
Nature Computational Science | Volume 4 | February 2024 | 128–143 128

nature computational science

Resource https://doi.org/10.1038/s43588-024-00595-7

Extracting, filtering and simulating cellular
barcodes using CellBarcode tools

Wenjie Sun    1  , Meghan Perkins2, Mathilde Huyghe    2, Marisa M. Faraldo2,
Silvia Fre2, Leïla Perié    1,5  & Anne-Marie Lyne    1,3,4,5 

Identifying true DNA cellular barcodes among polymerase chain reaction
and sequencing errors is challenging. Current tools are restricted in
the diversity of barcode types supported or the analysis strategies
implemented. As such, there is a need for more versatile and efficient tools
for barcode extraction, as well as for tools to investigate which factors
impact barcode detection and which filtering strategies to best apply.
Here we introduce the package CellBarcode and its barcode simulation kit,
CellBarcodeSim, that allows efficient and versatile barcode extraction and
filtering for a range of barcode types from bulk or single-cell sequencing
data using a variety of filtering strategies. Using the barcode simulation
kit and biological data, we explore the technical and biological factors
influencing barcode identification and provide a decision tree on how to
optimize barcode identification for different barcode settings. We believe
that CellBarcode and CellBarcodeSim have the capability to enhance the
reproducibility and interpretation of barcode results across studies.

DNA cellular barcoding is a high-throughput approach widely used
to follow lineage1,2 in different fields such as hematopoiesis, develop-
ment3–5, cancer6–9 and infection dynamics10. It uses a unique and herit-
able DNA sequence incorporated into the genome of an ancestor cell,
which is then detected via sequencing in its progenies.

In the earliest approaches, progenitor cells were prospectively
transduced ex vivo with libraries of fixed-length oligonucleotides11.
More recently, to avoid extraction and reimplantation of progenitor
cells, in vivo recombining genetic cassettes have been incorporated
in transgenic organisms. Many innovative approaches have produced
these in situ genetic labels12–16, with the majority detected via short-read
sequencing. Barcodes are now detected with single-cell RNA sequenc-
ing (scRNA-seq)14–17, coupling lineage with fine-grained phenotyping.

DNA barcodes detected via next-generation sequencing (NGS) are
subject to various sources of error, resulting in the identification of spu-
rious barcodes. All barcode types are affected by PCR error/bias18 and
sequencing error; in situ barcodes suffer additionally from the inability
to control the distance between barcodes19,20. Biological factors such as

the number of barcodes and clone size can impact barcode detection
but have rarely been investigated21. To extract and identify true from
spurious barcodes, many different bioinformatic filtering strategies
have been proposed. However, little comparison of the various strate-
gies has been published and most publications use their own ‘in house’
processing pipelines. This is problematic in terms of interpretation
of results across studies and reproducibility. Both guidelines on how
filtering strategies and their parameterization impact barcode quan-
tification and broadly applicable tools are required22.

Beside tools for visualization and data exploration23–25 three tools
have been developed to extract DNA barcodes from NGS data: genBaR-
code26, Bartender27 and CellTagR28. While each has demonstrated util-
ity, they are either restricted in the diversity of barcode types supported
(CellTagR, genBaRcode) or the analysis strategies implemented (all of
the above). No tools provide a framework to simulate barcode experi-
ments and investigate the technical and biological factors impacting
barcode detection. There is a need for more versatile tools to extract,
identify and simulate barcodes.

Received: 21 June 2023

Accepted: 16 January 2024

Published online: 19 February 2024

 Check for updates

1Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France. 2Institut Curie, Laboratory of Genetics
and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France. 3INSERM U900, Paris, France. 4MINES ParisTech,
CBIO-Centre for Computational Biology, PSL Research University, Paris, France. 5These authors jointly supervised this work: Leïla Perié, Anne-Marie Lyne.

 e-mail: sunwjie@gmail.com; leila.perie@curie.fr; anne-marie.lyne@curie.fr

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-024-00595-7
http://orcid.org/0000-0002-3100-2346
http://orcid.org/0000-0002-8473-2924
http://orcid.org/0000-0003-0798-4498
http://orcid.org/0000-0002-1779-8392
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-024-00595-7&domain=pdf
mailto:sunwjie@gmail.com
mailto:leila.perie@curie.fr
mailto:anne-marie.lyne@curie.fr

Nature Computational Science | Volume 4 | February 2024 | 128–143 129

Resource https://doi.org/10.1038/s43588-024-00595-7

produces in silico barcoding data mimicking bulk DNA-seq experimen-
tal situations by varying a number of technical and biological factors.
CellBarcodeSim covers production of a barcode library, cell barcode
labeling and clonal expansion, construction of full sequencing reads
including flanking sequences and UMIs when desired, and finally PCR
amplification and sequencing with the inclusion of error (Fig. 2a and
‘DNA cellular barcode sequencing simulations’ in Methods). In total,
CellBarcodeSim provides 10 configurable parameters for non-UMI
and 13 for UMI sequencing libraries (Fig. 2a). Tens of thousands of
clones can be simulated on a standard laptop (16 Gb random-access
memory), covering most experimental situations. Two types of bar-
code library can be simulated with CellBarcodeSim (see ‘DNA cellular
barcode sequencing simulations’ in Methods) while other types of
barcode can be uploaded as a list. Comparing the known barcodes
from simulation with the output of CellBarcode can guide users in
their choice of filtering strategy and its parameterization. Overall,
CellBarcodeSim simulates barcoding experiments varying multiple
technical and biological factors.

Before exploring how different parameters impact barcode
identification across filtering strategies, we first checked that Cell-
BarcodeSim could reproduce the expected output of a barcoding
experiment. We simulated two experimental datasets: lentiviral fixed-
length 20-bp barcodes recovered from myeloid cells30; and a variable,
diversity, joining (VDJ)-barcoded dataset with UMIs recovered from
mouse embryonic fibroblast (MEF) cells20 (see ‘Acquisition, analysis
and simulation of experimental data’ in Methods). We showed that
CellBarcodeSim outputs the same read structure and similar propor-
tion of reads matching the regular expression as the experimental data
(Fig. 2b,c), with high Pearson correlation between the proportion of the
most abundant base at each sequencing cycle between the simulated
and experimental data (Fig. 2b,c).

Next, to investigate the key factors impacting barcode identi-
fication for different filtering strategies, we first designed a default
scenario for non-UMI barcode libraries (see ‘DNA cellular barcode
sequencing simulations’ in Methods and Supplementary Table 2) and
then 25 alternative scenarios varying key biological and experimental
parameters (Supplementary Table 2). After randomly simulating each
scenario 30 times, we applied 4 different filtering strategies (read
count thresholding, reference library, clustering and UMI filtering). To
evaluate the filtering performance, for each simulation we computed
barcode recall (the proportion of true barcodes found in the output)
and precision (the proportion of output barcodes that are true) using
the known ground truth. We then computed the area under the preci-
sion–recall curve (PR AUC) across a range of thresholds (Supplemen-
tary Fig. 2) to indicate how well filtering methods separate true from
spurious barcodes regardless of threshold.

We first consider read count threshold filtering. In all scenarios,
there is an overlap between the read count distributions of error and
true barcodes combined across simulations (Supplementary Fig. 3);
therefore, it is impossible to choose a read threshold to perfectly sepa-
rate true from spurious barcodes. Using a read threshold involves a
trade-off between the recall and precision of barcode detection, with
a higher threshold removing more spurious barcodes but also more
true barcodes (Fig. 3a,b). Surprisingly, the factor that had the larg-
est impact on PR AUC was one of the biological factors: the standard
deviation (s.d.) of the log clone size (where log denotes the natural
logarithm), with smaller clone size variation showing larger PR AUC
(Fig. 3c and Supplementary Figs. 4 and 5a). When log clone size s.d. was
1, the PR AUC reached 1 regardless of other factors, including barcode
type or mean clone size (Fig. 3c and Supplementary Figs. 4 and 5a).
Comparing precision and recall for different thresholds, we observed
the expected trend of increased recall but decreased precision as the
threshold became less stringent (Fig. 3a,b and Supplementary Figs. 5b
and 6). When there is high variability in the number of cells labeled by
each barcode (log clone size s.d. ≥ 2), recall needs to be compromised

To address these issues, we developed two tools: CellBarcode,
an R Bioconductor package for barcode extraction and filtering, and
CellBarcodeSim, a barcode simulation kit that faithfully reproduces
barcoding experiments. We demonstrate, using simulated and experi-
mental datasets, that CellBarcode allows users to implement various fil-
tering strategies for bulk or single-cell datasets. Using CellBarcodeSim
to simulate barcoding experiments, we investigated potential technical
and biological factors impacting the reliability of barcode identifica-
tion, confirmed with experimental datasets. We recapitulated our
results into a decision tree to guide researchers on which filtering
strategy is most appropriate for their setting. Overall, we present effi-
cient and versatile tools to extract and identify barcodes from errors,
and provide advice on how best to analyze barcoding experiments in
a range of biological situations.

Results
CellBarcode package
We developed the CellBarcode R package, which provides a toolkit for
barcode pre-processing, including steps from generating the FASTQ
quality control information to exporting the data into a read count
matrix (Fig. 1a). Using the read quality control and filtering functions
of CellBarcode, users can check sequencing quality, remove low-quality
sequences and get an overview of read diversity. Barcodes can then be
extracted from the FASTQ or BAM file by defining a regular expression
matching the structure of the lineage barcode and its surrounding
flanking sequence (see Supplementary Vignette 1 for examples and
a detailed description of this process); both fixed-length and varia-
ble-length barcodes can be extracted, and mismatches in the flank-
ing regions are allowed (bulk analysis only). Once the raw barcodes
have been extracted, filtering functions can remove spurious barcode
sequences using commonly applied strategies. In addition, the package
provides functions for visualizing the barcode read count distribution
per sample and across replicates (Fig. 1b,c).

The four main filtering strategies generally applied to barcoded
data are implemented in CellBarcode (Fig. 1d). (1) Reference filtering:
barcodes not matching with the reference list are eliminated. The refer-
ence list is either generated by sequencing the viral barcode libraries5 or
enumerating all possible barcodes using knowledge of barcode struc-
ture19. (2) Threshold filtering: barcodes are retained if their read num-
ber (depth) surpasses a specified threshold5. CellBarcode has a manual
or an automatic threshold option (see ‘Barcode filtering’ in Methods).
(3) Cluster filtering: barcodes that have an edit distance smaller than a
specified threshold to a more abundant barcode are eliminated29. (4)
Unique molecular identifier (UMI) filtering: if UMIs are added to DNA
molecules during library preparation, several optional filtering steps
can be applied, including extracting the most abundant barcode per
UMI and threshold filters on the read count per UMI or UMI count per
barcode. These four filtering strategies can be used individually or in
combination, and we later advise on when to apply each strategy using
simulated data with CellBarcodeSim. See Supplementary Vignettes 1
and 2 for examples of all major use cases.

In summary, CellBarcode is a versatile and open-source tool that
works on all major operating systems and is capable of analyzing a wide
variety of DNA barcode types with commonly applied filtering strate-
gies. The key assets of CellBarcode are its speed, the ability to deal with
UMI data and the extraction of barcodes from scRNA-seq data (Supple-
mentary Table 1). Efficient C++ code accelerates heavy tasks compared
with other packages; barcode extraction and cluster filtering are 20
and 70 times faster than using genBaRcode (Supplementary Fig. 1).

