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The role of complexity for digital twins  
of cities

G. Caldarelli    1,2,3,4  , E. Arcaute    5,6, M. Barthelemy7,8, M. Batty5,6, 
C. Gershenson9,10, D. Helbing11,12, S. Mancuso4,13, Y. Moreno    12,14,15,16, 
J. J. Ramasco    17, C. Rozenblat    18, A. Sánchez    14,19 & 
J. L. Fernández-Villacañas20

We argue that theories and methods drawn from complexity science are 
urgently needed to guide the development and use of digital twins for cities. 
The theoretical framework from complexity science takes into account both 
the short-term and the long-term dynamics of cities and their interactions. 
This is the foundation for a new approach that treats cities not as large 
machines or logistic systems but as mutually interwoven self-organizing 
phenomena, which evolve, to an extent, like living systems.

A digital twin is a model that is as close as possible to a physical system 
such that it can be used for many practical purposes. The twin shares 
information with the counterpart system in terms of its inputs and out-
puts. The system and its twin work in concert, where the twin can inform, 
control, assist and enhance the original system1. Digital twins are being 
used, in particular, to represent the physical (infra)structure of complex 
systems, such as cities (but also products and persons), in an increasingly 
detailed and realistic way2–4. Current digital twins typically employ data 
analytics, physical modeling approaches5 associated with the Internet 
of Things (IoT)6, machine learning and artificial intelligence, as well 
as a variety of modeling styles and types that have recently emerged7.

Notably, digital twins of cities have recently attracted the atten-
tion of scientists, engineers, and policymakers. In this context, digital 
twins are largely concerned with real-time operations of cities, such  
as their physical flows. They are increasingly being used as new design 
and management tools for both short- and medium-term planning8. 
This approach is based on large amounts of data from human and 
physical systems, where automated sensors are increasingly available 
to deliver such data in near real time.

Although some digital twins have been proposed as models for 
the long-term evolution and planning of cities, they are often focused  
on the management of shorter-term dynamics, such as the 24-hour 
city, rather than changes over years or decades2. In addition, cities 
grow as the result of a multitude of mutual interactions or bottom-up 
decisions, which is very different from most digital twins that have  
been proposed for cities as top-down created constructs9; such  
constructs resemble more machines than organisms. Because  
everyone perceives and experiences a city differently, there are  
individually different behaviors, expectations and representations, 
which are hard—if not impossible—to capture in a single digital twin.

Overall, cities are the outcome of multiple interactions between 
their components10–13. This is a property that can be well explained 
by means of complexity science—meaning, the science of complex 
systems—which embraces different scales. Complex systems are often 
defined as systems that are ‘more than the sum of their parts’. This cannot  
be fully explained from the properties of the system components14, but 
requires the consideration of their nonlinear or network interactions. In 
fact, complex (dynamical) systems are systems in which the constituent 
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These have diverse identities, which influence the intentions, behaviors, 
characteristics and interactions of their members. Social processes 
further produce social capital such as reputation or trust25. They also 
create culture and values, which influence individual consciousness 
and collective behavior26. A mere representation of the structure and 
population of a city fails to reproduce those social phenomena, at least 
without proper consideration of evolutionary features connecting  
the individual with the mesoscale and macroscale.

In short, the traditional digital twin approach tends to overempha-
size the physical components of a city, thereby massively oversimplify-
ing human interactions. This can cause data-driven governance and 
planning to fall short. When used to control a system, it may elimi-
nate serendipity and chance, diversity and pluralism. This may affect 
creativity, innovation and (co-)evolution, meaning properties that 
are important for a system to flexibly adapt, improve and thrive. As 
a consequence, one might get ‘trapped in the matrix’. That is, using 
digital twins for control could ’freeze’ certain organizational patterns, 
thereby preventing the successful adaptation to a changing environ-
ment and context27.

