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Constructing custom thermodynamics  
using deep learning

Xiaoli Chen    1,2,7, Beatrice W. Soh3,7, Zi-En Ooi3, Eleonore Vissol-Gaudin4, 
Haijun Yu    5,6, Kostya S. Novoselov    2  , Kedar Hippalgaonkar    2,3,4   & 
Qianxiao Li    1,2 

One of the most exciting applications of artificial intelligence is automated 
scientific discovery based on previously amassed data, coupled with 
restrictions provided by known physical principles, including symmetries 
and conservation laws. Such automated hypothesis creation and verification 
can assist scientists in studying complex phenomena, where traditional 
physical intuition may fail. Here we develop a platform based on a 
generalized Onsager principle to learn macroscopic dynamical descriptions 
of arbitrary stochastic dissipative systems directly from observations of 
their microscopic trajectories. Our method simultaneously constructs 
reduced thermodynamic coordinates and interprets the dynamics on these 
coordinates. We demonstrate its effectiveness by studying theoretically 
and validating experimentally the stretching of long polymer chains 
in an externally applied field. Specifically, we learn three interpretable 
thermodynamic coordinates and build a dynamical landscape of polymer 
stretching, including the identification of stable and transition states and 
the control of the stretching rate. Our general methodology can be used to 
address a wide range of scientific and technological applications.

The modern scientific method adopts a universal approach that ensures 
stable and non-conflicting progression of our understanding of nature: 
new theories need to be hypothesized and tested on previously amassed 
data, be compatible with the basic scientific principles and be verifi-
able by experiments. Unfortunately, there is no general algorithmic 
recipe to do so in complex systems to facilitate discovery. Hence, up 
to now, only the most basic physical phenomena—often static, in equi-
librium—are described by an intuitive set of equations. Many dynamic, 
non-equilibrium phenomena, which determine functionality in biology, 
soft-condensed matter and chemistry, are instead described via very 
approximate, empirical laws. The advancement of artificial intelligence 
and machine learning gives rise to the possibility of a data-driven solu-
tion to this challenge1,2.

In this paper, we develop Stochastic OnsagerNet (S-OnsagerNet), 
an artificial intelligence platform that can discover an interpretable 
and closed thermodynamic description of an arbitrary stochastic 
dissipative dynamical system directly from observations of micro-
scopic trajectories. There are essentially two types of approach to 
understand and predict the behavior of dynamical processes from 
data—unstructured and structured. Unstructured approaches param-
eterize dynamical equations by a generic set of building blocks, such as 
fixed polynomials3, trainable feature maps or kernels4,5, and determines 
the associated parameters that best fit the observations. Physical 
insights can be incorporated as regularizers in the fitting process6. 
Their generality comes at a cost of long-time predictive accuracy, 
stability7 and, more importantly, interpretability. This is addressed 
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but facilitates physical interpretation of the closure coordinates and 
the dynamical landscape.

Results
We now describe our approach. The most complete description of a 
complex, multi-component system is the coordinates of all the com-
ponents as a function of time t (X(t)). For the ideal gas, it would be the 
positions and momenta of all molecules and for a magnetic system—the 
spin state of each atom. An alternative to this expensive microscopic 
modeling approach is a thermodynamic one, where the full description 
is replaced by some macroscopic coordinates (Z*(t), with dimension-
ality much smaller than X(t)). This can be the pressure of an ideal gas 
or the magnetization of a magnetic system. The thermodynamic 
approach links these macroscopic coordinates to other macroscopic 
coordinates or closure variables ( ẐZZ(t)), and external parameters (vol-
ume and temperature for ideal gas, magnetic field and temperature 
for magnetic systems) via an equation of state.

We propose a generic approach of building such custom thermo-
dynamics for an arbitrary stochastic, dissipative dynamical system 
from data. We are given macroscopic coordinates Z* whose dynamics 
we wish to model. For polymer dynamics this can be a single variable—
the extension of the polymer chain (Fig. 1). Then, we learn a set of clo-
sure variables ẐZZ(t)  and simultaneously an evolution law on the 
combined thermodynamic coordinates ZZZ(t) = (ZZZ∗(t), ẐZZ(t)) that enables 
scientific understanding, experimental verification and control. The 
evolution equation is a generalization of the classical Onsager princi-
ple12,13 that has been successfully applied to model a variety of non-
equilibrium phenomena, including phase separation kinetics, gel 
dynamics and molecular modeling16,17. It posits a time evolution law

̇ZZZ(t) = −M∇V(ZZZ(t)), (1)

for a given set of coordinates Z(t), where the dot denotes time deriva-
tive, the symmetric positive semi-definite matrix M models energy 
dissipation and V is a generalized potential. A limitation of the Onsager 
principle is its inability to capture dynamics far from equilibrium, or 
with substantial stochastic behavior. To this end, we propose an exten-
sion in the form of a generalized stochastic Onsager principle

̇ZZZ(t) = −[M(ZZZ(t)) +W(ZZZ(t))]∇V(ZZZ(t)) + σ(ZZZ(t)) ̇BBB(t), (2)

where M(⋅) and W(⋅) are now functions of the reduced coordinates Z 
that output d × d matrices. M(⋅) is symmetric positive semi-definite to 
conform to stability requirements and Onsager’s reciprocal relations12, 
while W(⋅) is anti-symmetric and models conservative forces. The dif-
fusion matrix σ(⋅) together with the white noise process ̇BBB(t) models 
the thermal fluctuations in the system. Equation (2) forms the basis of 
our dynamical model in reduced coordinates. We note that alternative 
generalizations of the Onsager principle have been proposed using 
large deviations theory18, but their forms are more complex and hence 
less amenable to computations. It can be shown that our model has 
long-time stability through energy dissipation up to the order of ther-
mal fluctuations (Theorem 2) and the flexibility to represent many 
physical stochastic processes, including Langevin and generalized 
Poisson dynamics (see ‘Theoretical results’ in Methods). Our method 
departs from classical modeling paradigms, where the unknown equa-
tion parameters are few and can be fitted from few experiments. 
Instead, the unknowns here are functions M, W, V and σ. We leverage 
machine learning and represent these functions as trainable deep neu-
ral networks, while preserving the required physical constraints (for 
example, symmetric positive definiteness of M). Simultaneously, we 
generate a set of the closure coordinates by another deep neural net-
work, which combines approximation flexibility of residual networks 
and approximate feature orthogonality through principal component 
analysis (PCA). This is to be contrasted with generic coarse-graining 

by the class of structured approaches, where physical insights directly 
guide the design of model architectures. Our approach belongs to 
this latter category. Previous work in this direction includes models 
based on Hamiltonian or symplectic dynamics8,9, Poisson systems10 
and quasi-potentials11. However, so far, there lacks a general structured 
approach to model dissipative, non-equilibrium and noisy dynamics 
that often arise in soft matter, biophysics and other applications. Our 
methodology based on the classical Onsager principle12,13 is tailored 
to such problems.

Macroscopic thermodynamic descriptions of physical systems 
are highly sought after for the insights they provide. A prototypical 
example is the ideal-gas law as a macroscopic description of non-
interacting gas systems. These systems guide the design of verification 
experiments and provide principled ways to manipulate macroscopic 
behavior. For a general complex dynamical system, however, con-
structing an intuitive thermodynamic description that enables subse-
quent analysis and control is a daunting task. Our approach addresses 
this challenge as follows. For a given microscopic dynamics, we learn 
a macroscopic thermodynamic description via the simultaneous 
construction of low-dimensional closure coordinates—ensured to 
be partially interpretable—and a time evolution law on these coordi-
nates. Unlike general artificial intelligence approaches, our platform 
intrinsically limits the search to physically relevant evolution laws. In 
particular, we ensure compatibility with existing scientific knowledge 
by constructing our neural network architecture based on a general-
ized Onsager principle.

We demonstrate our method by learning the stretching dynamics 
of polymer chains containing up to 900 degrees of freedom, condens-
ing it into a thermodynamic description involving only three macro-
scopic coordinates that governs polymer stretching dynamics in both 
computational and experimental data. We build an energy landscape 
of the macroscopic evolution, revealing the presence of stable and 
transition states. This can be viewed as a dynamic equation of state. 
Mastering such an equation allows the design of verification computa-
tional experiments, including the interpretation of the thermodynamic 
coordinates and the control of the stretching rate of the polymers. 
We extend this further to conduct single-molecule DNA stretching 
experiments and show that our thermodynamic description can be 
used to distinguish fast and slow stretching polymers, much beyond 
current human-labeling capabilities. Furthermore, the predicted fluc-
tuation correlations derived from the free-energy landscape agree 
with experimental data.

Constructing low-dimensional physical models from high-dimen-
sional dynamical data is an active area of research. Data-driven mod-
eling of dynamical processes based on the Onsager’s principle was 
proposed in ref. 7 to study Rayleigh–Bénard convection. Reference 14 
combined encoder–decoders and manifold learning to construct latent 
dynamical models directly from video data, including those of reaction-
diffusion processes and pendulum motions. Here we make several 
advancements in terms of methodology and applications. First, unlike 
the deterministic models considered previously, we explicitly capture 
stochastic fluctuations—an important element of non-equilibrium pro-
cesses at finite temperatures. In fact, the non-trivial heterogeneity of 
polymer stretching dynamics studied in this paper is directly caused by 
thermal fluctuations. Developing our method in the stochastic setting 
requires extensions of model reduction theory and training algorithms 
(see ‘Theoretical results and model implementation’ in Methods). 
Second, and more importantly, we go beyond dimensionality reduc-
tion7,14,15 and solve a closure problem: given a priori fixed macroscopic 
variables of interest (for example, polymer extension), we construct 
both the closure coordinates sufficient to govern the evolution of these 
macroscopic variables, and the dynamics that describes this evolution. 
Compared with more flexible parameterizations of reduced dynamics14, 
our approach inherently limits the search space to those satisfying a 
generalized Onsager principle, which sacrifices complete generality 
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methods based on volume averages19, in that we seek a very small set 
of closure coordinates that are sufficient to describe the motion of the 
macroscopic states of interest. Our learning-based approach to dis-
cover hidden coordinates shares some similarity with recently pro-
posed machine learning-based coarse-graining methods in molecular 
simulations15,20 but here we work with a closure problem, thus we may 
end up with macroscopic dynamics of substantially lower dimensions. 
We perform end-to-end training of the combined architecture on large-
scale microscopic trajectory data to simultaneously learn the reduced 
coordinates and their dynamics. The overall workflow for creating 
custom thermodynamics, which we call S-OnsagerNet, is summarized 
in Fig. 1. Detailed network architectures and training algorithms are 
given in Methods.

Training and prediction of polymer stretching dynamics
We first demonstrate our approach by modeling the temporal evolution 
of polymer extension under elongational forces, which has long been 
of interest to the polymer physics community21–24. Hallmark experi-
mental25,26 and computational studies27–29 in elongational rheology of 
dilute polymers have examined the deformation of single DNA mol-
ecules in planar elongational flows and revealed the highly heteroge-
neous stretching dynamics among identical polymer chains. Due to 
the complex interactions within and stochastic nature of the system, 
it is challenging to identify macroscopic descriptors of the polymer 
chain (closure coordinates) and governing equations on these descrip-
tors that are sufficient to determine the outcome of the stretching 

dynamics. Yet, such a thermodynamic description is essential for under-
standing the origins of unfolding heterogeneity and paves the way 
to make desired modifications to the unfolding dynamics. Thus, our 
data-driven method offers a promising alternative to achieve this goal.

We simulate polymer chain stretching in a planar elongational flow. 
The polymer chain consists of 300 coarse-grained beads connected 
by rigid rods, resulting in 900 degrees of freedom if we ignore inertial 
effects (Fig. 2a,b). Snapshots of the shape of the chains under stretch-
ing conditions are shown in Fig. 2c, revealing highly heterogeneous 
dynamics of the chain extension (Fig. 2c,d), defined as the projected 
chain length along the elongational axis of the flow. This is our macro-
scopic coordinate of interest Z*(t). Our aim is to model its stochastic 
evolution and understand the origin of its heterogeneity. We train 
the S-OnsagerNet on this dataset following the workflow in Fig. 1. The 
network architecture selection and training procedures are found in 
Methods. Our approach constructs two closure coordinates in addition 
to the chain extension Z*(t), leading to a three-dimensional dynamical 
system—following equation (2) with learned functions M, W, V and σ—
that governs the dynamics of stretching. We have empirically chosen 
the number of macroscopic coordinates: using more than three did not 
substantially improve predictive accuracy, whereas a two-variable sys-
tem has modeling limitations due to physical symmetry. The detailed 
selection procedure of the reduced coordinate dimension is discussed 
in ‘Polymer dynamics analysis’ in Methods.