Comparing barcode filtering strategies using CellBarcodeSim
The CellBarcode package provides a variety of functions for barcode
filtering, but choosing a filtering strategy and its parameterization
in a given experimental setting is challenging. With this in mind, we
developed a barcode simulation toolkit, called CellBarcodeSim, which

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | February 2024 | 128–143 130

Resource https://doi.org/10.1038/s43588-024-00595-7

d

c

a

B

M

True barcode
 sequencing
Error sequencing

A|T|C|G: Mutant loci

(1) Reference (2) Threshold

Barcode Depth

B1 20

B2 30

M3 17

B4 5

M5 10

B1

B2

B3

B4

B5

Reference list Barcode Depth

B2 30

B1 20

M3 17

M5 10

B4 5

Threshold

(4) UMI

UMI1

UMI1

UMI1

UMI1

UMI2

UMI2
UMI2
UMI2

(3) Barcode clustering

Raw reads Extract barcode Barcode filtering Export
Match barcodes using

regular expression

0 5 7 10 0 0

0 9 0 0 10 0
0 0 0 0 5 0

Samples (bulk) or cells (sc-seq)Samples (bulk) OR cells (sc-seq)

1 5 7 10 2 1

1 9 2 0 10 1
1 0 0 0 5 1

Constant

Variant

b

QC and filtering
(optional)

Barcode
extraction

Barcode
filtering

Visual check Export

Barcode cleaning:
bc_cure_umi()
bc_cure_clustering()
bc_auto_cuto�()
bc_cure_depth()

QC and filtering:
bc_seq_qc()
bc_seq_filter()

Barcode extraction:
bc_extract()
bc_extract_10XscSeq()

Visual check:
bc_plot_single()
bc_plot_pair()
bc_plot_mutual()

Export:
bc_2df()
bc_2dt()
bc_2matrix()

NGS error
NGS error

Barcode 1

Barcode 2

Barcode 3

Barcode 1

Barcode 2

Barcode 3

ATC
GA

CCC
CA

CTA
G

Cells are labeled by unique DNA
sequences, called barcodes Track cells through time Barcode read out by NGS Recover barcode

read count matrix

Samples (bulk) or cells (sc-seq)
1 5 7 10 2 1
1 9 2 0 10 1
1 0 0 0 5 1ATC

GA

ATC
GA

ATC
GA

CTA
G

CTA
G

Cell growth
di�erentiation CellBarcode

Sequencing
data

Fig. 1 | CellBarcode package to extract and identify lineage barcodes.
a, Barcode experiment scheme. Cells are labeled with genetic barcodes, divide
and differentiate, with progeny inheriting the barcode. Barcodes are read
out by NGS in descendant cells. CellBarcode allows extraction, filtering and
identification of barcodes from NGS data and returns a barcode count matrix
for further analysis. sc-seq, single-cell sequencing. b, Diagram of barcode
sequencing data processing with CellBarcode. CellBarcode reads the raw
sequencing data (FASTQ, FASTA, BAM/SAM files or R object) and checks the
quality control (QC and filtering functions) before extracting the barcode
sequences (barcode extraction functions). Barcodes are then filtered to remove
PCR and sequencing errors using different filtering strategies (barcode cleaning
functions). After filtering, barcode data can be plotted with the visual check
functions and exported as a barcode frequency matrix (export functions).
c, Example of barcode processing workflow using CellBarcode. Barcodes

(underlined) are extracted from raw sequences using a regular expression
(sequence in bold) that depends on the barcode type. Barcodes are then filtered,
as detailed in d, to eliminate spurious barcodes and exported. d, The four most
commonly used barcode filtering strategies. Gray indicates true barcodes and
red indicates spurious barcodes. (1) Reference library filtering: barcodes B1,
B2 and B3 that match the reference list are considered true barcodes, M3 and
M5 are removed. (2) Threshold filtering: barcodes that have a read number
superior or equal to the threshold of 20 are kept (B1 and B2) and barcodes below
the threshold are removed (M3, M5 and B3). (3) Cluster filtering: barcodes
with an edit distance smaller than a threshold to a more abundant barcode are
eliminated. Here, two barcodes have one substitution difference (mutant loci in
white) from an abundant barcode and will be deleted. (4) UMI filtering: usually
involves retaining the most abundant sequence per UMI followed by a UMI count
threshold per barcode.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | February 2024 | 128–143 131

Resource https://doi.org/10.1038/s43588-024-00595-7

to avoid calling spurious barcodes. This leads to a significant loss of
true barcodes, predominantly affecting barcodes of small clones that
have similar read count to error barcodes derived from much larger
clones (Fig. 3a,b and Supplementary Figs. 5b and 6). This loss of true
barcodes can preclude robust statistical analysis downstream (Sup-
plementary Fig. 5c).

To validate the finding about the impact of clone size s.d., we
used an unpublished dataset in which Cas9-expressing mice intestinal
organoids were infected with libraries of guide RNAs (gRNAs) designed
to knock out specific genes (see ‘CRISPR gRNA dataset’ in Methods).
While not a standard barcode, each specific knockout acts as a clonal
label and can be extracted by CellBarcode using a regular expression
targeting the constant primer region. Two time points were analyzed,
24 hours and 7 days, with clone size variation increasing over time due
to fitness effects of the gRNAs. Using CellBarcodeSim to simulate the
experiment, we successfully reproduced the percentage of barcode-
containing reads, and observed a change in the read count distribution,
from bimodal with true and spurious barcode counts mostly separated
at low clone size s.d., to unimodal with more overlap in true and spuri-
ous barcode counts at higher clone size s.d. (Supplementary Fig. 7, top

row). These same trends were observed in the experimental data (Sup-
plementary Fig. 7, bottom row). To verify the finding that the number
of PCR cycles has limited impact on barcode recall (Supplementary
Fig. 8), we used published data of mixes of seven MEF cell lines that
each contain a unique known VDJ barcode20. Across the mixes, the
total number of initiating cells was reduced and the number of PCR
cycles correspondingly increased to produce a constant PCR product
concentration, with the clone size ratios kept constant. Irrespective of
the number of PCR cycles, CellBarcode identified the 7 known barcodes
in each mix (with 1 spurious barcode at +4 PCR cycles) (Supplementary
Fig. 8). Using CellBarcodeSim with matched parameters and varying
the number of PCR cycles, we reproduced the separation of true and
spurious barcode counts and the lack of change in the sequence fre-
quency distribution (Supplementary Fig. 8). Using two experimental
datasets, we therefore demonstrated that CellBarcodeSim can simu-
late real scenarios. Our simulation results of the large impact of the
clone size s.d. and the limited impact of PCR cycle number on barcode
identification were supported by these experimental data. Regarding
filtering, we showed that the read count thresholding strategy is sub-
optimal at best, except for systems in which the clones have a similar

Barcode simulationStep: Label cell and cell growth Sequencing library
preparation Sequencing

UMI
P5

P7

Barcode parameter:
- Barcode length
- Barcode design

Cell growth parameter:
- Clone number
- Clone size distribution

PCR parameter:
- PCR error rate
- PCR e�iciency
- PCR cycle number
- UMI label e�iciency
- Preamp cycle number

(applicable when using UMI)

Sequencing parameter:
- Reads number
- Sequencer

0 20 40 60

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

Cycle

0 25 50 75 100

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

Cycle

Ba
se

 p
er

ce
nt

ag
e

Ba
se

 p
er

ce
nt

ag
e

UMI Fixed regionFixed region

a

b c

Simulation

Experiment

Base
A

C

G

T

Simulation

Experiment

Barcode reads 69%

Barcode reads 68%

Barcode reads 80%

Barcode reads 82%

Pearson correlation 0.95 Pearson correlation 0.86

Fig. 2 | Cellular barcode sequencing simulation. a, Schematic of barcoding
experiment simulation with CellBarcodeSim and the parameters that can be
tuned at each step, starting with simulation of a barcode library, cell labeling
and clonal expansion, PCR amplification, and finally sequencing. The round
shape represents undifferentiated cells, the triangle and rectangles represent
differentiated cell types. b,c, Stacked bar plots, created using CellBarcode,
showing the percentage of bases for the VDJ barcode dataset with UMI (b)
and a random barcode dataset (c) across each sequencing cycle. Each column

represents a sequencing cycle, with color and height indicating the base and
proportion, respectively. Both simulated and real experimental data are
presented for each dataset. The percentage of total reads matching the regular
expression is indicated, as well as the Pearson correlation between the most
abundant base per sequencing cycle. Fixed and/or UMI regions are annotated
below the heatmap. The VDJ barcode dataset is the MEF line experiment data with
12,500 cells from ref. 20; the random barcode dataset is from ref. 30. Simulation
details for each dataset are provided in Methods.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | February 2024 | 128–143 132

Resource https://doi.org/10.1038/s43588-024-00595-7

number of cells. Some biological systems have been shown to differ
in their proliferation capacities31, but for most of them this informa-
tion is unknown. CellBarcodeSim is therefore a useful tool to simulate
different scenarios, guiding researchers on the impact of thresholds
on barcode identification and aiding in the interpretation of results.

An alternative strategy for barcode filtering is to match the
extracted barcodes to a reference library when available. Using this
approach for fixed-length barcodes, the distributions of true barcode
read counts overlap less with those of spurious barcodes (Supplemen-
tary Fig. 9), and true barcode PR AUC was substantially improved,

Random VDJ

Clone size s.d. 1 2 3 1 2 3

PR
 A

U
C

re
ad

s
th

re
sh

ol
d

Barcode design

0

0.5

1.0

1.5

Random VDJ

1 2 3 1 2 3Clone size s.d.

Barcode design

0

0.5

1.0

0

0.5

1.0

Random VDJ

1 2 3 1 2 3Clone size s.d.

Barcode design

Re
ca

ll
Pr

ec
is

io
n

2 3Clone size s.d.

PR
 A

U
C

w
ith

 U
M

I c
le

an
in

g

Random VDJ

1 2 3 1 2 3Clone size s.d.

PR
 A

U
C

w
ith

 re
fe

re
nc

e
cl

ea
ni

ng

Barcode design

0

0.25

0.50

0.75

1.00

1.25

0

0.3

0.6

0.9

Random VDJ

1 2 3 1 2Clone size s.d.

PR
 A

U
C

w
ith

 c
lu

st
er

in
g

cl
ea

ni
ng

Barcode design

3

Barcode in the
reference

True barcode

Mutant barcode

Reference filtering

Clustering filtering

Filtered barcode

0

0.25

0.50

0.75

1.00

a b c

d e f

g h

9.2 × 10–12

9.1 × 10–12
1.7 × 10–11

1.7 × 10–110.082
0.33

0.00066
0.33

3 × 10–11

3 × 10–11
3 × 10–11

3 × 10–11

3 × 10–11
3 × 10–11 P < 2.22 × 10–16

6.3 × 10–15

1.9 × 10–11
1.9 × 10–11 2.1 × 10–11

2.1 × 10–11

0.5

1.0

0.5

1.0

1 × 10–9

0.17 8.8 × 10–12
8.9 × 10–12 0.62

0.31
0.79

0.09

1.2 × 10–11

Big

Clustering
cleaning

Yes

Small

Small

Reference
cleaning

UMIYes

UMI cleaning

No

Big

No

Conservative
depth threshold

Auto
threshold

Clone size
variation

Editing
distance

Reference
list

Start

Re
ca

ll
Pr

ec
is

io
n

Fig. 3 | Benchmarking barcode filtering strategies with simulated data.
a,b, Percentage precision and recall of true barcodes for different threshold
filtering using read proportion thresholds of 0.0001 (a) and 0.001 (b). Several
scenarios with two types of barcode (random and VDJ) and three different
clone size variations across barcodes are compared. c, PR AUC using threshold
filtering for two types of barcode (random and VDJ) and three different clone
size variations across barcodes. d, The same as in c after reference filtering. e,
The same as in c after cluster filtering. f, Diagrams depicting reference library
filtering and cluster filtering advantages and drawbacks. Reference library
filtering removes spurious barcodes that are not in the library but keeps spurious
barcodes that match a barcode in the reference library. Cluster filtering removes
low abundance barcodes that are similar to abundant barcodes. This can result
in the removal of true barcodes that have sequence similarity to another true
barcode, for example, if the barcode library has small edit distance. g, PR AUC

after UMI filtering for variable-length VDJ barcodes for two higher clone size
variations (log clone size s.d. of 2 and 3). An initial filtering based on UMI count
greater than ten reads was performed before computing PR AUC. h, Barcode
filtering decision tree. Except where otherwise specified, each simulated
scenario has the reference parameters from Supplementary Table 2: 30
simulations, 300 induced barcodes with log clone size mean 1.2, PCR cycle 30,
PCR efficiency 0.705, PCR error 1 × 10−6, reads per cell 50 and sequencing profile
HiSeq 2000. Specifically for h, the number of PCR cycles before and after UMI
tagging are 10 and 20, respectively, with 8-bp UMI and tagging efficiency 0.02.
The median and IQR (the difference between the 75th and 25th percentiles of
the data) are shown in the boxplot over 30 simulations, and the outliers (beyond
the whiskers of Q3 + 1.5 × IQR or Q2 − 1.5 × IQR) plotted as dots. The two-sided
Wilcoxon test is applied to compare the precision, recall or AUC of different
simulation conditions.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | February 2024 | 128–143 133

Resource https://doi.org/10.1038/s43588-024-00595-7

with most scenarios having a PR AUC of 1 (Supplementary Fig. 10), as
suggested before5. We applied read count thresholding here after refer-
ence filtering to compute the PR AUC, enabling scenario comparison,
although its use is optional. We note that read count threshold filtering
is used to call true barcodes in the generation of the reference library
itself, and even though these plasmid libraries have more homogenous
barcode abundances than most biological experiments, the reference
library suffers from the threshold-related problems described above
and by others21. For variable-length barcodes such as VDJ barcodes,
a reference library can be generated by simulating all possible com-
binations. Using this list had limited improvement in PR AUC (Fig. 3d
and Supplementary Fig. 10) due to the small edit distance between
some barcodes (many with edit distance <3; Supplementary Fig. 11a).
Spurious sequences created by PCR or sequencing error can have the
same sequence as a barcode in the reference library (Fig. 3f) and are
not filtered out, impacting the precision (Supplementary Fig. 12).
Overall, these results show that a reference library is a useful approach
for fixed-length barcodes designed to have edit distances larger than
3, but is not useful for variable-length barcodes such as VDJ barcodes
where the edit distance cannot be controlled.