Systemic failure or collapse
As a result of social interactions, systemic failures might result. A clas-
sical example is given by the financial system28,29. Here, the system 
is defined by financial institutions. One way to measure the mutual 
network dependencies is the credit network among banks. Institutions 
that regulate the liquidity market, such as central banks, are regularly 
running stress tests to quantify the robustness of the system versus the 
risk of bankruptcies, assuming some external shock (such as the recent 
war in Ukraine, which triggered large fluctuations in the price of oil and 
gas). However, such stress tests can lead to wrong results if one just 
considers that banks are either functional or bankrupt. For example, 
a bank may still operate while being on the edge of bankruptcy. Only 
its network of debts allows one to evaluate the degree of the distress of 
the financial institution30. Such underestimation of the risk can trigger 
further disruption. Furthermore, if central banks were to control the 
transactions of consumers, the effects would be even bigger. Hence, 
traditional reductionist approaches that attempt to understand cities 
from the properties of their parts often fail, mainly due to their lack of 
considering multi-level interactions and complexity31.

Scalability features
A further important problem of digital twins that needs to be addressed 
concerns their scalability, which in some sense pertains to real cities as 
well. In general, as a city gets bigger, its representation typically does 
not scale linearly with densities, areas and size32,33. Bigger cities are 
qualitatively different from smaller cities and, in general, the bigger a 
city the greater the agglomeration or clustering effects that increase 
their inventiveness, innovation and wealth. When defining a city in 
terms of its physical or functional boundaries, these often extend far 
beyond the administrative boundaries, thereby better representing 
the interacting natural and human elements of a city’s system34. This 
is important as it can make an enormous difference to the scaling and 
actual properties of a city35–37.

Cities should be represented at the scale of their whole extended 
urban region8. When considering the city in this wider context, the  
current concept of local digital twins might be too limited. In fact,  
many implications of the complexity of cities need to be analysed in 
a global context—for example, those that are relevant for scenario 
forecasting associated with pandemics38,39. In short, the boundaries of 
a city are uncertain and, therefore, seeing a city in anything less than 
its global context is a problematic simplification.

How complexity science can help
New technology will continue to help unleash the power of digital 
twins through various kinds of sensing associated with, for example, 

elements interact with and adapt to each other in a nonlinear way, self-
organizing often across multiple networks and scales, which typically 
results in the emergence of new system properties.

In the case of urban areas, citizens interact directly and indirectly 
with each other. Such a combination of patterns is typically quantified 
in the form of a network15. The interplay among citizens determines 
traffic jams, segregation phenomena and other spatial distortions,  
as well as supply-side problems such as unexpected shortages of  
services and sometimes their oversupply. In all of these cases, a suit-
able network representation often allows one to quantitatively com-
pute relevant properties of such systems, thereby providing useful  
representations of their fragility or resilience.

In this Perspective, we argue that combining the digital twin 
approach with a complexity science approach can have huge benefits 
for cities. On the one hand, the reproduction of all relevant city features 
in a digital twin is a necessary condition for better calibrated, validated 
and hence more realistic models. On the other hand, the recognition 
of systemic effects arising from ‘individual behaviors’ is expected 
to deliver more explicable and trustworthy models and results. In 
particular, for the latter, it is helpful to use mathematical instruments 
such as graphs to describe the system elements and their interac-
tions. Network science can be, thus, a key method for articulating how  
interactions between the elements of a system and the processes  
driving it can be modeled.

Why digital twins are not enough
There are many theories as to how cities are structured and how they 
evolve, and most of them relate, at some juncture, their socio-economic 
functioning primarily to their physical aspects16. This also applies to 
digital twins, which tend to ignore the extensive complexity of a world, 
where psycho-social, economic, physical and environmental features 
are deeply entangled and cannot be easily separated out. In fact, con-
temporary approaches to creating digital twins are often surprisingly 
‘materialistic’ or ‘physicalistic’, typically based on measurement data 
about the functioning of buildings, streets and natural environments, 
whereas human, social and cultural activities that drive the socio-
dynamics of cities are often barely featured9.