In Fig. 2e–m, we test the trained S-OnsagerNet on three unseen, dif-
ferent and representative initial polymer configurations. The selected 
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Fig. 1 | Overall workflow of the proposed approach. Given a complex system 
described by X, the goal is to model the behavior of macroscopic coordinates of 
interest Z*. We construct closure coordinates ẐZZ  and closed (dynamical) equation 
on the combined reduced coordinates ZZZ = (ZZZ∗, ẐZZ). The classical ideal-gas law is 
an illustration of this process (top). For general non-equilibrium, dynamic 
systems (bottom), carrying out this workflow from theoretical analysis is 

challenging. Our machine learning method (middle) addresses this by 
simultaneously constructing the closure coordinates using PCA-ResNet 
(Methods), and governing equations on reduced coordinates using the 
S-OnsagerNet with drift term −(M(Z) + W(Z))∇V(Z) and noise term σ(Z) (see 
equation (2)).
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Fig. 2 | Simulation set-up, data visualization, and predicted versus true 
stretching trajectories and their statistics. a,b, The polymer chain is 
represented by a bead-rod model with bead diameter r (in units of b = 10 nm) 
and rigid bonds, subjected to hydrodynamic and Brownian forces. b shows a 
magnified portion of the polymer chain shown in a. c,d, The statistics of chain 
extension projected along the elongational axis are recorded. c shows the 
stretching polymers at different time instants and d depicts the extensions 
as a function of time for each trajectory. Times are reported in units of the 
characteristic rod diffusion time τd (see ‘Data preparation’ in Methods). Different 
initial conditions (colors) are chosen to have similar initial extension but varying 

unfolding times. Identical initial configurations also have different unfolding 
dynamics due to thermal fluctuations. e–p, S-OnsagerNet can capture this 
heterogeneity. e–g, We plot 500 trajectories of polymer extensions (Z1) from the 
same initial condition (e), together with their mean (f) and standard deviation 
(g). h, The probability density functions (PDFs) of unfolding times. i–p, Results 
for two other unseen initial chain configurations.i and m shows the extension 
length as a function of time for the medium and fast trajectories respectively. 
Similarly, j and n show the means, k and o the standard deviations, and l and p 
the probability density functions of unfolding times for the medium and fast 
trajectories. respectively.
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chains start with similar extension lengths, but subsequently stretch at 
vastly different rates. Figure 2e–g,i–k,m–p shows that the true statistics 
(black) can be accurately predicted (red). Moreover, the distributions 
of the time taken to reach a reference extension length are successfully 
captured (Fig. 2h,i,m).

Interpreting learned closure coordinates
Having shown that only two closure coordinates ẐZZ = (Z2,Z3)  are 
required to characterize the stochastic evolution of the extension 
length Z* = Z1, it is natural to probe the meaning of these discovered 
coordinates. Here we utilize an intrinsic property of neural networks—
it represents the nonlinear reduction functions XXX↦ ZZZ  as differentiable 
maps, as though we have learned their analytical forms. We compute 
via automatic differentiation the perturbations on a generic micro-
scopic configuration X in the directions of ±∂Z2/∂X and ±∂Z3/∂X, cor-
responding to conformations with steepest changes in Z2 and Z3, 
respectively. The resulting conformational changes suggest physical 
interpretation of these coordinates. For example, from Fig. 3a, we 
observe that perturbations in the direction of ∂Z2/∂X tend to change 
the end-to-end distance in the elongational axis, or distance between 
the first and the last bead in the polymer chain along the elongational 
axis. We confirm this hypothesis by visualizing the correlation of the 
end-to-end distance and the magnitude of Z2 in Fig. 3b,c. A similar 

analysis reveals the correlation between Z3 and a degree of foldedness 
of the chain in the elongational axis of the flow (Fig. 3d–f).

Free-energy landscape
The constructed potential V can be interpreted as a generalized free 
energy, allowing us to gain important insights into the dynamical land-
scape. The local minima of V represent stable or metastable states, while 
the saddle points correspond to transition states. The differentiable 
representation of V enables us to probe this landscape. Figure 4 shows 
two-dimensional projections of the three-dimensional free energy 
V(Z1, Z2, Z3). We identify the critical points of V by solving ∇V(Z) = 0 
using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. We 
found two stable fixed points and two saddle points of interest marked 
in Fig. 4. Using a simultaneously trained PCA-ResNet decoder, we can 
reconstruct the macroscopic spatial coordinates of the polymer chain 
at the critical points to identify their physical origin. Up to reflection 
symmetry in the elongational axis, the stable points correspond to fully 
stretched states, whereas the saddle points refer to completely folded 
states. The origin of the heterogeneity in unfolding times is now clear: 
a rapidly stretching polymer is the one that avoids the saddle point and 
goes directly to a stable minimum, whereas a slowly stretching chain 
gets trapped around the stable manifold (attractive part) of the sad-
dle point for a long time, before finally escaping through the unstable 
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of the polymer chain XXX± ε2
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∂XXX

‖
‖2.  

b, Plot of projected end-to-end distance |rN,x − r1,x| as a function of |Z2| for the 

training data. c, Configurations of different polymer chains with decreasing |Z2| 
values. As |Z2| decreases, the projected distance between the chain ends decreases.  

d, Perturbation of the polymer chain XXX± ε3
∂Z3
∂XXX

 from a given configuration, 

ε3 = 260/ ‖‖
∂Z3
∂XXX

‖
‖2. e, Plot of degree of foldedness |r1,x + rN,x| as a function of |Z3| for 

the training data. f, Configurations of different polymer chains with decreasing 
|Z3| values. As |Z3| decreases, the chains tend towards a more stretched state.
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manifold (repulsive part) of the saddle towards the stable minimum 
(Supplementary Video 1). We confirm this by overlaying a fast and a slow 
unfolding trajectory with the potential landscape in Fig. 4c,f. Despite 
the similarity between the initial chain configurations, as demonstrated 
by the proximity between the initial points on the potential energy 
landscape, the chains show different stretching behaviors that can be 
rationalized by the constructed potential.

Moreover, a Taylor expansion via automatic differentiation of 
the learned V(Z) captures the leading-order fluctuations near a stable 

stretched state. We denote by δV a typical energy fluctuation around 
the stretched state (proportional to temperature). Then, ignoring 
small terms we find

δV ≈ a1 (δZ1 − a4δZ2)
2 + a2 δZ22 + a3 δZ

2
3, (3)

where a1 = 153.1, a2 = 205.5, a3 = 36.96, a4 = 1.54 and δZi = Zi − [Zstable,1]i 
is the fluctuations in the thermodynamic variables. Note that the coef-
ficients aj implicitly depend on the strength of the flow. Equation (3) 

a b c

stable2

d e f

Stable
manifold

Unstable
manifold

g h i

V (a.u.)
V (a.u.)

240

1.64

1.62

1.66

1.68

1.70

1.72

1.74

1.76

1.78

0
0

50

100

100

200
–2

0
2

245 250 255

Z1

Z 2 Z 3

240 245 250 255

Z1

1.66 1.68 1.70 1.72 1.74

Zstable, 1
δV  = 0.4
δV  = 0.7
δV  = 1

Z2

0

0.2

0.3

0.4

0.5

0.1

Z 3

0

0.2

0.3

0.4

0.5

0.6

0.1

–0.1

Z1

V

0

50

200

100

0

100

V

V

Z2 –5

Z3

Z3

Z1
Z2

0 5
–2

0

0

50

100

Zsaddle,1 Zsaddle,2 100

80

60

40

20

0

2

5

–5
0

Zstable,2 Zsaddle,2

0
–3

–2

–1

0

1

2

3

50 100

Stable 1

Fast trajectory
Slow trajectory

Stable 2

Saddle 2
Saddle 1

150 200 250 300
Z1

Z 2

–6

–4

–2

0

4

2

6

Z 3

–6

–4

–2

0

4

2

6

Z 3

0 50 100 150 200 250 300
Z1

0–1–2–3 1 2

–0.25
–4.5

–4.0

77.765

86.382

0 0.25

3

Z2

120

95

85

80

45

20

0

93.901

99.302
–0.25

3.5
4.0
4.5

0 0.25

Zstable,1 Zsaddle,1

Fig. 4 | Learned potential energy landscape. a–f, We plot V projected onto the 
Z1–Z2 (a,d), Z1–Z3 (b,e) and Z2–Z3 (c,f) planes. a–c are contour plots and d–f are 
surface plots to visualize the landscape. Insets: stable and unstable directions of 
the saddle points, corresponding to positive (top left inset) and negative (bottom 
right inset) Z3 values. Projection is computed via minimization (for example, 
V(Z1,Z2) = min

Z3
V(Z1,Z2,Z3)), which at low temperatures closely approximates 

marginalizing with respect to the Boltzmann distribution. The stable and saddle 
points are marked on the energy landscape, and their corresponding 
reconstructed fully extended and folded states are shown. A pair of each exists 
due to reflection symmetry in the flow direction. Example ‘fast’ (red) and ‘slow’ 

(blue) trajectories from the training dataset are overlaid on the landscape. The 
fast trajectory avoids the saddle points and goes directly towards a stable 
minimum, whereas the slow trajectory gets trapped for long times near saddle 2, 
before finally escaping through its unstable manifold. For b and e, the stable 
manifolds of the saddles closely align with Z2, and hence are not visible due to 
minimization (marginalization). g–i, Scatterplots in the Z1–Z2 (g), Z1–Z3 (h) and 
Z2–Z3 (i) planes, together with predicted isotherms (solid lines) capturing typical 
fluctuations around a fully stretched state Zstable,1. Insets: magnified views of the 
fluctuating trajectories around the stretched state over the energy landscape.
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is an effective equation of state, from which we observe the positive 
correlation of Z1 and Z2. The physical interpretation is that near the 
stretched state, the chain extension and the end-to-end distance tend 
to change simultaneously (see Fig. 4g–i and ‘Polymer dynamics analy-
sis’ in Methods).

Controlling polymer stretching dynamics
Further, understanding the laws of the custom thermodynamics of 
polymer chain folding allows us to interact with the dynamics by design-
ing controls over the polymer environment to initiate desired changes 
in its behavior. To this end, we perform another Taylor expansion of 
V—this time near a saddle point Zsaddle,2 corresponding to a folded state 
to give another local equation of state

δV ≈ b1 δZ21 − b2 (δZ2 − b4δZ3)
2 + b3 δZ23, (4)

where b1 = 102.96, b2 = 31.13, b3 = 24.16 and b4 = 0.255. Equation (4) 
suggests that to escape this saddle point leading to polymer unfold-
ing, it is most effective to increase end-to-end distance (Z2) while 
decreasing foldedness (Z3) in a proportional way. This leads to a 
data-driven control protocol in Fig. 5a,b. We choose the external 

elongational flow as the only control parameter (in real experiments 
it corresponds to switching on and off the flow of fluid or the electric 
field26). We start with a polymer configuration near the saddle point 
of the energy landscape, corresponding to a folded state. Without 
any intervention, the subsequent unfolding is expected to follow a 
slow trajectory, staying near the folded state for a long time. From our 
landscape analysis above, the most effective escape from the saddle 
point is along its unstable manifold—approximately corresponding 
to increasing |δZ2 − b4δZ3|. Thus, to speed up unfolding, we can design 
the following control strategy: we turn off the external elongational 
flow, so that the polymer drifts randomly under Brownian forces 
around the saddle point. We track its reduced coordinates, and once 
we observe sufficient alignment with the unstable manifold, we turn 
on the externally applied elongational flow. We observe in Fig. 5c 
that this simple control system speeds up the unfolding dynamics 
substantially. We can also increase the unfolding time by revers-
ing this protocol (Fig. 5d,e). These control strategies based on the 
learned thermodynamic description have notable advantages over 
classical model-free control regimes (for example, reinforcement 
learning), which may require large exploration times or small, finite 
state spaces30.
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Fig. 5 | Data-driven control of the stretching dynamics. a, Control protocol to 
speed up unfolding. Left: projected along the extension direction, the polymer 
must overcome energy barriers to transition from the folded to the stretched 
state. Middle: in the control protocol, the flow is turned off if the reduced 
coordinate of the polymer is near the saddle point corresponding to the folded 
state, and the polymer drifts under the Brownian motion. Right: then the flow is 
turned back on if the reduced coordinates of the polymer becomes sufficiently 
aligned (green shaded region in b) with the unstable manifold of the saddle or 
when the the equilibration time reaches 100 τd. Without any control, a folded 

state near the saddle point will unfold slowly (gray lines in c); with control, the 
chains unfold more rapidly (green lines in c). b, Schematic of the control protocol 
near the saddle point. c, Controlled and uncontrolled chain extension dynamics. 
For the slowest 10 trajectories shown, their mean unfolding time was reduced 
by 14.14%. d,e, Reversed control protocol (d) to slow down unfolding by turning 
on the flow when the reduced coordinates become aligned with the stable 
manifold instead (blue shaded region in d). e shows that the mean unfolding time 
increased by 14.96% (blue lines in e).
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Experimental validation
Remarkably, some qualitative predictions of the constructed thermo-
dynamic description are confirmed by physical experiments. Not only 
can one show that the constructed dynamical landscape allows for fine-
grained classification of stretching behavior on simulation data (see 
‘Polymer dynamics analysis’ in Methods), but also we demonstrate in 
Fig. 6 that this applies directly to physical experiments. Here we perform 
single-molecule experiments to observe the stretching trajectories 
of DNA molecules in a planar elongational field (see ‘Data prepara-
tion’ in Methods). We select two samples that initially appear similar  
(Fig. 6e,g), making it impossible to visually distinguish them in terms of 

stretching behavior. We then cast them into the learned thermodynamic 
coordinates Z, which when superimposed on the free-energy landscape 
reveals that the Z2 coordinates differ subtly, leading to different pre-
dicted stretching statistics (Fig. 6i). This substantially improves on 
human-level labeling, which can only occur much later in the dynamical 
evolution (Fig. 6h,j). Furthermore, we show in Fig. 6j that the effective 
equation of state equation (3) that captures the correlations of Z1 and Z2 
around the stretched state also applies to experimental data from two 
sources, including the current experiments and previously available 
data31. These results demonstrate the promise of the current approach in 
enabling physical understanding and control of real polymer dynamics.

