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Computing the relative binding affinity 
of ligands based on a pairwise binding 
comparison network

Jie Yu1,2,3,11, Zhaojun Li4,5,11, Geng Chen1,6,7, Xiangtai Kong1,6, Jie Hu8, 
Dingyan Wang1,3, Duanhua Cao1,9, Yanbei Li1,6,7, Ruifeng Huo8, Gang Wang1,6, 
Xiaohong Liu5, Hualiang Jiang1,6,8, Xutong Li    1,6  , Xiaomin Luo    1,6   & 
Mingyue Zheng    1,6,10 

Structure-based lead optimization is an open challenge in drug discovery, 
which is still largely driven by hypotheses and depends on the experience 
of medicinal chemists. Here we propose a pairwise binding comparison 
network (PBCNet) based on a physics-informed graph attention mechanism, 
specifically tailored for ranking the relative binding affinity among 
congeneric ligands. Benchmarking on two held-out sets (provided by 
Schrödinger and Merck) containing over 460 ligands and 16 targets, PBCNet 
demonstrated substantial advantages in terms of both prediction accuracy 
and computational efficiency. Equipped with a fine-tuning operation, 
the performance of PBCNet reaches that of Schrödinger’s FEP+, which is 
much more computationally intensive and requires substantial expert 
intervention. A further simulation-based experiment showed that active 
learning-optimized PBCNet may accelerate lead optimization campaigns 
by 473%. Finally, for the convenience of users, a web service for PBCNet is 
established to facilitate complex relative binding affinity prediction through 
an easy-to-operate graphical interface.

AlphaFold2, which appeared in the 14th round of the Critical Assess-
ment of protein Structure Prediction (CASP), is believed to have solved 
the half-century-old problem of predicting a protein structure from 
its primary sequence. This breakthrough has ushered in a new era in 
structure-based drug design1. Recently, the Critical Assessment of 
Computational Hit-finding Experiments (CACHE), a public bench-
marking project, has garnered attention from the computational 

chemistry community and pharmaceutical industry for enhancing 
small-molecule hit-finding algorithms2. However, the hit-to-lead opti-
mization process is still largely driven by hypotheses and depends 
on the experience of medicinal chemists. Lead optimization aims to 
design ligands with higher binding affinity while maintaining other 
properties3–5. During optimization, a congeneric series of ligands is 
generated that generally share the same core structure and differ only 
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all baselines except FEP+. Furthermore, with a small amount of fine-
tuning19 data, PBCNet is comparable to Schrödinger’s FEP+, but with 
substantially less computational cost. An ideal model should also 
have the ability to enrich key high-activity compounds from a batch 
of structural analogs. We built a benchmark to test whether our model 
can identify ‘leading’ compounds, and the results indicate that, on 
average, PBCNet can accelerate lead optimization projects by 473%. 
Finally, PBCNet has been deployed in the cloud, and the corresponding 
web service is accessible at https://pbcnet.alphama.com.cn/index.

Results
Model structure
The framework of PBCNet is shown in Fig. 1. It consists of three parts: 
(1) the message-passing phase, (2) the readout phase and (3) the predic-
tion phase. The input of PBCNet is a pair of pocket–ligand complexes 
in which the ligands are structural analogs and the parts comprising 
the pockets are entirely identical. The amino-acid residues of the protein 
for which the minimum distance for the ligand is less than or equal to 
8.0 Å are kept as the protein pocket. The message-passing phase is 
designed to obtain node-level representations. First, the graph convo-
lutional network (GCN)20 is applied to update the atom representations 
of the protein pocket alone. Then, the updated protein pocket is com-
bined with the two ligands by building edges between pairs of atoms 
less than 5.0 Å apart. A well-designed message-passing network (detailed 
in the Methods) is then used to transmit information across the molecule 
graphs. Finally, we remove the pocket from the molecular graphs and 
only retain the ligands. The goal of the readout phase is to obtain the 
molecular representations (graph-level). In this phase, molecular rep-
resentations of the ligands (x(i) and x(j) in Fig. 1) are computed by an 
Attentive FP21 readout operation. Then, the molecular-pair representa-
tions (x̃(i, j) in Fig. 1) are obtained by equation (7) in the Methods. In the 
prediction phase, molecular-pair representations are learned by opti-
mizing the losses of two tasks: (1) the predictions of affinity differences 
and (2) the probabilities that the affinity of ligand i is greater than that 
of ligand j by two independent branches of three-layer feedforward 
neural networks (see section Model training and fine-tuning process).

In the inference process, we only need to provide docking poses 
of a pair of structurally similar small molecules to the same protein 
to obtain the predicted relative binding affinity. A more detailed 
description of the model framework, and the difference between the 
Siamese network and traditional networks are also demonstrated in 
the Methods.

Performance of PBCNet
Zero-shot learning. First, we analyzed the zero-shot performance 
of PBCNet on the two held-out test sets (FEP1 and FEP2 sets, see sec-
tion Benchmark dataset for performance assessment), and selected 
Schrödinger’s FEP+ (ref. 9), Schrödinger’s Glide SP22, MM-GB/SA11, as 
well as four AI-based models (DeltaDelta15, Default2018 (ref. 16), Dense16 
and PIGNet23) as baselines. The general idea of zero-shot learning is to 
transfer the knowledge contained in the training instances to the task 
of testing instance prediction24. This evaluation is designed to simulate 
the early stage of a lead-optimization campaign, where there is always 
a lack of compounds with known activity. For each test series we ran-
domly selected one ligand as the reference ligand to infer the absolute 
binding affinities of the remaining ligands (see section Mathematical 
formulation), and this process was repeated ten times to avoid random-
ness. The performances of all methods on the FEP1 and FEP2 sets are 
summarized in Supplementary Data 1 and 2, respectively. Pearson’s 
correlation coefficient (R), Spearman’s rank correlation coefficient 
(ρ) and the pairwise root-mean-square error (r.m.s.e.pw) are used here 
(see section Determination of model performance). For PIGNet, the 
results were calculated using its officially reported code and weights. 
For other baselines, we utilized performance metrics as detailed in 
their respective original literature.

in some substituent groups. The extensive optimization space for a 
lead, spanning hundreds to thousands of compounds, necessitates 
substantial resources for experimental evaluations6,7. Consequently, 
developing in silico predictive tools is important to expedite drug 
discovery. By minimizing the number of design-make-test-analyze 
cycles, these tools facilitate the attainment of compounds possessing 
desired affinity and property profiles.

