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Neural ADMIXTURE for rapid genomic 
clustering

Albert Dominguez Mantes    1,2,3, Daniel Mas Montserrat1, Carlos D. Bustamante4, 
Xavier Giró-i-Nieto2 & Alexander G. Ioannidis    1,5 

Characterizing the genetic structure of large cohorts has become 
increasingly important as genetic studies extend to massive, increasingly 
diverse biobanks. Popular methods decompose individual genomes into 
fractional cluster assignments with each cluster representing a vector of 
DNA variant frequencies. However, with rapidly increasing biobank sizes, 
these methods have become computationally intractable. Here we present 
Neural ADMIXTURE, a neural network autoencoder that follows the same 
modeling assumptions as the current standard algorithm, ADMIXTURE, 
while reducing the compute time by orders of magnitude surpassing 
even the fastest alternatives. One month of continuous compute using 
ADMIXTURE can be reduced to just hours with Neural ADMIXTURE. A multi-
head approach allows Neural ADMIXTURE to offer even further acceleration 
by computing multiple cluster numbers in a single run. Furthermore, the 
models can be stored, allowing cluster assignment to be performed on new 
data in linear time without needing to share the training samples.

The rapid growth in sequenced human genomes and the proliferation 
of population-scale biobanks have enabled the creation of increasingly 
accurate models to predict traits and disease risk using an individual’s 
genome. However, different predictive models can be required depend-
ing on an individual’s genetic ancestry, and this necessitates accurately 
characterizing genetic cluster composition at the individual level1.  
Such characterization is also an essential part of most modern  
population genetics studies and national biobanking efforts2,3. However,  
many existing algorithms for this task struggle with next-generation  
sequencing datasets, where both the number of samples and the  
number of sequenced positions along the genome are much greater 
than earlier case–control genotyping studies. Scalable algorithms  
to characterize the population structure of genetic sequences are 
especially important for more diverse biobanks, themselves needed 
to correct the extreme imbalance towards European-descent samples  
in existing studies in order to avoid a new divide in healthcare  
arising through omitting most of the world’s population from  
precision health research4.

A common approach for characterizing the population structure 
within a genetic dataset is to describe each sample as a set of fractional 
assignments to each cluster. These clusters are centroids found via an 
unsupervised algorithm in a space spanning the frequencies of each 
variant. By avoiding the culture-specific labels and subjective con-
structs (for example, ethnicity) of supervised classification methods5,  
these unsupervised approaches can better reflect the spectrum  
of genetic structure across samples. Generally, the input variants are 
the individual’s sequence of single nucleotide polymorphisms (SNPs), 
that is, single positions along the genome known to vary between  
individuals. Smaller datasets of less numerous variants, such as  
microsatellites, have also been used. There are millions of SNPs in 
the human genome and most are biallelic (two variants) permitting a 
binary encoding. For instance, zero could be used to encode the most  
common (or reference) variant at an SNP position on the genome  
and one to encode the minority (or alternate) variant. The frequency 
distribution of these variants will vary between populations due to 
differing histories: founder events, migration, isolation, and drift.
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of clusters, but needing only a single training for all numbers of  
clusters desired.

Neural ADMIXTURE was trained with a standard binary cross-
entropy, leading to an equivalence with the traditional ADMIXTURE 
model’s objective function (Methods). Two initialization techniques, one 
based on principal component analysis10–12 and the other on archetypal 
analysis13, were used as an alternative to common network initializations 
to speed up the training process and improve results (Supplementary 
section ‘Decoder initialization’). Furthermore, two mechanisms are avail-
able to incorporate prior knowledge about the amount of admixture in a 
dataset by controlling the softness of the cluster assignments: applying 
L2 regularization during training (Methods) and softmax tempering 
(Supplementary section ‘Softmax tempering’). Both single-head and 
multi-head approaches can be adapted to a supervised version that 
performs regular classification given known training labels (Supple-
mentary section ‘Supervised training‘). The proposed method is fully 
compatible with the original ADMIXTURE framework, allowing the 
use of ADMIXTURE results as an initialization for Neural ADMIXTURE 
parameters (Supplementary section ‘Pretrained mode’), and vice versa. 
We performed an in-depth evaluation of the proposed method and com-
pared it with competing approaches across multiple datasets, including 
using simulations from a variety of systems14–17 and using samples from 
large-scale, real-world biobanks (Methods, Supplementary Table 1, Sup-
plementary Table 2, and Supplementary section ‘Dataset description’).

We present an autoencoder that expands on the clustering method 
for genomes: ADMIXTURE6,7. ADMIXTURE was developed as a compu-
tationally efficient alternative to STRUCTURE8, and we take this pursuit 
of efficiency now to the next generation of datasets. Our proposed 
method, Neural ADMIXTURE, follows the same modeling assump-
tions as ADMIXTURE, but reframes the task as a neural-network-based 
autoencoder, providing faster computational times, both on graphics 
and central graphics units (GPUs and on CPUs), while maintaining 
high-quality assignments.