We acknowledge that data-driven methods based on measurement 
sensors, IoT, big data analytics and machine learning have become 
quite powerful. However, they tend to bias digital twins towards reflect-
ing our physical world, while it is widely accepted among urban poli-
cymakers, planners and even the wider public at large that there are 
many things in cities that cannot be easily captured in physical terms. 
Moreover, these methods have some further limitations owing to: 
measurement limits (involving sample bias and uncertainty); computa-
tional limits (such as NP-hard computational problems17); mathemati-
cal constraints (such as undecidability or incompleteness18 or halting 
problems17,19,20); common issues of data analytics (such as overfitting21, 
parameter sensitivity, ambiguities, uncertainties and relevance of 
context); and limits of machine learning approaches (such as the use 
of ‘black box algorithms’22). As a result, more and more data does not 
necessarily result in a deeper understanding, but can instead result  
in the emergence of further problems with digital twins as well as in  
the social systems, which are being managed using such twins23.

Immaterial relations
Today’s digital twin approach is often based on data-driven and 
machine-learning-based massive agent-based simulations, which may 
produce highly detailed lookalikes. But many digital twins do not con-
sider immaterial, invisible and barely measurable interactions well. To 
illustrate the importance of this, let us discuss some well-known phe-
nomena in societies24. For instance, conscious populations give words 
and patterns a meaning. These meanings matter for human intentions, 
decisions, behaviors and interactions, but they may change among 
groups and over time. Moreover, people spontaneously form groups. 
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IoT, which is already producing a previously unimaginable amount of 
data quickly and cheaply. The interpretation of these data, however, 
and the quality of analysis is still problematic. In many cases, it is also 
necessary to reduce the size of data and filter them, to handle issues 
such as sustainability and societal resilience40,41.

Complexity science has the potential to address these issues by 
combining data-based and hypothesis-based approaches. For example,  
network models are being used to represent different interests of 
people, their skills, behaviors and habits. Complexity through network 
modeling also allows for a shift in perspective. In fact, most models of 
cities still treat cities as systems built from the top down. Complexity 
science changes this perspective and allows one to consider cities  
as multi-level systems42,43, which involve many bottom-up processes. 
This makes it possible to explain highly important signatures such 
as power laws and scaling44, as well as long-range correlations across  
the various networks45. The fact that such systems evolve from the  
bottom up introduces a degree of uncertainty and unpredictability  
that needs to be factored into the use of digital twins when gener-
ating, testing, evaluating and implementing simulation scenarios  
for future cities.

Urban policymakers46, analysts, regulators and planners need 
to be made continually aware of the many interconnected facets of  
the planning problem. Therefore, to ensure future sustainability, fair-
ness and adaptability47, different modeling frameworks need to be 
considered. In short, urban policy calls for models that capture the 
co-evolutionary nature of cities, so that future emergent developments 
can be best anticipated and adapted to. Rather than just being formal 
representations of the problem at hand, models help one to focus the 
analysis on relevant questions, thereby informing one about the kind 
or part of data to use.

We shall see in the following that to deal with the points raised 
in the above section, we need to consider the multiple intertwined 
interactions between networks, which develop at different levels and 
dimensions, and mutually influence their functioning trajectories of 
development or failure. The great strength of complex systems is their 
ability to self-organize efficiently, resiliently and favorably, if suitable 
interactions are in place. This may be supported by federated learning 
approaches.

Quantifying immaterial relations
Some of the quantities that may not be measurable directly (and, there-
fore, are often neglected by digital twins) result from interactions in 
social communities, which may be considered by network analysis. 
Social groups are an important example to illustrate the coarse graining 
of data. Their relationships can be described at different scales (where 
a module at the lower scale becomes a node at a higher scale)48. Multi-
layer networks are the mathematical representations of such struc-
tures, as shown in the left part of Fig. 1, which illustrates a city system.