In recent decades, many relative binding free energy (RBFE) simu-
lation methods have been proposed for lead optimization, benefiting 
from improved force fields and sampling algorithms. For example, free 
energy perturbation (FEP) is a widely used alchemical method8 that 
is achieving remarkable accuracy on specific systems that is nearing 
1 kcal mol−1 (ref. 9). However, FEP also suffers from several limitations, 
such as depending on the process of system preparation for its accu-
racy10, being limited by considerable computational cost9 and being 
limited to a maximum number of changes between ligands. Another 
category of RBFE simulation method involves end-points sampling11, 
such as the molecular mechanics generalized Born surface area (MM-
GB/SA)12,13. End-points sampling methods reduce the computational 
requirements, but their performance is also compromised. In sum-
mary, despite the high accuracy of RBFE simulation methods, their 
complicated preparation process, limited molecule throughput and 
low allowance for changes between molecules hinder their practical 
usage in quickly navigating the optimization space of lead molecules.

In recent years, some artificial intelligence (AI) models designed 
for guiding lead optimization have emerged14–16. Inspired by RBFE 
simulation methods, Jiménez–Luna et al. proposed a convolutional 
Siamese neural network (SNN), called DeltaDelta15, to directly deter-
mine the RBFE between two bound ligands. One advantage of SNN 
is that it directly determines the RBFE, which eliminates the system-
atic error derived from the absolute binding free energies (ABFEs). 
Another advantage is its ability to factor in information from both 
input ligands, incorporating their structural differences and com-
monalities. However, DeltaDelta has yet to take full advantage of the 
SNN architecture. Specifically, DeltaDelta first predicts the ABFE of 
two inputted compounds, and then directly uses the difference of the 
predicted ABFE as the final RBFE prediction for loss calculation. This 
approach does not consider the association between the two inputs 
(pairwise separability17). DeltaDelta showed relatively poor outcomes 
in retrospective lead optimization campaigns without fine-tuning. 
McNutt et al. recently proposed a multitask convolutional SNN model16. 
Their approach involves using the explicit differences between the 
representations of two inputted ligands as the molecular-pair repre-
sentation. The potential assumption is that features that are common 
to two ligands are irrelevant to predicting their difference, which is 
obviously unreasonable in RBFE predictions. Moreover, they used 
the prediction of the ABFE as one of the auxiliary tasks, potentially 
reintroducing the noise originally eliminated by RBFE prediction. 
Consequently, compared with DeltaDelta, their models did not show 
substantial performance gains.

In summary, developing an efficient and accurate method to guide 
lead optimization is an urgent need. To this end, we propose a pairwise 
binding comparison network (PBCNet) based on a physics-informed 
graph attention mechanism that is specifically tailored for ranking the 
relative binding affinity among a congeneric series of ligands. Several 
physical-oriented modeling strategies are introduced, considering 
that the formation of intermolecular interactions always follows strict 
geometric rules18. Based on our interpretation studies, we found that a 
relatively high attention score assigned to protein–ligand atom pairs 
may indicate a more significant interaction. Additionally, PBCNet 
focuses on molecular substructures that can form intermolecular 
interactions.

PBCNet has been evaluated in terms of the error and correlation 
between the predicted and experimental binding affinities. Bench-
marking results show that our model substantially outperformed 
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The results show that the performance of PBCNet is substantially 
better than that of all baselines except FEP+, meaning that PBCNet is 
the best of all high-throughput methods mentioned here. Moreover, 
the accuracy of PBCNet on the FEP1 set has achieved 1.11 kcal mol−1, 
which is very close to 1 kcal mol−1, and it also achieves the lowest aver-
age r.m.s.e.pw (1.49 kcal mol−1) on the FEP2 set. Supplementary Fig. 1 
visualizes the model predictions, demonstrating a strong alignment 
between the predicted ∆pIC50 values (ΔpIC50 is the difference between 
the pIC50 values of two ligands, pIC50 is the negative logarithm of IC50 
in molar concentration and IC50 means 50% inhibitory concentration, 
which is a type of binding affinity. Please see section Training dataset 
and data balance) and the corresponding experimental values across 
the majority of the test series.

We also find that PBCNet is robust, with more stable performance 
across all testing series compared with other high-throughput baseline 
methods. This is evident from the Spearman’s rank correlation coeffi-
cient; PBCNet shows correlations of over 0.30 in all test series, whereas 
other high-throughput baseline methods show a more fluctuating ρ, 
such as Glide SP (CKD2, ρ = −0.36; Tyk2, ρ = 0.79). This phenomenon 
reflects the good generalization ability of PBCNet.

Then, we can also observe that the performance of PBCNet on 
the FEP1 set is better than that on the FEP2 set, possibly due to the 
several out-of-domain samples in the FEP2 set. As a model for lead 
optimization, PBCNet is designed to infer the activity differences of 
structural analogs, which always generate high molecule similarities. 
To be closely consistent with the application scenario, the training 
set is composed of molecule pairs whose Tanimoto similarity scores 
are higher than 0.6 (ref. 25). Figure 2a shows the relationship between 
the model accuracy and molecule similarity, and an obvious negative 
correlation can be observed. It is not a surprise to notice the similarity-
dependent performance of PBCNet, because identifying molecules 
with different structures is more relevant to virtual screening than lead 
optimization. Correspondingly, the methods and models designed for 
virtual screening are always poor at lead optimization, such as Glide 
and PIGNet, which have been evaluated here. We further counted the 
proportions of ligand pairs with different similarity scores in the FEP1 
and FEP2 sets (Fig. 2b). Figure 2b shows that the proportion of molecule 
pairs with a Tanimoto similarity score of less than 0.6 in the FEP2 set 
are substantially higher than that in the FEP1 set (70.4% versus 54.4%), 
which may lead to the performance differences of our model on the 
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Fig. 1 | The framework of PBCNet. a, Message-passing phase. This phase is used 
to realize the mutual information interaction between the ligands (in red and 
blue) and the protein pocket (in gray), and obtain node-level representations of 
the ligands. b, The readout phase obtains the molecular representations 
(graph-level) and realizes the information interaction of the pair of ligands. The 
red and blue nodes represent the graph-level representations of ligand i and 
ligand j, respectively (x(i) and x(j)), and the yellow nodes present the difference of 

the two graph-level representations, x(i) − x(j). The molecular-pair representations 
x̃(i, j) are obtained by splicing between the three. c, In the prediction phase, 
molecular-pair representations are learned by optimizing the losses of two tasks: 
(1) predictions of affinity differences ̂y(i, j) and (2) the probabilities ( ̂p(i, j)) that the 
affinity of ligand i is greater than that of ligand j by two independent branches of 
three-layer feedforward neural networks.
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FEP1 and FEP2 sets. However, PBCNet’s ranking performance on the 
FEP2 set still surpassed all the baselines, except for FEP+. Given this, 
we may conclude that PBCNet should be of practical value for guiding 
lead-optimization projects.