Results
Model overview
Neural ADMIXTURE (Fig. 1a) is an interpretable autoencoder with two 
main components: (1) an encoder, composed of two linear layers with 
a Gaussian error linear unit (GELU) activation9 in-between, then a soft-
max activation, which projects a genotype sequence onto a vector  
representing fractional ancestry assignments for each individual 
(Q); and (2) a decoder, which is a single linear layer whose weights  
are restricted to lie between 0 and 1, leading to an interpretable  
projection matrix that learns the cluster centroids, or equivalently, 
the average variant frequency at each site for each population (F). 
Additionally, we introduce Multi-head Neural ADMIXTURE (Fig. 1b), 
which includes multiple decoders in a single network to obtain results 
analogous to training ADMIXTURE repeatedly for different numbers  
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Fig. 1 | Neural ADMIXTURE model architecture. a, Single-head architecture. 
The input sequence (x) is projected into 64 dimensions using a linear layer (θ1) 
and processed by a GELU non-linearity (σ1). The cluster assignment estimates Q 
are computed by feeding the 64-dimensional sequence to a K-neuron layer 
(parametrized by θ2) activated with a softmax (σ2). Finally, the decoder outputs  
a reconstruction of the input ( ̃x) using a linear layer with weights F. Note that  
the decoder is restricted to this linear architecture to ensure interpretability.  

b, Simple multi-head example with H = 3. The 64-dimensional hidden vector is 
copied and processed independently by different sets of weights (θ2h), which 
yield vectors of different dimensions, corresponding to the different K values. 
Each different QKh

 matrix is processed independently by different decoder 
matrices FKh yielding H different reconstructions. All parameters are optimized 
jointly in an end-to-end fashion.
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Single-head and multi-head results
Neural ADMIXTURE is systematically faster than alternative algorithms, 
both on CPU and GPU (Table 1, Supplementary Fig. 1). This speedup 
is further enhanced when using the Multi-head Neural ADMIXTURE 
architecture, which can perform clusterings for different K values  
simultaneously. For example, in the All-Chms dataset, we observed  
that Neural ADMIXTURE trained in less than 2 min, whereas  
ADMIXTURE required more than a day. Neural ADMIXTURE performs 
at least as well as existing algorithms on both predicting the ancestry 
assignments (Q) and the allele frequencies (F). On average, Neural 
ADMIXTURE’s Q estimates appear to be more similar to the matrix of 
known labels than the Q estimates from previous methods (Extended 
Data Fig. 1).

Table 2 shows the accuracy and time performance of ADMIXTURE 
and Neural ADMIXTURE on the test data for three different datasets. 
Both ADMIXTURE and Neural ADMIXTURE are able to generalize and 
produce consistent assignments on unseen data. However, Neural 
ADMIXTURE is much faster than ADMIXTURE on both CPU and GPU, 
because ADMIXTURE must optimize the objective with a fixed F to find 
Q for unseen data, whereas Neural ADMIXTURE directly learns a func-
tion that estimates Q. We note that inference on GPU is extremely fast 
(generally less than a second for a forward pass); the computational 

bottleneck comes simply from reading and processing of the data, 
which could be further addressed.

We visualized the Q estimates of ADMIXTURE and Neural ADMIXTURE  
on the Chm-22-Sim dataset using pong18 (Fig. 2a–d). The SNP frequen-
cies (the entries in the F matrix) from both models can be observed 
as projections onto the first two principal components of the train-
ing data (Fig. 2e). Neural ADMIXTURE provides harder cluster  
predictions, with many samples being assigned only to a single popula-
tion, whereas ADMIXTURE provides softer cluster predictions with par-
tial assignments to multiple clusters. On this dataset, ADMIXTURE does 
not assign different clusters to Native Americans (AMR) and East Asians 
(EAS); instead, it partitions Africans (AFR) into two different ancestry 
clusters (Fig. 2a,b). Neural ADMIXTURE, however, does split AMR and EAS 
populations (Fig. 2c–e). Depictions of the cluster assignments (Q) of all 
algorithms on several datasets can be found in Supplementary Figs. 2–5.

We applied Neural ADMIXTURE, trained on Chm-22-Sim,  
to admixed populations that were not present in the training data: 
Mexican Ancestry in Los Angeles, California (MXL, 118), and Puerto 
Ricans in Puerto Rico (PUR, 104) (Fig. 2f).

We evaluated Multi-head Neural ADMIXTURE with Chm-22-Sim 
(Extended Data Fig. 2) and showed that as the number of clusters  
increases, each population group gets assigned its own cluster. 

