-
ments for constructing correlation networks grow rapidly and quickly 
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Fig. 1 | Overview of the CorALS framework. a–c, CorALS leverages feature 
projections into specialized vector spaces (a) embedded into a flexible 
computational pipeline (b) for large-scale correlation analysis (c). In particular, 
CorALS exploits the direct connection between Euclidean distance and the 
correlation of individual features in correlation space (a, middle), as well as the 
Euclidean distance and correlation differences of feature pairs across conditions 
in differential space (a, right), to derive efficient indexing structures (b, left). 
These indexes are utilized in a computational pipeline that splits correlation 
computations into batches based on a specifically designed approximation 
scheme for effective memory management and parallelization (b, middle). 
Batches are then joined in a memory efficient manner to yield the final 

correlation results (b, right). This enables applications such as full correlation 
matrix computation and correlation-based feature embeddings (c, left), top 
correlation network approximations (c, middle) and differential correlation 
discovery (c, right) for large-scale, high-dimensional datasets. Points represent 
features (two specific features are denoted as x and y), and subindices and colors 
indicate two conditions (1, blue; 2, orange). x1 and x2 (and y1 and y2) are the same 
feature illustrated by a cross (square) marker across the two conditions. In a, 
feature projections are denoted as  in the middle panel, and δ and κ in the right 
panel. In b, individual features are represented as fi, and ci,j is a short notation for 
the correlation between feature fi and fj.
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complex analyses even on regular laptop computers. To achieve this, 
CorALS combines specialized vector projections, modern optimized 
linear algebra routines, spatial partitioning techniques and big data 
programming models (Fig. 1). CorALS supports Pearson correlation, 
the non-parametric Spearman correlation and the Phi coefficient for 
binary variables. We demonstrate the broad scope and potential of 
CorALS by analyzing several high-dimensional datasets, and present 
complementary perspectives on large-scale multiomics and single-
cell datasets, revealing concerted coordination of biological systems 
during pregnancy. Overall, CorALS will allow practitioners to integrate 
large-scale correlation network analysis into rapid turnaround work-
flows that have previously been inaccessible owing to time and resource 
limitations, and enable the development of downstream applications 
for deeper insights into complex systems.

Results
CorALS enables efficient, large-scale correlation analysis for high-
dimensional data by employing a combination of versatile vector 
projections and big data computation models. In particular, features 
(Fig. 1a, left) are projected onto correlation vectors (Fig. 1a, middle) 
or embedded into a differential space (Fig. 1a, right). On the basis of 
these feature projections, CorALS exploits the tight relation of the 
scalar product and Euclidean distance in the corresponding vector 
space to derive efficient indexing schemes (Fig. 1b, left). These index 
structures are then embedded into a computational pipeline that splits 
correlation analysis tasks into batches (Fig. 1b, middle), which yield 
intermediate results based on a specifically designed approximation 
scheme. This scheme ensures that aggregating intermediate top-k 
results yield accurate approximations of the global correlation net-
work (Fig. 1b, right). Importantly, the batched approach allows for 
effective memory management and inherent parallelization. Further 
technical details can be found in ‘Efficient approximation of correla-
tion networks’ in Methods. On the basis of this framework, CorALS 
enables a wide variety of efficient analytical components (Fig. 1c). The 
following sections introduce these components and illustrates their 
runtime and memory advantages. For this, we employ several real-world 
high-dimensional datasets, in the context of pregnancy-related disease 
(pre-eclampsia), healthy pregnancy and cancer1,6,24–26. See Table 1 for 
basic dataset statistics and ‘Datasets’ in Methods for more informa-
tion. For these high-dimensional datasets, the goal is to investigate 
the correlations between large amounts of features (n) often based 
on a comparably small number of samples (m).

Efficient computation of correlation matrices
Full correlation matrix computation is the task of calculating the 
correlations between all feature pairs in a high-dimensional dataset. 

CorALS employs correlation projections (Fig. 1b) in combination with 
modern linear algebra routines for low-rank matrix multiplication to 
calculate complete correlation networks (Fig. 1c, left). The runtime and 
memory results for this task are shown in Supplementary Data 1 includ-
ing a comparison with existing software libraries in R. This includes 
packages such as WGCNA(Weighted Correlation Network Analysis)27, 
Rfast (A collection of Efficient and Extremely Fast R Functions)28, coop 
(Co-Operation: Fast Covariance, Correlation, and Cosine Similarity 
Operations)29 and HiClimR (Hierarchical Climate Regionalization)30 
with different advantages and disadvantages. For example, WGCNA 
can handle small amounts of missing values, and HiClimR tries to save 
memory by calculating only the upper half of the correlation matrix. 
These methods either use efficient custom C implementations, which 
are often based on (multi-threaded) nested for-loops (for example, 
Rfast28) or use efficient BLAS (Basic Linear Algebra Subprograms) and 
LAPACK (Linear Algebra PACKage) matrix multiplication routines with 
projected vectors similar to CorALS (for example, coop29). In addition, 
we also investigated a selected set of methods from the category of 
high-performance computing, parallel and distributed frameworks 
including Deep Graph, Dask and Spark. For a more detailed discus-
sion on these and further alternatives, we refer to Supplementary 
Section 3. An analysis for varying numbers of features and samples 
is given in Supplementary Fig. 2. Consistently, CorALS outperforms 
other approaches and implementations, particularly, the baseline 
implementations in Julia (statistics.cor), Python (numpy.corrcoef) 
and R (stats::cor) (Supplementary Data 1). The results for CorALS are 
based on a Python implementation (single core). Furthermore, the 
matrix multiplication routines used by CorALS can take advantage of 
multiple central processing units (here with 64 cores), considerably 
reducing runtimes (multicore). Note that some baseline implemen-
tations (such as Python) also support parallelization. However, their 
baseline single-core version is already slower than CorALS and thus we 
skip these experiments, and illustrate only the scaling capabilities of 
CorALS with increasing computational resources. Other methods from 
the category of high-performance computing, parallel and distributed 
frameworks performed slower, did not return results or were not easily 
available (Supplementary Section 3). Memory requirement differences 
across all methods are negligible. The cancer and single-cell datasets 
illustrate how memory requirements can easily exceed the resources 
of even specialized high-performance computing hardware, when 
naively calculating full correlation matrices. However, investigating 
full correlation matrices may not be necessary, as often only the most 
prominent correlation structures are of interest. This makes focused 
correlation network construction schemes (for example, based on top-k 
correlations, as introduced in the following sections) useful tools to 
explore and analyze large-scale correlation structures, while avoiding 
resource limitations.

