
Nature Computational Science | Volume 3 | April 2023 | 346–359 346

nature computational science

Resource https://doi.org/10.1038/s43588-023-00429-y

Large-scale correlation network
construction for unraveling the coordination
of complex biological systems

Martin Becker    1,2,3,4,6, Huda Nassar1,2,3,6, Camilo Espinosa    1,2,3,6, Ina A. Stelzer1,
Dorien Feyaerts1, Eloise Berson1,2,3, Neda H. Bidoki1,2,3, Alan L. Chang1,2,3,
Geetha Saarunya    1,2,3, Anthony Culos1,2,3, Davide De Francesco1,2,3,
Ramin Fallahzadeh1,2,3, Qun Liu1,2,3, Yeasul Kim1,2,3, Ivana Marić1,2,3,
Samson J. Mataraso    1,2,3, Seyedeh Neelufar Payrovnaziri1,2,3,
Thanaphong Phongpreecha1,3,5, Neal G. Ravindra1,2,3, Natalie Stanley1,2,3,
Sayane Shome1,2,3, Yuqi Tan1,2,3, Melan Thuraiappah1,2,3, Maria Xenochristou1,2,3,
Lei Xue1,2,3, Gary Shaw2, David Stevenson2, Martin S. Angst1, Brice Gaudilliere1,2
& Nima Aghaeepour    1,2,3 

Advanced measurement and data storage technologies have enabled high-
dimensional profiling of complex biological systems. For this, modern
multiomics studies regularly produce datasets with hundreds of thousands
of measurements per sample, enabling a new era of precision medicine.
Correlation analysis is an important first step to gain deeper insights into
the coordination and underlying processes of such complex systems.
However, the construction of large correlation networks in modern high-
dimensional datasets remains a major computational challenge owing
to rapidly growing runtime and memory requirements. Here we address
this challenge by introducing CorALS (Correlation Analysis of Large-scale
(biological) Systems), an open-source framework for the construction and
analysis of large-scale parametric as well as non-parametric correlation
networks for high-dimensional biological data. It features off-the-shelf
algorithms suitable for both personal and high-performance computers,
enabling workflows and downstream analysis approaches. We illustrate the
broad scope and potential of CorALS by exploring perspectives on complex
biological processes in large-scale multiomics and single-cell studies.

The advancement of modern technologies, including single-cell1 and
multiomics approaches2, wearable devices3, and integrated electronic
health records4,5, have enabled an exciting era of precision medicine.
These technologies regularly produce datasets with hundreds of

thousands of variables (here referred to as features), allowing for
unprecedented profiling of complex biological processes such as dis-
eases, pregnancy or healing2,6,7. Correlation analysis is typically the first
step to gain insights into a complex system (56% of all papers on the

Received: 8 May 2022

Accepted: 10 March 2023

Published online: 13 April 2023

 Check for updates

1Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA. 2Department of Pediatrics,
Stanford University School of Medicine, Palo Alto, CA, USA. 3Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto,
CA, USA. 4Department of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany. 5Department of Pathology, Stanford
University School of Medicine, Palo Alto, CA, USA. 6These authors contributed equally: Martin Becker, Huda Nassar, Camilo Espinosa.

 e-mail: naghaeep@stanford.edu

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-023-00429-y
http://orcid.org/0000-0003-4296-3481
http://orcid.org/0000-0003-1630-1564
http://orcid.org/0000-0002-5859-4898
http://orcid.org/0000-0003-3146-2243
http://orcid.org/0000-0002-6117-8764
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-023-00429-y&domain=pdf
mailto:naghaeep@stanford.edu

Nature Computational Science | Volume 3 | April 2023 | 346–359 347

Resource https://doi.org/10.1038/s43588-023-00429-y

exceed computational resources as the dimensionality of the datasets
increases. Current approaches for constructing correlation networks
(Supplementary Section 5) either rely on specialized parallel pro-
cessing and high-performance-computing frameworks (for example,
graphics processing units, MapReduce and so)13–17, focus on specialized
correlation measures18,19 or address only limited aspects of time and
memory requirements20–23.

Thus, here we introduce an open-source framework for high-
dimensional correlation analysis called CorALS (Correlation Analysis
of Large-scale (biological) Systems). CorALS enables efficient correla-
tion computation, as well as top-k and differential correlation network
approximations without requiring specialized software or hardware.
We provide CorALS as an easy-to-use and extensible Python package.
The corresponding routines are notably faster and require substan-
tially less memory than commonly employed methods, allowing for

preprint server bioRxiv contain the word ‘correlation’). While errone-
ous data may skew correlation analyses8 and correlation does not imply
causation, correlation analysis can guide coordinated subprocesses
in complex systems for further investigation. Consequently, a broad
range of algorithms have been developed for analyzing large-scale
correlation networks from the perspective of topology, connectiv-
ity patterns or community structures9,10. In addition, extensive gene
graphs and cell-to-cell relations derived from large-scale correlation
networks are integrated in modern deep learning and graph neural
network applications11,12.

Despite diverse applications, the construction of correlation net-
works for large datasets remains a major computational challenge
(for example, for only n = 1, 000 features, at least 499,000 pairs need
to be examined). As such, computation time and memory require-
ments for constructing correlation networks grow rapidly and quickly

ba
tc

h 2

C
om

pu
ta

tio
n

pi
pe

lin
e

Ap
pl

ic
at

io
ns

Fe
at

ur
e

pr
oj

ec
tio

ns

a

b

c

Feature space
with two conditions

Feature projections
for e�icient computation

(1) c1,1 = cor(f1, f2)
(2) c1,2 = cor(f4, f99)
(3) c1,3 = cor(f2, f10)

(1) c1,1
(2) c1,2
(3) c1,3

(1) c2,1

(2) c2,2
(3) c2,3

= 〈δ(x1, x2), κ(y1, y2)〉

δ(x1, x2)
κ(y1, y2)

cor(x1, y1) – cor(x2, y2)

(1) c2,1
(2) c2,2
(3) c1,1

(5) c1,2

(4) c2,3

Dynamic batching enabling
memory management
and parallelization

Memory-e�icient join
of batch results

Correlation space Di�erential space

Correlation embeddings
and full correlation
matrix computation

Top correlation
network approximation

x1

y1

x1

y1

x

y

Top di�erential
correlation discovery

+ =

n features

m
 s

am
pl

es

ba
tc

h 1

ba
tc

h 1

ba
tc

h 2

ba
tc

h n'Data
matrix

Derive
e�icient
index
structure

Find
local
top-k'

(threshold)

cor(x2, y2) = 〈x2, y2〉 ˆ ˆ
cor(x1, y1) = 〈x1, y2〉 ˆ ˆ

x2 x1

y2

x1

y1 ˆ x2ˆ
y1ˆ

y2ˆ

Fig. 1 | Overview of the CorALS framework. a–c, CorALS leverages feature
projections into specialized vector spaces (a) embedded into a flexible
computational pipeline (b) for large-scale correlation analysis (c). In particular,
CorALS exploits the direct connection between Euclidean distance and the
correlation of individual features in correlation space (a, middle), as well as the
Euclidean distance and correlation differences of feature pairs across conditions
in differential space (a, right), to derive efficient indexing structures (b, left).
These indexes are utilized in a computational pipeline that splits correlation
computations into batches based on a specifically designed approximation
scheme for effective memory management and parallelization (b, middle).
Batches are then joined in a memory efficient manner to yield the final

correlation results (b, right). This enables applications such as full correlation
matrix computation and correlation-based feature embeddings (c, left), top
correlation network approximations (c, middle) and differential correlation
discovery (c, right) for large-scale, high-dimensional datasets. Points represent
features (two specific features are denoted as x and y), and subindices and colors
indicate two conditions (1, blue; 2, orange). x1 and x2 (and y1 and y2) are the same
feature illustrated by a cross (square) marker across the two conditions. In a,
feature projections are denoted as in the middle panel, and δ and κ in the right
panel. In b, individual features are represented as fi, and ci,j is a short notation for
the correlation between feature fi and fj.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | April 2023 | 346–359 348

Resource https://doi.org/10.1038/s43588-023-00429-y

complex analyses even on regular laptop computers. To achieve this,
CorALS combines specialized vector projections, modern optimized
linear algebra routines, spatial partitioning techniques and big data
programming models (Fig. 1). CorALS supports Pearson correlation,
the non-parametric Spearman correlation and the Phi coefficient for
binary variables. We demonstrate the broad scope and potential of
CorALS by analyzing several high-dimensional datasets, and present
complementary perspectives on large-scale multiomics and single-
cell datasets, revealing concerted coordination of biological systems
during pregnancy. Overall, CorALS will allow practitioners to integrate
large-scale correlation network analysis into rapid turnaround work-
flows that have previously been inaccessible owing to time and resource
limitations, and enable the development of downstream applications
for deeper insights into complex systems.

Results
CorALS enables efficient, large-scale correlation analysis for high-
dimensional data by employing a combination of versatile vector
projections and big data computation models. In particular, features
(Fig. 1a, left) are projected onto correlation vectors (Fig. 1a, middle)
or embedded into a differential space (Fig. 1a, right). On the basis of
these feature projections, CorALS exploits the tight relation of the
scalar product and Euclidean distance in the corresponding vector
space to derive efficient indexing schemes (Fig. 1b, left). These index
structures are then embedded into a computational pipeline that splits
correlation analysis tasks into batches (Fig. 1b, middle), which yield
intermediate results based on a specifically designed approximation
scheme. This scheme ensures that aggregating intermediate top-k
results yield accurate approximations of the global correlation net-
work (Fig. 1b, right). Importantly, the batched approach allows for
effective memory management and inherent parallelization. Further
technical details can be found in ‘Efficient approximation of correla-
tion networks’ in Methods. On the basis of this framework, CorALS
enables a wide variety of efficient analytical components (Fig. 1c). The
following sections introduce these components and illustrates their
runtime and memory advantages. For this, we employ several real-world
high-dimensional datasets, in the context of pregnancy-related disease
(pre-eclampsia), healthy pregnancy and cancer1,6,24–26. See Table 1 for
basic dataset statistics and ‘Datasets’ in Methods for more informa-
tion. For these high-dimensional datasets, the goal is to investigate
the correlations between large amounts of features (n) often based
on a comparably small number of samples (m).

Efficient computation of correlation matrices
Full correlation matrix computation is the task of calculating the
correlations between all feature pairs in a high-dimensional dataset.