Table 1 | Performance comparison of several global ancestry inference algorithms

Dataset Algorithm Δ(Q, QGT) RMSE(Q, QGT) RMSE(F, FGT) Runtime (CPU) Runtime (GPU)

All-Chms ADMIXTURE 0.042 0.153 0.062 >1 day –

AlStructure 0.064 0.159 0.032 06:04:28 –

TeraStructure 0.033 0.133 – 02:12:46 –

HaploNet 0.026 0.114 – – 03:17:00

Neural ADMIXTURE 0.025 0.108 0.011 00:11:21 00:01:32

Chm-22 ADMIXTURE 0.048 0.161 0.068 02:56:29 –

fastSTRUCTURE 0.055 0.162 – 03:31:00 –

AlStructure 0.116 0.256 0.068 00:46:49 –

TeraStructure 0.050 0.170 – 00:43:48 –

HaploNet 0.053 0.170 – – 01:09:29

Neural ADMIXTURE 0.033 0.140 0.016 00:05:46 00:00:45

Chm-22-Sim ADMIXTURE 0.046 0.197 0.067 09:48:18 –

fastSTRUCTURE 0.069 0.237 – >1 day –

AlStructure 0.126 0.286 0.076 02:51:36 –

TeraStructure 0.040 0.175 – 06:37:14 –

HaploNet 0.026 0.113 – – 02:07:54

Neural ADMIXTURE 0.011 0.070 6.02 × 10−3 00:20:41 00:01:34

PAB ADMIXTURE 1.44 × 10−4 0.010 5.97 × 10−3 03:31:01 –

AlStructure 1.45 × 10−3 0.026 7.83 × 10−3 05:10:42 –

TeraStructure 1.97 × 10−4 0.012 – 01:13:38 –

HaploNet 0.039 0.248 – – 02:37:09

Neural ADMIXTURE 4.34 × 10−3 0.055 7.01 × 10−3 00:14:27 00:01:48

Synthetic ADMIXTURE 1.37 × 10−4 0.011 0.028 00:08:06 –

AlStructure 2.74 × 10−4 0.014 0.030 00:03:07 –

TeraStructure 1.13 × 10−3 0.032 – 00:03:28 –

HaploNet 0.022 0.123 – – 00:04:04

Neural ADMIXTURE 8.60 × 10−4 0.030 0.028 00:01:25 00:00:12

Metrics reported from the training data. Root mean squared error (RMSE) (F, FGT), as defined in the Methods section, for fastSTRUCTURE, TeraStructure, and HaploNet was not computed 
because the first two lack an allele frequency matrix and the third lacks interpretability. HaploNet was not run on CPU because its resource and time requirements exceed system capabilities. 
Runtime format is HH:MM:SS and denotes wall-clock time. A runtime longer than a day denotes that the algorithm could not finish on the described hardware within 24 h, requiring it to be run 
on alternative hardware for longer. The best performing method for a given metric is highlighted in bold.
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Furthermore, we showed that Multi-head Neural ADMIXTURE can be 
successfully applied to closely related populations (Extended Data 
Fig. 3). Finally, we showed that the proposed method can be applied 
on real, admixed datasets (Extended Data Fig. 4).

UK Biobank computational analysis
To assess the clustering speed on a very large dataset, we ran Neural 
ADMIXTURE in its multi-head mode on the entire UK Biobank—a total 
of 488,377 samples—and using 147,604 SNPs subsetted to remove link-
age disequilibrium (LD) by pruning the full set19. Neural ADMIXTURE 
was able to process the complete dataset within 11 h, providing  
results from K = 2 to K = 6, whereas ADMIXTURE would take about a 

month to do the same, given that it took 5.5 days to provide results  
for K = 2. Traditional techniques such as ADMIXTURE are thus too  
slow for such large biobanks, particularly because multiple additional 
runs with different parameters and subsets of data are generally  
needed in a study. Neural ADMIXTURE was trained without regulariza-
tion (λ = 0, Methods) and using the PCK-means initialization (Supple-
mentary Algorithm 1). During inference, the temperature was set  
to τ = 3

2
 (Supplementary section ‘Softmax tempering’). Figure 3  

displays these cluster assignments for the UK Biobank genomes.  
We group the individuals by their reported country of birth; those  
with missing or non-existent country-of-birth labels were excluded 
from the plots.

Table 2 | Performance comparison of ADMIXTURE and Neural ADMIXTURE on test data

Dataset Algorithm Δ(Q, QGT) RMSE(Q, QGT) Runtime (CPU) Runtime (GPU)

Chm-22 ADMIXTURE 0.056 0.171 00:06:40 –

Neural ADMIXTURE 0.043 0.146 00:00:14 00:00:07

Chm-22-Sim ADMIXTURE 0.060 0.206 00:18:00 –

Neural ADMIXTURE 0.025 0.110 00:00:25 00:00:07

PAB ADMIXTURE 4.29 × 10−3 0.045 00:10:26 –

Neural ADMIXTURE 5.68 × 10−3 0.062 00:00:23 00:00:10

ADMIXTURE results were computed using the Projection analysis mode, which reuses the F matrix computed during the fitting stage using the training data. Neural ADMIXTURE results were computed 
by simply feeding the sequences to the trained encoder, hence the extremely fast execution time. AlStructure, TeraStructure, and HaploNet lack the ability to compute ancestry assignments on data 
they were not trained on and so are not taken into account. Runtime format is HH:MM:SS and denotes wall-clock time. The best performing method for a given metric is highlighted in bold.
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Fig. 2 | Visualization of several results of ADMIXTURE and Neural ADMIXTURE 
trained on the dataset Chm-22-Sim (K = 7). a, Q estimates of ADMIXTURE on 
training data. b, Q estimates of ADMIXTURE on test data. c, Q estimates of Neural 
ADMIXTURE on training data. d, Q estimates of Neural ADMIXTURE on test data. 
e, Two-dimensional principal component analysis (PCA) projection of the training 
data and the matrix F learnt by both ADMIXTURE and Neural ADMIXTURE, which 
correspond to the cluster centroids. The color of each individual in the PCA 
represents its ground truth regional label. f, Q estimates of Neural ADMIXTURE on 
admixed populations not present in the training data. Among the MXL samples, 