Efficient approximation of large-scale correlation networks
Correlation analysis is often focused on the strongest correlations in 
a study, that is, by selecting the top-k correlations. Straightforward 
implementations of this approach are based on calculating the overall 
correlation matrix, and utilizing default sorting algorithms to extract 
the top-k correlations. However, this incurs substantial runtime and 
memory overhead as illustrated by the baseline implementations in R, 
Julia and Python (Table 2). To the best of our knowledge, no easy-to-use 
efficient algorithms exist to calculate only the top-k correlations of a 
given set of features. To address this, for systems with large amounts of 
memory, CorALS provides a basic algorithm (matrix) that utilizes the 
previously introduced fast correlation matrix routine (Supplementary 
Data 1) together with selection algorithms that are able to efficiently 
partition top-k values from the remaining correlations31. However, on 
the one hand, memory requirements quickly exceed available resources 
(see, for example, memory use in the cancer (0.50) dataset in Table 2), 
and, on the other hand, the employed partitioning algorithms are not 

Table 1 | Dataset statistics

Dataset n (features) m (samples) n/m ratio

Pre-eclampsia 16,897 32 528

Pregnancy 32,211 68 474

Cancer (0.25) 64,813 258 251

Cancer (0.50) 129,626 258 502

Cancer (1.00) 259,252 258 1,005

Single cell 200,000 10 20,000

Single cell 2 600,000 10 80,000

Sim 200,000 500 400

Dimensions of biological datasets after pre-processing including feature-to-sample ratios. For 
this paper, CorALS is optimized to handle high-dimensional datasets, that is, for investigating 
correlations between n features based on m samples often with n ≫ m. Deviating from this 
terminology, note that for the single-cell dataset, correlations between individual cells (n) 
based on the expression of their functional markers (m) are investigated.
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easily parallelizable while consuming the majority of runtime of the 
top-k search (compare matrix in Supplementary Data 1 and matrix in 
Table 2). To address this, CorALS employs a combination of specific 
feature vector projections (Fig. 1a), space partitioning techniques and 
an efficient computation pipeline (Fig. 1b) to approximate the set of 
strongest correlations in a network (Fig. 1c, middle). The use of efficient 
space partitioning techniques circumvents calculating the overall cor-
relation matrix, thus avoiding large memory requirements while allow-
ing for substantial runtime improvements (Table 2, index). For more 
results on runtime, memory and parallelization efficiency for varying 
numbers of samples and features, also see Supplementary Section 2. 
The employed approximation scheme trades off resource usage against 
accuracy. Thus, we provide a theoretical analysis of lower bounds on 
the amount of potentially found values and the associated sensitivity 
across various approximation factors (‘Approximate search for global 
top-k correlations’ in Methods). Note that in practice, the sensitivity 
associated with specific approximation factors can be much higher 
then the provided estimates. Consequently, CorALS can even yield 
perfect results with smaller approximation factors increasing efficiency 
(Supplementary Section 5). The runtime efficiency of the employed 
space partitioning techniques grows as the ratio of the number features 
and samples increases. Thus, particularly on high-dimensional, real-
world datasets, CorALS reduces runtimes substantially. In addition, this 
approach is inherently parallelizable and by employing multiple cores 
(here, 64), CorALS achieves notable performance gains (for example, 
from 8 hours to 11 minutes for the cancer (1.00) dataset) and outper-
forms all baseline for any of the considered datasets by a large margin 
(parallel). Finally, and importantly, the methods provided by CorALS 
have a very small memory consumption profile of only a fraction of the 
baseline implementations. This can be even further reduced depending 
on the application scenario, for example, by lowering the number of top 
correlations to extract, introducing explicit correlation thresholds or 
decreasing the size of the batches in the CorALS computation pipeline 
(Fig. 1b, middle). Thus, CorALS enables large-scale correlation analyses 
that are not possible with any of the baseline or basic implementations, 

even on dedicated high-performance computation hardware (Table 2, 
cancer (0.5), cancer (1.0) and single cell).

Overall, CorALS allows the calculation of large-scale top-k correla-
tion networks on personal computers, enabling accessible workflows 
that previously required dedicated high-performance infrastructures. 
For additional runtime, memory and accuracy analyses, see Supple-
mentary Sections 2–5.

Differential analysis of correlation networks
Differential network analysis32–34, and specifically systematically study-
ing the largest differences in correlation networks across more than 
one condition (or timepoint), can be instrumental to understanding 
the underlying processes of complex systems35. To enable this, CorALS 
represents features as vectors in a ‘differential space’ (Fig. 1), each of 
which combines information from two conditions (or timepoints) 
simultaneously (Fig. 1c). This, allows CorALS to employ an algorithmic 
approach similar to top-k correlation search, enabling efficient top-k 
differential correlation discovery (Fig. 1c, right) with analogous runtime 
and memory characteristics. Comparable methods such as Differential 
Gene Correlation Analysis (DGCA) or DiffCor35,36 provide approaches 
for ensuring statistical robustness of their results based on sampling. 
However, even with sampling disabled, these methods are substantially 
slower than CorALS. Other approaches such as Discordant and Differ-
ential Correlation across Ranked Samples (DCARS)37,38, do not allow for 
top-k functionality and thus will quickly run into memory issues. Thus, 
CorALS allows for a much more efficient discovery of top-k correlation 
discovery. For a more in-depth discussion, we refer to Supplementary 
Section 3.3. To ensure robustness, either CorALS can be used as an 
efficient candidate selection step, which can then potentially be tested 
with the methods mentioned above, or similar sampling techniques 
can be implemented in CorALS. We apply such a sampling approach in 
‘Large-scale multiomics correlation analysis across pregnancy’, where 
we take advantage of the efficient runtime characteristics of CorALS 
to account for spurious correlations by employing a corresponding 
sampling-based strategy.

Table 2 | Top-k correlation network approximation

Dataset Baselines CorALS

R Julia Python Matrix Index Parallel

Pre-eclampsia 33.6 1:41.9 1:11.6 6.3 14.3 2.4

Pregnancy 2:09.7 8:35.4 4:56.1 16:4 1:49.2 5.7

Cancer (0.25) 7:09:00.2 53:19.9 22:53.1 2:02.5 32:54.4 59.6

Cancer (0.50) – – – – 2:10:25.2 2:58.4

Cancer (1.00) – – – – 8:42:12.9 11:28.5

Single cell – – – – 16:10.1 1:46.9

Single cell 2 – – – – 2:10:12.4 27:03.3

Sim – – – – 10:29:30.3 26:40.2

Pre-eclampsia 7.5 GB 6.4 GB 6.8 GB 6.8 GB 0.7 GB 3.4 GB

Pregnancy 27.3 GB 23.3 GB 23.7 GB 23.7 GB 1.3 GB 4.5 GB

Cancer (0.25) 158.2 GB 93.8 GB 94.3 GB 94.3 GB 4.1 GB 8.7 GB

Cancer (0.50) >0.7 Tb >360 GB >360 GB >360 GB 14.3 GB 21.1 GB

Cancer (1.00) >3.4 Tb >1.4 Tb >1.4 Tb >1.4 Tb 53.5 GB 65.2 GB

Single cell >1.9 Tb >0.8 Tb >0.8 Tb >0.8 Tb 33.2 GB 38.7 GB

Single cell 2 >23.3 Tb >7.9 Tb >7.9 Tb >7.9 Tb 253.1 GB 281.3 GB

Sim >1.9 Tb >0.8 Tb >0.8 Tb >0.8 Tb 31.1 GB 36.5 GB

Runtime and memory comparison. The runtime (top half of table; hours:minutes:seconds) and memory (bottom half of table; GB or Tb) comparison for top-k correlation network approximation 
(k = 0.1% of features). Dashes represent the lack of runtime measurements for examples exceeding our server resources. Bolded entries mark estimated memory consumption for examples 
exceeding our server resources.
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Explicit visualization of correlation structure
Feature embeddings are an essential tool to represent and analyze 
features in low-dimensional spaces. For example, Fig. 2 shows fea-
tures visualized using t-distributed stochastic neighbor embeddings 
(t-SNE). However, t-SNE is generally based on Euclidean distances and 
thus does not directly represent the correlation structure of features. 
Although some t-SNE implementations support custom correlation-
based distance information, this is often inefficient owing to algorith-
mic overhead. To address this, CorALS uses correlation projections  
(Fig. 1a, middle) to exploit the direct relationship between correla-
tion and Euclidean distance (Supplementary Section 6). This allows to 
employ any existing distance-based method for embedding features 
without adding substantial computational overhead. All feature and 
cell visualizations throughout this paper are based on this approach 
(for example, Figs. 1–3).