a b c
Schematic of experimental set-up Microfluidic device for experiments DNA molecules stretching in elongational field
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Fig. 6 | Analysis of experimental data. a,b, Schematic (a) and photograph (b) 
of the experimental set-up, consisting of a microfluidic cross-slot device and 
platinum electrodes in the reservoirs. Via the electrodes, positive voltage levels 
V1 and V2 are applied to the west and east reservoirs (W and E, respectively), while 
the north and south reservoirs (N and S, respectively) are kept at 0 V. During 
trapping, the negatively charged DNA will thus flow from N/S to W/E, until a 
molecule is trapped at the center of the channel—blue dot in the schematic.  
c, Snapshots of a DNA molecule stretching. d,f, Processed experimental images 
at various percentages of the unfolding time (tuf) of a fast (d) and a slow (f) 
trajectory. The selected trajectories have similar initial configurations and are 
visually indistinguishable in terms of unfolding dynamics. h, Learned potential 
landscape and predicted slow and fast trajectories using S-OnsagerNet with the 
initial configurations at t = 5% tuf from d and f. We note slight differences in the 

initial Z2 values only (inset). e,g, Reconstructed high-dimensional configurations 
of selected simulated trajectories with similar low-dimensional coordinates as 
the experimental configurations in d (corresponding to e) and f (corresponding 
to g). The S-OnsagerNet is capable of distinguishing between the manually 
classified dumbbell and folded states. i, Predicted PDFs of unfolding time with 
initial condition of fast and slow experimental trajectories at t = 5% tuf using 
S-OnsagerNet. j, Fluctuations in Z1 and Z2 around the stable (stretched) state  
from experimental images. Data were obtained from ref. 49 (triangle) and  
ref. 31 (square). Reduced coordinates are constructed according to the procedure 
outlined in ‘Data preparation’ in Methods. Colors indicate predicted energy  
levels according to the learned potential. We observe that fluctuations in Z1 and Z2 
are highly correlated and agree well with that predicted by the effective equation 
of state.
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Modeling spatial epidemics
To further demonstrate general applicability, we employ our method to 
derive macroscopic dynamics of spatial epidemics. The classical spatial 
Susceptible-Infectious-Recovered (SIR) model32 governs microscopic 
evolution of infective and susceptible individuals on a spatial domain 
(Extended Data Fig. 1a–c). Using these microscopic trajectories, we con-
struct a thermodynamic model that accurately models the evolution of 
the spatial averages of infective and susceptible individuals (Extended 
Data Fig. 1d,e) with an additional learned closure coordinate. Moreover, 
following the same approach as before, we can interpret this coordinate 
as the spatial overlap of infective and susceptible individuals (Extended 
Data Fig. 2), thereby rationalizing the dynamical landscape (Extended 
Data Fig. 3), where this overlap determines the onset and outcome of dis-
ease spread. Details are found in ‘Spatial epidemics analysis’ in Methods.

Discussion
The potential applicability of our method goes beyond polymer and 
epidemic dynamics, and includes general complex dissipative pro-
cesses such as protein folding33, self-assembly34,35 and glassy systems36,37. 
Despite the importance of potential energy landscapes for material 
systems with functional properties, the challenge in constructing 
them has limited current approaches to systems with small degrees 
of freedom and/or requiring judicious selection of system descriptors 
based on expert knowledge38. The method described in this work offers 
the potential of automating this process, creating pathways towards a 
multitude of opportunities for understanding and control over various 
complex systems and their scientific applications.

There are many worthwhile future research directions to further 
improve the robustness and generality of the proposed method. Here 
we inherently constrain the search space to macroscopic dynamics 
that conform to the generalized stochastic Onsager principle. Thus, 
it naturally has limited ability to model systems that may not readily 
admit such a description, such as chaotic systems. Moreover, the pre-
sent model reduction and stability theory require the thermal noise to 
be small compared with the dissipative and conservative forces. While 
this is the case for the polymer dynamics studied here, our theory needs 
to be expanded to handle highly stochastic cases. In terms of training 
methodology, the current trial-and-error selection of the dimension 
of the closure variables can be made more systematic, for example, by 
building on manifold learning approaches14. Another potential improve-
ment is the data sampling process. We observed in our numerical experi-
ments that accurate construction of the dynamical landscape requires 
the trajectory data to sufficiently sample the regions of interest (stable 
and transition states). An adaptive or active learning algorithm39,40 that 
couples data sampling and S-OnsagerNet training can be developed 
to improve on the current random sampling strategy. On the scientific 
problem of polymer dynamics, we have considered motion under only 
a single stretching force. It is worthwhile to extend our study to varying 
stretching conditions to build a more comprehensive picture of polymer 
stretching. More broadly, one may apply our approach to learn macro-
scopic thermodynamics of other systems of scientific interest.

Methods
Theoretical results
In this section, we collect a number of theoretical results concerning the 
S-OnsagerNet approach. We first show that if a high-dimensional sto-
chastic dynamical system satisfies the generalized stochastic Onsager 
principle (GSOP), then, any well-behaved reduction into a lower-dimen-
sional system will result in one that obeys approximately the GSOP 
introduced in equation (2) (Theorem 1). An immediate consequence is 
that our model reduction approach is theoretically justified for a wide 
variety of dissipative and conservative systems, including molecu-
lar dynamics41, stochastic Hamiltonian systems42 and the stochastic 
Lotka–Volterra model43. Next, we prove that dynamics described by 
the GSOP satisfy an energy dissipation law (Theorem 2) and thus our 

machine learning approach produces stable dynamics at sufficiently 
low temperatures.

For convenience, we show that there are two equivalent forms of 
the GSOP. The formulation of the GSOP we use to construct our neural 
networks is

dZZZ(t) = −(M(ZZZ(t)) +W(ZZZ(t)))∇V(ZZZ(t))dt + σ(ZZZ(t))dBBB(t). (5)

Here, B is the standard Brownian motion. Now, assuming M(⋅) + W(⋅) is 
invertible, we define

M̃(ZZZ ) = (M(ZZZ ) +W(ZZZ ))−1 + ((M(ZZZ ) +W(ZZZ ))−1)
T

2 ,

W̃(ZZZ ) = (M(ZZZ ) +W(ZZZ ))−1 − ((M(ZZZ ) +W(ZZZ ))−1)
T

2 ,

̃σ(ZZZ ) = (M(ZZZ ) +W(ZZZ ))−1σ(ZZZ ).

Observe that equation (5) can be rewritten in the form

(M̃(ZZZ(t)) + W̃(ZZZ(t)))dZZZ(t) = −∇V(ZZZ(t))dt + ̃σ(ZZZ(t))dBBB(t). (6)

A similar construction shows that we can also rewrite equation (6) 
in the form of equation (5) for any M̃, W̃, ̃σ assuming similar invertibility 
conditions. Thus, they are in fact equivalent. While the numerical 
implementation is based on equation (5), the form equation (6) is also 
useful, and in the following we refer to both as GSOP.

A similar construction shows that we can also rewrite equation (6) 
in the form of equation (5) for any M̃, W̃, ̃σ assuming similar invertibility 
conditions. Thus, they are in fact equivalent. While the numerical 
implementation is based on equation (5), the form equation (6) is also 
useful, and in the following we refer to both as GSOP.

Now, we demonstrate the general applicability of the GSOP in the 
context of model reduction. We consider a microscopic (high dimen-
sional) dynamics satisfying a GSOP of the form

dXXX(t) = − (M1(XXX(t)) +W1(XXX(t)))∇V1(XXX(t))dt +√ϵ1Σ1(XXX(t))dBBB1(t), (7)

where XXX(t) ∈ ℝD,M1(⋅),W1(⋅)  are symmetric positive semi-definite and 
anti-symmetric matrix valued functions respectively, Σ1(⋅) is the 
D × p1-dimensional diffusion matrix, B1 is a p1-dimensional Brownian 
motion and ϵ is a positive parameter related to temperature (for example, 
ϵ1 ∝ kBT with kB being Boltzmann’s constant and T the temperature).

We now show that many high-dimensional systems of physical 
interest indeed satisfy a version of GSOP. We first consider the well-
known Langevin dynamics, which has been used to model many sto-
chastic dynamical systems for example molecular dynamics44.

Example 1. The Langevin equation

mẍ = −∇U(x) −mγ1 ̇x +√2mγ1kBTR(t), (8)

can be written in the form of equation (6), where the dot denotes a time 
derivative, ̇x  is the velocity, ẍ  is the acceleration, m is the mass, U(x) is 
the particle interaction potential, and so −∇U(x) is the potential force; 
γ1 is the damping constant (units of reciprocal time), R(t) = ̇B(t) is a delta-
correlated stationary Gaussian process with zero-mean, satisfying

⟨R(t)⟩ = 0, ⟨R(t)R(t′)⟩ = δ(t − t′).

If we set ̇x = v, the Langevin equation can be written as

(
mγ1 m

−m 0 )(
dx

dv ) = −(
∇U(x)

mv )dt + (
√2mγ1kBT

0 )dB(t).

Denoting XXX = ( xv ) , M̃ = (mγ1 0
0 0 ) , W̃ = ( 0 m

−m 0 ) ,Σ = (√2mγ1kBT
0 )  and 
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V(x, v) = U(x) + m
2
v2, the Langevin equation can be written in the form of 

the GSOP as follows:
(M̃ + W̃)dXXX = −∇Vdt + ΣdB.

Another important class of dynamical systems are those described 
by Poisson brackets45, whose stochastic extension encompasses many 
applications, including the stochastic Lotka–Volterra models and vari-
ants43. In the following, we show that these dynamical systems can also 
be written in the form of the GSOP.

Example 2. The stochastic dynamics with generalized coordinates 
(q1, ... qn, p1, ... pn) described by generalized Poisson brackets

dF = ({F,H} − [F,H])dt + σ(F)dB, (9)

can be written in the form of equation (7), where H(q1, …, qn; p1, …, pn) is 
the Hamiltonian of the system and F is an arbitrary function depending 
on the system variables. The Poisson bracket {⋅, ⋅} and the dissipation 
bracket [⋅, ⋅] are defined as

{F,H} =
n
∑
i=1
( ∂F
∂qi

∂H
∂pi

− ∂F
∂pi

∂H
∂qi
)

[F,H] = JFMJTH, JF = [ ∂F
∂q1

,⋯ , ∂F
∂qn

, ∂F
∂p1

,⋯ , ∂F
∂pn

] ,

where M is symmetric positive semi-definite.
Denote (h1, h2,  …, h2n) = (q1,  …, qn, p1,  …, pn). By the definition of 

{F, H} and taking W = ( 0 −In
In 0 ), where In is the n-dimensional identity 

matrix, we have

{F,H} = ( ∂F
∂qqq
, ∂F
∂ppp
) (

0 In
−In 0 )

⎛
⎜⎜⎜
⎝

∂H
∂qqq

∂H
∂ppp

⎞
⎟⎟⎟
⎠

= ∇hhhF(
0 In
−In 0 ) (∇hhhH)

T = −JJJFWJJJ
T
H.

Hence, equation (9) can be written as

dF = (∇hhhF )
Tdhhh = −JJJF(W +M ) JJJTHdt + σ(F )dB.