CorALS employs correlation projections (Fig. 1b) in combination with
modern linear algebra routines for low-rank matrix multiplication to
calculate complete correlation networks (Fig. 1c, left). The runtime and
memory results for this task are shown in Supplementary Data 1 includ-
ing a comparison with existing software libraries in R. This includes
packages such as WGCNA(Weighted Correlation Network Analysis)27,
Rfast (A collection of Efficient and Extremely Fast R Functions)28, coop
(Co-Operation: Fast Covariance, Correlation, and Cosine Similarity
Operations)29 and HiClimR (Hierarchical Climate Regionalization)30
with different advantages and disadvantages. For example, WGCNA
can handle small amounts of missing values, and HiClimR tries to save
memory by calculating only the upper half of the correlation matrix.
These methods either use efficient custom C implementations, which
are often based on (multi-threaded) nested for-loops (for example,
Rfast28) or use efficient BLAS (Basic Linear Algebra Subprograms) and
LAPACK (Linear Algebra PACKage) matrix multiplication routines with
projected vectors similar to CorALS (for example, coop29). In addition,
we also investigated a selected set of methods from the category of
high-performance computing, parallel and distributed frameworks
including Deep Graph, Dask and Spark. For a more detailed discus-
sion on these and further alternatives, we refer to Supplementary
Section 3. An analysis for varying numbers of features and samples
is given in Supplementary Fig. 2. Consistently, CorALS outperforms
other approaches and implementations, particularly, the baseline
implementations in Julia (statistics.cor), Python (numpy.corrcoef)
and R (stats::cor) (Supplementary Data 1). The results for CorALS are
based on a Python implementation (single core). Furthermore, the
matrix multiplication routines used by CorALS can take advantage of
multiple central processing units (here with 64 cores), considerably
reducing runtimes (multicore). Note that some baseline implemen-
tations (such as Python) also support parallelization. However, their
baseline single-core version is already slower than CorALS and thus we
skip these experiments, and illustrate only the scaling capabilities of
CorALS with increasing computational resources. Other methods from
the category of high-performance computing, parallel and distributed
frameworks performed slower, did not return results or were not easily
available (Supplementary Section 3). Memory requirement differences
across all methods are negligible. The cancer and single-cell datasets
illustrate how memory requirements can easily exceed the resources
of even specialized high-performance computing hardware, when
naively calculating full correlation matrices. However, investigating
full correlation matrices may not be necessary, as often only the most
prominent correlation structures are of interest. This makes focused
correlation network construction schemes (for example, based on top-k
correlations, as introduced in the following sections) useful tools to
explore and analyze large-scale correlation structures, while avoiding
resource limitations.

Efficient approximation of large-scale correlation networks
Correlation analysis is often focused on the strongest correlations in
a study, that is, by selecting the top-k correlations. Straightforward
implementations of this approach are based on calculating the overall
correlation matrix, and utilizing default sorting algorithms to extract
the top-k correlations. However, this incurs substantial runtime and
memory overhead as illustrated by the baseline implementations in R,
Julia and Python (Table 2). To the best of our knowledge, no easy-to-use
efficient algorithms exist to calculate only the top-k correlations of a
given set of features. To address this, for systems with large amounts of
memory, CorALS provides a basic algorithm (matrix) that utilizes the
previously introduced fast correlation matrix routine (Supplementary
Data 1) together with selection algorithms that are able to efficiently
partition top-k values from the remaining correlations31. However, on
the one hand, memory requirements quickly exceed available resources
(see, for example, memory use in the cancer (0.50) dataset in Table 2),
and, on the other hand, the employed partitioning algorithms are not

Table 1 | Dataset statistics

Dataset n (features) m (samples) n/m ratio

Pre-eclampsia 16,897 32 528

Pregnancy 32,211 68 474

Cancer (0.25) 64,813 258 251

Cancer (0.50) 129,626 258 502

Cancer (1.00) 259,252 258 1,005

Single cell 200,000 10 20,000

Single cell 2 600,000 10 80,000

Sim 200,000 500 400

Dimensions of biological datasets after pre-processing including feature-to-sample ratios. For
this paper, CorALS is optimized to handle high-dimensional datasets, that is, for investigating
correlations between n features based on m samples often with n ≫ m. Deviating from this
terminology, note that for the single-cell dataset, correlations between individual cells (n)
based on the expression of their functional markers (m) are investigated.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | April 2023 | 346–359 349

Resource https://doi.org/10.1038/s43588-023-00429-y

easily parallelizable while consuming the majority of runtime of the
top-k search (compare matrix in Supplementary Data 1 and matrix in
Table 2). To address this, CorALS employs a combination of specific
feature vector projections (Fig. 1a), space partitioning techniques and
an efficient computation pipeline (Fig. 1b) to approximate the set of
strongest correlations in a network (Fig. 1c, middle). The use of efficient
space partitioning techniques circumvents calculating the overall cor-
relation matrix, thus avoiding large memory requirements while allow-
ing for substantial runtime improvements (Table 2, index). For more
results on runtime, memory and parallelization efficiency for varying
numbers of samples and features, also see Supplementary Section 2.
The employed approximation scheme trades off resource usage against
accuracy. Thus, we provide a theoretical analysis of lower bounds on
the amount of potentially found values and the associated sensitivity
across various approximation factors (‘Approximate search for global
top-k correlations’ in Methods). Note that in practice, the sensitivity
associated with specific approximation factors can be much higher
then the provided estimates. Consequently, CorALS can even yield
perfect results with smaller approximation factors increasing efficiency
(Supplementary Section 5). The runtime efficiency of the employed
space partitioning techniques grows as the ratio of the number features
and samples increases. Thus, particularly on high-dimensional, real-
world datasets, CorALS reduces runtimes substantially. In addition, this
approach is inherently parallelizable and by employing multiple cores
(here, 64), CorALS achieves notable performance gains (for example,
from 8 hours to 11 minutes for the cancer (1.00) dataset) and outper-
forms all baseline for any of the considered datasets by a large margin
(parallel). Finally, and importantly, the methods provided by CorALS
have a very small memory consumption profile of only a fraction of the
baseline implementations. This can be even further reduced depending
on the application scenario, for example, by lowering the number of top
correlations to extract, introducing explicit correlation thresholds or
decreasing the size of the batches in the CorALS computation pipeline
(Fig. 1b, middle). Thus, CorALS enables large-scale correlation analyses
that are not possible with any of the baseline or basic implementations,

even on dedicated high-performance computation hardware (Table 2,
cancer (0.5), cancer (1.0) and single cell).

Overall, CorALS allows the calculation of large-scale top-k correla-
tion networks on personal computers, enabling accessible workflows
that previously required dedicated high-performance infrastructures.
For additional runtime, memory and accuracy analyses, see Supple-
mentary Sections 2–5.

Differential analysis of correlation networks
Differential network analysis32–34, and specifically systematically study-
ing the largest differences in correlation networks across more than
one condition (or timepoint), can be instrumental to understanding
the underlying processes of complex systems35. To enable this, CorALS
represents features as vectors in a ‘differential space’ (Fig. 1), each of
which combines information from two conditions (or timepoints)
simultaneously (Fig. 1c). This, allows CorALS to employ an algorithmic
approach similar to top-k correlation search, enabling efficient top-k
differential correlation discovery (Fig. 1c, right) with analogous runtime
and memory characteristics. Comparable methods such as Differential
Gene Correlation Analysis (DGCA) or DiffCor35,36 provide approaches
for ensuring statistical robustness of their results based on sampling.
However, even with sampling disabled, these methods are substantially
slower than CorALS. Other approaches such as Discordant and Differ-
ential Correlation across Ranked Samples (DCARS)37,38, do not allow for
top-k functionality and thus will quickly run into memory issues. Thus,
CorALS allows for a much more efficient discovery of top-k correlation
discovery. For a more in-depth discussion, we refer to Supplementary
Section 3.3. To ensure robustness, either CorALS can be used as an
efficient candidate selection step, which can then potentially be tested
with the methods mentioned above, or similar sampling techniques
can be implemented in CorALS. We apply such a sampling approach in
‘Large-scale multiomics correlation analysis across pregnancy’, where
we take advantage of the efficient runtime characteristics of CorALS
to account for spurious correlations by employing a corresponding
sampling-based strategy.

Table 2 | Top-k correlation network approximation

Dataset Baselines CorALS

R Julia Python Matrix Index Parallel

Pre-eclampsia 33.6 1:41.9 1:11.6 6.3 14.3 2.4

Pregnancy 2:09.7 8:35.4 4:56.1 16:4 1:49.2 5.7

Cancer (0.25) 7:09:00.2 53:19.9 22:53.1 2:02.5 32:54.4 59.6

Cancer (0.50) – – – – 2:10:25.2 2:58.4

Cancer (1.00) – – – – 8:42:12.9 11:28.5

Single cell – – – – 16:10.1 1:46.9

Single cell 2 – – – – 2:10:12.4 27:03.3

Sim – – – – 10:29:30.3 26:40.2

Pre-eclampsia 7.5 GB 6.4 GB 6.8 GB 6.8 GB 0.7 GB 3.4 GB

Pregnancy 27.3 GB 23.3 GB 23.7 GB 23.7 GB 1.3 GB 4.5 GB

Cancer (0.25) 158.2 GB 93.8 GB 94.3 GB 94.3 GB 4.1 GB 8.7 GB

Cancer (0.50) >0.7 Tb >360 GB >360 GB >360 GB 14.3 GB 21.1 GB

Cancer (1.00) >3.4 Tb >1.4 Tb >1.4 Tb >1.4 Tb 53.5 GB 65.2 GB

Single cell >1.9 Tb >0.8 Tb >0.8 Tb >0.8 Tb 33.2 GB 38.7 GB

Single cell 2 >23.3 Tb >7.9 Tb >7.9 Tb >7.9 Tb 253.1 GB 281.3 GB

Sim >1.9 Tb >0.8 Tb >0.8 Tb >0.8 Tb 31.1 GB 36.5 GB

Runtime and memory comparison. The runtime (top half of table; hours:minutes:seconds) and memory (bottom half of table; GB or Tb) comparison for top-k correlation network approximation
(k = 0.1% of features). Dashes represent the lack of runtime measurements for examples exceeding our server resources. Bolded entries mark estimated memory consumption for examples
exceeding our server resources.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | April 2023 | 346–359 350

Resource https://doi.org/10.1038/s43588-023-00429-y

Explicit visualization of correlation structure
Feature embeddings are an essential tool to represent and analyze
features in low-dimensional spaces. For example, Fig. 2 shows fea-
tures visualized using t-distributed stochastic neighbor embeddings
(t-SNE). However, t-SNE is generally based on Euclidean distances and
thus does not directly represent the correlation structure of features.
Although some t-SNE implementations support custom correlation-
based distance information, this is often inefficient owing to algorith-
mic overhead. To address this, CorALS uses correlation projections
(Fig. 1a, middle) to exploit the direct relationship between correla-
tion and Euclidean distance (Supplementary Section 6). This allows to
employ any existing distance-based method for embedding features
without adding substantial computational overhead. All feature and
cell visualizations throughout this paper are based on this approach
(for example, Figs. 1–3).