Such structures appear as the natural topological blueprint49,42 
of complex transport50,51, information52 and energy flows53. Social 
networks in cities are multi-layered also, because they comprise pro-
fessional, friendship, institutional, religious and other channels that 
overlap and sometimes have very strong mutual effects. In addition, 
these networks interact with the infrastructural networks48, as depicted 
in Fig. 1. Parts of the local networks also depend on bigger networks that 
extend beyond the boundaries of the city54: at the regional scale, com-
muters coming from outside of the city often have impacts that reach 
beyond the units of political governance associated with their com-
mute. At the global scale, each city is embedded in multiple national and 
global exchange networks for products and services, firms, migrants, 
cultures and ideas. These create channels of collaboration for inno-
vation, imitation and concurrence, which are relevant for planning 
future cities.

Public urban mobility systems are composed of several transporta-
tion modes connected together. Many studies in urban mobility still 

ignore the multi-layer nature of transportation systems, considering 
only aggregated versions of these networks. This often treats layers as 
if they were isolated from each other, leading potentially to misplaced 
conclusions55.

Complexity and resilience
As open, ‘non-equilibrium’ systems, urban areas can be considered 
to resemble living organisms; such a feature can be considered by 
(co-)evolutionary approaches and by defining a ‘city’s metabolism’53.  
Such a perspective is also suited to study the resilience of cities with 
respect to external shocks. As the above-mentioned layers are interde-
pendent, the information about any specific layer and the dynamics of 
the cascading effects between them is often lost when aggregating net-
work data. This is particularly relevant for the issue of resilience, which 
is strongly affected by couplings between layers56. Current research 
into multiplex networks considers new ways in which different loca-
tions in the city are connected, based on a wide variety of material and 
information flows.

Evolving layers may include the physical (natural and artefactual) 
environment, as well as social structures, networks, movements and 
the immaterial properties of their interactions. For example, some 
new infrastructures such as rail or road systems could be beneficial 
for the whole city’s accessibility, but at the same time they could also 
create new local issues of segregation, pollution or risk of accidents. 
This is why the variety of scales and dimensions of the city is crucial 
for articulating the way a city functions. The systems developing at 
different interdependent scales are far from equilibrium, potentially 
changing environmental and societal systems even globally57. The 
technical features of multi-layer networks (communities, bottlenecks, 
centrality, fragility) allow one to describe these evolving multi-level 
socio-ecological patterns. In general, the framework of complex net-
works allows one to follow the evolution of interactions between social 
and natural dimensions at different scales. Such features are in strong 
agreement with Elinor Ostrom’s work on ‘managing the commons’58,59. 
Cities are a true example of socio-ecological systems in the sense of 
Elinor Ostrom: these are capable of an effective and sustainable man-
agement of the commons, based on institutions that may arise in a 
self-organized manner from the interactions between individuals. Such 
institutions can successfully (self-)govern the commons.

To deal with these problems, measures of centrality (which define 
the part of the network nearest to all the other parts) can represent 
intangible quantities such as the importance of areas to protect the 
system from collapsing. Networks also offer new ways to understand 
coordination and cooperation60.

Multi-scale approach
Networks allow one to focus on quantitative measurements such as 
the flow of energy in a specific area; see, for instance, Maranghi et al.61, 
where the authors consider that the sustainability of a city is reflected 
by a complex, dissipative system62, which must be assessed consider-
ing energy, material and information flows. These exist at scales that 
offer an overall view, while giving detailed insights into processes that 
determine how the city functions, meaning how flows are transformed 
and efficiently used at a smaller scale. This is essential information as it 
may guide the world towards fairer, healthier and more liveable cities.

Complex systems can play an essential role in figuring out and 
illustrating how these diverse and widespread goals are interconnected 
at different scales and how they may be realized63. In such a way, it will 
also be possible to take bottom-up phenomena into account. This is 
particularly important in our rapidly changing world, which is deter-
mined by interactions, positive feedbacks, random noise, and network 
cascades. Decentralized control can perform better in complex systems 
with heterogeneous elements, large degrees of fluctuation and short-
term predictability, because of greater flexibility to local conditions 
and greater robustness to perturbations.
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Challenges of integrating complexity science into 
digital twins
As discussed throughout this paper, the data-driven approach repre-
sents a major leap forwards compared with previous frameworks. It is, 
however, insufficient to create an accurate model of our complex world, 
which is characterized by limits to what is measurable, predictable and 
controllable64,65. However, integrating complexity with digital twins, 
while absolutely necessary, is not without challenges.