Taking F = (h1, ..., h2n) and ∇hF = I2n, we obtain

dhhh = −JJJF(W +M ) JJJTHdt + σ(F )dB = −(W +M )∇hhhHdt + σ(hhh)dB.

Next, let us consider the reduction of a microscopic dynamical 
system satisfying a GSOP (X(t)) into a macroscopic dynamical system 
(Z(t)). This is achieved by a differentiable reduction function 
ϕ ∶ ℝD → ℝd such that Z(t) ≈ φ (X(t)). Moreover, we consider a differenti-
able reconstruction function ψ ∶ ℝd → ℝD such that X(t) ≈ ψ(Z(t)). Our 
main result is that Z(t) also satisfies an approximate GSOP. In other 
words, the GSOP family is approximately invariant under dimensional-
ity reduction, or coordinate transformation in general.

In the following, we adopt the notation

∇ϕi(XXX(t)) ∶= ( ∂ϕi(XXX(t))
∂x1

, ∂ϕi(XXX(t))
∂x2

,⋯ , ∂ϕi(XXX(t))
∂xD

)
T
,

∇ϕ(XXX(t)) ∶= (∇ϕ1(XXX(t)),⋯ ,∇ϕd(XXX(t))) .

We will also adopt the following technical assumptions.

Assumption 1. The functions M1,W1,∇V1 ∶ ℝD → ℝD , Σ1 ∶ ℝD → ℝD×p1 , 
ϕ ∶ ℝD → ℝd  and ψ ∶ ℝd → ℝD satisfy:

	(1)	 Growth condition: there exists a positive constasnt L > 0 such 
that, for all xxx ∈ ℝD and zzz ∈ ℝd

|(M1(xxx) +W1(xxx))∇V1(xxx)| + |Σ1(xxx)| +
d
∑
i=1
|∇ϕi(xxx)| ≤ L2(1 + |xxx|),

D
∑
i=1
|∇ψi(zzz)| + |ψ(zzz)| ≤ L2(1 + |zzz|),

	(2)	 Lipschitz condition: there exists a positive constant L > 0 such 

that, for all xxx ∈ ℝD, and zzz ∈ ℝd, the function 

(M1(xxx) +W1(x))∇V1(xxx),Σ1(xxx), {∇ψi(z)}
D
i=1 and ψ(z) satisfy the 

Lipschitz condition with constant L.
	(3)	 Approximate reconstruction: there exists ε0 > 0 such that, 

sup
xxx∈Ω

|xxx − ψ(ϕ(xxx))| < ϵ0 where Ω ⊂ ℝD is a domain such that X(t) ∈ Ω 

for all t ∈ [0, T] almost surely.

Here, |⋅| is the Euclidean norm for a vector and Frobenius norm for a 
matrix.

Theorem 1. Let X(t) satisfy equation (7) and Z(t) satisfy equation (5) 
with

M(ZZZ ) = ∇ϕ[ψ(ZZZ )]TM1(ψ(ZZZ ))∇ϕ[ψ(ZZZ )],

W(ZZZ ) = ∇ϕ[ψ(ZZZ )]TW1(ψ(ZZZ ))∇ϕ[ψ(ZZZ )],

V(ZZZ ) = V1[ψ(ZZZ )],

σ1(ZZZ ) = √ϵ1∇ϕ[ψ(ZZZ )]
T
Σ1[ψ(ZZZ )],

σ(ZZZ ) = [σ1(ZZZ )σ1(ZZZ )
T]

1
2 ,

Then, for each u ∈ 𝒞𝒞2(ℝd)  (twice continuously differentiable  
function) there exists a constant C > 0, independent of ε0 and ε1,  
such that

|𝔼𝔼u(ϕ[XXX(t)]) − 𝔼𝔼u(ZZZ(t))| ≤ C(ϵ0 + ϵ1).

Proof. Suppose Y(t) satisfy the following equation:

dYYY(t) = − (M(YYY(t) +W(YYY(t)))∇V(YYY(t))dt + σ1(YYY(t))dBBB1(t), (10)

we will prove 𝔼𝔼|u(ϕ[XXX(t)]) − u(YYY(t))| ≤ C(ϵ0 + ϵ1).By Itô’s formula, equation 
(7) and Assumption 1, we obtain

dϕi(XXX(t)) = [∇ϕi(XXX(t))]
TdXXX(t) + 1

2
[dXXX(t)]T∇2ϕi(XXX(t))dXXX(t)

= [∇ϕi(XXX(t))]
T [− (M1(XXX(t)) +W1(XXX(t)))∇V1(XXX(t))dt

+√ϵ1Σ1(XXX(t))dB1(t)]

+ ϵ1
2
Tr[Σ1(XXX(t))ΣT

1 (XXX(t))∇
2ϕi(XXX(t))]dt,

(11)

where ∇2ϕi is the Hessian matrix of ϕi and Tr is the trace of a square 
matrix.

Now, by definition, Y(t) satisfies the following stochastic differ-
ential equation (SDE)

dYYY(t) = − (M(YYY(t)) +W(YYY(t)))∇V(YYY(t))dt + σ1(YYY(t))dB1(t)

= −∇ϕ[ψ(YYY(t))]T[M1(ψ(YYY(t))) +W1(ψ(YYY(t)))]∇ϕ[ψ(YYY(t))]∇V(YYY(t))dt

+√ϵ1∇ϕ[ψ(YYY(t))]
T
Σ1(ψ(YYY(t)))dB1(t)

= −∇ϕ[ψ(YYY(t))]T[M1(ψ(YYY(t))) +W1(ψ(YYY(t)))]∇V1(ψ(YYY(t)))dt

+√ϵ1∇ϕ[ψ(YYY(t))]
T
Σ1(ψ(YYY(t)))dB1(t).

(12)

Subtracting equations (11) and (12), and integrating on [0, t], we get
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ϕi(XXX(t)) − Yi(t)

= ∫
t

0
[∇ϕi(XXX(r))

Tf1(XXX(r)) − ∇ϕi[ψ(YYY(r))]
Tf1(ψ(YYY(r)))]dr

+ϵ1∫
t

0
gi(XXX(r))dr +√ϵ1∫

t

0
[∇ϕi(XXX(r))

T
Σ1(XXX(r))

−∇ϕi[ψ(YYY(r))]
T
Σ1(ψ(YYY(r)))]dBBB1(r),

where f1(⋅) = − (M1(⋅) +W1(⋅))∇V1(⋅)  and gi(⋅) =
1
2
Tr[Σ1Σ

T
1 ∇

2ϕi](⋅)  with 
i = 1, 2, ..., d.

By Cauchy–Schwarz inequality and Itô isometry, we have

𝔼𝔼|ϕi(XXX(t)) − Yi(t)|2

≤ 3𝔼𝔼
||||
∫

t

0
[∇ϕi(XXX(r))

Tf1(XXX(r)) − ∇ϕi[ψ(YYY(r))]
Tf1(ψ(YYY(r)))]dr

||||

2

+3𝔼𝔼
||||
∫

t

0
ϵ1gi(XXX(r))dr

||||

2

+3ϵ1𝔼𝔼
||||
∫

t

0
[∇ϕi(XXX(r))Σ1(XXX(r)) − ∇ϕi[ψ(YYY(r))]

T
Σ1(ψ(YYY(r)))]dB1(r)

||||

2

≤ 3t𝔼𝔼∫
t

0

||∇ϕi(XXX(r))
Tf1(XXX(r)) − ∇ϕi[ψ(YYY(r))]

Tf1(ψ(YYY(r)))||
2
dr

+3ϵ21 t𝔼𝔼∫
t

0
|gi(XXX(r))|2dr

+3ϵ1𝔼𝔼∫
t

0

||∇ϕi(XXX(r))Σ1(XXX(r)) − ∇ϕi[ψ(YYY(r))]
T
Σ1(ψ(YYY(r)))||

2
dr.

(13)

By Assumption 1, there exists positive constants C1 and C2 such that

𝔼𝔼∫
t

0
|∇ϕi(XXX(r))

Tf1(XXX(r)) − ∇ϕi[ψ(YYY(r))]
Tf1(ψ(YYY(r)))|2dr

≤ 𝔼𝔼∫
t

0
|∇ϕi(XXX(r))

Tf1(XXX(r)) − ∇ϕi[ψ(ϕ(XXX(r)))]
Tf1(XXX(r))

+∇ϕi[ψ(ϕ(XXX(r)))]
Tf1(XXX(r))

−∇ϕi[ψ(YYY(r))]
Tf1(XXX(r)) + ∇ϕi[ψ(YYY(r))]

Tf1(XXX(r))

−∇ϕi[ψ(YYY(r))]
Tf1(ψ(ϕ(XXX(r))))

+∇ϕi[ψ(YYY(r))]
Tf1(ψ(ϕ(XXX(r)))) − ∇ϕi[ψ(YYY(r))]

Tf1(ψ(YYY(r)))|2dr

≤ C1𝔼𝔼∫
t

0
|XXX(r) − ψ(ϕ(XXX(r)))|2dr + C2𝔼𝔼∫

t

0
|ϕ(XXX(r)) − YYY(r)|2dr

≤ C1tϵ20 + C2𝔼𝔼∫
t

0
|ϕ(XXX(r)) − YYY(r)|2dr.

We employ a similar above argument of the third term of equation 
(13) and get

𝔼𝔼|ϕ(XXX(t)) − YYY(t)|2 ≤ C3∫
t

0
𝔼𝔼|ϕ(XXX(r)) − YYY(r)|2dr + C4(ϵ0 + ϵ1)

2.

Here we have used the Lipschitz conditions and the boundness of the 
first moment of f1(X) and gi(X), which is implied by the growth condition 
in Assumption 1. This shows that ϕ (X(t)) and Y(t) are close in the mean-
square sense. By Gronwall’s inequality, we get

𝔼𝔼|ϕ(XXX(t)) − YYY(t)|2 ≤ C5(ϵ0 + ϵ1)
2. (14)

Now, we employ a similar argument to show that u(ϕ(X(t))) and 
u(Y(t)) are close for any sufficiently smooth u. We apply Itô formula to 

u(φ(X(t))) and u(Y(t)) to get

du(ϕ(XXX(t))) = ∇u ⋅ dϕ(XXX(t)) + 1
2
dϕ(XXX(t))T∇2u (ϕ(XXX(t))dϕ(XXX(t))

= ∇u ⋅ [ (∇ϕ(XXX(t))Tf1(XXX(t)) + ϵ1g(XXX(t)))dt

+ ∇ϕ(XXX(t))Σ1(XXX(t))dB1(t)]

+ 1
2
ϵ1Tr[∇ϕ(XXX(t))Σ1(XXX(t))(∇ϕ(XXX(t))Σ1(XXX(t))

T∇2u])dt,

du(YYY(t)) = ∇u ⋅ dYYY(t) + 1
2
dYYY(t)T∇2u(YYY(t))dYYY(t)

= ∇u ⋅ ∇ϕ[ψ(YYY(t))]T[f1(ψ(YYY(t)))dt +√ϵ1Σ1(ψ(YYY(t)))dB1(t)]

+ ϵ1
2
Tr[∇ϕ[ψ(YYY(t))]Σ1(ψ(YYY(t)))(∇ϕ[ψ(YYY(t))]Σ1(ψ(YYY(t))))

T∇2u]dt.

As before, by Assumption 1, there exist positive constants C6 and C7 
such that

𝔼𝔼|u(ϕ(XXX(t))) − u(YYY(t))|2 ≤ C6𝔼𝔼∫
t

0
| ϕ(XXX(r))) − YYY(r)|2dr + C7(ϵ0 + ϵ1)

2. (15)

Combining equations (14) and (15), we obtain

𝔼𝔼|u(ϕ(XXX(t))) − u(YYY(t))|2 ≤ C2(ϵ0 + ϵ1)
2.

By Jensen’s inequality, we can get

𝔼𝔼|u(ϕ(XXX(t))) − u(YYY(t))| ≤ C(ϵ0 + ϵ1).

According to the equations (5) and (10), we can get Z(t) and Y(t) has the 
some distribution, that is

𝔼𝔼u(YYY(t)) − 𝔼𝔼u(ZZZ(t)) = 0.

Finally, by triangle inequality, we have

|𝔼𝔼u(ϕ(XXX(t))) − 𝔼𝔼u(YYY(t))|

= |𝔼𝔼u(ϕ(XXX(t))) − 𝔼𝔼u(YYY(t)) + 𝔼𝔼u(YYY(t)) − 𝔼𝔼u(Z(t))|

≤ 𝔼𝔼𝔼u(ϕ(XXX(t))) − u(YYY(t))| + |𝔼𝔼u(YYY(t)) − 𝔼𝔼u(Z(t))|

≤ C(ϵ0 + ϵ1).