Large-scale multiomics correlation analysis across pregnancy
Understanding maternal biological changes during and immediately 
after pregnancy is a fundamental step to improving diagnostic and thera-
peutic strategies in peripartum management, to prevent critical condi-
tions that extend well into the child’s adulthood (for example, preterm 
birth, the single largest cause of death in children under 5 years of age). 
Despite this, previous studies have not investigated possible changes in 
the cross-talk across various biological modalities6,39. To demonstrate 
CorALS’s utility in high-dimensional multiomics studies, we analyzed a 
dataset containing third trimester and postpartum measurements of 
biospecimens from 17 healthy pregnant women6. Each sample in the 
corresponding data contains more than 60,000 synchronized measure-
ments from seven different omics (Fig. 2) from which we selected ~41,000 
by filtering features with missing or constant values. Details on assays 
and the measured biomarkers can be found in ‘Datasets’ in Methods.

We used CorALS to calculate the top-10% Spearman correlations 
between all feature pairs for the third trimester. Furthermore, we 
extracted the top-0.1% strongest differential correlations in contrast 
to postpartum by employing CorALS’s corresponding implementation. 
To focus the results on strong signals, we selected feature pairs passing 
a correlation threshold of 0.8 in the third trimester for further analysis. 
For visualization (Fig. 2), we utilized CorALS’s correlation-based feature 
embeddings based on t-SNE40 for each individual omic.

The visualization reveals various prominent changes in correla-
tion structure between the different omics from the third trimester to 
postpartum. In particular, the correlation changes between transcrip-
tome and microbiome, as well as between the transcriptome (cell-free 
RNA) and immunome (including phenotypical, and the functional  
markers measured by mass cytometry or cytometry by time of flight, 
are prominent. These correlations appear in the third trimester but 
vanish postpartum (edges marked in dark gray). Refer to the Sup-
plementary Section 8 for details and an expanded biological analysis.

Overall, while establishing causal links requires careful follow-up 
studies and biological validations, the results outlined in Supplemen-
tary Section 8 are a powerful example that illustrates how the efficient 
analysis of large-scale correlation networks as enabled by CorALS can 
drive the generation of biological hypotheses.

Correlated functional changes across immune cells
While recent advances in single-cell technologies have enabled the pro-
duction of large immunological datasets, data analysis approaches for 
single-cell data have remained limited to traditional analysis of changes 
in the frequency and signaling pathways of cell types. In this example, 
we demonstrate that CorALS allows to derive a complementary per-
spective on the dynamic coordination of functional characteristics 
across several immune-system components on the single-cell level. We 
analyzed a dataset of more than 24 million cells from 17 participants 
tracking the immune system through pregnancy using mass cytometry1. 
Notably, this dataset contains simultaneous measurements of both 
phenotypic markers as well as intracellular proteins, the latter serving 
as markers for endogenous signaling responsiveness of single cells. The 
phenotypic markers were used to identify various cell populations via 
manual gating1, and CorALS was used to study shifts in cell similarities 
across the signaling pathways of various cell types using the available 
ten functional markers (Fig. 3) based on Spearman correlation. To 
increase the robustness of the dynamic changes identified, this analysis 
requires repeated sampling and top-k correlation calculations across 
millions of individual cells, making CorALS an essential component of 
the analytical pipeline by substantially reducing runtime and memory 
requirements (processing a single sample corresponds to the single-
cell experiment in Table 2). Refer to the Supplementary Section 9 for 
details and an expanded biological analysis.

Correlations at third trimester
Modified correlations after birth

Transcriptome (plasma cell-free RNA; RNA sequencing)
Immunome (whole blood; mass cytometry)

Microbiome (vagina, gut, saliva, gum; 16S rRNA sequencing)
Proteome (plasma, multiplex ELISA)
Proteome (plasma, high-throughput aptamer-based platform)
Proteome (serum, multiplex ELISA)

Metabolome (plasma; mass spectrometry)

Fig. 2 | Dynamic changes in multiomic measurements before and after 
birth. Nodes represent individual features arranged with CorALS’s correlation-
based t-SNE for each omic. Omics were measured using different technologies 
(enzyme-linked immunosorbent assay, ELISA), and are visualized separately 
from each other. Light-gray edges correspond to the top-10% correlations in 

the third trimester. Of those top correlations, the dark edges in the foreground 
correspond to the 0.01% of correlations that change the most from third 
trimester to postpartum. Coordinated differences are apparent, for example, 
related to the correlation of pP38 phosphorylation in various immune-cell 
subtypes and specific gene transcripts detected among cell-free RNA.
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Figure 3 shows a summary of this analysis and visualizes the 
amount and direction of change in the relative number of functional 
cell correlations attributed individual cell type pairs within the top-k 
functional cell correlations between the third trimester and postpar-
tum. These changes mostly revolve around B cells and CD56dimCD16+ 
natural killer (NK) cells. While a detailed analysis may be of interest, we 
focus on these changes as an example to illustrate the complementary 
perspectives enabled by CorALS. In general, from the third trimester 
to postpartum, B cells and CD56dimCD16+ NK cells show a higher degree 
of similarity in terms of signaling response signatures postpartum 
(orange edges) to cell types of the adaptive immune system (light 
background). At the same time, they share less similarity (blue edges) 
in their intracellular signaling response signature with the cells of the 
innate immune system (dark background). We further visualize this 
trend through density plots in Fig. 3, directly comparing the number 
of top-k correlations of B cells and CD56dimCD16+ NK cells, respectively, 
with the total pool of innate or adaptive immune-cell subsets in the 
third trimester versus postpartum. This analysis provides a comple-
mentary perspective on the coordination of single-cell systems dur-
ing pregnancy, and suggests that B cells and CD56dimCD16+ NK cells 
acquire innate-like functional characteristics in the third trimester, 
and that, postpartum, these two cell types and various T-cell subsets 
shift functionally to resemble each other.

On the basis of these conjectures, and given further datasets for 
validation, the changes observed in Fig. 3 may guide further research 
on the role of B cells and CD56dimCD16+ NK cells and the phenotypes 
they acquire over the course of pregnancy. This serves as a practical 
example on how CorALS can enable complementary perspectives 

on many different domains, including the coordination of single-cell 
systems, by enabling the efficient implementation and application of 
large-scale correlation analysis.

Discussion
Modern biological profiling techniques will enable the collection of 
datasets with increasingly high dimensions and sample sizes. Therefore, 
the consistent analysis of evolving datasets will require continuous 
improvements. We can further advance CorALS with advanced index-
ing and sorting algorithms, on-disk sorting algorithms, or employing 
distributed computing environments. The computational pipeline of 
CorALS is designed to support such extensions.