One of the challenges that need to be tackled is deciding the 
right amount of data and selecting the best data to address each 
issue. Attempts to produce an exact digital copy of the world are 
obstructed by many factors—not only necessarily by a lack of data  
but also by some laws of mathematics and of nature (see ‘Why digital  
twins are not enough’). Surprisingly, less parameters or models  
with noise can sometimes generate better results—and simpler  
models often have more predictive power. Another difficulty arises 
from the fact that working with one big dataset that attempts to cover 
every known feature of the city and, then, filtering out the data needed 
for a particular application, may not always be effective. The bigger 
the data, the less efficient is the filtering, and sometimes one does 
not see the forest for the trees. Also, the well-known problem of over
fitting often plagues approaches that seek to extract patterns from big  
data using various kinds of machine learning techniques66,67. The focus 
is typically put on a detailed representation of the system’s compo-
nents, while their interactions are often a lot more important for 
understanding the behavior of complex systems68. It is then clear that 

much care is needed to properly deal with data to benefit from the 
‘complexity toolbox’.

Related to the previous issue is the challenge of obtaining exact 
data on the interactions of the system’s components. This inherently 
limits reproducibility, no matter how much data about the system’s 
elements are available. Unfortunately, interactions may be probabil-
istic or their effects may occur with delays, such that the exact kinds of 
interactions are often hard to determine from available data. They may 
also vary across different scales, ranging at least from human–human 
interactions to interactions between humans and the environment. 
It might be necessary to study cities as ecosystems. Plant species, for 
example, find ways to discover mutual convenience through the slow 
and continuous adjustment of their relationships, which is guided, 
generation after generation, by evolution. It is owing to the process 
of co-evolution (by which human environments, buildings, networks, 
plants, animals, ecosystems and cultures advance in interactive 
ways) that cities can develop and thrive, particularly when interac-
tions are synergistic and symbiotic. Consequently, planning interven-
tions need to consider bottom-up interactions, which is central for a 
proper, generative understanding of urban dynamics69, and to enable  
thriving cities. Similarly to living systems, cities evolve to generate 
morphology, networks, information, fabric and functionality, which 
define the essence of their complex nature70,71.

Beyond dealing with data and having a precise picture of the 
interactions of the city components, a further challenge arises as the 
complexity picture must reflect the behaviors and interactions of 

Properties and features of complex systems
• Interconnected and interdependent elements
• Networked hierarchical connectivities
• Adaptability
• Self-organization
• Emergent phenomena
• Nonlinear interactions

• Collective behavior
• Non-equilibrium dynamics
• Limited predictability
• Di�erent levels of organization
• Threshold e�ects

IoT technologies

Transportation

Workplace

Land and
agriculture

Services

Household

People

Interconnected and
interdependent elements

Collective
behavior

Levels of organization

Emergent phenomena

Feedback

Fig. 1 | Features of complexity. Schematic illustration of a city as a complex 
system generating emergent phenomena, something that is not captured 
by a digital twin alone. A city may be represented in terms of its different 

interacting layers (left), which give rise to emergent properties such as clusters 
of communities and traffic patterns (right). The properties and features of these 
types of system are described in the box (bottom).
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their actors, as cities are designed, built and planned by the people, for 
the people. This in turn involves mapping many layers of complexity 
defining the city system72–74. This occurs, as we have noted, because 
the interaction networks between people in cities are multi-layered, 
corresponding to different arenas in which city life takes place. But this 
is not the only challenging issue of complexity, as human interactions 
lead to second- and higher-order phenomena75, when people them-
selves detect the presence of emergent features and act accordingly. 
In addition, it is important to incorporate the many timescales that can 
be involved in these processes. This is crucial for the complex systems 
perspective to improve the implementation of digital twins.