This completes the proof.
This results demonstrate the validity of the GSOP as a dimen-

sionality reduction method. In short, it says that if the microscopic 
dynamics satisfies a GSOP, then the macroscopic dynamics will also 
satisfy a GSOP approximately. As a large amount of conservative and 
dissipative microscopic physical systems are shown to satisfy the GSOP, 
the S-OnsagerNet approach based on the GSOP is a principled model 
reduction ansatz for physical processes.

Next, we show the stability of a solution of the GSOP. More pre-
cisely, we prove in Theorem 2 below that the mean of the potential is 
non-increasing in t for sufficiently low temperatures (small |σ|). Con-
sequently, the S-OnsagerNet produces dissipative dynamical systems 
that enjoy long-term stability.

Theorem 2. The solution of equation (5) satisfies the dissipation law

𝔼𝔼V(ZZZ(t)) − 𝔼𝔼V(ZZZ(0)) = −∫
t

0
𝔼𝔼 𝔼 ∇V(ZZZ(r))∥2Mdr

+ 1
2
∫

t

0
𝔼𝔼Tr[σ(ZZZ(r))σ(ZZZ(r))T∇2V(ZZZ(r))]dr.

Here 𝔼 ⋅𝔼2M denotes |M1/2⋅|2 where M1/2 is the non-negative square-root of 
M. If we assume further that there exists a positive constant α such that 
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ZT M(Z)Z ≥ α|Z|2 and 1
2
Tr[σ(Z )σ(Z )T∇2V(Z )] ≤ α|∇V(Z )|2  for all Z, then 

𝔼𝔼[V(Z(t))] is non-increasing in t.

Proof. By Itô formula, we obtain

dV(ZZZ ) = ∇V ⋅ dZZZ + 1
2
(dZZZ)T∇2VdZZZ

= −∇V ⋅ [(M +W)∇V]dt + ∇V ⋅ σdBBB1 +
1
2
Tr[σσT∇2V]dt

= − 𝔼 ∇V𝔼2Mdt +
1
2
Tr[σσT∇2V]dt + ∇V ⋅ σdBBB1,

(16)

where ∇VTM∇V =𝔼 ∇V𝔼2M  and ∇VT W∇V = 0 are used.
Integrating equation (16) from 0 to t and taking expectation, we 

obtain

𝔼𝔼V(ZZZ(t)) − 𝔼𝔼V(ZZZ(0)) = −∫
t

0
𝔼𝔼 𝔼 ∇V∥2Mdr +

1
2 ∫

t

0
𝔼𝔼Tr [σσT∇2V]dr.

Finally, according to the proposed condition, it is easy to arrive at 

𝔼𝔼V(ZZZ(t)) − 𝔼𝔼V(ZZZ(0)) ≤ −α∫
t

0
𝔼𝔼|∇V|2dr + 1

2 ∫
t

0
𝔼𝔼Tr[σσT∇2V]dr ≤ 0, thus the 

mean of the energy potential is non-increasing in t. This completes the 
proof.

Theorem 2 shows that energy is being dissipated if the tempera-
ture of the ambient reservoir is sufficiently low. Accordingly, if the free 
energy V has compact level sets, then the dynamics at low temperatures 
will be confined on average to these compact sets and is thus stable. 
This contrasts with unstructured methods that may learn dynamics 
that are accurate for short times but induce instability at long times. We 
numerically verify this energy dissipation law in the learned polymer 
dynamics in Supplementary Fig. 1.

Model implementation
We provide in this section the detailed implementation of 
S-OnsagerNet.

Model architecture. We begin with discussing the architecture design 
of the neural network approximators. Following the acquisition of the 
closure coordinates ZZZ(t) = (ZZZ∗(t), ẐZZ(t)), the S-OnsagerNet architecture 
implements equation (5). To ensure the symmetric positive definite-
ness of M(Z) and the anti-symmetry of W(Z), we use a neural network 
to approximate A(⋅) ∶ ℝd → ℝd2  with dimension d2. Then, we take the 
lower-triangular part as L1(Z) and the upper-triangular part as L2(Z). 
M(Z) and W(Z) are represented by

M(ZZZ ) = L1(ZZZ )L1(ZZZ )
T + αI,

W(ZZZ ) = L2(ZZZ ) − L2(ZZZ )
T,

where α is a positive constant and I is an identity matrix.
The energy function V(⋅) is lower bounded, so we use the follow-

ing structure

V(ZZZ ) = 1
2

m
∑
i=1
(Ui(ZZZ ) +

d
∑
j=1
γijZZZj)

2

+ β|ZZZ|2,

where U(Z) is a neural network with d-dimensional input and m- 
dimensional output, {γij} is a trainable matrix and β is a positive 
parameter.

In the architecture used for the polymer dynamics application 
in this paper, we set α = 0.1 and utilize a neural network with 2 hid-
den layers with 20 neurons each and the tanh activation function to 
approximate M(z) and W(z). To parameterize the potential V(z), we 
decompose it into a sum of squares of the output layer (size m = 50) of 
1 hidden layer neural network with 128 hidden neurons and the ReQUr 

activation function7,46. This is to ensure that the potential satisfies the 
correct growth conditions as outlined in Assumption 1.

For the diffusion matrix σ(z), as it has no symmetry constraints 
other than a growth condition, we use a fully connected neural network 
to approximate it. In our polymer dynamics application, we found 
empirically that a diagonal, z-independent diffusion matrix (corre-
sponding to a linear network with zero weight and trainable diagonal 
bias) performed the best, but our algorithm can handle general archi-
tectures for σ(z).

Closure coordinate construction. We now provide details of the 
procedure to construct closure coordinates ẐZZ(t) using the time series 
observation data of chain configuration coordinates at {tk}

Nt
k=1, with 

0 = t0 < t1… < tNt = T . The available data are {𝒳𝒳j}
M
j=1  with 𝒳𝒳j =

{XXX(ti)
( j)}

Nt
i=1 ∈ 𝕄𝕄D×Nt, where M is the number of trajectories and XXX(ti)

( j) is 
the jth observation trajectory at t = ti. We obtained 610 observational 
trajectories, and for each trajectory, the number of time snapshots is 
1,001, that is M = 610 and Nt = 1,001. We reshape the observation data 
as Ξ = [𝒳𝒳1, 𝒳𝒳2,… ,𝒳𝒳M], where Ξ ∈ 𝕄𝕄D×NtM. We re-center the data, such that 
the mean of the training data is zero for each time snapshot, and set it 
as X. The covariance matrix of X is S = Cov(X). Denote its eigenvalues 
by Λ = diag(λ1, λ2, …, λD) (arranged in non-increasing order) and cor-
responding eigenvectors as V = (V1, V2, …, VD).

We use the following PCA-ResNet encoder to find the closure 
coordinates

ẐZZ(t) = ZZZ2∶d(t) = ϕ̂(XXX(t)) = PdXXX(t) + NNe(XXX(t)), (17)

where Pd =
1

√Λ1∶d−1
V1∶d−1 and NNe(⋅) is a fully connected neural network 

with input dimension D and output dimension d − 1. We can reconstruct 
the high-dimensional coordinates via the decoder

̃XXX(t) = ψ(ẐZZ(t)) = P†dẐZZ(t) + NNd(ẐZZ(t)), (18)

where P†d = V
T
1∶d−1√Λ1∶d−1  and NNd(ẐZZ(t)) is another neural network with 

input dimension d − 1 and output dimension D. Note that without 
NNe, NNd, this amounts to a PCA-based coordinate reduction. The 
combination of PCA and neural networks combines approximate fea-
ture orthogonality and approximation flexibility.

We construct the reconstruction loss function as |XXX − ̃XXX|2. We set 
the reconstruction error of PCA as Epca = |XXX − P†dPdXXX|

2. To make the recon-
struction error near but less than the reconstruction error of PCA alone, 
we add the regularization term ReLU(log |XXX − ̃XXX|2 − log(Epca)) in the loss 
function, where Epca = |XXX − P†dPdXXX|

2  is the reconstruction error of PCA 
and ReLU is the rectified linear unit, that is ReLU(u) = max(0,u). Thus, 
the combined reconstruction loss function is

lossRec = |XXX − ̃XXX|2 + ρ1ReLU(log |XXX − ̃XXX|2 − log |XXX − P†dPdXXX|
2),

where ρ1 is a regularization parameter. The regularization term  
penalizes the loss if we observe a reconstruction error that is higher 
than PCA.

Training algorithm based on maximum likelihood estimation. After 
constructing the structure of the drift term f(ZZZ(t)) =− (M (ZZZ(t)  
+W(ZZZ(t)) ) ∇V(ZZZ(t)) and diffusion term σ(Z(t)), we consider how to con-
struct the loss function to learn the stochastic dynamics. In determin-
istic dynamical systems, we can use the mean square error to learn f 
given the trajectory observation data. However, to deal with stochastic 
dynamics (in particular, learning the diffusion matrix σ), we have to 
devise more general methods based on maximum likelihood 
estimation.

We discretize equation (5) by the Euler–Maruyama scheme, giving

ZZZ(ti+1) = ZZZ(ti) + f(ZZZ(ti))Δt + σ(ZZZ(ti))√Δtξi,
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where Δt is the time step, ti = iΔt, i = 0, 1, …, Nt − 1 and T = NtΔt. Here, 
{ξξξi}

Nt−1
i=0  are independent random vectors following the standard normal 

distribution.
In the training dataset, we have access to the microscopic coordi-

nates X(t), from which we construct the reduced coordinates 
{(Z(ti)

( j),Z(t( j)i+1),Δt)}
Nt−1,M

i, j=0,1
 via the (to be trained) reduction function ϕ. 

Given the neural networks fθ and σθ (we use the subscript θ to denote 
all trainable parameters) constructed previously, the conditional prob-
ability is given by

p (ZZZ(ti+1)
( j)|ZZZ(ti)

( j))

= 𝒩𝒩 (ZZZ(ti+1)
( j)|ZZZ(ti)

( j) + fθ(ZZZ(ti)
( j))Δt,σθ(ZZZ(ti)

( j))σTθ(ZZZ(ti)
( j))Δt)

= 1

(2πΔt)d/2√det(σθσTθ)
exp {− 1

2Δt
[ZZZ(ti+1)

( j) − ZZZ(ti)
( j) − fθ(ZZZ(ti)

( j))Δt]
T

(σθσTθ)
−1[ZZZ(ti+1)

( j) − ZZZ(ti)
( j) − fθ(ZZZ(ti)

( j))Δt]} ,

where we use the short form σθ = σθ(ZZZ(ti)
( j)) and det denotes the deter-

minant of a matrix.
Taking the logarithm of the above equation, we obtain

logp (ZZZ(ti+1)
( j)|ZZZ(ti)

(j))

= − 1
2
logdet(σθσTθ) −

Δt
2
( ZZZ(ti+1)

(j)−ZZZ(ti)
(j)

Δt
− fθ(ZZZ(ti)

(j)))
T

(σθσTθ)
−1 ( ZZZ(ti+1)

(j)−ZZZ(ti)
(j)

Δt
− fθ(ZZZ(ti)

(j))) + constant .

As a result, we may obtain the loss function by maximizing the log-
likelihood of the training data

lossMLE

= 1
NtM

Nt
∑
i=1

M
∑
j=1
( 1

2
logdet(σθσTθ) +

Δt
2
( ZZZ(ti+1)

( j)−ZZZ(ti)
( j)

Δt
− fθ(ZZZ(ti)

( j)))
T

(σθσTθ)
−1 ( ZZZ(ti+1)

( j)−ZZZ(ti)
( j)

Δt
− fθ(ZZZ(ti)

( j)))) .

The total loss is then

loss = lossMLE + ρ lossRec, (19)

where ρ is a parameter to balance the accuracy of the learned dynamics 
and the error from reconstruction. In our computation, we first train 
the loss function (19) with ρ = 0.01. After some training steps, we fix the 
encoder part (17) and the decoder part (18) of the neural network, and 
train lossMLE (ρ = 0) to fine-tune accuracy of the stochastic dynamics. 
We use the Adam optimizer for training. The overall implementation, 
including the network architectures and loss computation, is shown 
in Supplementary Fig. 2.

Data preparation
Simulation data. We used a Brownian dynamics approach to simulate 
linear, touching-bead chains as polymer chains in a planar elongational 
flow (Fig. 2, left). Each polymer chain consisted of N = 300 (D = 3N) 
beads with diameter r at positions of bead i ri, connected by N − 1 rigid 
rods of length b = r = 10 nm. The governing stochastic differential equa-
tion was obtained by considering the following forces acting on the 
system: excluded volume, constraint, Brownian and hydrodynamic.