For example, the current version of CorALS is optimized for high-
dimensional datasets with small sample sizes. However, as sample sizes 
increase, the efficiency of the employed indexing structure can deterio-
rate. Alternatively, approximate indexing structures increase runtime 
in exchange for sensitivity. Also, approaches based on a batched com-
putation of partial correlation matrices combined with thresholding 
may be an alternative (see ‘Feature projections’ in Methods for details). 
However, the latter approach will require careful balance between the 
number of batches, the number of concurrent tasks, threshold size, 
memory availability and runtime, as a threshold does not provide mem-
ory guarantees. To tackle this, various methods to cache data outside of 
the main memory can be employed. A principled approach to this are 
distributed frameworks, for example, based on MapReduce41. CorALS 
already supports such distributed computation on various backends. 
We provide a Jupyter notebook that exemplifies running CorALS on a 
Spark cluster42. However, while the implementation of CorALS already 
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Fig. 3 | Concerted immune regulation at the single-cell level during 
pregnancy. Left: pairs of cell types with substantially different (very large effect 
size, t > 0.622) relative numbers of top-k (k = 0.01%) correlations of individual 
cells between the third trimester (T3) and postpartum (PP) based on the cells’ 
functional characteristics. For cell type abbreviations, see Supplementary 
Table 3. The thickness of the connecting edges represent the corresponding 
effect size (Cliff’s δ) across samples. Only very large effect sizes are visualized 
(threshold t = 0.622). The blue and orange colors of the edges signifies a 
relative decrease or increase, respectively, in cell correlations from the third 

trimester to postpartum. The scatter plots along the circle show single cells 
from each cell type visualized using CorALS’s correlation-based t-SNE (innate, 
dark background; light cells, adaptive; light background, dark cells). Right: the 
accumulated top-k correlation shifts between the innate and adaptive immune 
cells, and B cells and CD56dimCD16+ NK cells, respectively, shown by density plots 
for the number of top-k correlations across samples. Overall, this visualization 
illustrates the dynamically changing overlap of functional characteristics of B 
cells and CD56dimCD16+ NK cells with the functional characteristics observed in 
the total pool of innate or adaptive immune-cell populations.
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contains many of the previously mentioned extensions, a detailed 
comparison and analysis is beyond the scope of this work. For further 
practical consideration, also see ‘Practical considerations’ in Methods.

Also, the CorALS implementation provides tools to derive P values 
to gauge the significance of the measured correlations (‘P-value calcu-
lation and multiple testing correction’ in Methods), and supports the 
non-parametric Spearman correlation (‘Correlation coefficient classes’ 
in Methods) to account for outliers or certain error types8,43. How-
ever, P values and the Spearman coefficient do not generally address 
challenges such as data errors and noisy data. To tackle this issue, 
correlation measures are often calculated based on computationally 
expensive techniques, for example, based on bootstrapping43, making 
their application in high-dimensional data impractical. In this context, 
CorALS can be used either to efficiently sample correlations using full 
correlation matrix calculation or to first select top-k correlations for 
which robust methods can then be applied selectively. Similarly, Cor-
ALS does not account for confounding or causation. However, more 
advanced approaches to account for these effects, such as partial cor-
relation or Bayesian networks44,45, are often restricted to small datasets 
and do not scale for high-dimensional data. In this context, CorALS can 
be used to effectively suggest highly correlated components of the data 
for further investigation with such methods. Thus, overall, investigat-
ing correlation networks can be broadly applied to gain insight into 
the underlying functional structures, which then may provide input 
for downstream analysis and also for more advanced methods such 
as graph neural networks11,12.

Finally, as the number of features increases with advancing tech-
nologies, it may be necessary to introduce more sophisticated meth-
ods that find correlated compounds, for example, based on existing 
domain knowledge, rather than individual correlations, for which 
CorALS can lay the computational foundation.

Overall, owing to its wide range and scope, we anticipate CorALS 
to be a catalyst that will be adopted to enable a multitude of down-
stream applications of large-scale correlation networks. For example, 
in ‘Correlated functional changes across immune cells’, the efficiency 
characteristics of CorALS’s top correlation network estimation allow to 
derive an innovative sampling-based approach to analyze the interac-
tion of hundreds of thousands of cells simultaneously. In future work, 
CorALS may also support advanced tensor and network analysis or 
deep learning and graph neural network modeling (for example, for 
gene-interaction graphs and cell-to-cell relationships11,12). Thus, it 
will lay the analytical foundations and provide computational tools to 
unravel the intricate interactions of biological systems as developing 
computational approaches are able to analyze increasingly complex 
network structures.

Methods
Derivation of efficient feature representations by CorALS
The different components of CorALS rely on transforming features 
into specific vector representations that connect the scalar product 
of these vectors to efficient correlation computations. In the follow-
ing, we outline the derivation of these transformations for correlation 
projections (used for efficient correlation matrix calculation, top cor-
relation network approximation and correlation embeddings) as well 
as differential projections (used for top differential correlation search), 
respectively. It is noted that the following feature representations are 
derived for the Pearson correlation coefficient; however, without loss 
of generality, these derivations hold for Spearman’s rank correlation 
coefficient by replacing individual feature values with ranks per feature. 
This is supported by CorALS’s implementation.

Correlation projections. By transforming feature representations 
appropriately, correlation computation can be formulated as a scalar 
product of two pre-processed vectors46. We refer to this pre-processing 
step as correlation projection. In particular, the Pearson correlation 

cor(x, y) between two features x and y with respective sample vectors 
x = (x1, ..., xm) and y = (y1, ..., ym), can be rewritten as follows:

cor(x,y) =

m
∑
i=1
(xi−μx)( yi−μy)

√√√
√

m
∑
j=1

(xj−μx)
2 m
∑
j=1

(yj−μy)
2

=
m
∑
i=1

(xi−μx)
√√√
√

m
∑
j=1

(xj−μx)
2

(yi−μy)
√√√
√

m
∑
j=1

(yj−μy)
2

= ⟨ x−μx

√√
√

m
∑
i=1

(xi−μx)
2
, y−μy

√√
√

m
∑
i=1

(xi−μy)
2
⟩

= ⟨x̂, ŷ⟩

with ẑ = zzz−μz

∥z−μz∥

(1)

where μz  is the mean of vector z. Thus, the  operator corresponds to 
the correlation projection that allows the transformation of the original 
sample vectors so that their scalar product is equal to their correlation. 
CorALS exploits this vector representation to formulate correlation 
matrix computation as an efficient matrix product.

This transformation allows to derive a direct relationship between 
the correlation cor(x, y) of any two vectors and the Euclidean distance 
de(x̂, ŷ)  of their correlation projections46. In particular, cor(x, y) and 
−de(x̂, ŷ)  are order-equivalent and it holds that:

cor(x,y) = 1 − de(x̂, ŷ)
2

2 (2)

CorALS exploits this relationship between correlation and Euclidean 
distance, for example, in top correlation approximation and correla-
tion-based embeddings. For more details and corresponding proofs, 
see Supplementary Section 6.1.

Differential projections. CorALS further introduces a dual feature 
representation in a differential space that allows to calculate correla-
tion differences across two conditions or timepoints using a single 
scalar product. In particular, for two features x and y, let x1 = (x1,1, ..., x1,m1 ) 
and y1 = (y1,1, ..., y1,m1 )  denote respective sample vectors in the first 
condition/timepoint and x2 = (x2,1, ..., x2,m2 )  and y2 = (y2,1, ..., y2,m2 )  in the 
second condition/timepoint. Then, the goal is to find vector transfor-
mations δ(x1, x2), κ(y1, y2) that represent information form both condi-
tions/timepoints simultaneously so that

cor(x1,y1) − cor(x2,y2) = ⟨δ(x1,x2), κ(y1,y2)⟩ (3)

Given the correlation projection  from ‘Correlation projections’, the 
following definitions for δ and κ provide such a dual vector 
representation.

δ ∶ ℝm1 ×ℝm2 → ℝm1+m2

z1, z2 ↦ (
ẑ1

ẑ2
)

κ ∶ ℝm1 ×ℝm2 → ℝm1+m2

z1, z2 ↦ (
ẑ1

−ẑ2
)

(4)

We call the vector space containing the codomain of these functions 
differential space.