Finally, we also find our model is highly robust to small changes 
in ligand poses (specific information is provided in Supplementary 
Section 1).

Few-shot learning. The reason why we assumed the ranking ability of 
PBCNet to be inferior to that of FEP+ is because of the ability of FEP+ 
to sample various binding conformations. Other methods, except 
MM-GB/SA, only use a single snapshot, which leads to less compre-
hensive information about the molecular binding process. However, 
PBCNet has two advantages over FEP+ in a real-world application. 
First, PBCNet is not limited by molecule throughput, allowing for 
comprehensive exploration of lead optimization. According to public 
information9, running FEP+ for four perturbations per day requires 
eight commodity Nvidia GTX-780 graphics processing units (GPUs). 
In contrast, PBCNet takes only 0.9 s to calculate one perturbation 
by use of a commodity Nvidia V100 GPU. Through a rough perfor-
mance conversion, PBCNet is ~100,000 times faster than FEP+. The 
second advantage is PBCNet’s flexibility. During a lead-optimization 
campaign, the binding affinity data newly generated can be used to 
fine-tune PBCNet. Few-shot learning19 is used to achieve this. For each 
test congeneric series, we randomly selected several ligands (~2–10) 
as fine-tuning ligands with known binding affinity, which also serve 
as reference ligands in the inference phase. The remaining ligands are 
still the ligands to be tested (referred to as the new testing series). We 
repeat the above process ten times to avoid randomness.

The performances of the fine-tuned models on the new testing 
series are summarized in Supplementary Data 3 and Fig. 3. Figure 3  
shows that the few-shot learning strategy substantially improves the 
performance of PBCNet, and the performance increases with the 
number of fine-tuning ligands. Supplementary Table 1 shows that 
the performances of the fine-tuned PBCNet on the new and original 
testing series are similar. This suggests that the performance improve-
ment is not due to the bias resulting from the reduced length of the 
test series. This consistency is also essential for comparing the fine-
tuned PBCNet and FEP+ under existing conditions. We find that, after 
fine-tuning, PBCNet’s ranking ability is comparable to that of FEP+.  

For example, PBCNet fine-tuned with four ligands even outperformed 
FEP+ in terms of Spearman’s rank correlation coefficient on the FEP1 
set (0.724 versus 0.720).

Using PBCNet to accelerate lead optimization
In this section we test whether our model can efficiently identify high-
activity compounds in a close-to-real-world lead-optimization scenario 
by comparing the order of model selection to the experimental order 
of synthesis, similar to the study of Jiménez–Luna and others15. We 
use active learning (AL)26, an uncertainty-guided algorithm, to intelli-
gently prioritize sample acquisition. Data acquisition was simulated as 
iterative selection from each chemical series, with PBCNet as the active 
learner. In each series, the compound displaying the highest activity 
was used as the target ligand that needs to be identified. In cases where 
multiple compounds hold the same highest activity, we prioritized 
the earliest synthesized among them as the target ligand. In the first 
iteration, the earliest synthesized compound in each chemical series 
was chosen as the reference ligand, and activity values were evaluated 
across the remaining compounds. Subsequently, three ligands with 
the highest predictive values were selected. If the target ligand was 
not among these three, they become new reference ligands for the 
next iteration. In the second iteration, four existing reference ligands 
were paired to form a fine-tune set for refining PBCNet. Both the pre-
dicted activity values and uncertainties (equations (10) and (11) in the  
Methods) of the remaining ligands were evaluated by the fine-tuned 
PBCNet. This evaluation guided the prioritization of three ligands, 
according to the predefined sampling method. This iteration was 
repeated until the target ligand was successfully identified.

We adopted three sampling methods with different settings (see 
section The sample method for simulation-based experiment). Results 
for this simulation-based benchmark are presented in Supplementary 
Data 4. We find that the strategies taking uncertainty into consideration 
are superior to the purely exploitation-oriented one, and the model-
oriented as well as user-oriented strategies do not exhibit an obvious 
performance difference. The model-oriented AL strategy is selected as 
the representative for further comparison, and three metrics are used 
and computed as follows:

Advantageorder = Experimental order −Model selectionorder
(1)
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Fig. 2 | Performance analysis of PBCNet on the FEP1 and FEP2 sets. a, Bar plot 
showing the change in model accuracy with pairwise molecule similarity. We split 
all pairwise samples in both test sets, ordered by Tanimoto similarity scores in 
five bins (x axis), and calculated the mean absolute errors (MAEs) for each bin  
(y axis). The error bars represent 0.1 times the standard deviation (bin 0–0.2, 
n = 18; bin 0.2–0.4, n = 1,567; bin 0.4–0.6, n = 3,071; bin 0.6–0.8, n = 2,404;  

bin 0.8–1.0, n = 195). b, Bar plot showing the proportions of ligand pairs (y axis) 
with different Tanimoto similarity scores (x axis) in the FEP1 and FEP2 sets. The 
proportion of molecules pairs with a Tanimoto similarity score less than 0.6 in the 
FEP2 set are substantially higher than in the FEP1 set (70.4% versus 54.4%), and all 
pairs with a Tanimoto similarity score of less than 0.2 are from the FEP2 set.
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Advantage ratio

= Experimental order−Model selectionorder
Numberof ligands

× 100%
(2)

Efficiency improvement ratio

= Experimental order−Model selectionorder
Model selectionorder

× 100%
(3)

The ‘advantage ratio’ represents the theoretical percentage of 
resources saved when utilizing PBCNet for guiding lead optimization, 
compared to not using it. The ‘efficiency improvement ratio’ represents 
the increase in efficiency when completing a compound optimization 
project before and after using PBCNet, assuming that a project ends 
after obtaining the most active compound.

In six out of nine datasets, AL-equipped PBCNet is able to attain 
the compound with the highest affinity faster than its experimental 
order. On average, it accelerated the lead-optimization projects by 
~473%, while also achieving an ~30% reduction in resource investment. 
Surprisingly, for the BCL6, sEH and AAK1 targets, the compounds with 

the highest affinity were found by PBCNet in the first iteration without 
the fine-tuning operation. We compared our results to the baseline 
MM-GB/SA, which was implemented using the Schrödinger Prime MM-
GBSA with default settings. The results, presented in Supplementary 
Table 2, demonstrate that PBCNet consistently outperforms MM-GB/
SA across all evaluated metrics. Overall, the results are very promising 
and suggest that PBCNet could be successfully applied in a prospective 
scenario to accelerate lead optimization.