Large-scale multiomics correlation analysis across pregnancy
Understanding maternal biological changes during and immediately
after pregnancy is a fundamental step to improving diagnostic and thera-
peutic strategies in peripartum management, to prevent critical condi-
tions that extend well into the child’s adulthood (for example, preterm
birth, the single largest cause of death in children under 5 years of age).
Despite this, previous studies have not investigated possible changes in
the cross-talk across various biological modalities6,39. To demonstrate
CorALS’s utility in high-dimensional multiomics studies, we analyzed a
dataset containing third trimester and postpartum measurements of
biospecimens from 17 healthy pregnant women6. Each sample in the
corresponding data contains more than 60,000 synchronized measure-
ments from seven different omics (Fig. 2) from which we selected ~41,000
by filtering features with missing or constant values. Details on assays
and the measured biomarkers can be found in ‘Datasets’ in Methods.

We used CorALS to calculate the top-10% Spearman correlations
between all feature pairs for the third trimester. Furthermore, we
extracted the top-0.1% strongest differential correlations in contrast
to postpartum by employing CorALS’s corresponding implementation.
To focus the results on strong signals, we selected feature pairs passing
a correlation threshold of 0.8 in the third trimester for further analysis.
For visualization (Fig. 2), we utilized CorALS’s correlation-based feature
embeddings based on t-SNE40 for each individual omic.

The visualization reveals various prominent changes in correla-
tion structure between the different omics from the third trimester to
postpartum. In particular, the correlation changes between transcrip-
tome and microbiome, as well as between the transcriptome (cell-free
RNA) and immunome (including phenotypical, and the functional
markers measured by mass cytometry or cytometry by time of flight,
are prominent. These correlations appear in the third trimester but
vanish postpartum (edges marked in dark gray). Refer to the Sup-
plementary Section 8 for details and an expanded biological analysis.

Overall, while establishing causal links requires careful follow-up
studies and biological validations, the results outlined in Supplemen-
tary Section 8 are a powerful example that illustrates how the efficient
analysis of large-scale correlation networks as enabled by CorALS can
drive the generation of biological hypotheses.

Correlated functional changes across immune cells
While recent advances in single-cell technologies have enabled the pro-
duction of large immunological datasets, data analysis approaches for
single-cell data have remained limited to traditional analysis of changes
in the frequency and signaling pathways of cell types. In this example,
we demonstrate that CorALS allows to derive a complementary per-
spective on the dynamic coordination of functional characteristics
across several immune-system components on the single-cell level. We
analyzed a dataset of more than 24 million cells from 17 participants
tracking the immune system through pregnancy using mass cytometry1.
Notably, this dataset contains simultaneous measurements of both
phenotypic markers as well as intracellular proteins, the latter serving
as markers for endogenous signaling responsiveness of single cells. The
phenotypic markers were used to identify various cell populations via
manual gating1, and CorALS was used to study shifts in cell similarities
across the signaling pathways of various cell types using the available
ten functional markers (Fig. 3) based on Spearman correlation. To
increase the robustness of the dynamic changes identified, this analysis
requires repeated sampling and top-k correlation calculations across
millions of individual cells, making CorALS an essential component of
the analytical pipeline by substantially reducing runtime and memory
requirements (processing a single sample corresponds to the single-
cell experiment in Table 2). Refer to the Supplementary Section 9 for
details and an expanded biological analysis.

Correlations at third trimester
Modified correlations after birth

Transcriptome (plasma cell-free RNA; RNA sequencing)
Immunome (whole blood; mass cytometry)

Microbiome (vagina, gut, saliva, gum; 16S rRNA sequencing)
Proteome (plasma, multiplex ELISA)
Proteome (plasma, high-throughput aptamer-based platform)
Proteome (serum, multiplex ELISA)

Metabolome (plasma; mass spectrometry)

Fig. 2 | Dynamic changes in multiomic measurements before and after
birth. Nodes represent individual features arranged with CorALS’s correlation-
based t-SNE for each omic. Omics were measured using different technologies
(enzyme-linked immunosorbent assay, ELISA), and are visualized separately
from each other. Light-gray edges correspond to the top-10% correlations in

the third trimester. Of those top correlations, the dark edges in the foreground
correspond to the 0.01% of correlations that change the most from third
trimester to postpartum. Coordinated differences are apparent, for example,
related to the correlation of pP38 phosphorylation in various immune-cell
subtypes and specific gene transcripts detected among cell-free RNA.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | April 2023 | 346–359 351

Resource https://doi.org/10.1038/s43588-023-00429-y

Figure 3 shows a summary of this analysis and visualizes the
amount and direction of change in the relative number of functional
cell correlations attributed individual cell type pairs within the top-k
functional cell correlations between the third trimester and postpar-
tum. These changes mostly revolve around B cells and CD56dimCD16+
natural killer (NK) cells. While a detailed analysis may be of interest, we
focus on these changes as an example to illustrate the complementary
perspectives enabled by CorALS. In general, from the third trimester
to postpartum, B cells and CD56dimCD16+ NK cells show a higher degree
of similarity in terms of signaling response signatures postpartum
(orange edges) to cell types of the adaptive immune system (light
background). At the same time, they share less similarity (blue edges)
in their intracellular signaling response signature with the cells of the
innate immune system (dark background). We further visualize this
trend through density plots in Fig. 3, directly comparing the number
of top-k correlations of B cells and CD56dimCD16+ NK cells, respectively,
with the total pool of innate or adaptive immune-cell subsets in the
third trimester versus postpartum. This analysis provides a comple-
mentary perspective on the coordination of single-cell systems dur-
ing pregnancy, and suggests that B cells and CD56dimCD16+ NK cells
acquire innate-like functional characteristics in the third trimester,
and that, postpartum, these two cell types and various T-cell subsets
shift functionally to resemble each other.

On the basis of these conjectures, and given further datasets for
validation, the changes observed in Fig. 3 may guide further research
on the role of B cells and CD56dimCD16+ NK cells and the phenotypes
they acquire over the course of pregnancy. This serves as a practical
example on how CorALS can enable complementary perspectives

on many different domains, including the coordination of single-cell
systems, by enabling the efficient implementation and application of
large-scale correlation analysis.

Discussion
Modern biological profiling techniques will enable the collection of
datasets with increasingly high dimensions and sample sizes. Therefore,
the consistent analysis of evolving datasets will require continuous
improvements. We can further advance CorALS with advanced index-
ing and sorting algorithms, on-disk sorting algorithms, or employing
distributed computing environments. The computational pipeline of
CorALS is designed to support such extensions.

For example, the current version of CorALS is optimized for high-
dimensional datasets with small sample sizes. However, as sample sizes
increase, the efficiency of the employed indexing structure can deterio-
rate. Alternatively, approximate indexing structures increase runtime
in exchange for sensitivity. Also, approaches based on a batched com-
putation of partial correlation matrices combined with thresholding
may be an alternative (see ‘Feature projections’ in Methods for details).
However, the latter approach will require careful balance between the
number of batches, the number of concurrent tasks, threshold size,
memory availability and runtime, as a threshold does not provide mem-
ory guarantees. To tackle this, various methods to cache data outside of
the main memory can be employed. A principled approach to this are
distributed frameworks, for example, based on MapReduce41. CorALS
already supports such distributed computation on various backends.
We provide a Jupyter notebook that exemplifies running CorALS on a
Spark cluster42. However, while the implementation of CorALS already

Relative number of top correlations

Innate/B cells
PP

10 15 20 25

30 40 50 60 70

25 30 35 40 45 50

80 90 100

Number of top-k correlation (103)
110 120 130

T3

PP
T3

PP
T3

PP
T3

Innate/CD56dimCD16+ NK cells

Adaptive/B cells

Adaptive/CD56dimCD16+ NK cells

Increasing

Cell types

Decreasing

Adaptive
Innate

N
ai

ve
 C

D
8+ C

D
25

– T
 c

el
ls

Naive
 C

D8+
CD25+

 T
 c

el
ls

Naïve CD4+
CD25–

 T cells
Naive CD4

+CD25
+ T cells

C
D56

brightC
D

16
– N

K cells

cM
Cs

ncMCsmDCs

B
ce

lls

M
em

or
y

C
D8

+ C
D2

5
– T

 c
el

ls
M

em
or

y
CD

8+
C

D2
5+ T

 c
el

ls

Memory CD4+
CD25–

 T cells

Memory CD4
+
CD25+

 T cells

γδT cells

CD56 dim
CD16 + N

K cells

intMCs

pDCs

M-MDSC

Naive Treg cells

M
em

ory Treg cells

Fig. 3 | Concerted immune regulation at the single-cell level during
pregnancy. Left: pairs of cell types with substantially different (very large effect
size, t > 0.622) relative numbers of top-k (k = 0.01%) correlations of individual
cells between the third trimester (T3) and postpartum (PP) based on the cells’
functional characteristics. For cell type abbreviations, see Supplementary
Table 3. The thickness of the connecting edges represent the corresponding
effect size (Cliff’s δ) across samples. Only very large effect sizes are visualized
(threshold t = 0.622). The blue and orange colors of the edges signifies a
relative decrease or increase, respectively, in cell correlations from the third

trimester to postpartum. The scatter plots along the circle show single cells
from each cell type visualized using CorALS’s correlation-based t-SNE (innate,
dark background; light cells, adaptive; light background, dark cells). Right: the
accumulated top-k correlation shifts between the innate and adaptive immune
cells, and B cells and CD56dimCD16+ NK cells, respectively, shown by density plots
for the number of top-k correlations across samples. Overall, this visualization
illustrates the dynamically changing overlap of functional characteristics of B
cells and CD56dimCD16+ NK cells with the functional characteristics observed in
the total pool of innate or adaptive immune-cell populations.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | April 2023 | 346–359 352

Resource https://doi.org/10.1038/s43588-023-00429-y

contains many of the previously mentioned extensions, a detailed
comparison and analysis is beyond the scope of this work. For further
practical consideration, also see ‘Practical considerations’ in Methods.