Similar to the connection of Euclidean distance and basic correla-
tion (see above), the dual feature representations in the differential 
space exhibit a connection between Euclidean distance and correlation 
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difference across conditions or timepoints. In particular, for two fea-
tures x and y with sample vectors x1, x2 and y1, y2 across two conditions 
or timepoints, cor(x1, y1) − cor(x2, y2) and −de(δ(x1, x2), κ(y1, y2)) are 
order-equivalent and it holds that:

cor(x1,y1) − cor(x2,y2) = 2 − de(δ(x1,x2), κ(y1,y2))
2

2 (5)

Thus, analogously to correlation projections, CorALS exploits this 
order equivalence of Euclidean distance and correlation differences 
for top differential correlation approximation. For more details and 
corresponding proofs, see Supplementary Section 6.2.

Efficient calculation of full correlation matrices
Efficiently calculating full correlation matrices is achieved by recog-
nizing that the inner product formulation in equation (1) allows to 
condense the correlation calculation between all possible feature pairs 
in a dataset to a single matrix product ̂X

⊤ ̂X. Here, ̂X ∈ ℝm×n is the sam-
ple-feature matrix representing the corresponding dataset with m 
samples and n features where each column corresponds to the cor-
relation projected sample vector of each feature, respectively (see 
‘Correlation projections’). This approach can be directly formulated 
in any recent programming language without requiring additional 
software packages, and is able to take advantage of built-in efficient 
linear algebra routines such as BLAS and LAPACK47,48, which inherently 
support parallelization as showcased in Supplementary Data 1 and 
Supplementary Section 3. This approach outperforms many other 
implementations employing similar concepts as demonstrated in 
Supplementary Table 2.

Efficient approximation of correlation networks
Top correlation computation as a query search problem. By default 
correlation networks are fully connected. However, often it is more 
valuable to study only the most interesting interactions, that is, the 
strongest correlations. For this, it is common to either define a fixed 
threshold or concentrate the analysis on the top-k correlations.  
A straightforward approach to achieve this is to calculate the full  
correlation network and then keep only those correlations that are 
sufficiently strong according to either criterion. However, for high-
dimensional data, calculating the full correlation matrix between fea-
tures is often not feasible owing to memory restrictions, and in the top-k 
case, the subsequent sorting operation has more than cubic complexity 
with the number of features n (𝒪𝒪(n2 log n) ). And even when using partial 
sorting techniques based on selection algorithms for top-k search, this 
may result in impractical runtimes (𝒪𝒪(n2 + k log k) )31,49.

To address this, we fist observe that owing to the symmetry prop-
erty of correlation measures, a single feature can never be strongly 
correlated to all other features (except in cases where all features highly 
correlated). Thus, we assume that the top global correlations can be 
approximated by finding and merging the top correlations locally, for 
example, for each feature separately, given an appropriate local margin 
(coined approximation factor as introduced below). This allows CorALS 
to reinterpret the task of top correlation computation as a query search 
problem50 where an indexed set of elements is efficiently queried based 
on a set of query vectors and a given distance measure. In particular, 
CorALS constructs an efficient index structure TX over a set of features 
X and then interprets another (often the same) set of features as queries 
Y to find the top correlated feature pairs. This approach prevents the 
construction of the complete correlation matrix and the corresponding 
implementation is inherently parallelizable, resulting in substantially 
reduced runtimes and memory requirements.

In the following, we describe the individual steps to enable this 
approach. This includes (1) the construction of an optimized index-
ing and query method that circumvents limitations of the previously 
derived relation between Euclidean distance and correlation (‘Joint 

ball trees for local top correlation discovery’), (2) the description of 
an approximation scheme to generalize single-query-based search to 
return global top-k correlations (‘Approximate search for global top-k 
correlations’), and (3) a discussion on the implementation of threshold-
based search (‘Threshold-based correlation filtering’).

Joint ball trees for local top correlation discovery. While in prin-
ciple, any metric-based k-nearest-neighbor algorithm can be used 
for CorALS, we focus on space partitioning algorithms that allow for 
efficient top-k as well as threshold-based queries in high-dimensional 
settings. Ball trees (or metric trees) in particular automatically adjust 
their structure to the represented data, provide good average-case 
performance and can cope well with high-dimensional entities50,51. 
While such indexing structures are mostly optimized for metrics such 
as the Euclidean distance, CorALS takes advantage of the correlation 
projection introduced in ‘Correlation projections’ and its properties 
(see ‘Correlation projections’) to enable top correlation and differential 
correlation search.

In particular, CorALS first represents each feature as a correlation 
vector by applying the correlation projection introduced in ‘Correla-
tion projections’ to their respective sample vectors. These correlation 
vectors X are then indexed using ball tree space partitioning resulting 
in index TX. On the basis of the relation between Euclidean distance 
and correlation derived in ‘Correlation projections’, this index allows 
to search for top-k positively correlated features search(TX, y, k) based 
on a given query feature y ∈ Y. It also allows to search for a set of features 
search(TX, y, t) passing a positive correlation threshold t with respect 
to the query feature y.

Note that this set-up has two specific limitations that we address 
in the following. First, ball trees generally only support to search for 
top correlations relative to a single reference feature y. The algorithm 
to generalize this to a set of features will be described in ‘Approximate 
search for global top-k correlations’ and ‘Threshold-based correlation 
filtering’. Second, by default, only feature pairs with positive correla-
tions are returned because only positive correlations correspond to 
small Euclidean distances while negative correlations will result in 
large distances (see equation (2) and the corollary in Supplementary 
Section 6.1).

To address the latter, CorALS takes advantage of the fact that 
correlation (as well as the scalar product) is associative with respect 
to scalar multiplication. In particular, changing the sign of a sample 
vector also changes the sign of the correlation:

cor(−x,y) = −cor(x,y) = cor(x, −y) (6)

Now, without loss of generality, we focus on top-k search in the follow-
ing derivation. Assuming that at least k features with positive correla-
tions to a query feature y exist in X, then all correlations returned by 
search(TX, y, k) are positive. Similarly, assuming that at least k negative 
correlations exist, switching the sign of all features in the dictionary X,  
that is, search(T−X, y, k), or switching the sign of the query, that is, 
search(TX, −y, k), allows to also extract the strongest negative correla-
tions (see equation (6)). Thus, a simple solution to find those features 
with the top positive and negative correlations is to run the search 
twice, once to extract positive and once to extract negative correla-
tions, followed by a merging step.

However, for top-k search, this merging step, involves returning 
the top-k correlations twice, resulting in a sorting step that orders 
2k elements, which can double memory requirements. This can be 
prevented by building the ball tree based on positive and negative dic-
tionary features simultaneously, that is, search(T−X∪X, y, k). This search 
only returns k elements, and thus can reduce runtime and memory 
requirements. See Supplementary Table 1 for a comparison of top-0.1% 
search on real-world datasets (Table 1). The corresponding experiments 
are based on the CorALS’s Python implementation and were repeated 
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ten times; reported medians had no substantial fluctuations between 
runs. While the runtime improvements are marginal, the memory 
consumption can be reduced by half. Also note that for multiple que-
ries, ball trees support to pre-process the set of queries resulting in a 
dual-tree approach52 for speeding up the search. Supplementary Table 
1 also demonstrates the effectiveness of this approach. For the final 
implementation of CorALS, we jointly build the ball tree structure on 
negative and positive features and employ the dualtree search when-
ever provided by the underlying software library.

Approximate search for global top-k correlations. Focusing on the 
top-k correlations can be an effective way to construct interpretable 
visualizations of correlation matrices without having to explicitly spec-
ify a threshold. For this, k is often large, defined either as a multiple of 
the number of features (for example, 100n, 1,000n), or as a percentage 
(say 0.1% of all correlations ~⌈n2 * 0.001⌉). However, the ball tree algo-
rithm (see ‘Joint ball trees for local top correlation discovery’) returns 
only the top correlations for each feature rather than the overall top-k 
correlations between all features. To address this, CorALS employs an 
approximation scheme.