Model interpretability analysis
Atom level. Given PBCNet’s impressive performance, it is valuable 
to investigate how the model makes predictions. Because PBCNet is 
attention-based, the attention score between a pair of atoms can be 
seen as a measure of importance. A strong model should assign high 
scores to atom pairs forming key intermolecular interactions. To illus-
trate this, we performed a case study on two different ligands in the 
FEP1 set, focusing on identifying hydrogen bonds27, which are crucial 
and common intermolecular interactions.

We first computed the intermolecular interactions between the 
ligands and proteins with Schrödinger2020-4. Because the positions 
of the hydrogen atoms depended heavily on the program used to add 
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graphs we can see that the performance of PBCNet increases as the number of 
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Fig. 4 | Node-level interpretability analysis results of PBCNet on two ligands. 
a,b, A thrombin inhibitor 6a (a) and a JNK1 inhibitor 18660-1 (b). The molecular 
structure, three-dimensional hydrogen-bond visualization graphs and attention 
visualization graphs are shown for comparison. In each attention visualization 
graph, the ligand atom (referred to as target atom) is denoted by a purple dot, 
indicated by an arrow and is involved in the formation of hydrogen bonds. Other 
dots denote the neighbor atoms of the target atom. The black dots represent 

the ligand atoms (including the virtual aromatic nodes in the ligand structure) 
covalently linked with the target atom, the gray ones represent the protein 
pocket atoms (including the virtual aromatic nodes in the protein structure) 
linked with the target atom by virtual distance edges and the dot in blue denotes 
the protein pocket atom that forms the hydrogen bond with the target atom. The 
color of the edges is coded based on their attention score, and an edge with a dark 
color is favorable for protein–ligand binding.
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hydrogens, we did not take them into account. For hydrogen-bond 
donors, we selected the heavy atoms covalently linked with hydrogen 
atoms for further analysis. We then extracted the attention weights, 
generated in the last layer of the Distance-aware edge to node block 
(Methods), of the atoms involved in the formation of hydrogen bonds. 
The results of these operations are illustrated in Fig. 4, and the inter-
molecular interactions computed by Schrödinger are summarized in 
Supplementary Table 3.

Compound 6a from the thrombin series forms three hydrogen 
bonds with the target at the 3, 8 and 10 positions (Fig. 4a). We found 
that the hydrogen bonds formed at the 3 and 10 positions are high-
lighted. The covalent bonds are also emphasized. This is consistent 
with a chemical prior that the chemical environment of a ligand atom 
is largely determined by its covalently linked atoms and the protein 
atoms involved in key intermolecular interactions. It reveals that 
PBCNet is able to capture key intermolecular interactions. The com-
puted hydrogen bond at the 8 position is not emphasized, unlike its 
counterparts at the 3 and 10 positions, possibly due to the relatively 
weaker hydrogen-bond donor nature of the amide-donor hydro-
gen atom28. Compound 18660-1 from the JNK1 series forms two 
hydrogen bonds with the target at the 12 and 18 positions (Fig. 4b).  
As expected, all of them are highlighted. Moreover, the carbon atom 
of 18660-1 at the 5 position, which does not form any key intermo-
lecular interaction (computed by Schrödinger), was selected as a 
negative sample. We can clearly see that only covalent bonds are 
assigned relatively high attention scores, while the attention scores 
of the virtual distance bonds are small and uniform in value. The 
above results all reflect the rationality of the prediction basis of  
our model.

Substructure level. Medicinal chemists prefer to investigate molecular 
properties in terms of chemically meaningful fragments rather than 
individual atoms29. Therefore, we extended our analysis to include 
substructure-level interpretability.

In this analysis, we employed the substructure mask explanation 
(SME) methodology, as recently proposed by Wu and others29. We 
assume that the model’s prediction value for a compound is denoted 
as ̂y. Then, the compounds are split into substructures using the BRICS 
method. Sequentially, the hidden representations of the atoms of each 
substructure are masked during the readout phase, yielding the cor-
responding prediction value ̂ysubi where the subscript subi represents 
the ith substructure. When the predicted value represents the com-
pound’s activity, we consider that a greater decrease in ̂ysubi compared 
to ̂y indicates that the corresponding substructure plays a more crucial 
role in the model’s prediction. Thus, the attribution scores used to 

quantify the importance of each substructure are defined by the fol-
lowing equation:

Attributionsubi = ̂y − ̂ysubi (4)

and we normalize the attribution scores to normalized attribution 
scores (Attribution_N) within a range of 0 and 1, according to

Attribution_Nsubi =
Attributionsubi

∑N
i=1 Attributionsubi

(5)

where N is the number of substructures.
Here, we take compound 6a from the thrombin system as a case 

study, using compound 1a as a reference ligand to illustrate PBCNet’s 
activity prediction for compound 6a (Fig. 5a). Compound 6a was seg-
mented into seven substructures using the BRICS method, with the 
amide group being divided into two distinct substructures. To provide 
a more intuitive representation for medicinal chemists, we manually 
merged the amide group as a whole (Supplementary Table 4). The 
visualization is presented in Fig. 5b.

As shown, we found that Sub4 and Sub1 (Supplementary Table 4) 
have the greatest impact on the predictive results. PBCNet is designed 
to predict the relative binding affinities, which are predominantly 
derived from the different substructures of a pair of ligands. Sub4, 
being the part of compound 6a that structurally deviates from com-
pound 1a, has been emphasized, suggesting that PBCNet indeed cap-
tures the structural differences between input ligands. Moreover, as 
depicted in Fig. 4a, Sub1 forms two hydrogen bonds with the protein, 
so the emphasizing of Sub1 also implies that PBCNet focuses on key 
molecular motifs that form intermolecular interactions.

Ablation experiments
To enhance the performance of PBCNet, we implemented various 
strategies, which can be broadly divided into two categories: frame-
work-related and knowledge-related. The former includes the SNN 
architecture and the classification assistance task, while the latter 
incorporates physical and prior knowledge. To verify whether these 
strategies really contribute to the model performance improvement, 
we performed the following ablation experiments on PBCNet.