Several studies have advocated cluster filtering to identify true
barcodes21,26,27. With clustering, true barcodes are identified by com-
paring barcode sequences, usually with the assumptions that barcodes
separated by very short edit distances are the result of PCR/sequenc-
ing errors and that the most abundant barcode in the cluster is the
true barcode21,26,27. We used CellBarcodeSim to evaluate how cluster
filtering performs compared with other filtering strategies. Cluster
filtering improved the PR AUC of random barcodes compared with
threshold filtering alone (Fig. 3e) and performed as well as reference
library filtering (Fig. 3d,e), implying that it is the method of choice
for the generation of a reference library, as previously suggested18,21.

For variable-length barcodes such as VDJ barcodes, clustering per-
formed worse or similar to threshold or reference library filtering
(Fig. 3e and Supplementary Fig. 13) due to low recall (Supplementary
Fig. 14), although the true barcode read counts overlap less with those
of the spurious ones (Supplementary Fig. 14). This is linked to the short
edit distance of some in situ barcodes, which are not PCR/sequenc-
ing errors as assumed by cluster filtering (Fig. 3f and Supplementary
Fig. 11a). We previously developed a sequencing library preparation
protocol for VDJ barcodes with UMIs20. We hypothesized that the
addition of UMIs will improve the identification of true barcodes using
cluster filtering. To test this hypothesis, we simulated VDJ barcode
sequencing with UMIs for high clone size variation samples, which we
identified as the most difficult scenario in which to apply this filter-
ing (Supplementary Table 3). We observed that incorporating UMI
information significantly improved the PR AUC for samples with large
clone size variation (Fig. 3g), supporting the hypothesis that the addi-
tion of UMIs helps true barcode identification by cluster filtering for
barcodes with low edit distance, such as VDJ barcodes. Overall, these
results show that cluster filtering is an efficient method to identify
barcodes in systems with large edit distance such as viral barcodes18,32.
It is the method of choice if one had no reference library or to make a
reference library for such barcodes18,21.

We summarized the findings of our comprehensive comparison
in a decision tree to guide researchers on which strategy to apply to
their data (Fig. 3h). In summary, our advice is: use reference library
or cluster filtering if the barcoding system has a large edit distance
(approximately ≥3); otherwise, if the barcode clone size variation is
small, a read threshold would work. If the barcode clone size variation
is large and the barcode system has a small edit distance, either UMIs
need to be used or a stringent read count threshold implemented
sacrificing true barcodes with low read count.

0.1

1

10

100

1,000

10.1 10010 1,000

Replicate 1 cell count

Re
pl

ic
at

e
2

ce
ll

co
un

t

0.1

1

10

100

1,000

Re
pl

ic
at

e
2

ce
ll

co
un

t

10.1 10010 1,000

Replicate 1 cell count

0 20 40 60

Cycle

32.5

35.0

37.5

40.0

Median base
 quality

Library
replicate 1

Library
replicate 2

a

Base

Ba
se

 p
er

ce
nt

ag
e

b

d e

10

103

105

10 103 105

Read count (ref. 30)

 R
ea

d
co

un
t (

C
el

lB
ar

co
de

)

c

0

0.25

0.50

0.75

1.00

0 20 40 60

Cycle

In reference

No

Yes
R = 0.74, P = 2 × 10–5

A

C

G

T

Fig. 4 | Lentiviral barcode sequencing analysis. a, Base quality heatmap
made with CellBarcode. Each row is a sample, each column corresponds to a
sequencing cycle and the color represents the median base Phred quality score.
b, Base percentage plotted against the sequencing cycle number made with
CellBarcode. The sequence shows a 20-bp barcode with fixed flanking regions
either side. The color represents a base pair. c, Barcode normalized read count + 1
(by total 105 reads) as filtered in the original paper30 versus using CellBarcode.
Each dot is a barcode. The Spearman correlation and P value (two-sided) are

shown in the top left corner. d, Barcode cell counts between the two technical
replicates for the data without filtering. The read counts were normalized to cell
counts. Each dot is a barcode with black indicating presence in the reference
library provided in ref. 30. e, The same as in d but after cluster filtering. The
filtering process involves removing barcodes that have a Hamming distance of
less than 2 from a more abundant barcode. In c–e, the red line represents y = x and
the black line indicates a threshold of one cell.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | February 2024 | 128–143 134

Resource https://doi.org/10.1038/s43588-024-00595-7

Reference and cluster filtering of lentiviral barcodes
To compare cluster and reference library filtering on biological data,
we used CellBarcode to analyze paired technical replicates of 13,564
myeloid cells labeled with a random fixed-length barcode library30.
Consistent with simulated random barcodes (Supplementary
Fig. 11b), it showed a high edit distance (Supplementary Fig. 11c). First,
we used CellBarcode to check the quality of the FASTQ file, plotting
the base percentage and quality in each sequencing cycle (Fig. 4a,b).

We successfully extracted and quantified the barcodes using CellBar-
code as shown by the correlation with those in the original paper (Fig.
4c). Our results are also consistent with genBaRcode (Supplementary
Fig. 15a) and Bartender analysis (Supplementary Fig. 15b), although
we observe considerably more noise in the Bartender data, because it
has fewer filtering steps implemented.

According to our decision tree, the methods to use for high-edit-
distance barcodes are reference library or cluster filtering. We therefore

UMI library

Non-UMI library

0 30 60 90

0
0.25
0.50
0.75
1.00

0
0.25
0.50
0.75
1.00

Ba
se

 p
er

ce
nt

ag
e

Base
A

C

G

T

UMI region Constant region

Re
pl

ic
at

e
2

re
ad

 c
ou

nt
 +

 1

10,139

48

50

32

1 10 10
0

1,0
00

10
,000

Replicate 1 read count + 1

103

105

10Pre-amp PCR
Replicate 1

Replicate 2

Non-UMI library

Non-UMI library

UMI library

UMI library

Non-UMI library UMI library

UMI libraryNon-UMI library

764 6

a

b

c

d

e f

Cycle

Constant region

P5
P7 UMI

P5
P7

VDJ VDJ

1

3

10

30

Re
pl

ic
at

e
2

U
M

I c
ou

nt
 +

 1

0

49

46

33

1 3 10 30

Replicate 1 UMI count + 1

y = 9.8 × 10–5 + 0.99x

0

0.03

0.06

0.09

0.12

0 0.025 0.050 0.075 0.100

Read count

U
M

I c
ou

nt

Fig. 5 | In vitro VDJ barcode analysis. a, Sequencing library design and
sequencing scheme. A sample was divided into two technical replicates. After a
first PCR amplification, each technical replicate was further divided into two for
sequencing library preparation with and without UMIs. b, Stacked bar plot made
with CellBarcode showing the base percentage for each sequencing cycle. Each
column corresponds to a sequencing cycle; the color and height indicate the base
and proportion, respectively. Both rows depict the same biological sample, with
or without UMI for sequencing. The position of the regular expression (constant
region) and the UMI are annotated. c, Barcode read counts between technical
replicates for the non-UMI library without filtering. Automatic thresholds
(marked by red lines) were applied to remove the errors in each technical
replicate separately. The numbers show the barcode count in each of the four
categories as divided by the threshold lines. Each dot represents a barcode. Plot
made with CellBarcode; the dots are semi-transparent to show overlap.

d, Barcode UMI count between technical replicates with UMI library. The data
were first filtered, retaining UMI with at least ten reads. The red lines indicate a
UMI count threshold of 1. The number of barcodes in each of the four categories
as divided by the threshold lines is annotated. Each dot represents a barcode.
Plot made with CellBarcode; the dots are semi-transparent to show overlap.
e, Comparing the number of barcodes identified in the non-UMI library and the
UMI library in one technical replicate. For the non-UMI library, the automatic
threshold was applied as shown in c. For the UMI library, the same filtering steps
were applied as in d with the addition of a UMI count threshold of 1. f, Barcode
read count after filtering between the non-UMI library and the UMI library for
one of the technical replicates. The read counts were renormalized to 1. A linear
regression was fitted, and the fitted line (and shaded area of 95% confidence
interval) and its parameters are written on the plot. Each dot represents a
barcode.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | February 2024 | 128–143 135

Resource https://doi.org/10.1038/s43588-024-00595-7

extracted barcodes using either no filtering, reference library or clus-
ter filtering and compared barcode cell count detected in technical
repeats after normalizing read counts by total cell number (Fig. 4d).
In biological data, as the identity of the true barcodes is unknown, we
used the reference library provided in ref. 30. Without filtering, many
barcodes not present in the reference library overlapped in read count
distribution with those in the reference library, agreeing with our
simulation results that read threshold filtering decreases the recall
to ensure precision (Fig. 4d). Cluster filtering removed most of the
barcodes absent from the reference library, leaving only one spurious
sequence present in one cell, while keeping all the true barcodes with
more than one cell (Fig. 4e). This confirms our simulation finding that
cluster filtering can have the same efficacy as reference library filtering
using barcodes with high edit distances.

Read threshold filtering of in situ barcodes
Variable-length barcodes such as VDJ barcodes are the most challeng-
ing to identify in noisy data due to the short-edit-distance barcodes
generated. To explore whether our CellBarcode simulation results
would hold in experimental variable-length barcode data, we made
use of our unpublished in vivo VDJ barcode data from mouse mam-
mary glands, for which we have both UMI and non-UMI data from the
same sample (Fig. 5a,b). Using the known read structures of the two
sequencing libraries (Fig. 5b), we extracted the barcodes and applied

automatic read threshold filtering and UMI filtering to the non-UMI
and UMI samples, respectively (Fig. 5c,d), illustrating the versatility of
CellBarcode to extract barcodes from a variety of structures (see ‘VDJ
barcode mammary gland dataset’ in Methods). For different UMI read
count thresholds, we observed that the number of barcodes reached
a plateau (Supplementary Fig. 16a). At this plateau, in one duplicate
sample, we identified 80 barcodes in the non-UMI library, and 82 bar-
codes in the UMI library with 76 barcodes overlapping (87%; Fig. 5e).

In these data, the biggest clones had about 100 times higher
read/UMI count compared with the smallest clones, corresponding
to a log clone size s.d. of 1, the lowest considered in our simulations
(Fig. 5c,d). The clone sizes in the UMI and non-UMI libraries after thresh-
old filtering (normalized reads or UMI count) correlated very well
(Fig. 5f), with most of the inconsistent barcodes being small clones.
This result supports our simulation conclusion that automatic read
thresholding performs well in experimental settings with small clone
size variation. We observed more spurious barcodes in both UMI and
non-UMI results from Bartender (Supplementary Fig. 16b,c), indicat-
ing the importance of read or UMI read count thresholds that are not
implemented in Bartender.