In particular, for each query feature y ∈ Y, CorALS heuristically 
sets the number of k′ top correlated features to retrieve and then 
merges the results to approximate the global set of top-k features. 
Selecting k′ presents a trade-off. On the one hand, if k′ is greater than 
or equal to the number of features n, all feature pairs will be considered, 
thus allowing for an exact determination of the top-k features but no 
gain in runtime. On the other hand, if k′ < n, then there is no guarantee 
that the exact top-k features are retrieved; however, the runtime can 
be substantially improved as only a subset of candidates is returned 
and processed. To address this, CorALS uniformly draws top correlation 
candidates across all query features with a sufficient margin that 
accounts for biases in the correlation structure. That is, we chose k′ to 
be dependent on k with k′ = a⌈ k

n
⌉  as a middle ground between drawing 

the exact number of required candidates from each query k′ = ⌈ k
n
⌉  and 

considering all candidates from each query k′ = n. Here a is called the 
approximation factor and regulates how many correlations are 
inspected per feature. The approximation factor can be selected so 
that CorALS returns results up to a specific sensitivity s. In particular, 
for a desired sensitivity up to s ≤ 0.75, the approximation factor can be 
chosen based on a = s n

√k
; and for a desired sensitivity s ≥ 0.75, the 

approximation factor can be chosen based on a = sn
2√k√1−s

. When for-

mulating k in terms of the overall number of correlations n2,  

that is, k = rn2, for a sensitivity of s ≤ 0.75, the approximation factor can 
be calculated via a = s

√r
, and for s ≥ 0.75 it can be calculated via  

a = s
2√r√1−s

. However, in practice the number of missed correlations 

can be substantially smaller as correlations are usually not distributed 
according to the the worst case (Supplementary Figure 5). The deriva-
tion of sensitivity estimates as well as a study of the effects of a itself 
can be found in Supplementary Section 5. Supplementary Algorithm 
1 summarizes the overall approach.

Threshold-based correlation filtering. To calculate all correlations 
greater than a threshold t, for each feature y ∈ Y, we can also employ 
the ball tree data structure (see ‘Joint ball trees for local top correlation 
discovery’) by issuing radius queries. For this, the correlation threshold 
needs to be converted into an Euclidean radius using equation (2). Thus, 
for each query feature, the respective query returns all indexed features 
with correlations greater than the respective correlation threshold. 
The results of each query are then merged to retrieve the final list of 
the filtered feature pairs. This approach is more memory efficient than 
calculating correlations for all possible feature pairs, for example, 
using the methodology introduced in ‘Efficient calculation of full cor-
relation matrices’. However, it can also result in substantially increased 
runtimes compared with calculating the complete correlation matrix. 

The corresponding algorithm is implemented analogously to the top-k 
search in Supplementary Algorithm 1 but replaces k with a correlation 
threshold that is converted into a corresponding Euclidean radius via 
equation (2) to be used by the ball tree index structure.

Top correlation difference search
To efficiently calculate the top differences in correlation between pairs 
of features across more than one timepoint or condition, the naive 
implementation involves calculating the full correlation matrices for 
two conditions or timepoints, subtracting them and then extracting the 
top differences, for example, through thresholding or by identifying 
the top-k candidates. As previously shown for top-k correlation search, 
this is runtime and memory extensive if implemented naively and thus 
can easily exceed computational resources (Table 2).

To address this, CorALS builds on the dual feature representation 
introduced in ‘Differential projections’. In particular, it exploits the con-
nection of correlation difference and Euclidean distance between the 
dual representation of features in differential space and then applies 
the same query search approach as for top correlation search (see 
‘Efficient approximation of correlation networks’).

Thus, this first requires representing all features x ∈ X as their 
dual representations δ(x) ∈ δ(X) and κ(x) ∈ κ(X). Then, analogously to 
‘Joint ball trees for local top correlation discovery’, a combined ball tree 
Tδ(X)∪−δ(X) is constructed to cover negative as well as positive differences. 
This ball tree can then be used to query the top-k (or thresholded) cor-
relation differences search(Tδ(X)∪−δ(X), y, k) by querying with the feature 
representations κ(x) ∈ κ(X). This already includes positive and negative 
correlation differences as we index positive and negative projections 
δ(X) ∪ − δ(X), while indexing only δ(X) would solely return the top 
positive correlation differences (see equation (2) and the corollary 
in Supplementary Section 6.2). After the construction of Tδ(X)∪−δ(X), the 
same approximation approach as laid out in ‘Approximate search for 
global top-k correlations’ and ‘Threshold-based correlation filtering’ 
is employed to query the top correlation differences across all query 
features κ(X).

Correlation embeddings
t-SNE40 was used to embed high-dimensional data points into low-
dimensional spaces, for example, for visualization. In this work, we 
employ t-SNE to embed features based on their correlation structure 
across samples. However, t-SNE is based on Euclidean distance and 
thus does not directly represent the correlation structure of features.

In particular, t-SNE reduces the dimensionality of data by minimiz-
ing the Kullback–Leibler divergence between a probability distribution, 
P, in the high-dimensional space and a probability distribution, Q, in 
the low-dimensional space40:

C = KL(P||Q) = ∑
i
∑
j
pij log

pij
qij

(7)

where the probabilities pij and qij represent probabilities for features  
j to belong to the neighborhood of feature i based on Euclidean distance 
in the corresponding space:

pij =
exp(−∥zi−zj∥

2)/2σ2

∑k≠l exp(−∥zk−zl∥)/2σ2

qij =
(1+∥ ̃zi− ̃zj∥

2)
−1

∑k≠l(1+∥ ̃zk− ̃zl∥
2)

−1

(8)

with ∥zi − zj∥2 and ∥ ̃zi − ̃zj∥
2  representing pairwise Euclidean distances 

between features i and j for high-dimensional z and low-dimensional 
feature representations ̃zzz, respectively.

Now, by projecting features onto correlation vectors, CorALS estab-
lishes an order equivalence between Euclidean distance and correlation 
as introduced in ‘Correlation projections’. This allows to directly employ 
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distance-based embeddings methods such as t-SNE on the projected 
features without adding substantial computational overhead or requir-
ing implementations that support customized distance information.  
A performance example is given in Supplementary Section 7.

Correlation coefficient classes
The underlying computation of CorALS is based on the Pearson cor-
relation coefficient as discussed in the previous sections. On this basis, 
CorALS also supports any class of correlation coefficients that can be 
reduced to the Pearson calculation scheme. In particular, Spearman 
correlation can be calculated using the Pearson formula by replacing 
individual feature values with feature-local ranks, which may help to 
account for outliers or certain error types8,43. CorALS provides the 
corresponding capabilities to switch between Pearson and Spearman. 
Similarly, the Phi coefficient for binary variables can be calculated using 
the Pearson formula53. Finally, other correlation coefficient classes 
may be supported by future versions of CorALS by finding a mapping 
between the corresponding coefficient and Euclidean distance as 
derived in the previous section for the Pearson correlation coefficient.

P-value calculation and multiple testing correction
P values for Pearson correlation coefficients r, can be derived from the 
correlation coefficient together with the number of samples n. That 

is, first the t-statistic can be derived using t = r √n−2
√1−r2

. Then, the P value 

can be calculated by examining the cumulative t-distribution function 
p: P = 2 ⋅ p(T > t) where T follows a t-distribution function with N − 2 
degrees of freedom. This approach is implemented in CorALS as derive_
pvalues and can be applied as a post-processing step.