Also, the CorALS implementation provides tools to derive P values
to gauge the significance of the measured correlations (‘P-value calcu-
lation and multiple testing correction’ in Methods), and supports the
non-parametric Spearman correlation (‘Correlation coefficient classes’
in Methods) to account for outliers or certain error types8,43. How-
ever, P values and the Spearman coefficient do not generally address
challenges such as data errors and noisy data. To tackle this issue,
correlation measures are often calculated based on computationally
expensive techniques, for example, based on bootstrapping43, making
their application in high-dimensional data impractical. In this context,
CorALS can be used either to efficiently sample correlations using full
correlation matrix calculation or to first select top-k correlations for
which robust methods can then be applied selectively. Similarly, Cor-
ALS does not account for confounding or causation. However, more
advanced approaches to account for these effects, such as partial cor-
relation or Bayesian networks44,45, are often restricted to small datasets
and do not scale for high-dimensional data. In this context, CorALS can
be used to effectively suggest highly correlated components of the data
for further investigation with such methods. Thus, overall, investigat-
ing correlation networks can be broadly applied to gain insight into
the underlying functional structures, which then may provide input
for downstream analysis and also for more advanced methods such
as graph neural networks11,12.

Finally, as the number of features increases with advancing tech-
nologies, it may be necessary to introduce more sophisticated meth-
ods that find correlated compounds, for example, based on existing
domain knowledge, rather than individual correlations, for which
CorALS can lay the computational foundation.

Overall, owing to its wide range and scope, we anticipate CorALS
to be a catalyst that will be adopted to enable a multitude of down-
stream applications of large-scale correlation networks. For example,
in ‘Correlated functional changes across immune cells’, the efficiency
characteristics of CorALS’s top correlation network estimation allow to
derive an innovative sampling-based approach to analyze the interac-
tion of hundreds of thousands of cells simultaneously. In future work,
CorALS may also support advanced tensor and network analysis or
deep learning and graph neural network modeling (for example, for
gene-interaction graphs and cell-to-cell relationships11,12). Thus, it
will lay the analytical foundations and provide computational tools to
unravel the intricate interactions of biological systems as developing
computational approaches are able to analyze increasingly complex
network structures.

Methods
Derivation of efficient feature representations by CorALS
The different components of CorALS rely on transforming features
into specific vector representations that connect the scalar product
of these vectors to efficient correlation computations. In the follow-
ing, we outline the derivation of these transformations for correlation
projections (used for efficient correlation matrix calculation, top cor-
relation network approximation and correlation embeddings) as well
as differential projections (used for top differential correlation search),
respectively. It is noted that the following feature representations are
derived for the Pearson correlation coefficient; however, without loss
of generality, these derivations hold for Spearman’s rank correlation
coefficient by replacing individual feature values with ranks per feature.
This is supported by CorALS’s implementation.

Correlation projections. By transforming feature representations
appropriately, correlation computation can be formulated as a scalar
product of two pre-processed vectors46. We refer to this pre-processing
step as correlation projection. In particular, the Pearson correlation

cor(x, y) between two features x and y with respective sample vectors
x = (x1, ..., xm) and y = (y1, ..., ym), can be rewritten as follows:

cor(x,y) =

m
∑
i=1
(xi−μx)(yi−μy)

√√√
√

m
∑
j=1

(xj−μx)
2 m
∑
j=1

(yj−μy)
2

=
m
∑
i=1

(xi−μx)
√√√
√

m
∑
j=1

(xj−μx)
2

(yi−μy)
√√√
√

m
∑
j=1

(yj−μy)
2

= ⟨ x−μx

√√
√

m
∑
i=1

(xi−μx)
2
, y−μy

√√
√

m
∑
i=1

(xi−μy)
2
⟩

= ⟨x̂, ŷ⟩

with ẑ = zzz−μz

∥z−μz∥

(1)

where μz is the mean of vector z. Thus, the operator corresponds to
the correlation projection that allows the transformation of the original
sample vectors so that their scalar product is equal to their correlation.
CorALS exploits this vector representation to formulate correlation
matrix computation as an efficient matrix product.

This transformation allows to derive a direct relationship between
the correlation cor(x, y) of any two vectors and the Euclidean distance
de(x̂, ŷ) of their correlation projections46. In particular, cor(x, y) and
−de(x̂, ŷ) are order-equivalent and it holds that:

cor(x,y) = 1 − de(x̂, ŷ)
2

2 (2)

CorALS exploits this relationship between correlation and Euclidean
distance, for example, in top correlation approximation and correla-
tion-based embeddings. For more details and corresponding proofs,
see Supplementary Section 6.1.

Differential projections. CorALS further introduces a dual feature
representation in a differential space that allows to calculate correla-
tion differences across two conditions or timepoints using a single
scalar product. In particular, for two features x and y, let x1 = (x1,1, ..., x1,m1)
and y1 = (y1,1, ..., y1,m1) denote respective sample vectors in the first
condition/timepoint and x2 = (x2,1, ..., x2,m2) and y2 = (y2,1, ..., y2,m2) in the
second condition/timepoint. Then, the goal is to find vector transfor-
mations δ(x1, x2), κ(y1, y2) that represent information form both condi-
tions/timepoints simultaneously so that

cor(x1,y1) − cor(x2,y2) = ⟨δ(x1,x2), κ(y1,y2)⟩ (3)

Given the correlation projection from ‘Correlation projections’, the
following definitions for δ and κ provide such a dual vector
representation.

δ ∶ ℝm1 ×ℝm2 → ℝm1+m2

z1, z2 ↦ (
ẑ1

ẑ2
)

κ ∶ ℝm1 ×ℝm2 → ℝm1+m2

z1, z2 ↦ (
ẑ1

−ẑ2
)

(4)

We call the vector space containing the codomain of these functions
differential space.

Similar to the connection of Euclidean distance and basic correla-
tion (see above), the dual feature representations in the differential
space exhibit a connection between Euclidean distance and correlation

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | April 2023 | 346–359 353

Resource https://doi.org/10.1038/s43588-023-00429-y

difference across conditions or timepoints. In particular, for two fea-
tures x and y with sample vectors x1, x2 and y1, y2 across two conditions
or timepoints, cor(x1, y1) − cor(x2, y2) and −de(δ(x1, x2), κ(y1, y2)) are
order-equivalent and it holds that:

cor(x1,y1) − cor(x2,y2) = 2 − de(δ(x1,x2), κ(y1,y2))
2

2 (5)

Thus, analogously to correlation projections, CorALS exploits this
order equivalence of Euclidean distance and correlation differences
for top differential correlation approximation. For more details and
corresponding proofs, see Supplementary Section 6.2.

Efficient calculation of full correlation matrices
Efficiently calculating full correlation matrices is achieved by recog-
nizing that the inner product formulation in equation (1) allows to
condense the correlation calculation between all possible feature pairs
in a dataset to a single matrix product ̂X

⊤ ̂X. Here, ̂X ∈ ℝm×n is the sam-
ple-feature matrix representing the corresponding dataset with m
samples and n features where each column corresponds to the cor-
relation projected sample vector of each feature, respectively (see
‘Correlation projections’). This approach can be directly formulated
in any recent programming language without requiring additional
software packages, and is able to take advantage of built-in efficient
linear algebra routines such as BLAS and LAPACK47,48, which inherently
support parallelization as showcased in Supplementary Data 1 and
Supplementary Section 3. This approach outperforms many other
implementations employing similar concepts as demonstrated in
Supplementary Table 2.

Efficient approximation of correlation networks
Top correlation computation as a query search problem. By default
correlation networks are fully connected. However, often it is more
valuable to study only the most interesting interactions, that is, the
strongest correlations. For this, it is common to either define a fixed
threshold or concentrate the analysis on the top-k correlations.
A straightforward approach to achieve this is to calculate the full
correlation network and then keep only those correlations that are
sufficiently strong according to either criterion. However, for high-
dimensional data, calculating the full correlation matrix between fea-
tures is often not feasible owing to memory restrictions, and in the top-k
case, the subsequent sorting operation has more than cubic complexity
with the number of features n (𝒪𝒪(n2 log n)). And even when using partial
sorting techniques based on selection algorithms for top-k search, this
may result in impractical runtimes (𝒪𝒪(n2 + k log k))31,49.

To address this, we fist observe that owing to the symmetry prop-
erty of correlation measures, a single feature can never be strongly
correlated to all other features (except in cases where all features highly
correlated). Thus, we assume that the top global correlations can be
approximated by finding and merging the top correlations locally, for
example, for each feature separately, given an appropriate local margin
(coined approximation factor as introduced below). This allows CorALS
to reinterpret the task of top correlation computation as a query search
problem50 where an indexed set of elements is efficiently queried based
on a set of query vectors and a given distance measure. In particular,
CorALS constructs an efficient index structure TX over a set of features
X and then interprets another (often the same) set of features as queries
Y to find the top correlated feature pairs. This approach prevents the
construction of the complete correlation matrix and the corresponding
implementation is inherently parallelizable, resulting in substantially
reduced runtimes and memory requirements.

In the following, we describe the individual steps to enable this
approach. This includes (1) the construction of an optimized index-
ing and query method that circumvents limitations of the previously
derived relation between Euclidean distance and correlation (‘Joint

ball trees for local top correlation discovery’), (2) the description of
an approximation scheme to generalize single-query-based search to
return global top-k correlations (‘Approximate search for global top-k
correlations’), and (3) a discussion on the implementation of threshold-
based search (‘Threshold-based correlation filtering’).

Joint ball trees for local top correlation discovery. While in prin-
ciple, any metric-based k-nearest-neighbor algorithm can be used
for CorALS, we focus on space partitioning algorithms that allow for
efficient top-k as well as threshold-based queries in high-dimensional
settings. Ball trees (or metric trees) in particular automatically adjust
their structure to the represented data, provide good average-case
performance and can cope well with high-dimensional entities50,51.
While such indexing structures are mostly optimized for metrics such
as the Euclidean distance, CorALS takes advantage of the correlation
projection introduced in ‘Correlation projections’ and its properties
(see ‘Correlation projections’) to enable top correlation and differential
correlation search.