Using CellBarcode to analyze scRNA-seq data
Finally, we designed CellBarcode to extract and identify lineage bar-
codes from single-cell omics data. To this end, CellBarcode is equipped

N
um

ber of cells
w

ith one barcode

C
ell num

ber

FASTQ file
or

BAM/SAM file

Filtering per cellExtract barcode

CellBarcode
object

Sequencing and PCR error cleaned
barcode matrix

a

b

c d e

UMI Barcode Read count
UMI1 B1 19
UMI2 B1 7
UMI2 B2 10
UMI3 B2 15
UMI4 B2 3
UMI5 B2 12

Identify dominant barcode per UMI

UMI Barcode Read count
UMI1 B1 19

UMI2 B2 10
UMI3 B2 15
UMI4 B2 3
UMI5 B2 12

Filtering UMI based on read count

Barcode UMI count
B1 1
B2 3

Filtering barcodes based on UMI count

1

2

3

1 2 3 4 5

Ba
rc

od
es

 p
er

 c
el

l

400

200

01

3

10

30

Before After

Ba
rc

od
e

pe
r c

el
l

Dominant barcode/UMI filter

1

2

3

4

5

1 2 3 4 5 6 7

Ba
rc

od
es

 p
er

 c
el

l 1,000

800

600

400

UMI read count threshold UMI count threshold

Fig. 6 | scRNA-seq cellular DNA barcode analysis. a, Diagram of how lineage-
barcoded single-cell sequencing data are processed with CellBarcode. Input files
can be FASTQ or BAM/SAM files. The lineage barcodes are extracted, filtered and
exported for subsequent analysis. b, Filtering steps for single-cell sequencing
lineage barcode data implemented in CellBarcode. First, for each UMI the
dominant barcode is identified and other barcodes are removed; then UMIs with
a read count below a threshold are removed. For each barcode, the number of
UMIs is counted and the barcodes are filtered based on a UMI count threshold.
c, The number of lineage barcodes found per cell before and after filtering
barcodes based on the dominant barcode per UMI using the VDJ scRNA-seq
data from ref. 35. The y axis is the barcode number in a cell, each dot represents
a cell and the distribution is shown by the violin plot. d, The number of lineage

barcodes per cell (corresponding to the left y axis, black) and the cell number
(corresponding to the right y axis, red) for different thresholds of read per
UMI. The data were first processed with the dominant barcode per UMI filter.
Each black dot represents a cell and the violin plot shows the distribution
of the barcode number per cell. e, The number of lineage barcodes per cell
(corresponding to the left y axis, black) and the number of cells with a unique
barcode (corresponding to the right y axis, red) for different thresholds of UMI
count per barcode. The data were first processed with the dominant barcode
per UMI filter and the UMI read threshold ≥2. Each dot represents a cell and the
distribution is shown by the violin plot. The red line plot represents the number
of retained, unique barcoded cells after applying different UMI count filters
described in the x axis.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | February 2024 | 128–143 136

Resource https://doi.org/10.1038/s43588-024-00595-7

with functions to process barcodes from the most popular technologies
such as 10x Genomics or Smart-seq (Fig. 6a). In this section, we use
the term ‘cell barcode’ to refer to the unique barcode labeling each
cell from the single-cell sequencing protocol, and ‘lineage barcode’
to refer to the barcode added during a lineage tracing experiment.
Input to CellBarcode is flexible, allowing FASTQ and BAM/SAM files,
either one file for all cells (as for 10x Genomics scRNA-seq) or one file
per cell (as for Smart-seq2), and BAM/SAM files pre-tagged with cell
barcodes and UMIs, such as those output by the 10x Genomics software
CellRanger. We illustrate the use of CellBarcode on scRNA-seq data but
it applies to many types of lineage-barcoded single-cell omics data,
such as single cell ATAC-sequencing33,34. The potential (but optional)
filters include (1) extract dominant barcode per UMI, (2) filter UMIs
using a read count threshold and (3) filter lineage barcodes using a UMI
count threshold (Fig. 6b). The user must choose various thresholds,
and here we distinguish two experimental scenarios from published
data: (1) a unique lineage barcode per cell, such as low-concentration
lentivirus infection17 or heterozygous inducible VDJ barcode35, and (2)
multi-barcodes per cell, for example, high-concentration lentiviral
infection such as the CellTag barcode system36.

To compare the performance of CellBarcode to that of CellTagR,
a dedicated package for analysis of barcoded scRNA-seq data, we
replicated the CellTagR demo analysis pipeline (https://github.com/
morris-lab/CellTagR) with CellBarcode on the multi-barcode per cell
data from ref. 36. Applying the same steps and parameters (see ‘CellTag
barcode scRNA-seq dataset’ in Methods), CellBarcode obtained similar
results to CellTagR (Supplementary Fig. 17a,b) with 20% less runtime
(Supplementary Fig. 17c,d). CellTagR supports only the extraction of
CellTag barcodes, whereas, to illustrate the versatility of CellBarcode,
we extracted variable-length VDJ barcodes from scRNA-seq data from
ref. 35 and obtained similar barcodes and quantification to the original
paper (Supplementary Fig. 18).

To illustrate how CellBarcode can help users select the differ-
ent filtering thresholds, we counted the number of lineage barcodes
retrieved per cell for various types of filtering in VDJ barcoding data
from ref. 35. Due to the introduction of one VDJ cassette in one allele
of the mouse genome, each cell in this dataset has only one lineage
barcode. We observed a trade-off between the accuracy of lineage
barcode retrieval (that is, the proportion of cells with one unique line-
age barcode) and the total number of lineage-barcoded cells retained
for analysis. We first filtered to take the dominant lineage barcode
per UMI, as the combination of high-diversity cell and UMI barcodes
for each read can be assumed unique, which dramatically reduced the
number of barcodes per cell compared with the raw data (Fig. 6c). Using
different minimum read-count-per-UMI thresholds, we found that
the number of barcodes per cell was easily restricted to a maximum
of 2 with a threshold of 2 (Fig. 6d). Increasing the read-count-per-UMI
threshold further resulted in the loss of many cells for analysis (Fig. 6d).
Complementing the read-count-per-UMI filtering with a UMI-count-
per-barcode filter of 2, we obtained 1 identifiable lineage barcode per
cell (Fig. 6e). These thresholds will depend on each specific dataset,
for example, with low sequencing depth, even without read-count-per-
UMI or UMI-count-per-cell filtering, most cells have one unique lineage
barcode as observed in the ref. 17 dataset (Supplementary Fig. 19).

To conclude, in addition to an improvement in runtime, CellBar-
code can extract and identify lineage barcodes in scRNA-seq data
from many different barcode designs due to its flexible use of regu-
lar expressions. Moreover, CellBarcode implements several filtering
strategies to identify true from spurious lineage barcodes in single-cell
data, and produces figures helping the user choose a strategy and its
parameterization.

Discussion
In this paper, we presented CellBarcode, a versatile R package for anal-
ysis of barcoding data, and CellBarcodeSim, a pipeline to simulate

barcoding experiments. While we designed the simulation tool to test
and parameterize filtering approaches for barcode identification, it can
be employed in a similar vein for experimental design; for example,
users can investigate the impact of different barcode lengths, UMI or
non-UMI libraries and sequencing depths in their biological scenario.
We highlight, however, that this is complicated by the combination of
unknown biological factors and final filtering approach.

A previous study21 suggested not to use cluster filtering as it can
result in the removal of true barcodes. However, both our simulations
and tests on real data show that cluster filtering performs well when the
barcode edit distance is large enough (≥3 in our simulations) compared
with realistic low levels of PCR/sequencing error. We would therefore
refine the statement from ref. 21 to add that cluster filtering can be
successfully used when the edit distance is sufficiently high, even in
the case of high clone size variation.

We modeled clone size using a log-normal distribution based on
our analysis of T-cell receptor clones (Supplementary Fig. 20), and
while users of CellBarcodeSim can also opt for a power-law distribu-
tion, we hope to add more detailed models in future versions of the
tool (such as one based on ref. 37). Indeed, in most systems, the clone
size distribution is unknown; in this case CellBarcodeSim can be used
to investigate the impact of filtering strategies on barcode identifica-
tion under different assumptions and can aid users in their biological
interpretation. Further simulation work is also required to test the
impact of filtering on barcode quantification.

CellBarcodeSim makes many other assumptions about the pro-
cesses involved to simulate barcoding data. Barcode library production
is modeled with simple distributions rather than separately modeling
the stages of transfection, growth and sampling. The fixed-length Ham-
ming38 barcodes simulated using the DNABarcodes package are filtered
to remove many sources of error problematic for PCR, such as barcodes
containing triplets or with GC bias. The PCR simulation assumes that the
amount of starting material is large enough to ignore contamination and
does not model factors such as non-specific hybridizations. Indeed, we
do not expect our simulation to quantitatively model all possible effects
of the complex PCR process. Researchers interested in specific sources
of error, such as those introduced during barcode library preparation,
or using a non-standard protocol where the PCR primer does not target
the constant flanking region, would need to adapt the simulation.

CellBarcodeSim calls external tools such as the ART NGS read
simulator39, the DNABarcodes R package to simulate fixed-length bar-
codes40 and IGoR (Inference and Generation of Repertoires) to simulate
VDJ barcodes41, which could be a concern in terms of longevity. ART is
a mature and heavily used tool with no updates required and contain-
ing pre-built error profiles for all the major sequencers. The packages
simulating barcodes are less mature and barcode-type specific, but
CellBarcodeSim can be easily updated allowing other tools to feed in.

Methods
Ethics statement
All studies and procedures involving animals were in accordance
with the recommendations of the European Community (2010/63/
UE) for the Protection of Vertebrate Animals used for Experimen-
tal and other Scientific Purposes. Approval was provided by the eth-
ics committee of the French Ministry of Research (reference APAFIS
34364-202112151422480). We comply with internationally established
principles of replacement, reduction and refinement in accordance
with the Guide for the Care and Use of Laboratory Animals (NRC 2011).
Husbandry, supply of animals, as well as maintenance and care in the
Animal Facility of Institut Curie (facility license C75–05–18) before
and during experiments fully satisfied the animal’s needs and welfare.
Mouse breeding was in a specific pathogen-free animal facility and
animals were co-housed with housing conditions using a 12 h light/12 h
dark cycle, temperature between 20 °C and 24 °C, and average humidity
between 40% and 70%.

http://www.nature.com/natcomputsci
https://github.com/morris-lab/CellTagR
https://github.com/morris-lab/CellTagR

Nature Computational Science | Volume 4 | February 2024 | 128–143 137

Resource https://doi.org/10.1038/s43588-024-00595-7

DNA cellular barcode sequencing simulations
We simulated the DNA cellular barcode sequencing data using Cell-
BarcodeSim (version 1.0) with 5 steps: (1) lineage barcode simulation,
(2) barcode labeling, (3) clonal expansion, (4) PCR amplification, and
(5) sequencing.

Lineage barcode simulation. Two types of barcode library can be
simulated with CellBarcodeSim (‘random barcodes’ with uniform
probability and fixed length, and ‘Hamming barcodes’ with uniform
probability, fixed-length and a minimum Hamming distance between
sequences) while other types of barcode can be uploaded as a list. In
addition, three libraries were simulated and uploaded in the package:
14-bp random barcodes, 14-bp Hamming barcodes with minimum
distance 3 simulated using DNABarcodes40, and variable-length VDJ
barcodes20 simulated using an external package IGoR.

For the simulation study, a list of possible barcodes was simulated
for three types of barcode and barcodes were randomly sampled from
this list to label cells. The fixed-length uniform-probability ‘random
barcodes’ were generated with stri_rand_strings from stringi package.
To generate ‘Hamming barcodes’ with a minimum Hamming distance
of 3, we used the create.dnabarcodes function from the DNABarcodes
package40. The barcode length can be defined by the user. In this simula-
tion study, we tested 14 or 10 base pairs. Lastly, for the variable-length
‘VDJ barcodes’20, a list of 1 × 107 VDJ barcodes to sample from was gen-
erated using IGoR41. To ensure the simulated VDJ barcodes resemble
those produced in vivo, the parameters of the Bayesian network model
used to generate the barcode space were inferred using IGoR from the
VDJ barcode sequencing data in mammary gland tissue (Supplemen-
tary Data 1 and 2). Among the simulated sequences, there are 1.4 × 105
unique barcode sequences with different frequencies. To simulate the
noise during library preparation for random or Hamming barcodes,
CellBarcodeSim can simulate normal, log-normal or exponential dis-
tributions, or the user can simulate according to their own uploaded
empirical distribution.