PBCNet stands out due to its SNN network framework with paired 
inputs. We constructed a single-input model termed ‘Singular PBCNet’ 
to remove the SNN framework. Meanwhile, to verify the effect of pair-
wise separability on the SNN framework, we built a pairwise separated 
model referred to ‘Separated PBCNet’. Their frameworks are shown in 
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+

Cl

Cl

0.133

0.223

0.066 0.1110.467
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a b

0.1 0.2 0.3 0.4
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Fig. 5 | Result of PBCNet’s interpretability analysis on the substructure 
level. a, The binding modes of compound 6a (cyan) and 1a (purple) within the 
protein pocket. Ted nodes indicate oxygen atoms, dark blue nodes indicate 
nitrogen atoms, green nodes indicate chlorine atoms, white nodes indicate polar 

hydrogen atoms and the rest of the nodes indicate carbon atoms. b, Visualization 
of the analysis: each substructure is color-coded according to its normalized 
attribution scores.
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Supplementary Fig. 2. We also removed the classification auxiliary task 
and obtained ‘MSE PBCNet’. Note that Singular PBCNet and Separated 
PBCNet lack the assistance task as they do not use molecular pairs 
information, and their performance should be compared with MSE 
PBCNet subsequently. The performance of the ablated models is shown 
in Supplementary Table 5.

Compared with PBCNet, MSE PBCNet showed a small decrease in 
performance on both the FEP1 and FEP2 sets (FEP1, 0.636 versus 0.629; 
FEP2, 0.513 versus 0.488). This aligns with expectations, as the auxiliary 
task addresses samples with small errors but wrong rankings, which 
constitute a small fraction of the dataset. Compared with MSE PBCNet, 
the performance of Singular PBCNet showed a substantial decrease 
both on the FEP1 set and on the FEP2 set (FEP1, 0.629 versus 0.559; FEP2, 
0.488 versus 0.372 (statistically significant)). This result illustrates the 
advantage of the SNN framework in relative binding affinity prediction. 
Compared with MSE PBCNet, the performance of Separated PBCNet 
significantly decreases on the FEP2 set (0.488 versus 0.425). For such 
results we believe that the ability to consider the structural information 
of both inputted molecules and their connections simultaneously is 
crucial for the model performance.

We next removed the distance information, angle information 
and aromatic information, separately. The performance of the ablated 
PBCNet is shown in Supplementary Table 5. After removing any of the 
knowledge-related strategies, the performance of PBCNet decreases 
on both the FEP1 and FEP2 sets, especially the distance information. 
This phenomenon indicates that all three knowledge-related strategies 
contribute to the performance of PBCNet.

Discussion
AI has gained prominence in solving scientific problems by incorporat-
ing domain-specific knowledge into its modeling. PBCNet is an example 
of this integration of physical knowledge into its framework. However, 
there are still avenues for improvement. First, although PBCNet shows 
substantial predictive advancements over prior attempts, its zero-shot 
performance is lower than that of Schrödinger’s FEP+. Therefore, cap-
turing protein conformational changes prompted by ligand binding, 
just like FEP+, remains an ongoing pursuit to improve model accuracy. 
Second, the underlying assumption of this study is that similar ligands 
exhibit similar binding modes. Therefore, extreme cases, where highly 
similar ligands bind to the protein with entirely different binding modes, 
may pose challenges for PBCNet’s handling capabilities. Furthermore, 
PBCNet still relies on medicinal chemists for molecule design and 
molecular docking binding poses generation. A direct-shot pipeline 
that integrates molecular generation, docking and optimization, could 
circumvent cumulative errors in the process of lead optimization.

In the future, we will continue to refine our modeling strategies to 
enhance PBCNet’s predictive performance by considering the altera-
tions of protein conformation and ligand pose. Simultaneously, we will 
also try to combine PBCNet with deep molecular generative models to 
streamline the automated design of high-potency molecules.

Methods
Mathematical formulation
In traditional modeling protocols (single-input modeling methods), 
suppose we are given a training set with N samples (protein–ligand 
complexes from the same congeneric series) 𝒟𝒟={x(i), y(i)}

N
i=1 . Here, 

x(i) ∈∈∈ℝm represents the feature vector of an input, m means its dimension 
and y(i) ∈ℝ is a real-valued property (pIC50 here). ℳ  is a deep learning-
based regression model parameterized by weights θ and trained on 𝒟𝒟, 
and ̂y(i) = ℳ(x(i);θ) represents the prediction result of ℳ  for x(i).

For Siamese models, however, these concepts are subject to slight 
change. First, N training samples are paired with each other to form (N

2
) 

paired training samples, and tuple p is used to index them:

p ∈ {(i, j) |1 ≤ i < j ≤ N} (6)

where i and j correspond to indexes of the first and second complex of 
a paired sample. Then, the feature vector x̃(i, j) of a paired sample is 
dependent on x(i) and x(j). Here, x̃(i, j) ∈ℝ3∗m is constructed by the follow-
ing equation:

x̃(i, j) = x(i) ⊕ x(j) ⊕ (x(i) − x(j)) (7)

where ⊕ is the concatenation operation. The label of a paired sample 
ỹ(i, j) (∆pIC50 here) is calculated according to

ỹ(i, j) = y(i) − y(j) (8)

Finally, the pairwise training dataset 𝒟𝒟p = {x̃(i, j), ỹ(i, j)}1≤i<j≤N  is 
obtained. ℳp is a Siamese regression model parameterized by weights 
θp and trained on 𝒟𝒟p. ̂y(i, j) = ℳp(x̃(i, j);θp) represents the prediction result 
of ℳp for x̃(i, j).

For an unseen complex u whose feature vector is represented by 
x(u), we pair it with every complex in 𝒟𝒟, which can be seen as a set of 
reference samples with known binding affinities in the inference phase, 

to obtain the pairwise test dataset {x̃(i,u), ỹ(i,u)}
N
i=1. Mp is able to output 

the corresponding N predictions { ̂y(i,u)}
N

i=1
, and the predicted absolute 

affinity of u { ̂y(u)i }
N

i=1
 based on different reference samples can be 

obtained by the equations

̂y(u)1 = y(1) − ̂y(1,u)

̂y(u)2 = y(2) − ̂y(2,u)

⋮

̂y(u)N = y(N) − ̂y(N,u)

(9)

The mean value and variance of { ̂y(u)i }
N

i=1
 can be deemed the final 

prediction ̂y(u) and uncertainty estimation σ2(u) of u, respectively 

(equations (10) and (11)):

̂y(u) = 1
N

N
∑
i=1

̂y(u)i (10)

σ2(u) = 1
N

N
∑
i=1

( ̂y(u) − ̂y(u)i )
2

(11)