we observe mainly an orange AMR component with a red and yellow component 
(West Asians (WAS) and Europeans (EUR), respectively). These latter components 
likely originate from the immigration of Spanish, Morisco, and Sephardic Jewish 
individuals into Mexico during the colonial period. The PUR samples exhibit EUR, 
WAS, AMR, and AFR ancestry clusters. The additional AFR component is likely 
linked to the introduction of enslaved West Africans during the colonial period. 
In the barplots (used to visualize Q), each vertical bar represents an individual 
sample and bar color lengths represent the proportion of the sample’s ancestry 
assigned to that colored cluster. OCE, Oceanians; SAS, South Asians.
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Scalability analysis
To assess the scalability of different methods, we simulated multi-
ple datasets with various numbers of variants and samples using the 
software reported previously17. The datasets consist of combina-
tions of N ∈ {1,000, 5,000, 10,000, 20,000, 50,000} and M ∈ {1,000,  

10,000, 50,000, 100,000}, where N and M are the number of samples 
and SNPs, respectively.

We compared the training times of ADMIXTURE, AlStructure, 
TeraStructure, and Neural ADMIXTURE, both on CPU and GPU, across 
different dataset sizes (Fig. 4). Neural ADMIXTURE is consistently 
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Fig. 3 | Q fractional genetic cluster estimates across the entire UK Biobank 
dataset (N = 488,377) obtained using Multi-head Neural ADMIXTURE 
(K = 6 displayed). Although results are only displayed for K = 6, the multi-head 
architecture was trained for K = 2 to K = 6 simultaneously in approximately 11 h. 
In the barplots (used to visualize Q), each vertical bar represents an individual 
sample and stacked bar color heights represent the proportion of the sample’s 
ancestry assigned to that colored genetic cluster. Since they result from 
unsupervised clustering, interpretation of the cluster colors is left open.  
a, Q estimates of all the samples. Although many samples are clustered together 
(blue cluster, representing a northern European/British ancestry component), 
other clusters emerge reflecting the diverse modern populations now living 
within the United Kingdom. b, Q estimates of individuals born in the British and 
Irish Isles and territories. Samples from Gibraltar and the Channel Islands are 

excluded as they contain a very small number of individuals. c, Q estimates for 
individuals born outside of the British and Irish Isles are labeled by their country 
or region of birth, showcasing clusters representing Africans, East Asians, South 
Asians, Northern Europeans, and West Asians (sharing a cluster in part with 
Southern Europeans). Despite the large ancestry imbalance, Neural ADMIXTURE 
characterizes the globally diverse genetic variation found in the UK Biobank. Many 
UK residents born in other countries appear to have northern European (British) 
ancestry. These likely represent children born abroad to British parents, who later 
repatriated. We also note a sizeable South-Asian-like genetic ancestry cluster seen 
in many individuals born in East Africa. This likely stems from the decolonization 
era exodus out of East Africa of South Asians, who had settled there during the 
British Empire. The predicted cluster assignments for K = 2 to K = 6 for individuals 
born outside of the British and Irish Isles can be found in Extended Data Fig. 5.
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faster than the alternatives. Moreover, Neural ADMIXTURE acceler-
ates substantially using GPUs in contrast to the other methods. The 
hyperparameters used are described in Supplementary Table 3.

Discussion
Many unsupervised clustering methods for genotype sequences  
have been introduced8,20–25 including the most commonly used, 
ADMIXTURE6,7. These methods, which resemble a non-negative matrix 
factorization, decompose each input sequence into a set of cluster 
assignments and compute a centroid for each cluster. The cluster 
assignments give the proportion of each genetic ancestry cluster for 
an individual, whereas the cluster centroids give the SNP variant fre-
quencies at each genetic position corresponding to each cluster. As a 
diploid organism, most humans have a paternal and maternal copy of 
each non-sex chromosome. Therefore, for a given individual at each 
genomic position, we have the possibility of four different combina-
tions of biallelic SNPs (0/0, 0/1, 1/0, 1/1). It is common practice to sum 
both maternal and paternal variants, obtaining a count sequence nij. 
In this scenario, an individual i has nij ∈ {0, 1, 2} copies of the minority  
SNP j. ADMIXTURE models each individual’s count sequence, given a fixed 
number of population groups K, as nij ~ Bin(2, pij), where pij = ∑kqikfkj, with 
qik denoting the fraction of population k assigned to i, and fkj denoting 
the frequency of SNPs with a value of ‘1’ j in population k. ADMIXTURE 
applies block relaxation to find the parameters Q and F that minimize 
the negative log-likelihood function shown in equation (1). The value 
of K (number of clusters) is typically chosen by using an ad hoc cross-
validation procedure7, necessitating runs across a range of values.