The excluded volume potential characterizes the short-range 
repulsions between beads and can be described by

Eev = −
N
∑
i, j
μrij if rij < r nm

where μ = 35 pN has been demonstrated to result in a low frequency of 
chain crossings47. The constraint force is given by

Fc
i = Tibi − Ti−1bi−1

where bi is the unit vector of bond i and Ti is the tension in rod i that 
imposes constant bond length. The Brownian forces are random forces 
that satisfy the fluctuation-dissipation theorem, represented as

⟨Fbr
i (t)⟩ = 0 and ⟨Fbr

i (t)F
br
j (t)⟩ =

2kBTζIδij
Δt

where δij is the Kronecker delta, I is the identity matrix and Δt is the sim-
ulation time step. By neglecting hydrodynamic interactions between 
the beads, the drag force on the ith bead is

Fd
i = −ζ (u(rrri) −

dri
dt )

where ζ ≈ 3πηr is the drag coefficient of a single bead, η is the solvent 
viscosity and u(ri) is the unperturbed solvent velocity.

Due to the small mass of the beads, it is common to neglect inertial 
effects and set the sum of forces on the beads to be zero. Hence, the Lan-
gevin equation that describes the motion of each bead along the chain is

dri
dt

= u(rrri) +
1
ζ
(Fev + Fc + Fbr)

We employed a predictor-corrector scheme48 to determine the posi-
tion of each bead at every time step. The enforcement of rigid rod con-
straints leads to a system of nonlinear equations for the rod tensions 
Ti, which we solved for using Newton’s method.

For each simulation run, the polymer chain was allowed to equili-
brate for 104 τd, with τd = b2ζ/kBT being the characteristic rod diffusion 
time. During equilibration, the chain would adopt random configura-
tions as governed by thermal fluctuations. At t = 0, the chain was 
subjected to a planar elongational flow of the form u(ri) = ̇ϵ(x̂ − ŷ) ⋅ ri,  
where ̇ϵ is the strain rate and x̂ and ŷ are unit vectors parallel to the x 
and y axes, respectively. The simulations were run until t = 104 τd, using 
a time step of Δt = 5 × 10−4 τd. To generate training data, we simulated 
610 stretching trajectories. To test the predictions, we simulated 500 
stretching trajectories each for 3 different initial chain configura-
tions, which were deliberately selected from 3 vastly different trajec-
tories. For each trajectory, we obtain the (x, y, z) positional 
coordinates ri of N beads every 10 τd. Given the observation data, we 
can get the chain extension (Fig. 2). We note that time reported hereon 
is in units of τd. Although the dataset in this work is generated based 
on known equations, it should be highlighted that our machine learn-
ing approach for constructing the reduced dynamical model and all 
resulting consequences are independent of the microscopic model 
used in the simulations, with only the positional coordinates as inputs 
into the S-OnsagerNet. In other words, the approach used is purely 
data driven and can therefore be generally applied to other non-
equilibrium problems.

Experimental data. We provide the details of the experimental valida-
tion of the S-OnsagerNet results.

Experiments on electrokinetic stretching of DNA. To collect the 
experimental data leading to Fig. 6, we needed to create an automated 
single-molecule stretching trap. We describe the essential features of 
the experiments, while the reader can find additional details about the 
trap and the material preparation methodology in ref. 49. The poly-
mer samples used for this study were T4 phage double-stranded DNA 
(165.6 kbp, Nippon Gene), chosen for high monodispersity and ready 
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availability. The DNA was diluted in buffer solution and fluorescently 
labeled (YOYO-1) to aid visualization.

The trap was based on a microfluidic cross-slot channel device with a 
wide central chamber, splitting into 40-μm-wide channels in each of the 
four cardinal directions (Supplementary Fig. 3). Each of the four channels 
was terminated by a macroscopic reservoir, in which we pipetted the DNA 
sample and inserted platinum wire electrodes. These electrodes were 
connected to a computer-controlled analog voltage source, such that 
the north and south electrodes were grounded, but east and west were 
positively biased V0 = +30 V. This electric quadrupole arrangement set 
up a potential well in the north–south direction and a potential hill in the 
east–west direction. The saddle point was located in the central chamber.

In aqueous solution, DNA is naturally negatively charged, and 
in the microfluidic device, molecules drifted electrokinetically from 
the north and south reservoirs towards east and west. At the saddle 
point, the east–west potential hill could be exploited to stretch a DNA 
molecule, but being an unstable equilibrium point, molecules would 
approach its location and slow down, but could not remain there for 
long observation times without external intervention.

To actively trap and observe single DNA molecules at the saddle 
point, the microfluidic electrokinetic device was placed on an inverted 
fluorescence microscope (Nikon Eclipse Ti2U) with a ×60 oil-immersion 
objective (1.4 numerical aperture). A live fluorescence image was cap-
tured by a scientific complementary metal–oxide–semiconductor cam-
era (Teledyne Photometrics Prime 95b) at 50 ms intervals and sent to a 
desktop computer that analyzed the incoming images in real time. The 
image analysis included a fast clean-up step (detailed in the next section) 
that removed background noise and stray ‘passer-by’ molecules/frag-
ments, followed by a step to calculate the intensity centroid of the target 
molecule and its projected length. The displacement x of the molecule’s 
centroid from the saddle point was input to a proportional feedback loop 
that output a voltage tilt ΔV ∝ x, which was then superimposed on the 
east–west electrode biases, such that ΔV = V0 ± Gx. Setting G = 2.2 V μm−1 
confined the DNA centroid to within 1 μm of the saddle point even while 
a molecule stretched. This feedback process for tracking and trapping 
DNA molecules was automated through a custom LabVIEW program.

In a single stretch experiment, the platform was programmed to 
actively search for a molecule to trap as they flowed through the central 
chamber. Once a molecule was trapped, V0 was set to zero temporar-
ily to allow the molecule to relax into an unstretched, equilibrium 
state over 10 s (chosen based on experience from preliminary experi-
ments). After this relaxation period, recording began with images being 
streamed to the computer’s solid-state drive. With every image, the 
associated centroid coordinates, projected length, voltages and other 
parameters were logged in real time. V0 was then reset to +30 V, which 
re-established the east–west potential hill and stretched the DNA mol-
ecule. By monitoring the projected length history, the platform could 
recognize when the molecule was fully stretched, and in response stop 
the recording and release the molecule to escape naturally towards 
east or west. Using this protocol, we were able to capture a diverse set 
of stretching trajectories, including the dumbbell and folded confor-
mations that were selected for analysis in Fig. 6.

Real-time image processing. A DNA molecule deforms over time, 
and the purpose of this section is to elucidate our method used to 
extract sequential image snaps that can be used to capture the DNA 
unfolding. To capture the exact location of the DNA molecule, we 
devised an algorithm to classify pixels according to the density of a 
pixel’s immediate surrounding. The algorithm exploited the fact that 
the targeted molecule would very likely be centered in the tracking 
region of interest (ROI), and this was used to discriminate against stray 
particles during tracking. To make this algorithm fast enough for real 
time, the algorithm operated only on the binarized version of the raw 
image, after application of a threshold. The result was a binary image 
containing the targeted DNA pixels at the exclusion of pixels belonging 

to noise speckles and stray particles. See Supplementary Fig. 4 as an 
illustrated example of the real-time image processing pipeline.

One would imagine that calculating the intensity centroid is a natu-
ral method for defining the molecule location and tracking it across 
image frames in time. However, doing so with the raw DNA images is 
problematic for the two following reasons.

First, background noise from the camera biases the centroid 
towards the center of the frame. This occurred even though we sub-
tracted a pre-recorded background frame. The problematic noise in 
this case arises from pixel shot noise (electronic, photon) and pixel 
readout, and manifests as low-intensity sparkles in the image. One 
possible solution is to increase the excitation intensity, but this caused 
the DNA to photocleave much more readily, too often breaking into 
fragments before stretching out fully.

Second, while a trapped DNA molecule was being stretched, stray 
molecules continued to drift into the camera’s field of view, which 
biased the centroid towards these stray molecules. This problem was 
partially solved by calculating the centroid from a smaller ROI that was 
just large enough to cover the fluctuating motion of a single molecule. 
This ROI was software based and centered on the molecule centroid 
for tracking, that is implemented as a subset of the image array. The 
reduced ROI size avoided most of the stray particles, but it was still 
common for some to enter the tracking ROI during a trap–stretch cycle.

Data selection. Among the stretching trajectories collected, a few were 
selected for further analysis. Specifically, examples of molecules adopt-
ing the ‘dumbbell’ and ‘folded’ conformations during the stretching pro-
cess with similar initial extension lengths were chosen to benchmark to 
human labeling. The trajectories of the conformations as the molecules 
were stretched were plotted in the reduced coordinates space (Fig. 6). 
When in the fully stretched stable state, the DNA molecules still undergo 
conformational fluctuations due to Brownian motion, which result in 
fluctuations in the reduced coordinate space. Images of molecules in 
this stable state were analyzed to obtain the fluctuations in Z1, Z2 and Z3, 
as plotted in Fig. 6. The method to extract the learned thermodynamic 
coordinates Z2, Z3 from experimental images are described next.

Extracting reduced coordinates from filtered images. Different 
from the simulated data described earlier, given a filtered image, it 
is more challenging to obtain in a robust way a sequence of ordered 
coordinates representing the location of each part of the DNA mol-
ecule. However, identifying the two end points is easier. Thus, we first 
find the coordinates of the two end points and also the center of mass 
(weighted by intensity) of all illuminated pixels (Supplementary Fig. 
5). Then, we estimate Z2, Z3 by computing the end-to-end distance and 
foldedness as defined in Fig. 3, which are shown to strongly correlate 
with Z2 and Z3, respectively. These computations require only the rela-
tive position vectors of the two end points with respect to the center of 
mass (r1 = (r1,x, r1,y, 0) and rN = (rN,x, rN,y, 0)). The third coordinate is set to 
zero because the DNA molecule is confined to have limited motion in 
this direction. The center of mass rcm is computed by

rrrcm = 1
̄I
∑
m,n
um,nIm,n,

where ̄I = ∑m,nIm,n,um,n is the spatial position of the (m, n)-pixel and In,m 
is the intensity of the image at pixel (m, n). This allows for the computa-
tion of r1 and rN (Supplementary Fig. 5). According to the definition of 
end-to-end distance and foldedness and their linear correlation with 
Z2, Z3 (Fig. 3), we may compute the reduced coordinates as

Z1 = C1L,

Z2 = C1C2(r1,x − rN,x),

Z3 = C1[C3(r1,x + rN,x) + C4],
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where L is the extension length scale of the experimental data, and 
the parameters C1, C2, C3 and C4 are scaling parameters to account for 
the change in molecule configuration properties (for example, length 
scales) from simulation to experimental data. In particular

•	 C1 is obtained by dividing the average extension of unfolding 
simulated data by that of experimental data.

•	 C2 is the relationship between Z2 and end-to-end distance  
(Fig. 3b) and is obtained by dividing the average value of Z2 in 
simulated data by that of the end-to-end distance.

•	 C3 and C4 is obtained by the relationship between the Z3 and fold-
edness. We use least squares method to get C3 and C4 (Fig. 3e).

The method of extraction differs in the plot of Fig. 6j. Here we consider 
only the stretched state, for which we can extract 300 coordinates 
(assuming the third coordinate z = 0) equally spaced along the stretched 
polymer. A scaling along the x axis is performed so that the average 
full extension of the experimental polymer data matches that of the 
simulation data. These coordinates are then fed into the trained PCA-
ResNet to extract the Z2 and Z3 values.

Polymer dynamics analysis
In this section, we detail the modeling of the polymer unfolding prob-
lem using the S-OnsagerNet.

Accurate prediction of the statistics of unfolding. In our training 
process, we have 610 training trajectories and 110 testing trajectories. 
Note that although the dataset is generated by known yet complex 
microscopic equations, our approach does not require, nor rely on, 
the knowledge of these equations. The chain extension evolution of the 
training data with different initial chain are shown in Supplementary 
Fig. 6a (black) and the test data are shown in Supplementary Fig. 6e 
(black). After training the model, we predict the extension of the poly-
mer (red). We can see the extension of the polymer can be predicted 
well. We also compute the mean (Supplementary Fig. 6b,f), standard 
derivation (Supplementary Fig. 6c,g) and the distribution of unfolding 
time (Supplementary Fig. 6d,h) of the training and test results. We also 
compute the error of the mean (relative L2 error), standard derivation 
and the probability distribution of unfolding time of the training and 
test results in Supplementary Table 1. We observe that our model suc-
cessfully captures the statistical behavior of a polymer stretching with 
only a three-variable dynamical system.