The structure of alternately updated message-passing neural 
network
A well-designed message-passing neural network (alternately updated 
message-passing neural network, AU-MPNN) is applied in the message-
passing phase (Fig. 1a). Before the detailed introduction of AU-MPNN, 
some definitions need to be clarified. First, the complex of a ligand and 
the corresponding protein binding pocket is deemed a directed molec-
ular graph G, in which all heavy atoms are treated as nodes (Nd), and 
all covalent bonds are treated as edges (E). Moreover, virtual distance 
edges are built between atom pairs of the ligand and the binding pocket, 
whose distances are less than or equal to 5.0 Å. Additionally, virtual 
aromatic nodes are set up for the centroid of each aromatic ring, and 
virtual aromatic edges are also established between virtual aromatic 
nodes and the nodes in corresponding aromatic rings. During message 
passing, all nodes (heavy atom nodes and virtual aromatic nodes) and 
all edges (covalent bond edges, virtual distance edges and virtual 
aromatic edges) are equivalent. Finally, the final whole graph G = 〈Nd, E〉 
is constructed. Here, all edges are directed, and an edge e ⃗uv indicates 
that its direction goes from node au to node av. If there is an edge e ⃗uv in 
G, au is a neighbor node of av. In the following, av is assumed to be the 
target node whose representation needs to be updated. The set 
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Vnei = {au1 ,au2 ,au3 ,⋯} represents all neighbor nodes of av, and au refers 
to any neighbor node of av (Supplementary Fig. 3a). Correspondingly, 
the set UV = {e ⃗u 1v, e ⃗u 2v, e ⃗u 3v, ⋯}  is all incoming edges of av (edges that 
point to av). Moreover, eu⃗v is assumed to be the target edge that needs 
to be updated. The set Unei = {ak1 , ak2 , ak3 , ⋯}  represents all neighbor 
nodes of au except av. The set KU = {e ⃗k 1u

, e ⃗k 2u
, e ⃗k 3u

, ⋯}  stands for all 
neighbor edges of e ⃗uv, and e ⃗ku refers to any neighbor edge of e ⃗uv (Sup-
plementary Fig. 3a).

The specific architecture of AU-MPNN is shown in Supplementary 
Fig. 3c. In general, AU-MNPP consists of two phases: (1) distance and 
angle-aware bond-to-bond blocks and (2) distance-aware bond-to-atom 
blocks. In the following sections, we will give a detailed introduction 
for these two phases and the corresponding preparations.

Initial featurization. Node and edge features need to be defined before 
message passing. Here we use a total of 15 types of atomic feature (Sup-
plementary Table 6) and five types of bond feature (Supplementary 
Table 7) to characterize them and their local chemical environment. 
Except for atomic mass, explicit valence, implicit valence and van der 
Waals (vdw) radius, the rest of these features are encoded in a one-hot 
fashion. Of note is that the feature vectors of virtual nodes and edges 
are set as zero vectors.

Initial hidden representations. Initial node and edge features should 
be further encoded as their initial hidden representations before the 
first step of message passing. Taking av and e ⃗uv as examples, we initialize 
their hidden representations with

h0v = ReLU (Wi−node × xv + bi−node) (12)

x′
⃗uv
= ReLU (Wi−edge × x ⃗uv + bi−edge) (13)

h0
⃗uv
= ReLU (Wi × cat (h0u , x′ ⃗uv ) + bi) (14)

where xv ∈ ℝlnode and x ⃗uv ∈ ℝledge are initial features of av and e ⃗uv; h0v ∈ ℝm,  

h0u ∈ ℝm and h0
⃗uv
∈ ℝm are initial hidden representations of av, au and e ⃗uv,  

respectively; x′
⃗uv
∈ ℝ

m
2  is an intermediate vector to obtain h0

⃗uv
; cat(∙) is 

the concatenate operation; Wi−node, Wi−edge and Wi are learned matrices; 
and i means ‘initial’. This process is visualized in Supplementary  
Fig. 3b.

Distance and angle-aware edge-to-edge blocks (DAEE blocks). 
The aim of this block is to use the information of the neighbor edges 
in KU to update the hidden representation of e ⃗uv. For e ⃗uv, the neighbor 
edges are not equally important. For example, a neighbor edge that 
stands for a key intermolecular interaction between ligand and pro-
tein should be highlighted. Hence, the attention mechanism in GAT30 
is applied here. Moreover, considering that intermolecular interac-
tions are determined by the atomic types and distances, atom pairwise 
statistical potentials31 are introduced as an additional attention  
bias term. Here, the Bayesian field theory-based potentials32 proposed 
by Zheng et al. are adopted. Additionally, the degree of the angle 
between two edges also limits the formation of intermolecular inter-
actions (for example, hydrogen bonds and halogen bonds).  
Thus, angle information is taken into consideration in computing the 
attention scores.

The computing process of this block is summarized in Supplemen-
tary Fig. 3c (left). First, on each step l, the queries of e ⃗uv (ql

⃗uv
) and the 

keys of its any neighbor edge e ⃗ku (kl
⃗ku
) are obtained according to

ql
⃗uv
= Wl

q−edge × hl−1
⃗uv
+ bl

q−edge (15)

kl
⃗ku
= Wl

k−edge × hl−1
⃗ku
+ bl

k−edge (16)

where Wl
q−edge and Wl

k−edge are two learned matrices. According to the 
spatial coordinates of nodes ak, au and av, the degree of angle θkuv 
between e ⃗ku and e ⃗uv can be computed. Then, we divide the angles into 
six angle domains with a cutoff of π

6
 (Supplementary Fig. 3d), and 

encode them as the corresponding angle embedding. Here, the angle 
information is fused by extending the original attention mechanism 
in the GAT with angle-aware attention:

εl
⃗uv , ⃗ku

= wl
edge ⋅ LeakyReLU [q

l
⃗uv
+ kl

⃗ku
+Wl

angle × Divider (θkuv)] (17)

where Divider is used to map θkuv to the located angle domain one-hot 
vector, Wl

angle is a learned matrix, wl
edge is a learned vector and εl ⃗uv , ⃗ku

 is 
the correlation coefficient of e ⃗ku and e ⃗uv. After that, atom pairwise sta-
tistical potentials are converted as an additional bias term (pk, u) to 
combine distance information:

pk,u =
⎧⎪
⎨⎪
⎩

1 if e ⃗ku isa covalent bond

2 × log (P (typek, typeu,dist ⃗ku )) if e ⃗ku isa virtual bond

0.8 if typek or typeuis not covered
(18)

ε′ l
⃗uv , ⃗ku

= εl
⃗uv , ⃗ku

+ pk,u (19)

αl
⃗uv , ⃗ku

=
exp (ε′ l ⃗uv , ⃗ku

)

∑e ⃗ku ∈KU
exp (ε′ l

⃗uv , ⃗ku
)

(20)

where typek and typeu are atomic types of ak and au; dist ⃗ku represents 

the distance between ak and au (meaning the length of e ⃗ku); P (⋅) is the 

mapping function of atom pairwise statistical potentials; ε′ l
⃗uv , ⃗ku

 is the 

updated correlation coefficient of e ⃗ku and e ⃗uv; and the final calculated 
attention score αl

⃗uv , ⃗ku
 reflects how important e ⃗ku is for e ⃗uv. Then, the 

message embedding (ml
⃗uv
) used to update the hidden representation 

of e ⃗uv is computed according to:

ml
⃗uv
= ∑

e ⃗k u∈KU
αl

⃗uv , ⃗k u
× kl

⃗ku
(21)

Finally, the updated hidden representation of e ⃗uv (hl
⃗uv
) is acquired 

by residual connections by the following equation:

hl
⃗uv
= Res (Res (hl−1

⃗uv
+Wl

edge−2 × ReLU (W
l
edge−1 ×ml

⃗uv
))) (22)

where Wl
edge−1 and Wl

edge−2 are trained parameter matrices, and Res(⋅) is 
the residual connection module (Supplementary Fig. 3e).