The block relaxation optimization in ADMIXTURE runs much 
faster than other approaches used by its main competitors, namely 
FRAPPE21 and STRUCTURE8. Although it can be run in multi-threading 

mode, greatly boosting the execution time, it is insufficient when deal-
ing with either a large number of samples or a large number of SNPs. 
Here we instead use neural networks, whose architectures have begun 
to be explored for several other genetic structure tasks including hap-
lotype segmentation, dimensionality reduction, and classification26–35 
(Supplementary section ‘Related work’).

An important caveat when using soft-clustering techniques, such 
as Neural ADMIXTURE or ADMIXTURE, is that these techniques follow 
a modeling assumption that there are some ‘prototype’ populations 
and that each individual can be placed within the convex hull of such 
prototypes. Note that this model might not reflect the underlying struc-
ture of real-world populations particularly when independent genetic 
drift has occurred in each population following admixture events. This 
limitation is particularly acute in the case of ancient admixture events, 
and in such cases, other complementary techniques should also be 
used. Future experiments to quantify these effects using simulations 
would be valuable. Combining unsupervised clustering with tree-based 
methods to account for this drift would also be a useful direction. This 
could complement the progress being made in ancestral recombina-
tion graphs.

Although the computational times of Neural ADMIXTURE enable 
practitioners to obtain rapid results with multiple hyperparameters and 
different values of K, properly selecting the best results still involves a 
subjective element, and additional experiments and new quantitative 
measures are needed. Further, unsupervised clustering methods, and 
more generally dimensionality-reduction techniques, are affected by 
sampling imbalances between population groups, which can alter 
population structure detection and prioritization36,37. Additionally, 
even if structure is not present within the data, these techniques can 
indicate otherwise38,39.
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Methods
Single-head Neural ADMIXTURE
As described in the Discussion, the existing ADMIXTURE algorithm 
minimizes the negative log-likelihood:

min
Q,F

ℒC(Q, F ) = −∑
i, j
nij log (∑

k
qik fkj) + (2 − nij) log (1 −∑

k
qikfkj)

subject to 0 ≤ fkj ≤ 1

∑
k
qik = 1

qik ≥ 0
(1)

with Q = (qik) and F = (fkj).
This can be formulated as a non-negative matrix factorization 

problem. Let X denote the training samples, where the features are  
the alternate allele normalized counts per position and the jth SNP  
of the ith individual is represented as xij =

nij

2
∈ {0,0.5, 1}. Then, X ≈ QF, 

where Q is the assignments, F is the alternate allele frequencies per  
SNP and population, and the negative log-likelihood in equation (1) is 
a distance between X and QF. This can be translated into a neural net-
work as an autoencoder with Q = Ψ(X) being the bottleneck computed 
by the encoder function Ψ and F being the decoder weights themselves 
(Fig. 1a). Because Q is estimated at every forward pass and not learnt 
as a whole for the training data, to retrieve Q assignments on previously 
unseen data, we can perform a simple forward pass instead of running 
the optimization process fixing F, unlike with ADMIXTURE.

Note that the restrictions in the optimization problem (equation (1)) 
impose restrictions in the architecture. Those relating to Q (∑kqik = 1 and 
qik ≥ 0) can be enforced by applying a softmax activation at the encoder 
output, making the bottleneck equivalent to the cluster assignments. 
Although the decoder restriction (0 ≤ fkj ≤ 1) could be enforced by applying 
the sigmoid function to the decoder weights, we found that it suffices to 
project the weights of the decoder to the interval [0, 1] after every optimiza-
tion step, one of the most common forms of projected gradient descent40.

The decoder must be linear and cannot be followed by a non- 
linearity, as this would break the interpretability of the F matrix; the 
equivalence between the decoder weights and cluster centroids would 
be lost. On the other hand, the encoder architecture is free from con-
straints, and it may be composed of several layers. The proposed archi-
tecture includes a 64-dimensional, non-linear layer with a GELU activation 
before the bottleneck and batch normalization acting directly on  
the input. The latter re-scales the data to have zero mean and unit  
variance. Since the mean for each SNP is its frequency p, and the standard 

deviation σ is √p(1 − p), the {0, 1} input gets encoded as {−√
p

1−p
,√

1−p
p
}, 

thereby supplying more explicitly the information of the allele  
frequencies to the network.

The ADMIXTURE model does not precisely reconstruct the input 
data as a regular autoencoder would do, because the input SNP geno-
type sequences, nij ∈ {0, 1, 2}, and the reconstructions, pij ∈ [0, 1], do 
not have matching ranges. This can easily be remedied by dividing the 
genotype counts by two, so that the input data are xij =

nij

2
∈ {0,0.5, 1}. 