Barcode labeling simulation. We randomly sampled the barcode lists
simulated in the previous step for the corresponding barcode type.
We simulated different samples with different total barcode numbers.
Each barcode labels one initial cell in the simulation, and those barcode
sequences were used as the true barcodes in later precision and recall
analysis. We tested scenarios with 300–30,000 initiating cells, but as we
found the sequence count distributions to be very similar, as well as the
impact of various factors on the precision and recall, we chose values
of 150, 300, 600 and 1,200 for the repeat simulations, corresponding
to the number of barcodes in most published work.

Clonal expansion simulation. We used a log-normal distribution to
simulate the final clone sizes of the initially labeled cells. The param-
eters of the reference distribution are log-mean 1.2 and log s.d. 2,
which were chosen based on the experimentally derived mouse naive
CD8 T-cell receptor beta-chain sequence clone size distribution
described in ref. 42 (Supplementary Fig. 20). Observing a log clone
size s.d. of ~1 in our VDJ-barcoded mammary gland data, ~2.5 in ref.
30 and ~2.5–3 in ref. 43, we define alternative scenarios of log clone
size s.d. 1 and 3. We used the rlnorm function in R 4.2.1 (ref. 44) to
generate random numbers and the clone size of each barcode clone
was defined by rounding up the nearest integer of the corresponding
random number. The CellBarcodeSim tool also offers the power-law
clone size distribution.

We note that when the clone size follows a log-normal distribu-
tion, the ratio of the 99th quantile, Q(0.99), divided by the 1st quantile,
Q(0.01), depends on only the log s.d. and not on the log-mean (Sup-
plementary Fig. 21), which is explained by the following equations:

Q (q) = eμ+σ×Φ−1(q) (1)

where Φ−1 (q) is the qth quantile of the standard normal distribution
with mean, μ, and standard deviation, σ.

The ratio of the 99th quantile to the 1st quantile:

Q (0.99) /Q (0.01) = eμ+σ×Φ−1(0.99)/eμ+σ×Φ−1(0.01) = e{σ×(Φ−1(0.99)−Φ−1(0.01)))

(2)

Therefore, we can use the range of empirical clone sizes as a quick
estimation of log s.d.

PCR expansion simulation. The PCR simulation was written in C++
and assumes exponential amplification with an efficiency of 0.703
(ref. 45) and an error rate of 1 × 10−5 for Taq enzyme, 1 × 10−6 for Phusion
enzyme and 1 × 10−7 for Q5 enzyme. As PCR mutations are rare events, it
is unlikely to have more than one mutation per sequence molecule per
PCR cycle, and substitution errors are the dominant PCR error type46.
We therefore allow only a maximum of one base substitution per PCR
cycle. In the simulation, we replicated the barcode DNA sequence in
silico with the probability of the amplification efficiency, rounding
to the nearest natural number, and randomly mutated the base of
the newly synthesized sequence with the PCR error rate. To reduce
the memory usage, as most of the barcodes have the same sequence
due to the low PCR error, we stored barcode sequences in a frequency
table of barcode sequences and frequencies. For the new PCR prod-
ucts, the mutant molecular abundance was estimated by multiplying
each sequence frequency by the error ratio, considering the sequence
length. The value was rounded to the nearest integer. Then uniform
random numbers were generated to decide the mutation position
and substitution base pair. The sequence frequency table was updated
by integrating the mutant sequence. If using UMIs, investigators can
select the number of pre-UMI PCR cycles (in which the UMI sequence
will not accumulate PCR errors) and the number of post-UMI PCR
cycles (when the UMI sequence will accumulate PCR errors). As the
PCR primer region is unlikely to have a PCR mutation and this generally
corresponds to the barcode flanking regions, by default, the flanking
sequence is added after the PCR simulation, matching the sequence
to the experimental case when applicable. However, investigators
have the option to include the flanking region in the PCR simulation by
appending the fixed flanking regions to the barcodes when simulating
the barcode library (see Supplementary Vignette 1 for more detail).

Sequencing simulation. Sequencing simulation was conducted using
the ART (version 2016-06-05) command line tool (an NGS reads simula-
tor), which supports base substitution, insertions and deletions39. The
ART-integrated MiSeq V1 and HiSeq 2000 read error profiles (learnt
empirically from relevant training data39) were used to generate single-
end sequencing with 100 base pairs, with other parameters as default.
We describe the sequencing profiles used in Supplementary Fig. 22a,b,
together with PCR error in Supplementary Fig. 22c. When comparing the
barcode clone size distributions between different simulated datasets, we
sample 105 sequencing reads to make the distributions easier to compare.

Simulating VDJ-barcoded data with high clone size variation
and UMIs
We simulated VDJ barcode sequencing with UMIs for high clone size
variation samples (details of the parameters in Supplementary Table
3). With an expected sequencing depth of 50 reads per UMI, we filtered
out UMIs that have read <10 (based on sensitivity analysis to identify
when the number of barcodes detected plateaus) and then varied the
UMI count threshold to compute the PR AUC.

DNA cellular barcode pre-processing strategy evaluation
Evaluation of filtering strategies precision, recall and AUC. In the
simulation study, we evaluated filtering strategies using precision and
recall. The precision and recall are defined as:

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | February 2024 | 128–143 138

Resource https://doi.org/10.1038/s43588-024-00595-7

Precision = ntrue/noutput (3)

Recall = ntrue/ninput (4)

where ninput is the number of barcodes used for labeling, noutput is the
total number of barcodes in the pre-processing output, and ntrue is the
number of barcodes shared between the pre-processing output and
the barcodes used for labeling.

The precision and recall depend on the threshold used for barcode
filtering. PR curves were drawn using a range of read count thresholds
(or UMI count in the UMI cleaning case), and the AUC was calculated to
evaluate the overall goodness of a filtering strategy. The AUC is a way
to evaluate the goodness of a method regardless of threshold and was
computed using the ROCR R package47.

All boxplots depict 25th, 50th and 75th percentiles in the box, 25th
or 75th percentile minus or plus 1.5 × interquartile range (IQR), respec-
tively, for the whiskers, and points show outliers beyond the whiskers.

Barcode filtering
We enabled four barcode filtering strategies in the CellBarcode package
with bc_cure_umi, bc_cure_clustering, bc_cure_depth and bc_auto_
cutoff functions. They are (1) read count thresholding filtering with
bc_cure_depth function, (2) reference library filtering, (3) cluster filter-
ing and (4) UMI filtering.

Read count threshold filtering excludes the barcodes with read
counts under the threshold. The automatic threshold function deter-
mines the threshold by applying one-dimensional weighted k-means
clustering to the barcode read count distribution. It involves the follow-
ing steps. (1) Remove barcodes with count below the median (as there
are generally many more spurious than true barcodes). (2) Transform
counts by log2(x + 1). (3) Apply one-dimensional k-means clustering48
to the transformed read counts with cluster number fixed at 2 and with
weights of the transformed count. (4) Use the boundary between the
two clusters as the read count threshold.

In reference library filtering, only barcodes appearing in the bar-
code reference list are retained in the final output, and all others are
filtered out. In the simulations, the barcode reference library was the
barcode list generated in ‘Lineage barcode simulation’.

For cluster filtering, we assumed that with a low-error-rate, spuri-
ous error barcodes should have a much lower read number compared
with their true ‘mother’ sequences. We clustered barcodes with similar
sequences to identify potential ‘mother’ and ‘daughter’ sequence pairs.
Then we removed the ‘daughter’ sequences, thus making it easier to
identify true barcodes with small clone size. We used the following
clustering process for each sample. (1) Identify the most abundant
barcode based on read counts. (2) Compute the distance (Hamming
distance or Levenshtein distance) between the most abundant barcode
and the other barcodes, starting from the least abundant barcode. (3)
If the distance between two barcodes is below a set threshold, and the
reads count fold change between them is above a set threshold, the less
abundant barcode is removed. (4) Iterate for each of the other barcodes
in order of abundance. The process is described by the pseudo code in
Supplementary Algorithm 1.

UMI filtering takes advantage of the UMI sequence. The default
in CellBarcode is to assume that UMIs are not unique in line with the
findings of ref. 49 (although the reader has the option to assume the
converse if they wish). We first counted the number of reads for each
UMI–barcode combination and then applied a read count threshold.
The remaining barcode abundances were quantified by summing
the UMI count. We assume that the probability of an error in both the
UMI and its associated barcode sequence is very low, and so we do
not cluster similar UMIs. This may result in a slight overestimation of
clone size if a UMI sequence results from an error, but should not affect
barcode identification.

Benchmarking CellBarcode and genBaRcode
To compare the output and runtime of CellBarcode (version 1.7.1) and
genBaRcode (with version 1.2.6), we simulated a random barcode
dataset using the method described above with parameters (1) 300
cells induced, (2) log-normal clone size distribution with log clone
size s.d. of 2 and log clone size mean 1.2, (3) 30 PCR cycles, 1 × 10−6
PCR mutation rate, PCR efficiency 0.705, and (4) HiSeq 2000 100-bp
sequencing error profile.

For barcode extraction, the regular expression AAAAAAAAAA
GGGGG([ATCG]{14})ATCGATCGTTTTTTT was used in CellBarcode to
extract the 14-bp random barcode, and the pattern AAAAAAAAAA-
GGGGGNNNNNNNNNNNNNNATCGATCGTTTTTTT was used in gen-
BaRcode. Then at the barcode filtering step, the clustering strategy was
used, which removed the minority barcodes with a Hamming distance
of 1 to the majority ones. We note that CellBarcode discards error reads,
whereas genBaRcode adds them to the majority one. We chose this
strategy as we found that the resulting underestimation of clone size
due to discarding clustered reads was very slight (see comparison of
genBaRcode and CellBarcode, Supplementary Figs. 1 and 16), whereas if
a clustered barcode is actually a real barcode, for example, when library
edit distance is small, the result could be a substantial overestimation
of some clone sizes. For further information on how this clustering
process was carried out, please refer to the ‘Barcode filtering’ section.
The runtime of above analysis was evaluated by Sys.time function in
R 4.2.1 (ref. 44). We used CellBarcode version 1.7.1 and genBaRcode
version 1.2.6 here and throughout.

Acquisition, analysis and simulation of experimental data
Several datasets are analyzed in this paper; below, for each, we describe
first the experimental dataset, then the barcode analysis and finally the
simulation parameters (for bulk data).

Lentiviral barcode dataset
Experimental data. We used a lentiviral barcode dataset from our pre-
vious publication30. Briefly, it consists of 13,564 myeloid cells recovered
from mice 4 weeks after transplantation of barcoded erythropoietin
(EPO)-treated haematopoietic stem and progenitor cells (HSPCs). The
HSPCs were labeled by the LG2.2 barcode library, which has a 20-bp
fixed-length barcode region, a diversity of >10,000 barcodes and has a
reference library. The myeloid cell DNA was divided into two technical
replicates before PCR amplification and sequencing.

Barcode analysis. The output FASTQ file from ref. 30 was analyzed
with the CellBarcode package using the regular expression ACGGAAT-
GCTAGAACACTCGAGATCAG(.{20})ATGTGGTATGATGTATC to extract
the 20-bp barcode sequence between constant regions. In the regular
expression, the first bases ACGGAATG are the plate index used to
demultiplex samples with the same P7 index. The extracted barcodes
were cleaned by reference library or cluster filtering separately. For
the cluster filtering, we remove the minority barcodes with Hamming
distance 1 to the majority ones as the barcode library has a minimum
edit distance of 5 (Supplementary Fig. 11c). Then we normalized the
read number (nreads

i) by the total cell count (ncell
total) to estimate the clone

size (ncell
i) for each barcode clone (i) with following formula:

ncell
i = nreads

i /∑
i
nreads
i × ncell

total (5)

For comparing CellBarcode and genBarcode on the fixed-length
barcode dataset from ref. 30, both methods use the same criteria to
extract and filter barcodes, which involves defining a barcode as a
20-bp random sequence between fixed sequences ACGGAATGCTA-
GAACACTCGAGATCAG and ATGTGGTATGATGTATC. In addition, cluster
filtering is performed to remove minority barcodes with a Hamming
distance of 1 and the runtime was measured by the ‘Sys.time()’ func-
tion in R. The Spearman correlation was performed using all barcodes.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | February 2024 | 128–143 139

Resource https://doi.org/10.1038/s43588-024-00595-7

Bartender can define only a fixed region of 5 bp. Therefore, the
barcode definition is set as a 20-bp random sequence between ATCAG
and ATGTG. The default Bartender clustering filtering has been applied.
The runtime was measured by the ‘time’ function in the shell. The Bar-
tender version used here (and following references) is https://github.
com/LaoZZZZZ/bartender-1.1/commit/9683af760cc33f3118514095
7d503af7f3e230be.