Interpreting the learned closure coordinates. Supplementary Fig. 7  
shows the evolution of chain extension and the two learned closure 
coordinates with time for the training data. The trajectories are colored 
by unfolding time. Based on the unfolding times, we observe that chains 
with similar initial extensions (determined by the y intercept, that is, 
Z1 at t = 0) can take vastly different times to stretch; hence, it is not 
sufficient to consider only chain extension for the purposes of predict-
ing dynamics. However, the successful prediction of the statistics of 
unfolding dynamics implies that Z2 and Z3 capture crucial information 
of the system. Thus, we seek to gain some physical understanding of 
the learned closure coordinates Z2 and Z3.

Here we provide details on the analysis of the closure coordi-
nates (Z2, Z3) that characterize the stochastic evolution of the exten-
sion length (Z1), Recall that Z2, Z3 are deterministic functions of the 
microscopic configuration X, and the functions are approximated by 
a trained PCA-ResNet. A useful property we can exploit is differenti-
ability of the neural network. We can ask: given a certain configuration 
X, what kind of small perturbations to X will most drastically increase 
or decrease the value of Z2 and Z3? In other words, we can consider 
perturbations in the directions of ±∂Z2/∂X and ±∂Z3/∂X, respectively. 
We first analyze the closure coordinate Z2. From Fig. 3a, we observe 
that perturbations in the direction of Z2 tend to change the end-to-end 
distance in the elongational axis (distance between the first and the 

last bead in the polymer chain along the elongational direction, that 
is |rN,x − r1,x|), where rj,i is the ith coordinate of the jth bead in the chain 
(cyan, Z2 = 0.453; blue, Z2 = 0.194; black, Z2 = 0.323). We confirm this 
hypothesis by visualizing the correlation of the end-to-end distance 
and the magnitude of Z2 in Fig. 3b,c. In general, we observe that as |Z2| 
decreases, the distance between the chain ends (marked by red points 
in the figure) decreases. Thus, we can interpret the first learned closure 
coordinate as an indicator of end-to-end distance.

We proceed with a similar analysis for the other closure coordinate 
Z3. Figure 3d shows a given chain configuration and perturbations in the 
positive and negative directions of ∂Z3

∂XXX
 (cyan, Z3 = 7.903; blue, Z3 = 1.595; 

black, Z3 = 4.749). Here we observe that the end-to-end distance is largely 
unchanged, but the degree of foldedness of the chain in the elongational 
axis of the flow (x direction) appears to change. This leads us to hypoth-
esize that the second learned coordinate represents a degree of folded-
ness with respect to the elongational flow. As a measure of the degree of 
foldedness of a chain, we compute |r1,x + rN,x|. During data pre-processing, 
the chain is centered such that its center of mass is 0. Hence, if |r1,x + rN,x| 
is small, the polymer is symmetric around zero in the elongational x 
direction and tends to be in the elongated state. If |r1,x + rN,x| is large, the 
polymer is likely to be in the folded state. We plot |r1,x + rN,x| as a function 
of |Z3| for all configurations in the training dataset in Fig. 3e. The strong 
correlation between |r1,x + rN,x| and |Z3| supports our interpretation that 
the second learned closure coordinate is an indicator of the degree of 
foldedness in the elongational direction. To demonstrate this, we plot 
in Fig. 3f visualizations of different chains with a range of |Z3| values, with 
the chain ends marked by red points. As |Z3| decreases, we observe tat 
the chains generally shift from the folded to the elongated state. We note 
that the degree of foldedness is sufficiently described solely by consider-
ing the projection of chain coordinates onto the elongational axis of the 
flow, as the flow is stable in the compressional axis and thus the degree 
of foldedness is primarily relevant to the unstable elongational axis that 
drives the unfolding process.

Advancing classification methods for polymer stretching. With the 
new understanding of the closure variables, we now consider how our 
results improve the current understanding of polymer chain dynamics. 
In the landmark experimental study of dilute polymer chains stretching 
under elongational flow, the molecules were categorized into seven 
different conformations and the dynamics of dominant conformations 
were analyzed25. Specifically, it was found that chains in the ‘folded’ 
conformation (which is one of the seven categories) took the longest 
time to stretch, while chains in the dumbbell conformation stretched 
relatively quickly (Supplementary Fig. 8).

Our analysis shows that instead of a categorical labeling, it is per-
haps more useful to characterize the stretching dynamics of a poly-
mer by three numbers representing the generalized coordinates: Z1 
(extension length), Z2 (related to end-to-end distance) and Z3 (related 
to foldedness in the flow direction). Our results show that these are suf-
ficient to predict the dynamics of the chain extension. We show that this 
characterization is largely consistent with previous categorical ones, 
but improves on them in some intermediate cases. In Supplementary 
Fig. 9, we plot the values of the low-dimensional coordinates |Z2| and 
|Z3| of different chains with initial dumbbell and folded configura-
tions at selected chain extension Z1 values, colored by the predicted 
unfolding times. We observe segregation between the folded and 
dumbbell configurations in the Z2–Z3 space, indicating that the quali-
tative differences between different conformations can be captured 
by our characterization. In general, the folded chains take a longer 
time to stretch compared with the dumbbell chains. This is consistent 
with experimental and computational observations reported in the 
literature25–27. However, we highlight that the region with high |Z2| and 
low |Z3| values encompasses a mix of folded and dumbbell chains with 
similar unfolding times. Therefore, while the broad categorization 
scheme allows for coarse discrimination of the stretching dynamics, the 
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qualitative classification does not allow for finer predictions. Instead 
of classifying the stretching trajectories based on qualitative, human 
judgement of chain conformation during the process, we present a 
robust, quantitative approach to interpreting the stretching dynam-
ics that involves consideration of the initial chain configuration in 
reduced dimensions.

Free-energy landscape analysis. We now provide details on the analy-
sis of the free-energy landscape. We begin with an important technical 
note. Our learned GSOP following equation (5) is in general not guar-
anteed to be a gradient system, unless W(Z) = 0 and M(Z) = I. However, 
as the drift term f(ZZZ ) = (f1(ZZZ ), f2(ZZZ ), f3(ZZZ ))

T = −(M(ZZZ ) +W(ZZZ ))∇V(ZZZ ) , the 
stationary points of V are also critical points of the dynamics (f(Z) = 0). 
The saddle points of V are the saddle foci of the non-gradient dynamics 
̇Z = f(ZZZ ). For simplicity, we refer to a saddle point of V and saddle focus 

of f interchangeably.
We compute the critical points by numerically solving 

∇V(Z) = 0 with the BFGS method from different initial conditions. 
We obtain four critical points: (247.15, 1.701, 0.193) (yellow star), 
(247.29, −1.700, −0.166) (blue square), (87.858, −0.041, −4.269) (cyan 
triangle) and (85.887, −0.050, 4.126) (purple diamond), which are 
shown in Fig. 4. The Jacobian matrix of the drift term is then computed

J( f ) =
⎛
⎜
⎜
⎜
⎝

∂Z1 f1 ∂Z2 f1 ∂Z3 f1
∂Z1 f2 ∂Z2 f2 ∂Z3 f2
∂Z1 f3 ∂Z2 f3 ∂Z3 f3

⎞
⎟
⎟
⎟
⎠

.

We calculate the eigenvalues and eigenvectors of J at the four 
critical points. It has three eigenvalues with negative real parts at the 
yellow and blue points, so these are the stable points (stable nodes). 
We name them Zstable,1 and Zstable,2. For the cyan triangle and magenta 
diamond points, J has one eigenvalue with positive real part, and two 
with negative real parts. These points are saddle points (saddle focus) 
of index 1. We call these two points Zsaddle,1 and Zsaddle,2. The direction of 
the eigenvector corresponding to the eigenvalue with positive real part 
is the unstable manifold, along which the trajectories escape from the 
saddle. On the other hand, the span of the real and imaginary parts of 
the other eigenvector (one must be a complex conjugate of the other) 
constructs the stable manifold, along which trajectories are attracted 
to the saddle.

The local behavior of the learned potential V(Z) around its critical 
points characterize the typical fluctuations around them. There lies 
important physical meaning that we can probe. For example, let us 
exploit automatic differentiation of neural networks and expand V(Z) 
in a Taylor series around Zstable,1 (fully stretched state), corresponding 
to (247.15, 1.701, 0.193). Neglecting small terms, we obtain the approxi-
mate formula

δV ≈ 153.1(δZ1 − 1.54δZ2)
2 + 205.5δZ22 + 36.96δZ23, (20)

where δZi = Zi − [Zstable,1]i  is the fluctuations in the thermodynamic 
variables. Now, assuming that the distribution of states around Zstable 
follows a Boltzmann distribution ZZZ ∼ exp[−V(ZZZ )/kBT] (here we assume 
that M ≈ I) where |σ|2 ∝ kBT, the typical small fluctuations δV is propor-
tional to kBT. In other words, equation (20) is approximate ‘isotherms’ 
that captures the form of typical fluctuations. For example, we can infer 
from the formula that typical fluctuations of the extension length (Z1) 
and the end-to-end distance (Z2) are highly correlated. This is sensible, 
as in the fully stretched state, these two quantities are expected to 
change simultaneously. In Fig. 4g–i, we confirm these correlations.

Similarly, one can also expand V(Z) around a saddle point (fully 
folded state) Zsaddle,2. We obtain the formula

δV ≈ 102.96δZ21 − 31.13(δZ2 − 0.255δZ3)
2 + 24.16δZ23,

Here we immediately observe that to escape the saddle point (lower-
ing the energy), one should increase end-to-end distance (Z2) and 
decrease foldedness (Z3). This approximately aligns with the unstable 
manifold described above, and forms the basis of our control protocols 
described in the main text.

Selection of the dimension of the reduced coordinates. In this 
part, we describe how we arrived at the selection of a three-variable 
reduced coordinate space. We tested various different numbers of 
reduction dimensions (d = 2, 3, 4) and the relative errors of predic-
tions are summarized in Supplementary Table 1. We observed that 
going to a higher dimension (d = 4) did not result in noticeable 
gains. In fact, increasing dimension may cause increasing optimi-
zation error and hence worse results in standard deviation. Going 
to a lower dimension (d = 2) resulted in increased prediction error 
in general.

Interestingly, we can formulate a physical argument that sug-
gests that a two-dimensional system (with only one additional closure 
coordinate) is not a suitable reduced model for the polymer dynamics 
we study. The argument is based on index theory for two-dimensional 
dynamical systems50.

Let us assume for the sake of contradiction that the pro-
jected free-energy landscape of our learned three-dimensional  
system into Z1–Z2 plane is the free energy of a system in two-dimen-
sional (Supplementary Fig. 10). As Z1 is the polymer extension, we 
expect that

	(1)	 There exists two stable states at large Z1 corresponding to the 
fully extended state. There are two of them due to reflection 
symmetry in the flow direction. Around this Z1 value, all trajec-
tories in the reduced space should converge to one of the stable 
steady states.

	(2)	 There cannot be saddle points with the same Z1 value, as it is 
close to the maximal extended chain length.

These conditions are enough to imply a contradiction in the following 
way. The simple concept we use from index theory is the definition of 
the index of a closed curve in the phase space of a two-dimensional 
dynamical system (see Ch. 6.8 in ref. 50 for details). Let Γ be a closed 
cur ve in ℝ2 ,  and consider a dynamical system ̇zzz = f(zzz)
= ( f1(zzz), f2(zzz))

T,zzz = (zzz1,zzz2)
T ∈ ℝ2. The index of Γ with respect to the dynam-

ics f is defined as

IΓ ( f ) ∶=
1
2π
∮

Γ

f1df2 − f2df1
f 21 + f

2
2

. (21)

Intuitively, this is the sum of the angles of the force vectors across 
the curve Γ.

From index theory, we know that the index of a closed curve must 
equal to the sum of indices of critical points it encloses. Moreover, 
the index of a stable critical point is +1, and the index of a saddle is −1.  
Now, we draw a curve enclosing the two stable points as shown in Sup-
plementary Fig. 10. By condition (1) above, the vector fields should 
point inwards towards the interior of the curve, thus we can show (from 
equation (21)) that the index of this curve is +1. However, it can only 
enclose stable critical points due to condition (2), and consequently 
its index is at least +2. Thus we arrive at a contradiction, showing that 
the dynamical landscape in Supplementary Fig. 10 is not possible in 
two dimensions.