Moreover, instead of minimizing ℒC (equation (1)), we propose mini
mizing the binary cross-entropy instead, using a penalty term on the 
Frobenius norm of the encoder weights, θ:

ℒN(Q, F ) = −∑
i, j

xij log (∑
k

qikfkj) + (1 − xij) log (1 −∑
k

qikfkj) + λ‖θ‖2F . (2)

This regularization term avoids hard assignments in the bottle-
neck, which helps during the training process and reduces overfitting. 
In equation (3) we show that the proposed optimization problem and 
the ADMIXTURE one are equivalent (excluding the regularization term) 
by using equations (1) and (2):

ℒλ=0
N (Q, F ) = −∑

i, j
xij log (∑

k
qikfkj) + (1 − xij) log (1 −∑

k
qik fkj)

= −∑
i, j

nij

2
log (∑

k
qikfkj) + (1 − nij

2
) log (1 −∑

k
qikfkj) =

= − 1
2
∑
i, j
nij log (∑

k
qikfkj) + (2 − nij) log (1 −∑

k
qikfkj) =

= 1
2
ℒC(Q, F ).

(3)

A perfect reconstruction can of course be obtained by setting 
the number of clusters (K) equal to the number of training samples 
or to the dimension of the input (number of SNPs). However, the bot-
tleneck should ideally capture elementary information about the 
population structure of the given sequences; therefore, we make use 
of low-dimensional bottlenecks.

Multi-head Neural ADMIXTURE
In ADMIXTURE, cross-validation must be performed to choose the 
number of population clusters (K), unless specific prior information 
about the number of population ancestries is known. Furthermore, in 
many applications, practitioners desire to observe how cluster assign-
ments change as the number of clusters increases. As the number of 
both sequenced individuals and variants increases, the feasible number 
of different cluster numbers that can be run for cross-validation rapidly 
decreases due to the additional computational cost. As a solution, 
Multi-head Neural ADMIXTURE allows all cluster numbers to be run 
simultaneously by taking advantage of the 64-dimensional latent 
representation computed by the encoder. This shared representation 
is jointly learnt for the different values of K, {K1, …, KH}.

Figure 1b shows how the shared representation is split into H  
different heads in the multi-head architecture. The ith head consists 
of a non-linear projection to a Ki-dimensional vector, which corres
ponds to an assignment that assumes there are Ki different genetic 
clusters in the data. Although every head could be concatenated and 
fed through a decoder, this would cause the decoder weights F to not 
be interpretable. Therefore, every head needs to have its own decoder 
and, thus, H different reconstructions of the input are retrieved.

As we have H reconstructions, we will now have H different loss 
values. We can train this architecture by minimizing equation (4):

ℒMNA(QK1,...,H , FK1,...,H ) =
H

∑
h=1

ℒN (QKh
, FKh

) , (4)

where QKh
 and FKh

 are, respectively, the cluster assignments and the SNP 
frequencies per population for the hth head. The restrictions of the 
ADMIXTURE optimization problem (equation (1)) must be satisfied by 
QKh

 and FKh
∀h ∈ {1,… ,H }.

The multi-head architecture allows computation of H different  
cluster assignments corresponding to H different values for K,  
efficiently, in a single forward pass. Results can then be quantitatively 
and qualitatively analyzed by the practitioner to decide which value  
of K is the most suitable for the data.

Evaluation setup
Let N denote the number of samples and M the number of variants 
(SNPs). To assess the performance of the Q estimates, we match  
the assignments with the known labels and report the RMSE between 
them,

RMSE (Q,QGT) =
1

√NK
‖Q −QGT‖F (5)

and the RMSE between the known allele frequencies (FGT) and the 
estimated frequencies (F),
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RMSE(F, FGT) =
1

√KM
||F − FGT||F (6)

We also use a new metric, Δ, defined as

Δ(Q,QGT) =
1
N2

‖
‖QQ

T −QGTQ
T
GT
‖
‖
2

F
, (7)

which is equivalent to the mean squared difference between the covari-
ance matrices of the estimated and the target populations. In case  
the Q estimates completely agree with QGT (up to permutation), Δ will 
be zero. The larger the disagreement, the higher the value of Δ. We are 
interested in these metrics, as they are more easily interpreted than the 
loss function value itself. We are aware that these pseudo-supervised 
metrics, when applied to datasets simulated from real individuals, do 
not yield the true quality of the predictions of the models, since the 
biogeographic labels assigned to the real sequences used to simulate 
datasets might not reflect the true genomics clusters and variation 
within the populations. To further investigate this issue, we also used 
fully simulated population clusters to evaluate the methods.

Dataset preparation. For reproducibility we have used a comprehensive 
set of publicly available, labeled human whole-genome sequences from 
diverse populations across the world, combining the 1000 Genomes 
Project41, the Simons Genome Diversity Project42, and the Human 
Genome Diversity Project43, as well as data simulated from these samples 
using PyAdmix14 and data simulated de novo using the Balding–Nichols 
Pritchard–Stephens–Donnely model8,23. The populations within the 
combined real datasets can be found in Supplementary Table 2. Each 
subpopulation is aggregated into a continental-level label according 
to its geographical location (Supplementary section ‘Dataset descrip-
tion’). Additionally, we used the entire UK Biobank genotype dataset.