Note that owing to the large amount of correlations calculated, 
multiple test correction is necessary when working with P values. The 
most straightforward approach is to control for family-wise error rate 
using Bonferroni correction, which multiplies the corresponding  

P values by the number of compared correlation coefficients n
2−n
2

.  
Other approaches such as the false discovery controlling procedure 
Benjamini–Hochberg generally require the full P value distribution, 
which is not available when applying top-k correlation discovery. In 
these cases, padding the calculated P values with 1s for unknown  
P values can provide an upper bound for adjusted P values. However, 
this generally requires instantiating the full number of P values, which 
causes memory issues like in the full correlation matrix case Supple-
mentary Table 1. To address this we provide a truncated version of the 
Benjamini–Hochberg procedure that avoids this issue.

The Benjamini–Hochberg (BH) procedure yields adjusted  
P values54 through

PBH
(i) = min {minj≥i {

m ⋅ Pj

j } , 1} (9)

with PBH
(i)  representing the BH corrected P value at rank (i) for ascend-

ingly ranked P values, m being the number of overall P values, for exam-
ple, m = (n2−n)

2
, and j represents the rank of the P value Pj. On the basis 

of this formula, a truncated upper-bound version of BH calculates the 
adjusted P values for all top-k P values. Then a upper-bound adjusted 
value is calculated by u = m⋅1

k+1
. If Pk > u, then all adjusted P values P with 

P = Pk are replaced by u. This yields a minimally invasive truncated BH 
procedure for adjusted P values without instantiating the full distribu-
tion of P values. The approach is implemented in CorALS as multiple_
test_correction and can be applied as a post-processing step.

Extensible framework for large-scale correlation analysis
The computational framework of CorALS is based on three steps  
(Fig. 1b): a feature projection step, a dynamic batching step and a reduc-
tion step. As such, the general structure is compatible with the the big 
data computation model MapReduce41.

The feature projection step (Fig. 1b, left) allows for preparing the 
data so that it can be split and processed independently in an efficient 
manner. In this paper, we specifically focus deriving an indexing struc-
ture based on space partitioning that allows for efficiently querying 
top-k correlations.

The dynamic batching step (Fig. 1b, middle) then splits the data 
matrix into multiple batches. The prepared data (and indexing struc-
tures) are then used to locally extract the relevant values in each batch 
independent of the other batches. Batches can be processed sequen-
tially, in parallel or even in a distributed manner. Thus, the smaller the 
batches and the smaller the number of batches that run simultaneously, 
the less memory is required. This fine-grained control over batches 
introduces an effective mechanism to manage and trade-off memory 
requirements and runtime based on the available resources. Further-
more, batches may store their results on disk rather than in-memory, 
further reducing memory requirements. In this paper, for each batch 
of features, we focus on utilizing the previously mentioned indexing 
structure to extract the local top-k correlations in line with the corre-
sponding approximation factor (see ‘Approximate search for global 
top-k correlations’). We also provide a thresholding feature that can 
reduce memory requirements of the batch results.

Finally, the batch results are reduced into the final result by merg-
ing batches. Dependent on the batch implementation and the local 
results, this can be done directly in memory for the fastest runtimes, 
sequentially by merging one batch result at a time or even mostly on 
disk, which can be used to further reduce memory requirements in 
favor of computation time. In the implementation of the final join 
analyzed in this paper, the results from the batches consist of individual 
correlations, which are merged, partitioned and then sorted to return 
the final top-k values.

Feature projections. Note that the implementation provided by Cor-
ALS is highly extensible and nearly all aspects can be replaced by cus-
tom implementations to optimize for particular application scenarios. 
For example, during the feature projection step, the index structures 
employed in the current implementation are based on ball trees, which 
optimizes for high-dimensional datasets with small samples sizes by 
employing correlation and differential spaces (Fig. 1a). However, this 
index structure can easily be replaced by implementations with differ-
ent computational characteristics. For example, it may make sense to 
consider approximate nearest-neighbor methods55 to replace the 
current index, which may potentially reduce runtimes for a cut in 
sensitivity. Similarly, particularly for larger sample sizes, instead of 
using indexing structures, it may be advantageous to directly calculate 
correlations for smaller batches via the efficient matrix multiplication 
scheme introduced in ‘Efficient calculation of full correlation matrices’. 
While this direct calculation and partitioning of correlations increases 
time complexity from 𝒪𝒪(n logn)  to 𝒪𝒪(n2) , this may be faster than the 
currently employed ball tree indexing structure as the corresponding 
search performance of 𝒪𝒪(logn)  may deteriorate to 𝒪𝒪(n)  with increasing 
dimensionality (in our case sample size). Here it is important to appro-
priately select the number of simultaneous batches to limit the memory 
requirements of this approach (for example, if only one batch is used, 
the complete correlation matrix will be instantiated). A corresponding 
implementation is provided by CorALS. A detailed comparison with 
in-depth parameter optimization and the corresponding relation to 
more efficient approximate nearest-neighbor schemes is left for future 
studies.

Distributed computation. The methods in this paper are focused on 
in-memory computations. However, as mentioned earlier, the com-
putational framework of CorALS allows for sequential computation 
of batch results which can be cached on disk, circumventing poten-
tial memory limitations and allowing for calculating correlations for 
massive datasets. Furthermore, CorALS also supports distributed 
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computation of correlation and differential matrices through the joblib 
backend (https://github.com/joblib/joblib). This directly enables Spark 
(https://github.com/joblib/joblib-spark), Dask (https://ml.dask.org/
joblib.html) or Ray (https://docs.ray.io/en/latest/joblib.html).

In principle, the batch-based design of CorALS also allows for more 
specialized implementations based on the MapReduce paradigm41. 
Thus, overall, CorALS provides a very flexible algorithmic framework 
for large-scale correlation analysis that can be easily extended and 
adjusted to the application at hand.

Practical considerations
Full correlation matrix calculation. On the basis of the results in  
Table 2 and Supplementary Table 3, where CorALS substantially out-
performs all other methods, we recommend generally using CorALS 
for full correlation matrix calculation. As the number of features grows, 
however, the full correlation matrix will not fit into memory. For exam-
ple, at n = 32,000 features, the full matrix uses more than 8 GB of 
memory; at n = 64,000 features, it already requires more than 32 GB. 
This can be calculated roughly by assuming 64-bit float values (default 
in Python) and the formula: memory(n) = 64n2

8×109
. Thus, we recommend 

switching to top-k correlation analysis after n = 32,000 features.

Top-k correlation search. For top-k correlation search, we recom-
mend using the basic CorALS implementation (referred to as matrix in  
Table 2) as long as the full correlation matrix fits into memory, inde-
pendent of the number of samples. However, as the number of fea-
tures increases, memory issues will make this approach impossible 
to use. When this is the case, switching to the index-based CorALS 
implementation is the best option. With increasing sample numbers, 
CorALS becomes slower, which may warrant other heuristics such as 
dimensionality reduction such as locality sensitive hashing or random 
projections (see ‘Discussion’).

Note that, by default, the top-k approximation approach does 
not guarantee symmetric results, that is, even if cor(x, y) is returned, 
cor(y, x) may be missing. This can be addressed by various post-
processing steps, for example, by adding missing values. CorALS 
provides the option to enable this feature. In the experiments, this 
is not enabled as symmetric results are redundant for practical  
purposes.