The only remaining possibility is that Z2 does not distinguish the 
two symmetric stable extended states. However, in this case to allow a 
saddle point (which is the key to inducing heterogeneity in unfolding), 
we must have another stable steady state at a different Z1 value. This is 
unlikely from a physical viewpoint for non-self-interacting polymers, 
as we expect the only asymptotically stable state to be the stretched, 
fully extended state.
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The impact of dataset size on predictive accuracy of 
S-OnsagerNet
To study the impact of the number of training data on the computa-
tional accuracy of the model, the original training dataset containing 
610 trajectories was split into two subsets containing 25% and 75% of 
the data. A third subset was produced by selecting at random 50% 
of the data from the original dataset. The three datasets and the 
learned potential landscapes are presented in Supplementary Fig. 11.  
The 25% and 75% datasets have no common trajectories, while the 
50% dataset contains some trajectories from each of the other two 
datasets. The quantitative results reported in Supplementary Table 2,  
where the trained models are used to predict 500 unseen trajec-
tories with fast, medium and slow unfolding times, suggest that 
with a smaller amount of training data, the S-OnsagerNet model 
loses some predictive accuracy. However, the more important fac-
tor is the diversity of the data contained in the training datasets. 
The full dataset has a high proportion of trajectories with fast, fol-
lowed by middle (slower) and then slow unfolding times; however, 
it is the most balanced of all the training datasets (25%, 50%, 75%, 
100%), in addition to containing the most data. Training with the 
25% dataset, which contains the largest proportion of trajectories 
with fast unfolding times results in the lowest L2 error, but the model 
overfits to that type of trajectory, and has the largest L2 error for 
the medium and slow unfolding times. However, the 50% dataset 
is the most balanced of the reduced datasets, which is reflected 
in the relative L2 errors. It can also be observed in Supplementary  
Fig. 11 (bottom) that the potential landscapes resulting from training 
with smaller datasets do not contain a clear stagnation (saddle) point. 
Overall, for training datasets with different numbers of trajectories 
and their respective proportions of fast, medium and slow trajec-
tories, the results, both in terms of prediction error and potential 
landscape characteristics, suggest that the model is relatively robust, 
and the amount of training data cannot be reduced much without 
affecting predictive performance.

Spatial epidemics analysis
In this section, we provide details of our analysis method for an alterna-
tive application of S-OnsagerNet—modeling the macroscopic dynamics 
of the spread of epidemics. This highlights the general applicability of 
our method.

We focus on the most well-known model for disease spread in a spa-
tial domain—the spatial SIR model32. Let us consider a two-dimensional 
square domain (representing a city, say) discretized into n × n sectors. 
We use Ii,j and Si,j to represent the number (density) of infective and sus-
ceptible individuals at spatial location (i, j). The basic mechanism of the 
model is as follows: each infective individual may infect a susceptible 
individual in the same spatial location. At the same time, each infec-
tive individual recovers (or is removed) at a rate, after which they are 
no longer infective. Finally, both infective and susceptible individuals 
move on the spatial domain randomly. Mathematically, the temporal 
evolution of I, S (understood as n × n matrices, or length n2 vectors) are 
governed by the following dynamics

̇Si, j = −βIi, jSi, j +
δ
δ2x
(Si−1, j − 2Si, j + Si+1, j)

+ δ
δ2y
(Si, j−1 − 2Si, j + Si, j+1) + σ ̇B1(t),

̇Ii, j = βIi, jSi, j − γIi, j +
δ
δ2x
(Ii−1, j − 2Ii, j + Ii+1, j)

+ δ
δ2y
(Ii, j−1 − 2Ii, j + Ii, j+1) + σ ̇B2(t).

(22)

As usual, the dot denotes time derivative. The parameter β is a measure 
of the transmission efficiency of the disease from infectives to sus-
ceptibles, and 1/γ is the life expectancy (or expected recovery time) 
of an infective. The constant δ is the diffusion coefficient, and this 

term in the equation models the spatial movement of individuals as a 
diffusion process over the domain. The last terms of the equation 
models the stochastic fluctuations of the number densities, with σ as 
the noise intensity. The parameters δx and δy are the spatial discretiza-
tion sizes in the two spatial directions. In our simulations, we take n = 
16, β = 0.3, γ = 0.13, δ = 0.5, σ = 0.03 and δx = δy =

2
3

. Equation (22) gov-
erns the microscopic dynamics of disease spread, and non-trivial 
outcomes can result from different initial spatial configurations and 
parameters (for example, infection rate, recovery rate). See Extended 
Data Fig. 1.

While this microscopic model and its variants has been subject 
to intense study (see ref. 32 and references therein), a macroscopic 
understanding of the dynamics of disease spread is challenging due to 
the complex spatial interactions. For example, one may be interested 
to model the dynamics of average (or total) number of infective and 
susceptible individuals over the spatial domain. Observe in Extended 
Data Fig. 1 that configurations with identical initial spatial averages 
of infective and susceptible individuals can have drastically differ-
ent subsequent evolution. More precisely, one spatial configuration 
Extended Data Fig. 1a can lead to initial disease spread (epidemic), 
where the mean number of infected individuals initially increases 
sharply, whereas another spatial configuration in Extended Data  
Fig. 1b leads to the disease dying out monotonically. Thus, it is of inter-
est to develop a thermodynamic description to capture and elucidate 
the driving factors of such variations.

Modeling the thermodynamics of the spatial SIR model using 
S-OnsagerNet. Following our framework, we now set the macroscopic 
variables of interest as the respective spatial averages Z1 = δxδy∑

n
i, j Ii, j 

and Z2 = δxδy∑
n
i, j Si, j. Recall from Extended Data Fig. 1 that these vari-

ables alone are insufficient to determine their subsequent evolution. 
Our goal is to learn closure variable(s), and a stochastic dynamics that 
describes the evolution of these variables.

Training data are generated through integrating equation (22) 
using the Euler–Maruyama method with time step size dt = 0.03. The 
initial conditions are selected as Ii, j(0) = 5e−(xi−x0)

2−(yj−y0)
2

 and 
Si, j(0) = 5e−(xi−1)

2−( yj−1)
2
+ 5e−(xi−1)

2−( yj+2)
2
, where x0 and y0 are randomly 

generated from a uniform distribution in the unit square, and xi = −5 + iδx 
and yj = −5 + jδy. This initial condition corresponds to the scenario where 
the initial susceptible population is fixed, but the initial infective popu-
lation is a cluster that is uniformly and randomly distributed in the 
domain. Then we carry out the S-OnsagerNet workflow as shown in  
Fig. 1, with β = 0.01, α = 0.001, m = 50 and d = 3 (that is, one closure 
coordinate). We employ a PCA-encoder network to obtain the closure 
coordinate. The training process involves initially training the PCA-
encoder and the S-OnsagerNet simultaneously. Subsequently, we fix 
the former and continue training the latter to a desired error tolerance. 
Note that in the SIR model case, we do not utilize the decoder network 
as there is no need to obtain a reconstruction of I and S.

Capturing the stochastic dynamics. First, we show that with just one 
additional learned closure coordinate Z3, we can capture the statis-
tics of the macroscopic dynamics of the spatial averages of infective 
and susceptible individuals. The results are shown in Extended Data 
Fig. 1d,e, where the true mean and standard deviation of Z1 and Z2 are 
obtained from equation (22), while the predicted results are derived 
from S-OnsagerNet. Four representative test initial conditions are 
shown: two with disease spread and the other two without. We observe 
that we can successfully capture the macroscopic dynamics of disease 
spread with just one additional closure coordinate.

Interpreting the closure coordinate. Next, as we have shown that 
only one closure coordinate is required for a thermodynamic descrip-
tion, it is natural to probe its physical meaning. We use the same tech-
nique described in the polymer stretching case, where we investigate 
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the effect of perturbation of a microscopic state in the directions that 
cause the sharpest changes in Z3. The microscopic state we probe is 
chosen as a pair of partially overlapping clusters of infective and 
susceptible individuals (Extended Data Fig. 2a). We observe that the 
perturbations induced by dZ3/dX (where X = (I, S)) correspond to 
increasing/decreasing the overlap of clusters of susceptible and 
infected individuals. Hence, this suggests that Z3 is a macroscopic 
descriptor that correlates with such effective spatial overlap. We 
confirm this hypothesis via a scatterplot in Extended Data Fig. 2b, 
where the overlap is defined by ISmean = δxδy∑

n
i, j Ii, jSi, j . Thus, we can 

interpret the closure coordinate Z3 as an indicator of the overlap of 
clusters of susceptible and infective individuals. This is physically 
sensible, as the measure of overlap of spatial clusters should determine 
the outcome of an epidemic. Nevertheless, we must emphasize that 
the learned Z3 is a quantitative measure and can be applied to more 
complex configurations than a pair of clusters, for which one may not 
be able to easily define a notion of effective overlap by empirical 
observation.

Free-energy landscape. Finally, we study the dynamical landscape 
of the learned S-OnsagerNet model. Using the same projection tech-
nique in the polymer case, we plot two-dimensional projections of the 
learned three-dimensional free-energy landscape in Extended Data  
Fig. 3, overlaid with two representative trajectories (with disease spread 
in blue and disease dying out in red).

A number of interesting features can be gleaned from the land-
scape. First, we can clearly see the origins of the divergence of the 
two different types of trajectory. While they have identical initial 
Z1 (average infective) and Z2 (average susceptible) values, their ini-
tial Z3 (infective/susceptible overlap) values differ (Extended Data  
Fig. 3b,c). In particular, the initial disease spread seen in the red and blue 
trajectories is approximately in accordance to the steepest descent of 
the energy landscape. That is, the initial Z3 value is a determining fac-
tor for the onset of epidemics. Second, we compute using the steady 
states of the dynamics corresponding by solving ∇V(Z) = 0. Instead 
of isolated steady states as in the case of polymer dynamics, we find 
a one-dimensional manifold of stable steady states in the Z2–Z3 plane 
(Extended Data Fig. 3c,f). This implies, in particular, that the terminal 
state (the remaining number of susceptible individuals) is not unique, 
but rather depends on the initial configuration, and in particular on the 
initial overlap described by the learned coordinate Z3. This rationalizes 
the observed heterogeneity in the terminal configurations as shown 
in Extended Data Fig. 1.

Statistics and reproducibility
The train–test splits in this paper are performed by random uniform 
subsampling. Repeats of numerical experiments are performed by 
running the same code with different random seeds. No data were 
excluded from the analyses, and the investigators were not blinded to 
allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The simulation and experimental datasets used are publicly available 
in the Harvard Dataverse public repository51. The simulation data were 
generated according to the methods introduced in ‘Data preparation’ 
in Methods. Source data are provided with this paper.

Code availability
The code to reproduce the analysis generated within the study is pro-
vided at https://github.com/MLDS-NUS/DeepLearningCustomTher 
modynamics ref. 52.
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Extended Data Fig. 1 | Data visualization and prediction results. A) and (B): 
Two trajectories depicting the spatial evolution of I (infective) and S (susceptible) 
with distinct initial conditions are plotted. They have identical spatial averages 
initially but differing subsequent evolution. In particular, in (A) the disease 
spreads (Z1, the spatial average of I increases initially) but in (B) the disease dies 
out monotonically. (C) Scatter of Z1 and Z2 (spatial average of S) trajectories, 

showing a high degree of variability despite identical initial values. Note that 
there is variability in both the presence of disease spread (Z1 increasing initially) 
and the terminal value of Z2, corresponding to the remaining uninfected 
population after the epidemic. The blue (resp. red) trajectory corresponds to 
(A) (resp. (B)). (D, E) True vs predicted statistics using S-OnsagerNet with four 
different test initial conditions, showing good agreement.
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Extended Data Fig. 2 | Physical interpretation of learned closure coordinate. 
(A) Perturbations X ± ϵ∂Z3/∂X from a given configuration X = (I, S) with ϵ = 2 are 
shown. The are overlapping clusters, in the form of Gaussians centered at (0, 0) 
for S and (-1, 1) for I. To illustrate the overlap clearly, we binarize the values as 
follows: if the value of I and S is greater than 1, we truncate it to 1; otherwise, if the 

value is less than 1, we truncate it to 0. Observe from (A) that increasing Z3 
corresponds to increasing spatial overlap of the clusters, and vice versa.  
We confirm this in (B), where we plot ISmean (spatial overlap) vs Z3, showing a 
positive correlation.
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Extended Data Fig. 3 | Potential landscape of the SIR model. The learned V is 
projected onto Z1 − Z2 (A,D), Z1 − Z3 (B, E) and Z2 − Z3 (C, F) planes. Projection is 
computed via minimization (for example V(Z1,Z2) = min

Z3
V(Z1,Z2,Z3). Example 

of disease spread (blue) and disease dying out (red) trajectories with the same 
initial Z1 and Z2 from the training dataset are shown. We observe from (B) that Z3 

determines the onset of disease spread and differentiates the two trajectories. 
Moreover, (C) shows that Z3 also differentiates the final outcome of the 
epidemics, where the final Z2 value depends on the initial Z3 value, and belongs to 
a 1D manifold of stable steady states as shown in (F).
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