Benchmarking setup. We compared Neural ADMIXTURE computational 
time and clustering quality with ADMIXTURE, fastSTRUCTURE24, AlStruc-
ture22, and TeraStructure23. fastSTRUCTURE assumes the STRUCTURE  
model but uses accelerated variational methods instead of MCMC, 
yielding speedups of more than two orders of magnitude against STRUC-
TURE. TeraStructure iteratively computes Q and F while avoiding a high 
computational load by subsampling SNPs at every iteration, which makes 
the algorithm faster. AlStructure first estimates a low-dimensional linear 
subspace of the admixture components and then searches for a model in 
the latter subspace that satisfies the modeling constraints, yielding a fast 
alternative to the iterative or maximum likelihood schemes followed by 
most algorithms. Furthermore, we also compared against HaploNet26, a 
variational autoencoder that maps parts of the sequence (windows) to 
a low-dimensional latent space, on which clustering is then performed 
using Gaussian mixture priors. Although the global structure of the data 
is preserved in the low-dimensional space, direct interpretability of the 
allele frequencies (available in Neural ADMIXTURE) is not preserved.

All models were optimized using 16 threads on an AMD EPYC 7742 
(x86_64) processor, which consists of 64 cores and 512 GB of RAM. 
We restricted the number of threads to 16 despite the fact that more 
cores are available to run several executions in parallel. To assess GPU 
performance of Neural ADMIXTURE, all networks were trained on an 
NVIDIA Tesla V100 SXM2 of 32 GB. The same GPUs were used to run 
inference on the trained models.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The samples used in the ‘Experiments’ section were compiled from  
public datasets: 1000 Genomes Project (https://www.international 

genome.org/data/)41, the Simons Genome Diversity Project (https://
www.simonsfoundation.org/simons-genome-diversity-project/)42, and 
the Human Genome Diversity Project (https://www.internationalge-
nome.org/data-portal/data-collection/hgdp)43. The compiled datasets 
(All-Chms, Chm-22 and Chm-22-Sim) are available on figshare44. The UK 
Biobank has approval from the North West Multi-centre Research Ethics 
Committee as a Research Tissue Bank. This dataset is available to research-
ers through an open application via https://www.ukbiobank.ac.uk/regis-
ter-apply/. The entire dataset of genotypes available to download from the 
UK Biobank portal were used. Source data are provided with this paper.

Code availability
The software is available as an installable package in the PyPi repository 
under the name ‘neural-admixture’. The source code can be found at 
https://github.com/ai-sandbox/neural-admixture ref. 45.
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Extended Data Fig. 1 | 2D visualization of Q estimates using multidimensional 
scaling (MDS) Algorithms appearing closer in the MDS projection have more 
similar estimates than those farther away. In order to use MDS, a distance 
matrix of the Q results of different algorithms (including the ground truth 

matrix) has been computed by using the Frobenius norm between the different 
Q matrices. The average of the normalized distances has been taken across all 
datasets in order to retrieve a single distance matrix.
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Extended Data Fig. 2 | Results from Multi-head Neural ADMIXTURE (K=3 
to K=8) on the test set of Chm-22-Sim For K=3, European (EUR), West Asian 
(WAS) and South Asian (SAS) are combined within the same cluster, while 
American (AMR), Oceanian (OCE), and East Asian (EAS) are clustered 
together, and African (AFR) has its own cluster. These results reflect the 
genetic similarity between the respective groups due to their Out-of-Africa 
migration patterns and subsequent gene flow. After increasing to K=5, OCE 
obtains its own cluster, reflecting the ancient divergence from the others 
of that population consisting in our study of the Australo-Papuan groups-
Native Australian (SGDP), Papuan Highlands (HGDP), Papuan Sepik (HGDP), 
Bougainville (HGDP), and Dusun (HGDP). As more clusters are incorporated, 
American (AMR) and EAS obtain their own clusters and OCE is divided between 

a component found predominantly in OCE and a component characteristic of 
EAS. The latter likely reflects the later migration of Austronesian speakers from 
East Asia out into the Pacific Islands, where they contributed their ancestry to 
the Oceanian inhabitants. A shared component between EUR, SAS and WAS 
is maintained, independent of the cluster number K. This could be linked to 
early farmer expansions out of West Asia and into both Europe and South Asia 
following the birth of agriculture, or to the much later expansion of the Indo-
European language family across all of these regions. Other genetic exchanges 
between these neighboring regions doubtlessly played a role. With a sufficiently 
high number of clusters, a shared component between WAS and some AFR 
populations appears, perhaps reflecting North African gene flow.
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Extended Data Fig. 3 | Multi-head Neural ADMIXTURE results on a dataset 
consisting of closely related groups. To qualitatively assess the performance 
of Neural ADMIXTURE on related groups, we ran multi-head Neural ADMIXTURE 
on a subset of the dataset All-Chms containing 504 East Asian (EAS) individuals 
from neighboring regions. The self-reported ancestry of these individuals are 
Chinese Dai in Xishuangbanna, China (CDX, 93), Han Chinese in Beijing, China 
(CHB, 103), Han Chinese South (CHS, 105), Japanese in Tokyo, Japan ( JPT, 104) and 
Kinh in Ho Chi Minh City, Vietnam (KHV, 99). The network was trained in its multi-
head version from K=3 to K=7 using the PCK-Means initialization. The Japanese 