Correlation structure visualization. For practical purposes, there 
are two properties of the proposed correlation structure visualization 
to consider. First, by design, CorALS visualizes strongly positively 
correlated features close to each other while the distance to strongly 
negatively correlated features will be large (see corollary in ‘Correlation 
projections’). In some settings it may be desirable to simultaneously 
visualize negatively correlated features close to each other, which is 
currently not supported by CorALS. Second, the relationship between 
Euclidean distance and correlation established in is not linear, which 
may result in bias toward tightly clustering highly correlated features. 
See Supplementary Fig. 1 for an illustration of the relation between 
correlation and the corresponding Euclidean distance.

Investigating the coordination of single-cell functions
For the analysis in ‘Correlated functional changes across immune cells’ 
and Fig. 3, we first divide cells into 20 individual non-overlapping cell 
types based on manual gating1. We then repeatedly sample 10,000 
cells from each cell type across all patients using a dual bootstrapping 
scheme to ensure appropriate variations in cell types where less than 
10,000 cells are present. The dual bootstrapping scheme first samples 
n cells from each cell type with replacement, where n is the number of 
available cells for that cell type. From this intermediate sample, we 
sample the final 10,000 cells for that cell type with replacement.

On the resulting sample of 200,000 cells across cell types, we 
calculate the top-0.01% Spearman correlations across all sampled cells 

based on their functional markers. We then count the number of top 
correlations between each pair of cell types. This allows to measure 
the relative correlation strengths between cell types.

By generating pairs of samples in each repetition, one from third-
trimester cells and one from postpartum cells, we calculate the effect 
size (Cliff’s δ) of the top-k frequency differences between each pair 
of cell types. Supplementary Fig. 6 depicts a single instance of such a 
pair. We sample 1,000 times. Very large effect sizes defined by a cor-
responding effect size threshold (t = 0.622) are visualized in Fig. 3. This 
threshold has been derived based on analogous interpretation intervals 
proposed for Cohen’s d (refs. 56,57).

As described above, this procedure requires repeated sampling 
and top-k correlation calculations across millions of individual cells, 
making CorALS an essential component of this pipeline, enabling this 
analysis on our available servers by substantially reducing runtime and 
particularly memory requirements.

Datasets
The four real-world datasets we use for runtime and memory 
evaluation stem from biological applications in the context of pre-
eclampsia, healthy pregnancy and cancer.All previously reported 
feature counts are subject to the following pre-processing proce-
dure. We set negative values to 0, remove features that have only a 
single value and drop duplicate features (features are considered 
duplicates if all their sample values are the same). Dataset statis-
tics are summarized in Table 1. For dataset availability, see Section  
‘Data availability’.

The pre-eclampsia dataset24,26 contains aligned measurements 
from the immunome, transcriptome, microbiome, lipidome, pro-
teome and metabolome, from 23 pregnant women with and with-
out pre-eclampsia across the three trimesters of pregnancy. In brief, 
women of at least 18 years of age in their first trimester of a singleton 
pregnancy were recruited to the study after providing their informed 
consent and under institutional review board (IRB)-approved pro-
tocols. Whole blood, plasma and urine samples, and vaginal swabs 
were collected throughout pregnancy and processed to generate 
immunome, transcriptome, microbiome, lipidome, proteome and 
metabolome datasets. After aligning omics and dropping features with 
missing or only homogeneous values, 32 samples with 16,897 features  
where obtained.

The pregnancy dataset6 contains 68 samples from 17 pregnancies 
with four samples per woman in the first, second and third trimesters 
as well as postpartum, respectively. Each sample contains immunome, 
transcriptome, microbiome, proteome and metabolome measure-
ments obtained simultaneously. In brief, women of at least 18 years of 
age in their first trimester of a singleton pregnancy were recruited to the 
study after providing their informed consent and under IRB-approved 
protocols. Whole blood, plasma and serum samples, and vaginal, 
stool, saliva and gum swabs were collected throughout pregnancy 
and processed to generate immunome, transcriptome, microbiome, 
proteome and metabolome datasets. After aligning omics and drop-
ping features with missing or only homogeneous values, 32,211 features 
where obtained.

The cancer dataset contains samples from 443 patients with gas-
tric adenocarcinoma58 and 185 patients with esophageal carcinoma59, 
for a total of 628 samples obtained via the LinkedOmics platform25. In 
brief, fresh frozen tumor samples and accompanying healthy tissue 
were collected from patients after providing their informed consent 
and under IRB-approved protocols. Samples were used to generate DNA 
methylation profiling at the CpG-site and gene levels (methylation CpG-
site level, HM450K; methylation gene level, HM450K), whole-exome 
sequencing (mutation gene level), messenger RNA sequencing (HiSeq, 
gene level), reverse-phase protein array (analyte level) and somatic 
copy number variation (gene level, log-ratio) datasets. After align-
ing omics and dropping features with missing or only homogeneous 
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values, the dataset consisted of samples from 258 patients. For our 
runtime and memory experiments, we sample increasing numbers of 
features (25%, 50% and 100%).

The single-cell dataset1 contains 68 mass cytometry samples from 
17 pregnancies with four samples per woman in the first, second and 
third trimesters as well as postpartum, respectively. In brief, women of 
at least 18 years of age in their first trimester of a singleton pregnancy 
were recruited to the study after providing their informed consent and 
under IRB-approved protocols. Whole blood samples were collected 
throughout pregnancy and processed to generate an immunome data-
set. For the benchmark experiments, samples from the third trimester 
were used. We process the data by sampling 10,000/30,000 cells from 
each of the 20 cell types, resulting in a dataset with 200,000/600,000 
cells and 10 functional markers per cell.

We also add one more dataset (sim) that corresponds to 400,000 
features and 500 samples to test larger sample sizes. The data are 
generated randomly.

Experimental settings for runtime and memory analysis
Experiments were repeated from 3 to 10 times depending on their runt-
ime, the first sample was always dropped (to account for burn-ins, for 
example, for Julia’s JIT compiler), and respective medians are reported. 
No substantial runtime or memory fluctuations were observed. The 
experiments were run on a bare metal server with two AMD EPYC 7452 
32-Core Processors and hyper-threading enabled amounting to 128 
processing units. The machine provided 314 GB of memory and ran 
on Ubuntu 20.04.1 LTS. We use Python 3.9.1 and R 4.0.3 with current 
packages installed from conda-forge and Bioconductor. The employed 
Julia version was 1.5.3. Multi-threading was disabled explicitly if not 
otherwise specified.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The pre-eclampsia dataset is available from a public repository60. The 
multiomics pregnancy dataset is available from a public repository60, 
and the original authors’ website6. Intermediate data to produce Fig. 2  
are provided through a public repository60. The cancer dataset is 
derived from a multiomics study available from LinkedOmics (http://
linkedomics.org/data_download/TCGA-STAD/). In particular, we inte-
grate the datasets methylation (CpG-site level, HM450K), methylation 
(gene level, HM450K), mutation (gene level), RNA sequencing (HiSeq, 
gene level), reverse-phase protein array (analyte level) and somatic 
copy number variation (gene level, log-ratio). The single-cell dataset 
used to derive the benchmark dataset single cell and to support the 
findings is available from FlowRepository (http://flowrepository.org/
id/FR-FCM-ZY3Q). Pre-processed data for benchmarking as well as 
intermediate data to produce Fig. 3 are provided through a public 
repository60. We provide source data for all figures and tables, as well 
as download instructions and pre-processing scripts through a public 
repository60,61 and via https://nalab.stanford.edu/corals/.

Code availability
The complete code for CorALS, code to reproduce all experiments 
and figures in this paper, and links and instructions to prepare the 
corresponding datasets are available in a public repository61, and are 
listed at https://nalab.stanford.edu/corals/.
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