Distance-aware edge-to-node blocks (DEN blocks). The goal of 
this block is to use the information of the neighbor nodes in Vnei and 
the incoming edges in UV to update the hidden representation of 
av. The computing process of this block is summarized in Supple-
mentary Fig. 3c (right). Similar to DAEE blocks, we also introduce 
the attention mechanism and additional distance-based bias term. 
Similarly, the message-passing phase of the DEN block operates 
according to

ql
v = Wl

q−node × hl−1
v + bl

q−node (23)

kl
u = Wl

k−node × hl−1
u + bl

k−node (24)
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followed by

εlu, v = wl
node ⋅ LeakyReLU (q

l
v + kl

u) (25)

ε′ luv = εluv + pu, v (26)

αl
u, v =

exp (ε′ lu, v)

∑au∈Vnei exp (ε
′ lu, v)

(27)

followed by

ml
v = ∑

e ⃗u v∈UV
αl
u, v × hl

⃗u v
(28)

hl
v = Res (Res (hl−1

v +Wl
node−2 × ReLU (W

l
node−1 ×ml

v))) (29)

Note that all the variables here correspond to those in the DAEE 
blocks.

Data collection and processing
Training dataset and data balance. In this study, the BindingDB pro-
tein–ligand validation sets (2020 version)33 were selected as the original 
training data source. A total of 1,265 congeneric series were included in 
the dataset, and, for each series, SMILES (Simplified Molecular Input 
Line Entry System) of the ligands, PDB IDs of the available cocrystal 
structures and corresponding binding affinity values were provided 
by the dataset.

The goal of data processing is to generate docking poses of all 
the ligands and their corresponding proteins by Glide as the input of 
our model. SMILES that failed during preparation with RDKit34 were 
removed. Binding affinity measurements without values as well as 
uncertain, for example, qualified data with either the ‘<’ or ‘>’ sign, 
were discarded. The initial three-dimensional structures of the ligands 
were constructed using RDKit. Then, the ligands were further preproc-
essed for docking using the Schrödinger LigPrep module with default 
parameters. From the protein side, the PDB files were prepared using 
the Protein Preparation Wizard of the Schrödinger suite, following 
the default protocol. Resolved water molecules that made more than 
three hydrogen bonds to ligand or receptor atoms were kept, and the 
structure was centered using the co-crystallized ligand as the center of 
the receptor grid generated for each protein structure. According to 
the statistics, 843 (out of 1,265) series possessed multiple available PDB 
files. For each of these congeneric series, a cross-docking experiment 
(taking the observed binding site from one protein–ligand complex 
and docking a different ligand into the site) was carried out to obtain 
the protein structure with the best pose prediction accuracy for further 
investigation35. After the pretreatment, the docking was performed 
using the Glide module in Schrödinger with default parameters, and at 
most 100 poses per ligand can be written out. Medicinal chemists have 
long recognized that ligands from the same chemical series tend to bind 
a given protein in similar poses36; therefore, a key step of pose selection 
was performed here. For each series, the maximum common substruc-
ture (MCS) of each ligand and the co-crystallized ligand was extracted 
first. Then, the r.m.s.d. of each pose of a ligand and the experimentally 
determined pose of the co-crystallized ligand in the MCS moiety were 
calculated, and if the r.m.s.d. was within 2.0 Å, the corresponding pose 
(referred to as the acceptable pose) will be considered to share the same 
binding mode with the co-crystallized ligand. When there are multiple 
acceptable poses of a ligand, the pose with the highest glide score is 
selected as the final pose. When we cannot obtain the acceptable pose 
of a ligand through docking, however, the ligand will be discarded to 
ensure data quality. The above operations associated with Schrödinger 
were implemented with the 2020-4 version and by the Schrödinger 

Python API. The Numpy37, Pandas38 and scikit-learn39 packages were 
used for data processing. Matplotlib40 was used for visualization.

A total of 1,007 (out of 1,265) series with IC50 affinity values were 
extracted (this was the unit with most data available), containing a 
diverse set of targets. The IC50 affinity values were then log-converted 
to avoid target scaling issues (pIC50 = −log10IC50). Accordingly, the pIC50 
difference (ΔpIC50) between a pair of ligands from the same congeneric 
series was chosen as the model prediction target here. Twenty-six con-
generic series including only one ligand (could not form ligand pairs) 
and ten congeneric series containing the same protein and ligand as the 
hold-out test congeneric series (detailed in the next section) were also 
removed. As a result, there is no overlap in the test congeneric series 
with the training datasets. Finally, we obtained 971 congeneric series 
with an average of ~34 ligands per series.

Additionally, we found that the labels of the training data were 
normally distributed, and most of them were concentrated in the area 
of [−1, 1] (Supplementary Fig. 4a), which would easily lead to overfit-
ting (a model is able to achieve a low training error as long as the model 
predicts the mean value of the training labels). Thus, we balanced the 
training data by undersampling the samples in the high-density regions 
and oversampling the samples in the low-density regions to alleviate 
this problem. The label distribution of the balanced training dataset 
is shown in Supplementary Fig. 4b. The final training dataset consists 
of 0.6 million pairwise samples.

Benchmark dataset for performance assessment. Datasets provided 
by Wang et al.9 and Schindler et al.6 were chosen as the held-out test sets 
and used to benchmark the performance of different methods for lead 
optimization in this study. Wang et al. provide eight congeneric series 
(referred to as the FEP1 set) on different targets with experimentally 
validated binding free energy ∆G values and corresponding evalua-
tion statistics of FEP calculations. We converted ∆G values to the pIC50 
range assuming non-competitive binding, generating the following 
equation for conversion:

pIC50 ≈ −log10 (e
ΔG
RT ) (30)

where R = 1.987 × 10−3 kcal K−1 mol−1 is the gas constant, T = 297 K is the 
thermodynamic temperature and e = 2.718 is the Euler number. Schin-
dler et al. also provided eight congeneric series (referred to as the FEP2 
set) with pharmaceutically relevant targets, all with experimentally 
measured binding affinities (IC50 values). Compared with the FEP1 set, 
the congeneric series in the FEP2 set contains changes in net charge and 
the charge distribution of molecules as well as ring openings and core 
hopping. For each series, we also log-converted the labels and paired 
the ligands as we did for the training data.