In particular, CorALS first represents each feature as a correlation
vector by applying the correlation projection introduced in ‘Correla-
tion projections’ to their respective sample vectors. These correlation
vectors X are then indexed using ball tree space partitioning resulting
in index TX. On the basis of the relation between Euclidean distance
and correlation derived in ‘Correlation projections’, this index allows
to search for top-k positively correlated features search(TX, y, k) based
on a given query feature y ∈ Y. It also allows to search for a set of features
search(TX, y, t) passing a positive correlation threshold t with respect
to the query feature y.

Note that this set-up has two specific limitations that we address
in the following. First, ball trees generally only support to search for
top correlations relative to a single reference feature y. The algorithm
to generalize this to a set of features will be described in ‘Approximate
search for global top-k correlations’ and ‘Threshold-based correlation
filtering’. Second, by default, only feature pairs with positive correla-
tions are returned because only positive correlations correspond to
small Euclidean distances while negative correlations will result in
large distances (see equation (2) and the corollary in Supplementary
Section 6.1).

To address the latter, CorALS takes advantage of the fact that
correlation (as well as the scalar product) is associative with respect
to scalar multiplication. In particular, changing the sign of a sample
vector also changes the sign of the correlation:

cor(−x,y) = −cor(x,y) = cor(x, −y) (6)

Now, without loss of generality, we focus on top-k search in the follow-
ing derivation. Assuming that at least k features with positive correla-
tions to a query feature y exist in X, then all correlations returned by
search(TX, y, k) are positive. Similarly, assuming that at least k negative
correlations exist, switching the sign of all features in the dictionary X,
that is, search(T−X, y, k), or switching the sign of the query, that is,
search(TX, −y, k), allows to also extract the strongest negative correla-
tions (see equation (6)). Thus, a simple solution to find those features
with the top positive and negative correlations is to run the search
twice, once to extract positive and once to extract negative correla-
tions, followed by a merging step.

However, for top-k search, this merging step, involves returning
the top-k correlations twice, resulting in a sorting step that orders
2k elements, which can double memory requirements. This can be
prevented by building the ball tree based on positive and negative dic-
tionary features simultaneously, that is, search(T−X∪X, y, k). This search
only returns k elements, and thus can reduce runtime and memory
requirements. See Supplementary Table 1 for a comparison of top-0.1%
search on real-world datasets (Table 1). The corresponding experiments
are based on the CorALS’s Python implementation and were repeated

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | April 2023 | 346–359 354

Resource https://doi.org/10.1038/s43588-023-00429-y

ten times; reported medians had no substantial fluctuations between
runs. While the runtime improvements are marginal, the memory
consumption can be reduced by half. Also note that for multiple que-
ries, ball trees support to pre-process the set of queries resulting in a
dual-tree approach52 for speeding up the search. Supplementary Table
1 also demonstrates the effectiveness of this approach. For the final
implementation of CorALS, we jointly build the ball tree structure on
negative and positive features and employ the dualtree search when-
ever provided by the underlying software library.

Approximate search for global top-k correlations. Focusing on the
top-k correlations can be an effective way to construct interpretable
visualizations of correlation matrices without having to explicitly spec-
ify a threshold. For this, k is often large, defined either as a multiple of
the number of features (for example, 100n, 1,000n), or as a percentage
(say 0.1% of all correlations ~⌈n2 * 0.001⌉). However, the ball tree algo-
rithm (see ‘Joint ball trees for local top correlation discovery’) returns
only the top correlations for each feature rather than the overall top-k
correlations between all features. To address this, CorALS employs an
approximation scheme.

In particular, for each query feature y ∈ Y, CorALS heuristically
sets the number of k′ top correlated features to retrieve and then
merges the results to approximate the global set of top-k features.
Selecting k′ presents a trade-off. On the one hand, if k′ is greater than
or equal to the number of features n, all feature pairs will be considered,
thus allowing for an exact determination of the top-k features but no
gain in runtime. On the other hand, if k′ < n, then there is no guarantee
that the exact top-k features are retrieved; however, the runtime can
be substantially improved as only a subset of candidates is returned
and processed. To address this, CorALS uniformly draws top correlation
candidates across all query features with a sufficient margin that
accounts for biases in the correlation structure. That is, we chose k′ to
be dependent on k with k′ = a⌈ k

n
⌉ as a middle ground between drawing

the exact number of required candidates from each query k′ = ⌈ k
n
⌉ and

considering all candidates from each query k′ = n. Here a is called the
approximation factor and regulates how many correlations are
inspected per feature. The approximation factor can be selected so
that CorALS returns results up to a specific sensitivity s. In particular,
for a desired sensitivity up to s ≤ 0.75, the approximation factor can be
chosen based on a = s n

√k
; and for a desired sensitivity s ≥ 0.75, the

approximation factor can be chosen based on a = sn
2√k√1−s

. When for-

mulating k in terms of the overall number of correlations n2,

that is, k = rn2, for a sensitivity of s ≤ 0.75, the approximation factor can
be calculated via a = s

√r
, and for s ≥ 0.75 it can be calculated via

a = s
2√r√1−s

. However, in practice the number of missed correlations

can be substantially smaller as correlations are usually not distributed
according to the the worst case (Supplementary Figure 5). The deriva-
tion of sensitivity estimates as well as a study of the effects of a itself
can be found in Supplementary Section 5. Supplementary Algorithm
1 summarizes the overall approach.

Threshold-based correlation filtering. To calculate all correlations
greater than a threshold t, for each feature y ∈ Y, we can also employ
the ball tree data structure (see ‘Joint ball trees for local top correlation
discovery’) by issuing radius queries. For this, the correlation threshold
needs to be converted into an Euclidean radius using equation (2). Thus,
for each query feature, the respective query returns all indexed features
with correlations greater than the respective correlation threshold.
The results of each query are then merged to retrieve the final list of
the filtered feature pairs. This approach is more memory efficient than
calculating correlations for all possible feature pairs, for example,
using the methodology introduced in ‘Efficient calculation of full cor-
relation matrices’. However, it can also result in substantially increased
runtimes compared with calculating the complete correlation matrix.

The corresponding algorithm is implemented analogously to the top-k
search in Supplementary Algorithm 1 but replaces k with a correlation
threshold that is converted into a corresponding Euclidean radius via
equation (2) to be used by the ball tree index structure.

Top correlation difference search
To efficiently calculate the top differences in correlation between pairs
of features across more than one timepoint or condition, the naive
implementation involves calculating the full correlation matrices for
two conditions or timepoints, subtracting them and then extracting the
top differences, for example, through thresholding or by identifying
the top-k candidates. As previously shown for top-k correlation search,
this is runtime and memory extensive if implemented naively and thus
can easily exceed computational resources (Table 2).

To address this, CorALS builds on the dual feature representation
introduced in ‘Differential projections’. In particular, it exploits the con-
nection of correlation difference and Euclidean distance between the
dual representation of features in differential space and then applies
the same query search approach as for top correlation search (see
‘Efficient approximation of correlation networks’).

Thus, this first requires representing all features x ∈ X as their
dual representations δ(x) ∈ δ(X) and κ(x) ∈ κ(X). Then, analogously to
‘Joint ball trees for local top correlation discovery’, a combined ball tree
Tδ(X)∪−δ(X) is constructed to cover negative as well as positive differences.
This ball tree can then be used to query the top-k (or thresholded) cor-
relation differences search(Tδ(X)∪−δ(X), y, k) by querying with the feature
representations κ(x) ∈ κ(X). This already includes positive and negative
correlation differences as we index positive and negative projections
δ(X) ∪ − δ(X), while indexing only δ(X) would solely return the top
positive correlation differences (see equation (2) and the corollary
in Supplementary Section 6.2). After the construction of Tδ(X)∪−δ(X), the
same approximation approach as laid out in ‘Approximate search for
global top-k correlations’ and ‘Threshold-based correlation filtering’
is employed to query the top correlation differences across all query
features κ(X).

Correlation embeddings
t-SNE40 was used to embed high-dimensional data points into low-
dimensional spaces, for example, for visualization. In this work, we
employ t-SNE to embed features based on their correlation structure
across samples. However, t-SNE is based on Euclidean distance and
thus does not directly represent the correlation structure of features.

In particular, t-SNE reduces the dimensionality of data by minimiz-
ing the Kullback–Leibler divergence between a probability distribution,
P, in the high-dimensional space and a probability distribution, Q, in
the low-dimensional space40:

C = KL(P||Q) = ∑
i
∑
j
pij log

pij
qij

(7)

where the probabilities pij and qij represent probabilities for features
j to belong to the neighborhood of feature i based on Euclidean distance
in the corresponding space:

pij =
exp(−∥zi−zj∥

2)/2σ2

∑k≠l exp(−∥zk−zl∥)/2σ2

qij =
(1+∥ ̃zi− ̃zj∥

2)
−1

∑k≠l(1+∥ ̃zk− ̃zl∥
2)

−1

(8)

with ∥zi − zj∥2 and ∥ ̃zi − ̃zj∥
2 representing pairwise Euclidean distances

between features i and j for high-dimensional z and low-dimensional
feature representations ̃zzz, respectively.

Now, by projecting features onto correlation vectors, CorALS estab-
lishes an order equivalence between Euclidean distance and correlation
as introduced in ‘Correlation projections’. This allows to directly employ

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | April 2023 | 346–359 355

Resource https://doi.org/10.1038/s43588-023-00429-y

distance-based embeddings methods such as t-SNE on the projected
features without adding substantial computational overhead or requir-
ing implementations that support customized distance information.
A performance example is given in Supplementary Section 7.

Correlation coefficient classes
The underlying computation of CorALS is based on the Pearson cor-
relation coefficient as discussed in the previous sections. On this basis,
CorALS also supports any class of correlation coefficients that can be
reduced to the Pearson calculation scheme. In particular, Spearman
correlation can be calculated using the Pearson formula by replacing
individual feature values with feature-local ranks, which may help to
account for outliers or certain error types8,43. CorALS provides the
corresponding capabilities to switch between Pearson and Spearman.
Similarly, the Phi coefficient for binary variables can be calculated using
the Pearson formula53. Finally, other correlation coefficient classes
may be supported by future versions of CorALS by finding a mapping
between the corresponding coefficient and Euclidean distance as
derived in the previous section for the Pearson correlation coefficient.