Simulation. To simulate the barcodes, we used a lentiviral barcode
reference library to label 15 cells. The labeled cells were then subjected
to clonal expansion, following a log-normal distribution with a mean
log clone size of 1.2 and s.d. of 3. After performing 30 PCR cycles with
an error rate of 1 × 10−6, we concatenated the constant regions: 5′ ACG-
GAATGCTAGAACACTCGAGATCAG and 3′ ATGTGGTATGATGTATCA.
Finally, we simulated the sequencing using the HiSeq 2000 profile,
aiming for 50 reads per cell.

CRISPR gRNA dataset
Experimental data. Tumor organoids were derived from Apc1638N
mice50 and transduced with lentiviral particles expressing the Cas9
enzyme along with blasticidin resistance (Addgene plasmid 52962) as
described previously51. Selection of infected organoids was achieved by
adding 10 g ml−1 blasticidin (A1113903 Thermo Fisher) to the medium.

Cas9-expressing tumor organoids were then transduced with
lentiviral particles each containing a single guide RNA sequence
derived from a bank of 1,796 single guide RNAs that target Notch1-
related genes, as found in ref. 52. Transduced organoids were collected
either at 48 hours or at 7 days post infection. At 7 days, organoids were
dissociated and Tomato-expressing live cells (based on DAPI exclu-
sion) were fluorescence-activated cell sorted (FACS) (Supplementary
Fig. 24). DNA was extracted using a standard phenol:chloroform:isoamyl
alcohol protocol. Briefly, cells were resuspended in 500 µl PBS and 1 ml
phenol:chloroform:isoamyl alcohol (25:24:1) solution (Sigma P2069)
was added. After centrifugation at 16,000g for 5 min, the aqueous phase
was collected and one volume of chloroform (Sigma 32211) was added.
Following a vortex homogenization step, the samples were centrifuged
at 16,000g for 5 min and the aqueous phase was recovered. Precipitation
of the DNA was then performed by adding 1 µl glycogen at 20 µg µl−1
(Thermo Fisher 10814010), 0.5 volume of the sample of 5.5 M sodium
acetate and 2.5 volumes of the sample of cold 100% ethanol. After over-
night at −20 °C and 30 min of centrifugation at 16,000g at 4 °C, the
precipitated DNA pellet was recovered in 30 µl water and quantified by
nanodrop. Ten microlitres of DNA were then amplified by PCR in tripli-
cates for each sample to add P5-staggers and P7-index oligos to perform
NGS DNA sequencing. The PCR was performed with Taq polymerase
(Promega M7406) for 22 cycles (30 s at 95 °C, 30 s at 53 °C, 30 s at 72 °C).

The sequences of the primers are the following:
P5 staggers:
�5′AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA
CGCTCTTCCGATCT[s]TTGTGGAAAGGACGAAACACCG)
P7 index:
�(5′CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTG-
GAGTTCAGACGTGTGCTCTTCCGATCTTCTACTATTCTTTCCC-
CTGCACTGT)
Bead purification of the PCR product using a ratio of 1.2 was per-

formed following the manufacturer’s protocol (Beckman Coulter
B23318). Quality and concentration of the samples were assessed on
a Tapestation. Then it was sequenced by MiSeq SE110 with 10% PhiX.

Barcode analysis. The gRNA sequencing results are processed by Cell-
Barcode with regular expression ‘AAGGACGAAACACCG(.{20})’. After
reference library-based filtering, the log clone size s.d. was calculated.

Simulation. We simulated the gRNA sequencing data using a barcode
library consisting of 1,796 gRNA sequences. The simulated cells were

labeled with a clone size log-mean of 1, but varying log clone size s.d.
values ranging from 0.5 to 2.5. To mimic the error rate of Taq polymer-
ase, we performed 20 PCR cycles with a PCR error rate of 10−4. Finally,
the sequencing was simulated using the built-in ART MiSeq profile. We
analyzed the simulated results in the same manner as the experimental
dataset.

VDJ barcode MEF cell line dataset
Experimental data. The VDJ barcodes are produced by an inducible
mouse in situ barcode system based on VDJ recombination20. In this
system, the V, D and J sequences are separated by the signal cassettes,
which are recognized and cut out by the Rag1 (recombination activat-
ing gene-1) and Rag2 (recombination activating gene-2) enzymes and
repaired by non-homologous end joining repair, which is error prone,
creating the diversity of the final barcode sequences. A cassette with
reversed Rag1, Rag2 and TdT (terminal deoxynucleotidyl transferase)
genes are surrounded by LoxP sequences, which can be activated by
Cre floxing. The TdT adds de novo nucleotides to the end joins, which
increases the diversity of the final barcode sequence.

In ref. 20, MEF cell lines were created from individual cells of a
VDJ barcode-induced mouse with known unique barcode sequences.
There are a total of 7 MEF cell lines with barcode sequences: CTC-
GAGGTCATCGAAGTATCAAGTCCAGTTCTACTATCGTAGCTACTA,
CTCGAGGTCATCGAAGTATCAAGTCCAGTACTATCGTACTA, CTCGAG-
GTCATCGAAGTATCAAGTCCAGTCTACTATCGTTACGACAGCTACTA,
CTCGAGGTCATCGAAGTATCAAGTCCAGTTCTACTATCGTTACGAGC-
TACTA, CTCGAGGTCATCGAAGTATCAAGTCCATCGTAGCTACTA,
CTCGAGGTCATCGAAGTATCAAGTCCAGTACTGTAGCTACTA and
CTCGAGGTCATCGAAGTATCAAGTCCAGTATCGTTACGCTACTA.

These cell lines were mixed in specific ratios, in ascending order
of powers of 2 from 1 to 7. Sequencing data were then generated with
different numbers of initiating cells20.

Barcode analysis. We re-analyzed one of the technical replicates
of +0, +2, +4 and +6 PCR cycles with CellBarcode using the regular
expression ([ACGT]{12})CTCGAGGTCATCGAAGTATC([ACGT]+)CCG-
TAGCAAGCTCGAGAGTAGACCTACT to capture the variable-length
barcode between the fixed regions of CTCGAGGTCATCGAAGTATC and
CCGTAGCAAGCTCGAGAGTAGACCTACT, after a 12-bp random UMI.

Simulation. For Fig. 2b, to simulate a MEF cell line experiment, we
simulated 6,250 cells (half of the 12,500 cells to mimic the technical
replicates) with barcode sequences and clone sizes that match the
experimental set-up. After two cycles of preamplification, a 12-bp
random UMI is added with a tagging efficiency of 2%. This is followed
by 30 cycles of PCR amplification, with a PCR efficiency of 0.705 and a
PCR error rate of 1 × 10−5.

For Supplementary Fig. 7, we simulated the full dataset to mimic
the experiment described above with different numbers of PCR cycles.
We used the same barcode sequences, cell number and type of sequenc-
ing while incorporating variable total PCR cycles of +0, +2, +4 and +6.
The same fixed 3′ sequence as the experimental dataset was added
(CCGTAGCAAGCTCGAGAGTAGACCTACTGGAATCAGACCGCCACCATG-
GTGAGCA), and the simulated data were analyzed in the same manner
as the experimental dataset.

In vivo VDJ barcode mammary gland dataset
Experimental data. The VDJ barcode mouse was crossed with a
Notch1CreERT2 mouse53. Lactating mothers were injected with tamox-
ifen (0.1 mg per g of mouse body mice, MP Biomedicals, 156738) as
described54 to induce Cre recombination in the progeny at stage P0.
Mammary tissue of a DRAG+/− Notch1CreERT2+/− female was then collected
at 6 weeks of age and mammary single-cell dissociation was performed
as previously described55. Briefly, mammary fat pads were mechanically
minced with scissors and scalpel and digested for 90 min at 37 °C in

http://www.nature.com/natcomputsci
https://github.com/LaoZZZZZ/bartender-1.1/commit/9683af760cc33f31185140957d503af7f3e230be
https://github.com/LaoZZZZZ/bartender-1.1/commit/9683af760cc33f31185140957d503af7f3e230be
https://github.com/LaoZZZZZ/bartender-1.1/commit/9683af760cc33f31185140957d503af7f3e230be

Nature Computational Science | Volume 4 | February 2024 | 128–143 140

Resource https://doi.org/10.1038/s43588-024-00595-7

CO2-independent medium (Invitrogen, 18045-054) supplemented with
5% fetal bovine serum, 3 mg ml−1 collagenase A (Roche, 0103586001)
and 100 U ml−1 hyaluronidase (Sigma, H3884). The resulting suspension
was sequentially resuspended in 0.25% trypsin–EDTA for 1 min, and
then 5 min in 5 mg ml−1 dispase (Roche, 04942078001) with 0.1 mg ml−1
DNase I (Sigma, D4527) followed by filtration through a 40 μm mesh.
Red blood cells were lysed in NH4Cl. The obtained single-cell suspen-
sion was then stained with the following Biolegend antibodies, at a
1/100 dilution: APC anti-mouse CD31 (102510), APC anti-mouse Ter119
(116212), APC anti-mouse CD45 (103112), APC/Cy7 anti-mouse CD49f
(313628) and PE anti-mouse EpCAM (118206). Dead cells (DAPI+) and
CD45+/CD31+/Ter119+ (Lin+) non-epithelial cells were excluded before
analysis using a FACS ARIA flow cytometer (Becton Dickinson) (Sup-
plementary Fig. 25). In total, 20,589 barcoded GFP+, Lin−, EpCAMhigh and
CD49flow luminal cells were sorted into the lysis buffer (Viagen, 301-C).

For these data, we have access to both UMI and non-UMI sequenc-
ing libraries as each technical replicate was split in two and processed
in parallel with UMI and non-UMI protocols.

For the UMI barcode sequencing library, we follow the protocol
described in ref. 20. In brief, the lysed cells were sheared by sonica-
tion then divided into two technical replicates, and the target region
captured by beads. The DNA in beads was used as a template to do the
preamp PCR to amplify the target region with 11 cycles. Next, the UMI
was introduced by a second PCR, then the third PCR to add the M1
sequences, and finally the fourth PCR to add the adapter sequence to
get the sequencing library. The library was sequenced by MiSeq SE110
with 10% PhiX.