Benchmark dataset for simulation-based experiment. Apart from 
the assessment of model accuracy and model ranking ability on the 
whole congeneric series, we still intend to test whether our model is 
able to efficiently identify key high-activity compounds in a close-to-
real-world lead-optimization scenario, by retrospectively comparing 
the order of model selection to the experimental order of synthesis, 
similar to Jiménez-Luna and others15. On this basis, we constructed a 
benchmark consisting of nine recently published datasets41–49 with 
available cocrystal structures and pharmaceutically relevant targets. 
All series were processed as we did for the training data. The informa-
tion (for example, protein name and PDB ID) about the benchmark is 
summarized in Supplementary Table 8.

Determination of model performance
We include three different metrics used to determine the performance 
of the predictive models. Pearson’s correlation coefficient (R) and 
Spearman’s rank correlation coefficient (ρ) are used to evaluate the 
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ranking ability, and r.m.s.e.pw is used to assess the accuracy of the 
predictive models.

Note that PBCNet requires at least one reference complex to infer 
the predictive affinities of other test samples and calculate the corre-
sponding R and ρ. As a result, the test process was repeated ten times 
independently and the reference complex of each test process was 
randomly selected to simulate the uncertainty in real applications.

R.m.s.e. is defined as

R.m.s.e. =
√√√
√

1
N

N
∑
u=1

(y(u) − ̂y(u))
2

(31)

where u corresponds to a test sample (a protein–ligand complex here); 
y(u) and ̂y(u) are the true label and prediction results of the test sample, 
respectively; and N is the total number of test samples. R.m.s.e.pw is 
defined as

R.m.s.e.pw =
√√√
√

1
N

N
∑
u=1

(ỹ(i,u) − ̂y(i,u))
2

(32)

where (i, u) corresponds to a paired test sample composed of a test 
complex and any reference complex (from the same congeneric series), 
and ỹ(i,u) and ̂y(i,u) are the true label and prediction results of the paired 
test sample, respectively. Note that here we use r.m.s.e.pw to evaluate the 
accuracy of the models. The reason for this is that we use experimental 
affinities of reference complexes to achieve the conversion of ̂y(u) and 
̂y(i,u) (equation (8)), as Wang et al. and Schindler et al. did in their studies. 

Additionally, r.m.s.e.pw in the kcal mol−1 and pIC50 units of our model are 
reported to compare with baseline models from different studies.

Model training and fine-tuning process
As discussed in the Model structure section, a hybrid loss function is 
deployed in the training process with equation (33):

Losstotal = LossMSE + αLossentropy (33)

where α is a factor controlling the balance between the two types of 
loss, which can be seen as a hyperparameter. Here, α is set as 1, LossMSE 
is the loss of mean-square-error loss function, Lossentropy is entropy loss 
and Losstotal is final loss. The aim of the introduction of entropy loss is to 
penalize the predictions with low errors but completely wrong ranking. 
For example, it is difficult for the regression loss function to penalize 
a sample with a label of 0.1 and a predicted value of −0.1 due to its low 
MSE value, but this can be effectively realized by the classification loss 
function. Additionally, the ranking information contained in the hid-
den representation of a paired sample may be further reinforced by the 
auxiliary task to improve the ranking ability of PBCNet.

Hyperparameter optimization was performed by grid research on 
the training data with inter-congeneric series fivefold cross-validation. 
Considering the considerable number of training samples, 0.25 epochs 
was set as the unit of early stopping. In the final training process, the 
model is trained using a batch size of 96 samples for 5.75 epochs with 
a learning rate of 5e−7.

In the fine-tuning phase, we did not perform the auxiliary task of 
PBCNet. PBCNet was fine-tuned using a batch size of 30 samples for 
10 epochs with a learning rate of 1e−5.

Sample method for simulation-based experiment
The sampling method we define here is as follows:

a = {
̂y Nite = 1

̂y + βσ2 Nite ≥ 2
(34)

where ̂y  and σ2 are the predicted activity value and uncertainty, a is the 
acquisition score, Nite is the number of iterations and β is a user-defined 

parameter adjusting the exploration–exploitation trade-off. Different 
values of β correspond to three different situations:

•	 β is equal to zero. It is a purely exploitation-oriented AL scenario 
where the users do not take uncertainty into consideration.

•	 β is more than zero (a hybrid AL scenario). This sampling 
strategy is model-oriented or in favor of ‘exploration’. Samples 
with greater uncertainty have a higher possibility to be selected 
(meaning more structure–activity relationship will be explored), 
so that the fine-tuned model’s applicability domain may be 
expanded and the model is expected to give more reliable pre-
dictions in the followed iterations.

•	 β is less than zero. This sampling strategy is user-oriented or in 
favor of ‘exploitation’. In a real-world scenario, the compounds 
with the highest predicted activity values will be selected for 
further experimental verification. However, compounds with 
greater uncertainty are more likely to be overestimated. Given 
this point, users may tend to treat uncertainty as a penalty term 
to ensure the data quality in this iteration.

The strategies mentioned above are all simulated in our work 
(β = 0, 2, −2, respectively), and six independent runs with different 
random seeds are conducted.

Statistics and reproducibility
The P values to test for differences in ablation experiments were cal-
culated using a two-sided Wilcoxon signed rank test. The sample size 
for each analysis was determined by the maximum number of eligible 
samples available in the respective datasets. The study design did not 
require blinding. The model’s performance testing involves random-
ness in the selection of test and reference samples. To mitigate its 
impact, we conducted multiple repeated experiments using controlled 
random seed settings (n = 10). To reproduce the primary results of 
this research, refer to the analytical pipeline available at https://doi.
org/10.5281/zenodo.8275244 (ref. 50).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this Article.

Data availability
The unprocessed training data are from BindingDB source and can be 
found at https://www.bindingdb.org/validation_sets/index.jsp. The 
test datasets used in this study are available at https://doi.org/10.5281/
zenodo.8275244 (ref. 50). Source data are provided with this paper.

Code availability
The source code for PBCNet is available in the Code Ocean software 
capsule: https://doi.org/10.24433/CO.1095515.v2 (ref. 51).
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