P-value calculation and multiple testing correction
P values for Pearson correlation coefficients r, can be derived from the
correlation coefficient together with the number of samples n. That

is, first the t-statistic can be derived using t = r √n−2
√1−r2

. Then, the P value

can be calculated by examining the cumulative t-distribution function
p: P = 2 ⋅ p(T > t) where T follows a t-distribution function with N − 2
degrees of freedom. This approach is implemented in CorALS as derive_
pvalues and can be applied as a post-processing step.

Note that owing to the large amount of correlations calculated,
multiple test correction is necessary when working with P values. The
most straightforward approach is to control for family-wise error rate
using Bonferroni correction, which multiplies the corresponding

P values by the number of compared correlation coefficients n
2−n
2

.
Other approaches such as the false discovery controlling procedure
Benjamini–Hochberg generally require the full P value distribution,
which is not available when applying top-k correlation discovery. In
these cases, padding the calculated P values with 1s for unknown
P values can provide an upper bound for adjusted P values. However,
this generally requires instantiating the full number of P values, which
causes memory issues like in the full correlation matrix case Supple-
mentary Table 1. To address this we provide a truncated version of the
Benjamini–Hochberg procedure that avoids this issue.

The Benjamini–Hochberg (BH) procedure yields adjusted
P values54 through

PBH
(i) = min {minj≥i {

m ⋅ Pj

j } , 1} (9)

with PBH
(i) representing the BH corrected P value at rank (i) for ascend-

ingly ranked P values, m being the number of overall P values, for exam-
ple, m = (n2−n)

2
, and j represents the rank of the P value Pj. On the basis

of this formula, a truncated upper-bound version of BH calculates the
adjusted P values for all top-k P values. Then a upper-bound adjusted
value is calculated by u = m⋅1

k+1
. If Pk > u, then all adjusted P values P with

P = Pk are replaced by u. This yields a minimally invasive truncated BH
procedure for adjusted P values without instantiating the full distribu-
tion of P values. The approach is implemented in CorALS as multiple_
test_correction and can be applied as a post-processing step.

Extensible framework for large-scale correlation analysis
The computational framework of CorALS is based on three steps
(Fig. 1b): a feature projection step, a dynamic batching step and a reduc-
tion step. As such, the general structure is compatible with the the big
data computation model MapReduce41.

The feature projection step (Fig. 1b, left) allows for preparing the
data so that it can be split and processed independently in an efficient
manner. In this paper, we specifically focus deriving an indexing struc-
ture based on space partitioning that allows for efficiently querying
top-k correlations.

The dynamic batching step (Fig. 1b, middle) then splits the data
matrix into multiple batches. The prepared data (and indexing struc-
tures) are then used to locally extract the relevant values in each batch
independent of the other batches. Batches can be processed sequen-
tially, in parallel or even in a distributed manner. Thus, the smaller the
batches and the smaller the number of batches that run simultaneously,
the less memory is required. This fine-grained control over batches
introduces an effective mechanism to manage and trade-off memory
requirements and runtime based on the available resources. Further-
more, batches may store their results on disk rather than in-memory,
further reducing memory requirements. In this paper, for each batch
of features, we focus on utilizing the previously mentioned indexing
structure to extract the local top-k correlations in line with the corre-
sponding approximation factor (see ‘Approximate search for global
top-k correlations’). We also provide a thresholding feature that can
reduce memory requirements of the batch results.

Finally, the batch results are reduced into the final result by merg-
ing batches. Dependent on the batch implementation and the local
results, this can be done directly in memory for the fastest runtimes,
sequentially by merging one batch result at a time or even mostly on
disk, which can be used to further reduce memory requirements in
favor of computation time. In the implementation of the final join
analyzed in this paper, the results from the batches consist of individual
correlations, which are merged, partitioned and then sorted to return
the final top-k values.

Feature projections. Note that the implementation provided by Cor-
ALS is highly extensible and nearly all aspects can be replaced by cus-
tom implementations to optimize for particular application scenarios.
For example, during the feature projection step, the index structures
employed in the current implementation are based on ball trees, which
optimizes for high-dimensional datasets with small samples sizes by
employing correlation and differential spaces (Fig. 1a). However, this
index structure can easily be replaced by implementations with differ-
ent computational characteristics. For example, it may make sense to
consider approximate nearest-neighbor methods55 to replace the
current index, which may potentially reduce runtimes for a cut in
sensitivity. Similarly, particularly for larger sample sizes, instead of
using indexing structures, it may be advantageous to directly calculate
correlations for smaller batches via the efficient matrix multiplication
scheme introduced in ‘Efficient calculation of full correlation matrices’.
While this direct calculation and partitioning of correlations increases
time complexity from 𝒪𝒪(n logn) to 𝒪𝒪(n2) , this may be faster than the
currently employed ball tree indexing structure as the corresponding
search performance of 𝒪𝒪(logn) may deteriorate to 𝒪𝒪(n) with increasing
dimensionality (in our case sample size). Here it is important to appro-
priately select the number of simultaneous batches to limit the memory
requirements of this approach (for example, if only one batch is used,
the complete correlation matrix will be instantiated). A corresponding
implementation is provided by CorALS. A detailed comparison with
in-depth parameter optimization and the corresponding relation to
more efficient approximate nearest-neighbor schemes is left for future
studies.

Distributed computation. The methods in this paper are focused on
in-memory computations. However, as mentioned earlier, the com-
putational framework of CorALS allows for sequential computation
of batch results which can be cached on disk, circumventing poten-
tial memory limitations and allowing for calculating correlations for
massive datasets. Furthermore, CorALS also supports distributed

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | April 2023 | 346–359 356

Resource https://doi.org/10.1038/s43588-023-00429-y

computation of correlation and differential matrices through the joblib
backend (https://github.com/joblib/joblib). This directly enables Spark
(https://github.com/joblib/joblib-spark), Dask (https://ml.dask.org/
joblib.html) or Ray (https://docs.ray.io/en/latest/joblib.html).

In principle, the batch-based design of CorALS also allows for more
specialized implementations based on the MapReduce paradigm41.
Thus, overall, CorALS provides a very flexible algorithmic framework
for large-scale correlation analysis that can be easily extended and
adjusted to the application at hand.

Practical considerations
Full correlation matrix calculation. On the basis of the results in
Table 2 and Supplementary Table 3, where CorALS substantially out-
performs all other methods, we recommend generally using CorALS
for full correlation matrix calculation. As the number of features grows,
however, the full correlation matrix will not fit into memory. For exam-
ple, at n = 32,000 features, the full matrix uses more than 8 GB of
memory; at n = 64,000 features, it already requires more than 32 GB.
This can be calculated roughly by assuming 64-bit float values (default
in Python) and the formula: memory(n) = 64n2

8×109
. Thus, we recommend

switching to top-k correlation analysis after n = 32,000 features.

Top-k correlation search. For top-k correlation search, we recom-
mend using the basic CorALS implementation (referred to as matrix in
Table 2) as long as the full correlation matrix fits into memory, inde-
pendent of the number of samples. However, as the number of fea-
tures increases, memory issues will make this approach impossible
to use. When this is the case, switching to the index-based CorALS
implementation is the best option. With increasing sample numbers,
CorALS becomes slower, which may warrant other heuristics such as
dimensionality reduction such as locality sensitive hashing or random
projections (see ‘Discussion’).

Note that, by default, the top-k approximation approach does
not guarantee symmetric results, that is, even if cor(x, y) is returned,
cor(y, x) may be missing. This can be addressed by various post-
processing steps, for example, by adding missing values. CorALS
provides the option to enable this feature. In the experiments, this
is not enabled as symmetric results are redundant for practical
purposes.

Correlation structure visualization. For practical purposes, there
are two properties of the proposed correlation structure visualization
to consider. First, by design, CorALS visualizes strongly positively
correlated features close to each other while the distance to strongly
negatively correlated features will be large (see corollary in ‘Correlation
projections’). In some settings it may be desirable to simultaneously
visualize negatively correlated features close to each other, which is
currently not supported by CorALS. Second, the relationship between
Euclidean distance and correlation established in is not linear, which
may result in bias toward tightly clustering highly correlated features.
See Supplementary Fig. 1 for an illustration of the relation between
correlation and the corresponding Euclidean distance.

Investigating the coordination of single-cell functions
For the analysis in ‘Correlated functional changes across immune cells’
and Fig. 3, we first divide cells into 20 individual non-overlapping cell
types based on manual gating1. We then repeatedly sample 10,000
cells from each cell type across all patients using a dual bootstrapping
scheme to ensure appropriate variations in cell types where less than
10,000 cells are present. The dual bootstrapping scheme first samples
n cells from each cell type with replacement, where n is the number of
available cells for that cell type. From this intermediate sample, we
sample the final 10,000 cells for that cell type with replacement.

On the resulting sample of 200,000 cells across cell types, we
calculate the top-0.01% Spearman correlations across all sampled cells

based on their functional markers. We then count the number of top
correlations between each pair of cell types. This allows to measure
the relative correlation strengths between cell types.

By generating pairs of samples in each repetition, one from third-
trimester cells and one from postpartum cells, we calculate the effect
size (Cliff’s δ) of the top-k frequency differences between each pair
of cell types. Supplementary Fig. 6 depicts a single instance of such a
pair. We sample 1,000 times. Very large effect sizes defined by a cor-
responding effect size threshold (t = 0.622) are visualized in Fig. 3. This
threshold has been derived based on analogous interpretation intervals
proposed for Cohen’s d (refs. 56,57).

As described above, this procedure requires repeated sampling
and top-k correlation calculations across millions of individual cells,
making CorALS an essential component of this pipeline, enabling this
analysis on our available servers by substantially reducing runtime and
particularly memory requirements.

Datasets
The four real-world datasets we use for runtime and memory
evaluation stem from biological applications in the context of pre-
eclampsia, healthy pregnancy and cancer.All previously reported
feature counts are subject to the following pre-processing proce-
dure. We set negative values to 0, remove features that have only a
single value and drop duplicate features (features are considered
duplicates if all their sample values are the same). Dataset statis-
tics are summarized in Table 1. For dataset availability, see Section
‘Data availability’.