samples ( JPT) are differentiated and clearly assigned their own cluster (blue), 
which is present only marginally in other populations. CDX (Chinese Dai) and 
KHV (Vietnamese Kinh) initially share the same cluster (K=3, green), reflecting 
their common Southeast Asian lineage, but are split into different groups at K=4 
(purple and green). As expected CHB (Han Chinese in Beijing) and CHS (Han 
Chinese from South China) samples share the same cluster at first (red) and are 
only differentiated last (at K=5, red and orange). Further structure (yellow and 
brown) is seen within some populations at higher K.
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Extended Data Fig. 4 | Q estimates of multi-head Neural ADMIXTURE on 
a dataset consisting of only admixed samples. To assess performance of 
the model using real admixed samples, we have trained a multi-head Neural 
ADMIXTURE model (from K=2 to K=5) with samples whose self-reported ancestry 
are African Caribbean in Barbados (ACB, 96), African Ancestry in Southwest US 
(ASW, 61), Colombian in Medellin, Colombia (CLM, 94), Mexican Ancestry in Los 
Angeles, California (MXL, 64), Peruvian in Lima, Peru (PEL, 85) and Puerto Rican 
in Puerto Rico (PUR 104). The groups have been selected from the 1000 Genomes 
Project. The variants used (839629) are the same as in the dataset All-Chms. The 
network was trained using the PCK-Means initialization (Supplementary Text 
‘Decoder initialization’). At K=2, ACB and ASW are assigned predominantly to 
their own cluster, separating their mostly African origins from the remaining out-

of-Africa components. When introducing the next new cluster (K=3), admixed 
individuals in CLM, MXL and PEL are assigned some fraction to it, differentiating 
an Indigenous American component in them from their European component. 
At K=4 the individuals in the PUR population are assigned some fraction of 
the new cluster, and this cluster is also present in small amounts in CLM and 
smaller amounts in some MXL. This component, which does not decrease the 
Indigenous American component fraction in the samples, likely represents an 
early colonial-era Spanish (European-ancestry) founder effect on the island of 
Puerto Rico perhaps reflecting the subsequent early colonial expansion from the 
Spanish Caribbean to coastal Colombia and Mexico. Structure in the European 
component appears at K=5.

http://www.nature.com/natcomputsci
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Cluster assignments computed by Neural ADMIXTURE 
for individuals born outside the British and Irish Isles in the UK Biobank 
training data. (a) K=2 (b) K=3 (c) K=4 (d) K=5 (e) K=6. Because the majority of 
the dataset is composed of individuals with white British ancestry, we only plot 
the cluster assignments of individuals that reported a country-of-birth outside 
British and Irish Isles. We can observe that K=2 approximately divides samples 
between European and non-European populations. With K=3 European, South-

and-East Asian, and African ancestry clusters emerge. When K=4 a fine-grained 
clustering emerges dividing East and South Asian populations. K=5 adds a fifth 
cluster shared in common (with different proportions) between Southern 
European (Mediterranean) and West Asian (Near Eastern) populations. Finally, 
K=6 seems to introduce a cluster mostly present in Northern and Eastern 
European populations.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection No software was used for data collection.

Data analysis The software is available as an installable package in the PyPi repository under the name neural-admixture. The source code from this paper is 
available from the address https://github.com/ai-sandbox/neural-admixture listed in the paper. In addition version 1.7.1 of PyTorch, Python 
3.8, pong 1.5, Admixture 1.3.0, Alstructure 0.1.0, Terastructure 1.0, Haplonet 0.2, and Faststructure 1.0.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The datasets used in the Experiments section of this article have been compiled from the publicly available 1000 Genomes Project (https://
www.internationalgenome.org/data/), the Simons Genome Diversity Project (https://www.simonsfoundation.org/simons-genome-diversity-project/), and the 
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Human Genome Diversity Project (https://www.internationalgenome.org/data-portal/data-collection/hgdp). Moreover, several compiled datasets used in the 
Experiments section of the article (All-Chms, Chm-22 and Chm-22-Sim) have been made available in figshare (https://doi.org/10.6084/m9.figshare.19387538.v1). 
Data from the UK Biobank study was also analyzed. This dataset is available to researchers through an open application via https://www.ukbiobank.ac.uk/register-
apply/.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender No sex or gender based analyses were performed, as this study focuses only on computational performance on autosomes.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Grouping labels were sourced from the 1000 Genomes project data, from the Human Genome Diversity project data, or from 
the UK Biobank dataset, as collected in those studies. Additionally, labels based on geographical continent of origin are used 
for high level grouping.

Population characteristics Genotypic information only was used.

Recruitment No recruitment was conducted. All data originates from public databases as described above.

Ethics oversight The UK Biobank has approval from the North West Multi-centre Research Ethics Committee (MREC) as a Research Tissue 
Bank (RTB) approval. This is a publicly available dataset as described above.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was chosen based on existing public dataset size. That is, all samples available in the public datasets were used. These datasets 
were large enough to compute necessary scaling performance as demonstrated in the study.

Data exclusions There were no exclusions.

Replication There were no replicates.

Randomization This is not relevant to our study as we are not looking for statistical associations; we are simply measuring computational performance.

Blinding This is not relevant to our study as we are not looking for statistical associations; we are simply measuring computational performance.
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