Examples of second-order emergent phenomena abound, begin-
ning with social norms76. Such second-order emergence arises77, for 
instance, when a norm promotes cooperation or collective action78,79. 
The dynamics of the underlying feedback loops depend on both exter-
nal and idiosyncratic factors, leading to a very complex dynamics, 
taking place over very different timescales79. A paradigmatic exam-
ple is that of pedestrian route choice, a process involving informa-
tion perception, information integration and obstacle avoidance, 
where individual decision-making responds to information in con-
text-dependent settings80. It thus becomes apparent that an accurate 
and useful description of these multi-time and multi-scale feedback 
processes taking place on multi-layer networks is a key challenge in 
defining proper digital twins for cities, where complex structures, 
functionalities and dynamics are vital.

Another important issue is related to the ethical norms and  
quality standards required by digital twins. To properly design  
cities for humans in harmony with nature, the concept of a digital twin 
needs to be extended to the social and ecological domain in a value-
sensitive way, respecting privacy and human rights67. The fact that 
a city is composed of physical, biological and social entities should 
be addressed by digital twins that take the various known challenges 
into account24 (Fig. 2). Even more importantly, one needs to consider 

that many of the qualities that matter for human and city life, such as 
freedom, creativity, well-being, friendship, trust and dignity, are hardly 
quantifiable but should not be just neglected or treated like noise. 
Setting up a thorough framework including all possible ethical factors  
involved in digital twins constitutes a very important complexity chal-
lenge, given the difficulties to predict collective outcomes from indi-
vidual circumstances.

Last but not least, there is currently a lack of complexity scien-
tists in many areas of science and engineering, and hence a lack of 
knowledge regarding what is special about complex systems and their 
behavior, and what this means for the design and use of digital twins. 
Accordingly, education in complexity science should become an inte-
gral part of education in all areas, where digital twins for complex sys-
tems are being developed and used. In addition, many digital twins are 
based on proprietary software solutions, and hence it is not knowable 
to many scientists how they work exactly; neither can these scientists 
easily improve such digital twins and develop them further. Therefore, 
one should explore open-source arrangements.

Embracing complexity for smarter cities
So far, big data has not removed the need for theory, and it has not 
made the scientific method obsolete, thus questioning Chris Ander-
son’s polemic more than a decade ago81. Indeed, exactly the opposite 
has occurred. When it comes to dealing with bottom-up emergent 
behavior, which one likes to understand, explain, predict and design 
for, multi-scale complexity-based approaches are urgently needed. A 
key problem of current digital twins is that they fall short in represent-
ing the complete set of relevant interactions between physical assets, 
processes and systems. For the reasons explained in this Perspective, 
complexity science can be a potential solution to this problem. A list 
of features characterizing digital twins and complexity science is pre-
sented in Table 1. As it turns out, they are largely complementary, which 
suggests the need to combine both approaches.

Complex systems modeling: focus on interactions/complexity (bottom-up process)
•  Interdependent systems
•  Networks and graph theory
•  Sensor networks (physical object/environment)
•  Real-time data collection
•  Stochasticity and nonlinearity

•  Statistical physics methods
•  Multi-level analysis (integrative vision)
•  Human-centered systems
•  Innovation and co-evolution 

(pluralistic approach)

People

IoT

Data

Networks

Real city Digital twin

What-if scenarios

New insights,
predictions

Data information

Monitoring, modeling/
three-dimensional visualization

Management and organization

Big data analytics, artificial intelligence, 
cloud computing

Machine learning, techniques:
regression, classification, clustering,
decision tree, neural networks, …