The pre-eclampsia dataset24,26 contains aligned measurements
from the immunome, transcriptome, microbiome, lipidome, pro-
teome and metabolome, from 23 pregnant women with and with-
out pre-eclampsia across the three trimesters of pregnancy. In brief,
women of at least 18 years of age in their first trimester of a singleton
pregnancy were recruited to the study after providing their informed
consent and under institutional review board (IRB)-approved pro-
tocols. Whole blood, plasma and urine samples, and vaginal swabs
were collected throughout pregnancy and processed to generate
immunome, transcriptome, microbiome, lipidome, proteome and
metabolome datasets. After aligning omics and dropping features with
missing or only homogeneous values, 32 samples with 16,897 features
where obtained.

The pregnancy dataset6 contains 68 samples from 17 pregnancies
with four samples per woman in the first, second and third trimesters
as well as postpartum, respectively. Each sample contains immunome,
transcriptome, microbiome, proteome and metabolome measure-
ments obtained simultaneously. In brief, women of at least 18 years of
age in their first trimester of a singleton pregnancy were recruited to the
study after providing their informed consent and under IRB-approved
protocols. Whole blood, plasma and serum samples, and vaginal,
stool, saliva and gum swabs were collected throughout pregnancy
and processed to generate immunome, transcriptome, microbiome,
proteome and metabolome datasets. After aligning omics and drop-
ping features with missing or only homogeneous values, 32,211 features
where obtained.

The cancer dataset contains samples from 443 patients with gas-
tric adenocarcinoma58 and 185 patients with esophageal carcinoma59,
for a total of 628 samples obtained via the LinkedOmics platform25. In
brief, fresh frozen tumor samples and accompanying healthy tissue
were collected from patients after providing their informed consent
and under IRB-approved protocols. Samples were used to generate DNA
methylation profiling at the CpG-site and gene levels (methylation CpG-
site level, HM450K; methylation gene level, HM450K), whole-exome
sequencing (mutation gene level), messenger RNA sequencing (HiSeq,
gene level), reverse-phase protein array (analyte level) and somatic
copy number variation (gene level, log-ratio) datasets. After align-
ing omics and dropping features with missing or only homogeneous

http://www.nature.com/natcomputsci
https://github.com/joblib/joblib
https://github.com/joblib/joblib-spark
https://ml.dask.org/joblib.html
https://ml.dask.org/joblib.html
https://docs.ray.io/en/latest/joblib.html

Nature Computational Science | Volume 3 | April 2023 | 346–359 357

Resource https://doi.org/10.1038/s43588-023-00429-y

values, the dataset consisted of samples from 258 patients. For our
runtime and memory experiments, we sample increasing numbers of
features (25%, 50% and 100%).

The single-cell dataset1 contains 68 mass cytometry samples from
17 pregnancies with four samples per woman in the first, second and
third trimesters as well as postpartum, respectively. In brief, women of
at least 18 years of age in their first trimester of a singleton pregnancy
were recruited to the study after providing their informed consent and
under IRB-approved protocols. Whole blood samples were collected
throughout pregnancy and processed to generate an immunome data-
set. For the benchmark experiments, samples from the third trimester
were used. We process the data by sampling 10,000/30,000 cells from
each of the 20 cell types, resulting in a dataset with 200,000/600,000
cells and 10 functional markers per cell.

We also add one more dataset (sim) that corresponds to 400,000
features and 500 samples to test larger sample sizes. The data are
generated randomly.

Experimental settings for runtime and memory analysis
Experiments were repeated from 3 to 10 times depending on their runt-
ime, the first sample was always dropped (to account for burn-ins, for
example, for Julia’s JIT compiler), and respective medians are reported.
No substantial runtime or memory fluctuations were observed. The
experiments were run on a bare metal server with two AMD EPYC 7452
32-Core Processors and hyper-threading enabled amounting to 128
processing units. The machine provided 314 GB of memory and ran
on Ubuntu 20.04.1 LTS. We use Python 3.9.1 and R 4.0.3 with current
packages installed from conda-forge and Bioconductor. The employed
Julia version was 1.5.3. Multi-threading was disabled explicitly if not
otherwise specified.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The pre-eclampsia dataset is available from a public repository60. The
multiomics pregnancy dataset is available from a public repository60,
and the original authors’ website6. Intermediate data to produce Fig. 2
are provided through a public repository60. The cancer dataset is
derived from a multiomics study available from LinkedOmics (http://
linkedomics.org/data_download/TCGA-STAD/). In particular, we inte-
grate the datasets methylation (CpG-site level, HM450K), methylation
(gene level, HM450K), mutation (gene level), RNA sequencing (HiSeq,
gene level), reverse-phase protein array (analyte level) and somatic
copy number variation (gene level, log-ratio). The single-cell dataset
used to derive the benchmark dataset single cell and to support the
findings is available from FlowRepository (http://flowrepository.org/
id/FR-FCM-ZY3Q). Pre-processed data for benchmarking as well as
intermediate data to produce Fig. 3 are provided through a public
repository60. We provide source data for all figures and tables, as well
as download instructions and pre-processing scripts through a public
repository60,61 and via https://nalab.stanford.edu/corals/.

Code availability
The complete code for CorALS, code to reproduce all experiments
and figures in this paper, and links and instructions to prepare the
corresponding datasets are available in a public repository61, and are
listed at https://nalab.stanford.edu/corals/.

References
1.	 Aghaeepour, N. et al. An immune clock of human pregnancy. Sci.

Immunol. 2, eaan2946 (2017).
2.	 Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease.

Genome Biol. 18, 83 (2017).

3.	 Preece, S. J., Goulermas, J. Y., Kenney, L. P. & Howard, D. A
comparison of feature extraction methods for the classification of
dynamic activities from accelerometer data. IEEE Trans. Biomed.
Eng. 56, 871–879 (2008).

4.	 Jensen, P. B., Jensen, L. J. & Brunak, S. Mining electronic health
records: towards better research applications and clinical care.
Nat. Rev. Genet. 13, 395–405 (2012).

5.	 De Francesco, D. et al. Data-driven longitudinal characterization
of neonatal health and morbidity. Sci. Transl. Med. 15,
eadc9854 (2023).

6.	 Ghaemi, M. S. et al. Multiomics modeling of the immunome,
transcriptome, microbiome, proteome and metabolome
adaptations during human pregnancy. Bioinformatics 35,
95–103 (2019).

7.	 Subramanian, I., Verma, S., Kumar, S., Jere, A. & Anamika, K.
Multi-omics data integration, interpretation, and its application.
Bioinform. Biol. Insights 14, 1177932219899051 (2020).

8.	 Saccenti, E., Hendriks, M. H. & Smilde, A. K. Corruption of the
pearson correlation coefficient by measurement error and its
estimation, bias, and correction under different error models. Sci.
Rep. 10, 438 (2020).

9.	 Benson, A., Gleich, D. F. & Leskovec, J. Higher-order organization
of complex networks. Science 353, 163–166 (2016).

10.	 Nassar, H., Kennedy, C., Jain, S., Benson, A. R. & Gleich, D. F.
Using cliques with higher-order spectral embeddings improves
graph visualizations. In Proc. Web Conference 2020 2927–2933
(Association for Computing Machinery, 2020).

11.	 Rao, J., Zhou, X., Lu, Y., Zhao, H. & Yang, Y. Imputing single-cell
RNA-seq data by combining graph convolution and autoencoder
neural networks. iScience 24, 102393 (2021).

12.	 Wang, J. et al. scGNN is a novel graph neural network framework
for single-cell RNA-seq analyses. Nat. Commun. 12, 1882 (2021).

13.	 Traxl, D., Boers, N. & Kurths, J. Deep graphs—a general framework
to represent and analyze heterogeneous complex systems across
scales. Chaos 26, 065303 (2016).

14.	 Chang, D.-J., Desoky, A. H., Ouyang, M. & Rouchka, E. C. Compute
pairwise Manhattan distance and Pearson correlation coefficient
of data points with GPU. In 10th ACIS International Conference
on Software Engineering, Artificial Intelligences, Networking and
Parallel/Distributed Computing 501–506 (IEEE, 2009).

15.	 Kijsipongse, E., Suriya, U., Ngamphiw, C. & Tongsima, S. Efficient
large Pearson correlation matrix computing using hybrid MPI/
CUDA. In Eighth International Joint Conference on Computer
Science and Software Engineering 237–241 (IEEE, 2011).

16.	 Wang, S. et al. Optimising parallel R correlation matrix
calculations on gene expression data using MapReduce.
BMC Bioinformatics 15, 351 (2014).

17.	 Chilson, J., Ng, R., Wagner, A. & Zamar, R. Parallel computation
of high-dimensional robust correlation and covariance matrices.
Algorithmica 45, 403–431 (2006).

18.	 Kim, S. ppcor: an R package for a fast calculation to semi-partial
correlation coefficients. Commun. Stat. Appl. Methods 22,
665 (2015).

19.	 Xiong, H., Brodie, M. & Ma, S. TOP-COP: mining top-k strongly
correlated pairs in large databases. In Sixth International
Conference on Data Mining 1162–1166 (IEEE, 2006).

20.	 Langfelder, P. & Horvath, S. Fast R functions for robust
correlations and hierarchical clustering. J. Stat. Softw. 46, 1–17
(2012).

21.	 Papadakis, M. et al. Rfast: a collection of efficient and extremely
fast R functions. R package version 2.0.1 https://CRAN.R-project.
org/package=Rfast (2020).

22.	 Badr, H. S., Zaitchik, B. F. & Dezfuli, A. K. A tool for hierarchical
climate regionalization. Earth Sci. Inform. 8, 949–958
(2015).

http://www.nature.com/natcomputsci
http://linkedomics.org/data_download/TCGA-STAD/
http://linkedomics.org/data_download/TCGA-STAD/
http://flowrepository.org/id/FR-FCM-ZY3Q
http://flowrepository.org/id/FR-FCM-ZY3Q
https://nalab.stanford.edu/corals/
https://nalab.stanford.edu/corals/
https://CRAN.R-project.org/package=Rfast
https://CRAN.R-project.org/package=Rfast

Nature Computational Science | Volume 3 | April 2023 | 346–359 358

Resource https://doi.org/10.1038/s43588-023-00429-y

23.	 Schmidt, D. Co-operation: fast correlation, covariance, and cosine
similarity. R package version 0.6-2 https://cran.r-project.org/
package=coop (2019).