For the non-UMI barcode sequencing library, the preamp PCR
product from the UMI barcode library was used to generate a non-UMI
sequencing library. We took 100 μl preamp PCR product, cleaned it with
1.8× SPRI beads and eluted in 30 μl DNAse-free water. The first PCR used
28 μl of the eluted DNA as template with 50 μl PCR reaction (10 μl 5×
Q5 buffer, 0.5 μl 2 U μl−1 Q5 DNA polymerase, 1 μl 10 mM dNTP, 0.25 μl
100 μM preamp Fwd primer and preamp Rev primer, 10 μl DNAse-free
water) for 19 cycles (98 °C 2 min; 19 cycles of 98 °C 10 s, 67 °C 30 s, 72 °C
30 s; then 72 °C 5 min). Then the products were cleaned by 1.8× SPRI
beads and eluted into 30 μl DNAse-free water. The second PCR used
15 μl of the eluted DNA from last step as the template with 50 μl reaction
(10 μl 5× Q5 buffer, 1 μl 2 U μl−1 Q5 DNA polymerase, 1 μl 10 mM dNTP,
0.25 μl 100 μM preamp Fwd primer and M1 Rev primer, and 22.5 μl
DNAse-free water) for 5 PCR cycles (98 °C 2 min; 5 cycles of 98 °C 10 s,
67 °C 30 s, 72 °C 30 s; then 72 °C 5 min). After that, the PCR products
were cleaned by 1.8× SPRI beads and eluted into 30 μl DNAse-free water.
The third PCR used 10 μl DNA from last step as template to add the NGS
adapters by 20 μl PCR reaction (4 μl 5× Q5 buffer, 0.4 μl 2 U μl−1 Q5 DNA
polymerase, 0.4 μl 10 mM dNTP, 0.1 μl 100 μM P5 tagging primer, 4 μl
2.5 μM P7 tagging primer with index and 1.1 μl DNAse-free water) by 5
PCR cycles (98 °C 2 min; 5 cycles of 98 °C 10 s, 67 °C 30 s, 72 °C 30 s; then
72 °C 5 min). The final DNA was cleaned by 1× SPRI beads, and eluted
into 30 μl DNAse-free water. The library with 10% PhiX was sequenced
by MiSeq in SE110 mode with a 25M sequencing chip aimed for 20M
reads output. This library was sequenced together with other samples
but independent to the UMI barcode library.

preamp Fwd primer:
ACTCACTATAGGGAGACGCGTGTTACC
preamp Rev primer:
GACACGCTGAACTTGTGGCCGTTTA
M1 Rev primer:
AGTTCAGACGTGTGCTCTTCCGATCCAGCTCGACCAGGATGGG
P5 tagging primer:
�AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC-
GACGCTCTTCCGATCTACTCACTATAGGGAGACGCGTGTT
P7 tagging primer:
�CAAGCAGAAGACGGCATACGAGATTGACTGAGTGACTGGAGTTCA-
GACGTGTGCTCTTCCGATC

Barcode analysis. For the VDJ barcode UMI library analysis using
CellBarcode, we extract the barcode and UMI using regular expression
‘(.{16})CCTCGAGGTCATCGAAGTATCAAG(.*)CCGTAGCAAGCTCGA-
GAGTAGACCTACT’, which defines the 16-bp UMI sequence before the
constant region and the variable-length VDJ barcode sequence followed
by another constant region. Then we removed the UMI barcode tags
with fewer than 100 reads and counted the UMIs per barcode in the
remaining tags, which is a robust threshold as the final barcode is very
stable when we increase the threshold (Supplementary Fig. 18a), and
used the remaining barcodes. Investigators can use a similar approach
to determine a read count threshold, in conjunction with knowledge
about their targeted sequencing depth per cell.

For the non-UMI barcode library sequencing, we used the regu-
lar expression ‘CCTCGAGGTCATCGAAGTATCAAG(.*)CCGTAGCAA-
GCTCGAGAGTAGACCTACT’ to match the variable-length VDJ barcode
between the constant regions. The automatic read count threshold was
used to identify true barcodes.

We compared CellBarcode and Bartender using both UMI and
non-UMI sequencing described above. We extracted the barcodes with
CellBarcode as described above, with the UMI tag requiring a minimum
of 100 reads to be counted. In non-UMI libraries, an automatic thresh-
old is applied in CellBarcode. For Bartender, it only allows a maximum
of a 5-bp match in the fixed region. Therefore, the barcode is defined
between the fixed regions TCAAG and CCGTA. The UMI is defined by
the first 16-bp random sequence in both cases. Then the clustering
with one mismatch is used for both UMI and non-UMI sequencing.
The runtime of Bartender is measured by shell command ‘time’, and
for CellBarcode by the ‘Sys.time()’ function in R. The shared barcodes
were counted and visualized using a Venn plot. Linear regression was
performed on the shared barcodes.

Simulation. We used CellBarcodeSim to simulate the above VDJ
sequencing data. The simulation included a VDJ barcode library with
100 cells, which were expanded using a log-normal distribution (log
clone size mean 1.2, s.d. 1). We used a random UMI of length 16 bp, and
sequenced 100 reads per UMI using the ART built-in MiSeq profile,
resulting in sequences of length 111 bp. In addition, we added fixed
regions at the 5′ end (CCTCGAGGTCATCGAAGTATCAAG) and the 3′
end (CCGTAGCAAGCTCGAGAGTAGACCTACTGGAATCAGACCGCCAC-
CATGGTGAGCACACGTCTGAACTCCAGTCACTCAGTCAATCTCGTATGC-
CGTCTTCTGCTTG). Other parameters were kept default.

CellTag barcode scRNA-seq dataset
Experimental data. The scRNA-seq CellTag BAM file36 was downloaded
from the Sequence Read Archive with accession number SRR7347033.
This file corresponds to the MEF cell line that was infected with CellTag
barcodes, underwent fate reprogramming through overexpression
of transcription factors FOXA1 and HNF4α, and was sequenced after
15 days.

Barcode analysis. For the CellTagR analysis, we followed its demo
described here https://github.com/morris-lab/CellTagR. First, we
filtered the BAM file in bash by (1) filtering unmapped reads and (2)
filtering transgene reads. The filtered BAM file was used as input to both
the CellTagR and CellBarcode pipelines. After first creating a CellTag
object, the V1 barcode was extracted from the BAM file, by matching
5′ constant GGT and 3′ constant GAATTC. After that, barcode filter-
ing was applied including: (1) filter cells (a list of cells passing quality
control was downloaded from the Gene Expression Omnibus (GEO)
with dataset ID GSE99915), (2) barcode sequence error correction with
clustering using Starcode, (3) keep UMIs with at least 2 reads and (4)
barcode reference library filtering (whitelist filtering). The barcode
reference library (whitelist) can be found with the demo datasets of
the CellTagR package. Barcode clustering error correction was done
by starcode-1.4 (ref. 56).

http://www.nature.com/natcomputsci
http://www.ncbi.nlm.nih.gov/sra?term=SRR7347033
https://github.com/morris-lab/CellTagR
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99915

Nature Computational Science | Volume 4 | February 2024 | 128–143 141

Resource https://doi.org/10.1038/s43588-024-00595-7

We applied the CellTagR pipeline described above as closely as
possible using CellBarcode. Using CellBarcode, we extracted the V1
barcode using the regular expression ‘GT([ATCG]{8})GAATTC’, which
matches the 8-bp DNA sequence surrounded by two fixed constant
regions. Then, we carried out the four filtering steps using the CellBar-
code package, which are (1) filter cells using the quality control passed
list described above, (2) barcode sequencing correction by removing
minority barcodes with a Hamming distance of 1 to the majority one, (3)
keep UMI with at least 2 reads and (4) barcode reference library filtering.

VDJ barcode scRNA-seq dataset
Barcode analysis. In this section, we describe VDJ barcode extraction
with CellBarcode, the barcode filtering was described in ‘Results’.

In single-cell sequencing data analysis, each cell is stored as an
individual sample in the BarcodeObj, and this object has the same data
structure as that of bulk analysis.

The FASTQ file was acquired from the authors. Their read 1 and
read 2 were concatenated. In the sequence, we defined the cellular
10x barcode as the first 16 bases, and the UMI as 12 bases followed,
according to the 10 × 3′ scRNA-seq reads structure. The lineage bar-
code sequence was extracted using the 3′ and 5′ constant sequences:
‘CGAAGTATCAAG’ and ‘CCGTAGCAAG’.

The result in original paper was accessed from GitHub: https://
github.com/TeamPerie/Cosgrove-et-al-2022/blob/main/Figure1/
RNA_BC_PREPROCESSING/input_output_m534/agrep_10xbc_and_
vbc_m534_both.txt.gz. A brief description of the barcode filtering of
the original is as follows: UMIs were filtered to keep only those with 3
or more reads and one dominant VDJ barcode (defined as ≥0.45 reads).
The dominant barcode for each UMI was extracted, and finally they
assigned one VDJ barcode to a 10x cell if there is good agreement across
UMIs, defined as ≥0.75 agreement across all remaining UMIs. If there is
only one UMI retained, they further ensured that the VDJ barcode for
this UMI was the dominant barcode across all the reads for that cell
and has ≥0.45 of reads.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rand-
omized. The investigators were not blinded to allocation during experi-
ments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The lentiviral barcodes dataset from ref. 30 was obtained from ref. 57;
the corresponding pre-analysed data are available on GitHub (https://
github.com/TeamPerie/Eisele-et-al.). The CellTag barcode sequenc-
ing data from ref. 36 are on GEO with dataset ID GSE99915. The ref. 17
barcoded scRNA-seq dataset is on GEO with dataset ID GSE164716. The
mammary gland VDJ barcode dataset and gRNA sequencing data are
available on Zenodo (https://doi.org/10.5281/zenodo.8124948)58. The
MEF cell line mixes VDJ barcode dataset is available on Zenodo (https://
doi.org/10.5281/zenodo.10027001)59. The VDJ-barcoded scRNA-seq
data from ref. 35 belongs to the authors of that paper and was given
to us for the purposes of this paper; to obtain this data, please contact
L.P. Source data are provided with this paper.

Code availability
Code for all analysis in this study is available on GitHub (https://github.
com/TeamPerie/CellBarcode_paper_Sun_et_al) and on Zenodo (https://
doi.org/10.5281/zenodo.10492761)60. The CellBarcode package is avail-
able on Bioconductor (https://bioconductor.org/packages/release/
bioc/html/CellBarcode.html and https://doi.org/10.18129/B9.bioc.

CellBarcode)61. The Barcode sequencing simulation kit is available
on GitHub (https://github.com/TeamPerie/CellBarcodeSim) and on
Zenodo (https://doi.org/10.5281/zenodo.10492831)62.

References
1.	 Sankaran, V. G., Weissman, J. S. & Zon, L. I. Cellular barcoding to

decipher clonal dynamics in disease. Science 378, eabm5874
(2022).

2.	 Perié, L. & Duffy, K. R. Retracing the in vivo haematopoietic tree
using single-cell methods. FEBS Lett. 590, 4068–4083 (2016).

3.	 Lu, R., Neff, N. F., Quake, S. R. & Weissman, I. L. Tracking single
hematopoietic stem cells in vivo using high-throughput
sequencing in conjunction with viral genetic barcoding. Nat.
Biotechnol. 29, 928–933 (2011).

4.	 Kok, L., Masopust, D. & Schumacher, T. N. The precursors of CD8+
tissue resident memory T cells: from lymphoid organs to infected
tissues. Nat. Rev. Immunol. 22, 283–293 (2022).

5.	 Naik, S. H. et al. Diverse and heritable lineage imprinting of early
haematopoietic progenitors. Nature 496, 229–232 (2013).

6.	 Dhimolea, E. et al. An embryonic diapause-like adaptation with
suppressed Myc activity enables tumor treatment persistence.
Cancer Cell 39, 240–256.e11 (2021).

7.	 Merino, D. et al. Barcoding reveals complex clonal behavior in
patient-derived xenografts of metastatic triple negative breast
cancer. Nat. Commun. 10, 766 (2019).

8.	 Echeverria, G. V. et al. Resistance to neoadjuvant chemotherapy
in triple negative breast cancer mediated by a reversible drug-
tolerant state. Sci. Transl. Med. 11, eaav0936 (2019).

9.	 Echeverria, G. V. et al. High-resolution clonal mapping of multi-
organ metastasis in triple negative breast cancer. Nat. Commun.
9, 5079 (2018).

10.	 Blundell, J. R. & Levy, S. F. Beyond genome sequencing: lineage
tracking with barcodes to study the dynamics of evolution,
infection, and cancer. Genomics 104, 417–430 (2014).

11.	 Naik, S. H., Schumacher, T. N. & Perié, L. Cellular barcoding: a
technical appraisal. Exp. Hematol. 42, 598–608 (2014).

12.	 McKenna, A. et al. Whole-organism lineage tracing by
combinatorial and cumulative genome editing. Science 353,
aaf7907 (2016).

13.	 Frieda, K. L. et al. Synthetic recording and in situ readout of
lineage information in single cells. Nature 541, 107–111 (2017).

14.	 Alemany, A., Florescu, M., Baron, C. S., Peterson-Maduro, J. & van
Oudenaarden, A. Whole-organism clone tracing using single-cell
sequencing. Nature 556, 108–112 (2018).

15.	 Raj, B., Gagnon, J. A. & Schier, A. F. Large-scale reconstruction
of cell lineages using single-cell readout of transcriptomes and
CRISPR–Cas9 barcodes by scGESTALT. Nat. Protoc. 13, 2685–2713
(2018).

16.	 Spanjaard, B. et al. Simultaneous lineage tracing and cell-type
identification using CRISPR–Cas9-induced genetic scars. Nat.
Biotechnol. 36, 469–473 (2018).

17.	 Marsolier, J. et al. H3K27me3 conditions chemotolerance in triple-
negative breast cancer. Nat. Genet. 54, 459–468 (2022).

18.	 Thielecke, L. et al. Limitations and challenges of genetic barcode
quantification. Sci. Rep. 7, 43249 (2017).

19.	 Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell
fates realized in vivo. Nature 548, 456–460 (2017).