Optimization, e�iciency, 
predicting outcomes, 
reduced uncertainty

Fig. 2 | Complexity and digital twins. Left: the complex systems approach 
extracts selected information from a system’s components and their 
relationships to simulate essential aspects of the system based on suitable 
simplifications, allowing one to understand collective dynamics resulting from 

bottom-up interactions. Bottom left: using big data and machine learning, the 
digital twin approach constructs a detailed copy of the city (right), which is used 
to manage the real city and develop it further.
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Despite pervasive measurements at all scales, from satellites down 
to nanoscale sensors, building a fully fledged and realistic model of a 
complex system incorporating problem-solving capacity remains a 
grand challenge. Actors and stakeholders interact through economic 
channels, through emergent phenomena such as social norms and 
through their individual emotions and personal history. This gives 
rise to a highly nonlinear co-evolution in response to environmental 
changes and governance inputs or related forms of decision-making82. 
It also implies ethical challenges67. At the same time, however, it opens 
up a way for digital twins to take bottom-up emergent processes into 
account. Human thinking, behavior and the material world impact each 
other in complex ways that may be conceptualized through multi-layer 
systems of interaction networks.

Evolutionary algorithms can serve as inspiration to develop adap-
tive approaches to search for novel solutions. Nature adapts at multiple 
timescales, and one can learn to apply its success principles to urban 
contexts61,62. Using the fastest (quantum) supercomputers, artificial 
evolution can, to some extent, be simulated, thereby allowing one to 
accelerate evolutionary timescales beyond the speed of cultural evolu-
tion. This may reveal how to use local feedbacks in a way that empowers 
self-organizing, co-evolving systems.

As we argued here, the way to achieve better planning of urban 
areas is not by working solely with digital twins, but by combining 
them with complexity science. This can help to more successfully 
bridge science and engineering with policymaking, governance and 
participatory approaches, as well as when exploring various ‘what-if 
scenarios’. Among the various objectives of such an approach, we list 
here some particularly important ones.

•	 Enhance knowledge (co-)creation, exchange and management at 
all levels of government, civil society, the private sector and other 
relevant stakeholders.

•	 Help increase the capacity (human, financial and institutional) of 
policymakers and civil society at all levels to develop and progres-
sively implement urban policies, offering participatory platforms 
for capacity building.

•	 Provide networking platforms where all levels of government, 
civil society, the private sector and other relevant stakeholders 
can engage in the development process. To this end, the proposal 
for the ‘city of opportunity’ concept, with a city planning based on 
a network of ‘neighbor microcosms’83 is a possible way forward.

We need digital twins that are able to embrace the potential of 
complex systems, to empower citizens and stakeholders, facilitating 
a participatory dialogue. However, we need to go beyond digital twins 
to provide a public ‘cyber’-space for community interaction, where 
citizens can voice their opinions about considered interventions, pro-
pose changes, point to problems and suggest solutions. In this context, 
the combination with complex systems could promote participatory, 
collaborative exploration. This would be based on interactive ‘what-if 
scenarios’, engaging citizens and local representatives, thus enabling 
policymakers to make well-informed and better-fitting decisions84. 
Simulations are an essential tool for studying complex systems85.

Advances in traditional digital twins could certainly benefit the 
scientific study of complex systems, because they will offer data to 
calibrate and validate models, but also accelerate problem identifica-
tion and solution. This lies at the heart of our argument for the urgent 
consideration of complexity science while building and using urban 
digital twins.

In conclusion, as the processes of networking and urbanization 
in our globalized world evolve86, one will progressively face the key 
features, problems and opportunities of an increasingly complex 
world. When designed or operated without proper scientific valida-
tion and explanation, or without good insight and human oversight, 
digital twins may generate serious issues for the affected citizenry, 
also in regards to privacy and transparency24. However, if properly 
used and combined with complexity science and citizen participation, 
instruments like digital twins would allow one to come up with adap-
tive, efficient, resilient and sustainable solutions that are compatible  
with democracy, human rights and innovation. The idea is not  
to push the reproduction of the system to the limit of a one-
to-one scale, thereby profiling everyone, but rather to extract  
trends and laws from the digital representation as shown in Fig. 2.  
Hence, when designed and operated well, digital models of the world 
(or certain aspects of it) can offer formidable policy instruments. 
This applies not only to the management of cities but also to the  
co-evolution of many evidence and data-based information eco
systems, which can foster a new collaborative relationship between 
citizens and policymakers.
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