24.	 Han, X. et al. Differential dynamics of the maternal immune
system in healthy pregnancy and preeclampsia. Front. Immunol.
10, 1305 (2019).

25.	 Vasaikar, S. V., Straub, P., Wang, J. & Zhang, B. Linkedomics:
analyzing multi-omics data within and across 32 cancer types.
Nucleic Acids Res. 46, D956–D963 (2018).

26.	 Marić, I. et al. Early prediction and longitudinal modeling of
preeclampsia from multiomics. Patterns 3, 100655 (2022).

27.	 Langfelder, P. & Horvath, S. Fast R functions for robust
correlations and hierarchical clustering. J. Stat. Softw. 46,
i11 (2012).

28.	 Papadakis, M. et al. Rfast: a collection of efficient and extremely
fast R functions. R package version 2.0.3 https://CRAN.R-project.
org/package=Rfast (2021).

29.	 Schmidt, D. Co-operation: fast correlation, covariance, and cosine
similarity. R package version 0.6-3 https://cran.r-project.org/
package=coop (2021).

30.	 Badr, H. S., Zaitchik, B. F. & Dezfuli, A. K. A tool for hierarchical
climate regionalization. Earth Sci. Inform. 8, 949–958 (2015).

31.	 Musser, D. R. Introspective sorting and selection algorithms.
Softw. Pract. Exp. 27, 983–993 (1997).

32.	 Jardim, V. C., Santos, S. d. S., Fujita, A. & Buckeridge, M. S.
Bionetstat: a tool for biological networks differential analysis.
Front. Genet. 10, 594 (2019).

33.	 Tu, J.-J. et al. Differential network analysis by simultaneously
considering changes in gene interactions and gene expression.
Bioinformatics 37, 4414–4423 (2021).

34.	 Ha, M. J., Baladandayuthapani, V. & Do, K.-A. DINGO: differential
network analysis in genomics. Bioinformatics 31,
3413–3420 (2015).

35.	 McKenzie, A. T., Katsyv, I., Song, W.-M., Wang, M. & Zhang,
B. DGCA: a comprehensive r package for differential gene
correlation analysis. BMC Syst. Biol. 10, 106 (2016).

36.	 Fukushima, A. DiffCorr: an R package to analyze and visualize
differential correlations in biological networks. Gene 518, 209–214
(2013).

37.	 Siska, C., Bowler, R. & Kechris, K. The discordant method: a novel
approach for differential correlation. Bioinformatics 32, 690–696
(2016).

38.	 Ghazanfar, S., Strbenac, D., Ormerod, J. T., Yang, J. Y. &
Patrick, E. DCARS: differential correlation across ranked samples.
Bioinformatics 35, 823–829 (2019).

39.	 Espinosa, C. et al. Data-driven modeling of pregnancy-related
complications. Trends Mol. Med. https://doi.org/10.1016/
j.molmed.2021.01.007 (2021).

40.	 Maaten, Lvd. & Hinton, G. Visualizing data using t-SNE. J. Mach.
Learn. Res. 9, 2579–2605 (2008).

41.	 Dean, J. & Ghemawat, S. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 107–113 (2008).

42.	 Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. & Stoica, I.
Spark: cluster computing with working sets. In Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing
1–10 (HotCloud 2010).

43.	 Bishara, A. J. & Hittner, J. B. Reducing bias and error in the
correlation coefficient due to nonnormality. Educ. Psychol. Meas.
75, 785–804 (2015).

44.	 Epskamp, S. & Fried, E. I. A tutorial on regularized partial
correlation networks. Psychol. Methods 23, 617 (2018).

45.	 Pearl, J. Bayesian networks. Department of Statistics,
UCLA (2011).

46.	 Greenacre, M. & Primicerio, R. Multivariate Analysis of Ecological
Data (Fundacion BBVA, 2014).

47.	 Anderson, E. et al. LAPACK Users’ Guide 3rd edn (Society for
Industrial and Applied Mathematics, 1999).

48.	 Blackford, L. S. et al. An updated set of basic linear algebra
subprograms (BLAS). ACM Trans. Math. Softw. 28, 135–151 (2002).

49.	 Martınez, C. Partial quicksort. In Proceedings of the Sixth
Workshop on Algorithm Engineering and Experiments and the First
Workshop on Analytic Algorithmics and Combinatorics 224–228
(2004).

50.	 Ram, P. & Gray, A. G. Maximum inner-product search using
cone trees. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining 931–939
(KDD 2012).

51.	 Omohundro, S. M. Five Balltree Construction Algorithms Technical
Report TR-89-063 (International Computer Science Institute,
1989).

52.	 Curtin, R., March, W., Ram, P., Anderson, D., Gray, A. & Isbell, C.
Tree-Independent Dual-Tree Algorithms. In Proceedings of the
30th International Conference on Machine Learning 1435–1443
(ICML 2013).

53.	 Matthews, B. W. Comparison of the predicted and observed
secondary structure of T4 phage lysozyme. Biochim. Biophys.
Acta 405, 442–451 (1975).

54.	 Benjamini, Y., Heller, R. & Yekutieli, D. Selective inference in
complex research. Phil. Trans. R. Soc. A 367, 4255–4271 (2009).

55.	 Aumüller, M., Bernhardsson, E. & Faithfull, A. ANN-Benchmarks: a
benchmarking tool for approximate nearest neighbor algorithms.
In Proceedings of the 10th International Conference on Similarity
Search and Applications 34–49 (SISAP 2017).

56.	 Sawilowsky, S. S. New effect size rules of thumb. J. Mod. Appl.
Stat. Methods 8, 26 (2009).

57.	 Romano, J., Kromrey, J. D., Coraggio, J., Skowronek, J. & Devine,
L. Exploring methods for evaluating group differences on the
nsse and other surveys: are the t-test and Cohen’s d indices the
most appropriate choices? In Annual Meeting of the Southern
Association for Institutional Research 1–51 (2006).

58.	 The Cancer Genome Atlas Research Network Comprehensive
molecular characterization of gastric adenocarcinoma. Nature
513, 202–209 (2014).

59.	 The Cancer Genome Atlas Research Network Integrated genomic
characterization of oesophageal carcinoma. Nature 541, 169–175
(2017).

60.	 Becker, M. et al. CorALS—intermediate data. Zenodo https://
doi.org/10.5281/zenodo.7713898 (2023).

61.	 Becker, M. et al. CorALS—source code. Zenodo https://doi.org/
10.5281/zenodo.7714039 (2023).

Acknowledgements
This work was supported by NIH R35GM138353 (N.A.), 1R01HL139844
(N.A., D.S., G.S., B.G., M.S.A.), the March of Dimes (N.A., D.S., G.S., B.G.,
M.S.A.), Burroughs Wellcome Fund 1019816 (N.A.), the Robertson
Foundation (D.S), and the Bill and Melinda Gates Foundation
INV-001734, OPP1113682, INV-003225 (N.A., D.S., G.S., B.G., M.S.A.),
and the Alfred E. Mann Family Foundation (N.A.). The authors are
solely responsible for the content of this article, which does not
necessarily represent the official views of the US Department of Health
and Human Services (HHS). The results published here are in part
based upon data generated by the TCGA Research Network: https://
www.cancer.gov/tcga.

Author contributions
Based on the CRediT model, M.B., H.N. and N.A. were responsible for
conceptualization; M.B., H.N. and M.X. for data curation; M.B., H.N.
and C.E. for formal analysis; M.B. and N.A. for funding acquisition;
M.B., H.N. and C.E. for investigation; M.B., H.N., C.E. and N.A. for
methodology development and design; M.B. and N.A. for project

http://www.nature.com/natcomputsci
https://cran.r-project.org/package=coop
https://cran.r-project.org/package=coop
https://CRAN.R-project.org/package=Rfast
https://CRAN.R-project.org/package=Rfast
https://cran.r-project.org/package=coop
https://cran.r-project.org/package=coop
https://doi.org/10.1016/j.molmed.2021.01.007
https://doi.org/10.1016/j.molmed.2021.01.007
https://doi.org/10.5281/zenodo.7713898
https://doi.org/10.5281/zenodo.7713898
https://doi.org/10.5281/zenodo.7714039
https://doi.org/10.5281/zenodo.7714039
https://www.cancer.gov/tcga
https://www.cancer.gov/tcga

Nature Computational Science | Volume 3 | April 2023 | 346–359 359

Resource https://doi.org/10.1038/s43588-023-00429-y

administration; N.A. for providing resources; M.B., H.N. and M.X. for
software; N.A. for supervision; M.B., C.E. and I.A.S. for validation; M.B.
for visualization; M.B. and C.E. for writing the original draft; and all
authors for reviewing and editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43588-023-00429-y.

Correspondence and requests for materials should be addressed to
Nima Aghaeepour.

Peer review information Nature Computational Science thanks
Ali Rahnavard and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Primary Handling Editors:
Ananya Rastogi and Kaitlin McCardle, in collaboration with the
Nature Computational Science team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-023-00429-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

ć

	Large-scale correlation network construction for unraveling the coordination of complex biological systems

	Results

	Efficient computation of correlation matrices

	Efficient approximation of large-scale correlation networks

	Differential analysis of correlation networks

	Explicit visualization of correlation structure

	Large-scale multiomics correlation analysis across pregnancy

	Correlated functional changes across immune cells

	Discussion

	Methods

	Derivation of efficient feature representations by CorALS

	Correlation projections
	Differential projections

	Efficient calculation of full correlation matrices

	Efficient approximation of correlation networks

	Top correlation computation as a query search problem
	Joint ball trees for local top correlation discovery
	Approximate search for global top-k correlations
	Threshold-based correlation filtering

	Top correlation difference search

	Correlation embeddings

	Correlation coefficient classes

	P-value calculation and multiple testing correction

	Extensible framework for large-scale correlation analysis

	Feature projections
	Distributed computation

	Practical considerations

	Full correlation matrix calculation
	Top-k correlation search
	Correlation structure visualization

	Investigating the coordination of single-cell functions

	Datasets

	Experimental settings for runtime and memory analysis

	Reporting summary

	Acknowledgements

	Fig. 1 Overview of the CorALS framework.
	Fig. 2 Dynamic changes in multiomic measurements before and after birth.
	Fig. 3 Concerted immune regulation at the single-cell level during pregnancy.
	Table 1 Dataset statistics.
	Table 2 Top-k correlation network approximation.