20.	 Urbanus, J. et al. DRAG in situ barcoding reveals an increased
number of HSPCs contributing to myelopoiesis with age. Nat.
Commun. 14, 2184 (2023).

21.	 Beltman, J. B. et al. Reproducibility of Illumina platform deep
sequencing errors allows accurate determination of DNA
barcodes in cells. BMC Bioinformatics 17, 151 (2016).

22.	 Lyne, A.-M. et al. A track of the clones: new developments in
cellular barcoding. Exp. Hematol. 68, 15–20 (2018).

http://www.nature.com/natcomputsci
https://github.com/TeamPerie/Cosgrove-et-al-2022/blob/main/Figure1/RNA_BC_PREPROCESSING/input_output_m534/agrep_10xbc_and_vbc_m534_both.txt.gz
https://github.com/TeamPerie/Cosgrove-et-al-2022/blob/main/Figure1/RNA_BC_PREPROCESSING/input_output_m534/agrep_10xbc_and_vbc_m534_both.txt.gz
https://github.com/TeamPerie/Cosgrove-et-al-2022/blob/main/Figure1/RNA_BC_PREPROCESSING/input_output_m534/agrep_10xbc_and_vbc_m534_both.txt.gz
https://github.com/TeamPerie/Cosgrove-et-al-2022/blob/main/Figure1/RNA_BC_PREPROCESSING/input_output_m534/agrep_10xbc_and_vbc_m534_both.txt.gz
https://github.com/TeamPerie/Eisele-et-al.
https://github.com/TeamPerie/Eisele-et-al.
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99915
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164716
https://doi.org/10.5281/zenodo.8124948
https://doi.org/10.5281/zenodo.10027001
https://doi.org/10.5281/zenodo.10027001
https://github.com/TeamPerie/CellBarcode_paper_Sun_et_al
https://github.com/TeamPerie/CellBarcode_paper_Sun_et_al
https://doi.org/10.5281/zenodo.10492761
https://doi.org/10.5281/zenodo.10492761
https://bioconductor.org/packages/release/bioc/html/CellBarcode.html
https://bioconductor.org/packages/release/bioc/html/CellBarcode.html
https://doi.org/10.18129/B9.bioc.CellBarcode
https://doi.org/10.18129/B9.bioc.CellBarcode
https://github.com/TeamPerie/CellBarcodeSim
https://doi.org/10.5281/zenodo.10492831

Nature Computational Science | Volume 4 | February 2024 | 128–143 142

Resource https://doi.org/10.1038/s43588-024-00595-7

23.	 Hadj Abed, L., Tak, T., Cosgrove, J. & Perié, L. CellDestiny: a RShiny
application for the visualization and analysis of single-cell lineage
tracing data. Front. Med. 9, 919345 (2022).

24.	 Espinoza, D. A., Mortlock, R. D., Koelle, S. J., Wu, C. & Dunbar, C. E.
Interrogation of clonal tracking data using barcodetrackR. Nat.
Comput. Sci. 1, 280–289 (2021).

25.	 Lin, D. S. et al. DiSNE movie visualization and assessment of clonal
kinetics reveal multiple trajectories of dendritic cell development.
Cell Rep. 22, 2557–2566 (2018).

26.	 Thielecke, L., Cornils, K. & Glauche, I. genBaRcode: a
comprehensive R-package for genetic barcode analysis.
Bioinformatics 36, 2189–2194 (2020).

27.	 Zhao, L., Liu, Z., Levy, S. F. & Wu, S. Bartender: a fast and accurate
clustering algorithm to count barcode reads. Bioinformatics 34,
739–747 (2018).

28.	 Kong, W. et al. CellTagging: combinatorial indexing to
simultaneously map lineage and identity at single-cell resolution.
Nat. Protoc. 15, 750–772 (2020).

29.	 Bandler, R. C. et al. Single-cell delineation of lineage and genetic
identity in the mouse brain. Nature 601, 404–409 (2022).

30.	 Eisele, A. S. et al. Erythropoietin directly remodels the clonal
composition of murine hematopoietic multipotent progenitor
cells. eLife 11, e66922 (2022).

31.	 Sender, R. & Milo, R. The distribution of cellular turnover in the
human body. Nat. Med. 27, 45–48 (2021).

32.	 Bystrykh, L. V. Generalized DNA barcode design based on
Hamming codes. PLoS ONE 7, e36852 (2012).

33.	 Beneyto-Calabuig, S. et al. Clonally resolved single-cell multi-
omics identifies routes of cellular differentiation in acute myeloid
leukemia. Cell Stem Cell 30, 706–721.e8 (2023).

34.	 Jindal, K., Adil, M.T., Yamaguchi, N. et al. Single-cell lineage
capture across genomic modalities with CellTag-multi reveals
fate-specific gene regulatory changes. Nat. Biotechnol.
https://doi.org/10.1038/s41587-023-01931-4 (2023).

35.	 Cosgrove, J. et al. Metabolically primed multipotent
hematopoietic progenitors fuel innate immunity. Preprint at
https://doi.org/10.1101/2023.01.24.525166 (2023).

36.	 Biddy, B. A. et al. Single-cell mapping of lineage and identity in
direct reprogramming. Nature 564, 219–224 (2018).

37.	 Radtke, S. et al. Stochastic fate decisions of HSCs after
transplantation: early contribution, symmetric expansion, and
pool formation. Blood 142, 33–43 (2023).

38.	 Hamming, R. W. Error detecting and error correcting codes. Bell
Syst. Tech. J. 29, 147–160 (1950).

39.	 Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation
sequencing read simulator. Bioinformatics 28, 593–594 (2012).

40.	 Buschmann, T. DNABarcodes: an R package for the systematic
construction of DNA sample tags. Bioinformatics 33, 920–922
(2017).

41.	 Marcou, Q., Mora, T. & Walczak, A. M. High-throughput immune
repertoire analysis with IGoR. Nat. Commun. 9, 561 (2018).

42.	 Desponds, J., Mora, T. & Walczak, A. M. Fluctuating fitness shapes
the clone-size distribution of immune repertoires. Proc. Natl Acad.
Sci. USA 113, 274–279 (2016).

43.	 Adair, J. E. et al. DNA barcoding in nonhuman primates reveals
important limitations in retrovirus integration site analysis. Mol.
Ther. Methods Clin. Dev. 17, 796–809 (2020).

44.	 R Core Team R: A Language and Environment for Statistical
Computing (R Foundation for Statistical Computing, 2016).

45.	 Weiss, G. & von Haeseler, A. A coalescent approach to the
polymerase chain reaction. Nucleic Acids Res. 25, 3082–3087
(1997).

46.	 McInerney, P., Adams, P. & Hadi, M. Z. Error rate comparison
during polymerase chain reaction by DNA polymerase. Mol. Biol.
Int. 2014, 287430 (2014).

47.	 Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR:
visualizing classifier performance in R. Bioinformatics 21,
3940–3941 (2005).

48.	 Wang, H. & Song, M. Ckmeans.1d.dp: optimal k-means clustering
in one dimension by dynamic programming. R J. 3, 29–33 (2011).

49.	 Johnson, M. S., Venkataram, S. & Kryazhimskiy, S. Best practices
in designing, sequencing, and identifying random DNA barcodes.
J. Mol. Evol. 91, 263–280 (2023).

50.	 Fodde, R. et al. A targeted chain-termination mutation in the
mouse Apc gene results in multiple intestinal tumors. Proc. Natl
Acad. Sci. USA 91, 8969–8973 (1994).

51.	 Jacquemin, G. et al. Paracrine signalling between intestinal
epithelial and tumour cells induces a regenerative programme.
eLife https://doi.org/10.7554/eLife.76541 (2022).

52.	 Mourao, L. et al. Lineage tracing of Notch1-expressing cells in
intestinal tumours reveals a distinct population of cancer stem
cells. Sci. Rep. 9, 888 (2019).

53.	 Fre, S. et al. Notch lineages and activity in intestinal stem cells
determined by a new set of knock-in mice. PLoS ONE 6, e25785
(2011).

54.	 Lilja, A. M. et al. Clonal analysis of Notch1-expressing cells reveals
the existence of unipotent stem cells that retain long-term
plasticity in the embryonic mammary gland. Nat. Cell Biol. 20,
677–687 (2018).

55.	 Lloyd-Lewis, B. et al. In vivo imaging of mammary epithelial cell
dynamics in response to lineage-biased Wnt/β-catenin activation.
Cell Rep. 38, 110461 (2022).

56.	 Zorita, E., Cuscó, P. & Filion, G. J. Starcode: sequence clustering
based on all-pairs search. Bioinformatics 31, 1913–1919 (2015).

57.	 Eisele, A. S. et al. Erythropoietin directly remodels the clonal
composition of murine hematopoietic multipotent progenitor
cells. Zenodo (2021) https://doi.org/10.5281/zenodo.5645045

58.	 Sun, W. et al. CellBarcode package paper dataset. Zenodo
https://doi.org/10.5281/zenodo.8124948 (2023).

59.	 Urbanus, J. et al. UrbanusCosgrove-et-al-DRAG-mouse. Zenodo
https://doi.org/10.5281/zenodo.10027001 (2023).

60.	 Sun, W. et al. TeamPerie/CellBarcode_paper_Sun_et_al. Zenodo
https://doi.org/10.5281/zenodo.10492761 (2024).

61.	 Sun, W. et al. CellBarcode. Bioconductor https://doi.org/10.18129/
B9.bioc.CellBarcode (2021).

62.	 Sun, W. et al. TeamPerie/CellBarcodeSim. Zenodo https://doi.org/
10.5281/zenodo.10492831 (2024).

Acknowledgements
We acknowledge the valuable discussions with the members of the
Perié and Fre labs and the NGS facility. We appreciate the assistance
from the animal facility, flow cytometry and NGS facilities at Institut
Curie. We express our gratitude to E. Tubeuf and C. Conrad from
the Perié lab for their assistance in conducting experiments and
analyzing FACS data, respectively. The study was supported by the
European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program ERC StG 758170-Microbar
(to L.P.), an ATIPAvenir grant from CNRS and Bettencourt-Schueller
Foundation (to L.P.) and by PSL* Research University (to S.F.), the
French National Research Agency (ANR) (ANR-15-CE13-0013-01) (to
S.F.), FRM Equipes (EQU201903007821) (to S.F.), FSER (Schlumberger
Foundation) (FSER20200211117) (to S.F.), ARC Foundation label 2022
(no. ARCPGA2021120004232_4874) (to S.F.) and Labex DEEP (ANR-11-
LBX-0044) (to S.F.).

Author contributions
Conceptualization was carried out by W.S., A.-M.L. and L.P. W.S., M.P.,
M.H., S.F., L.P. and M.M.F. were responsible for barcode experiment
design, protocol development and performing the experiments.
The analysis and programming were completed by W.S., who also

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s41587-023-01931-4
https://doi.org/10.1101/2023.01.24.525166
https://doi.org/10.7554/eLife.76541
https://doi.org/10.5281/zenodo.5645045
https://doi.org/10.5281/zenodo.8124948
https://doi.org/10.5281/zenodo.8124948
https://doi.org/10.5281/zenodo.10027001
https://doi.org/10.5281/zenodo.10492761
https://doi.org/10.18129/B9.bioc.CellBarcode
https://doi.org/10.18129/B9.bioc.CellBarcode
https://doi.org/10.5281/zenodo.10492831
https://doi.org/10.5281/zenodo.10492831

Nature Computational Science | Volume 4 | February 2024 | 128–143 143

Resource https://doi.org/10.1038/s43588-024-00595-7

managed data curation and generated the figures. Writing was a
collaborative effort between W.S., L.P. and A.-M.L. L.P. and A.-M.L.
provided supervision throughout the study, and S.F. and M.M.F.
contributed to the review and editing process.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s43588-024-00595-7.

Correspondence and requests for materials should be addressed to
Wenjie Sun, Leïla Perié or Anne-Marie Lyne.

Peer review information Nature Computational Science thanks
Jennifer Adair, Mark Enstrom and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work. Primary
Handling Editor: Fernando Chirigati, in collaboration with the Nature
Computational Science team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-024-00595-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

− −

− −

μ

	Extracting, filtering and simulating cellular barcodes using CellBarcode tools

	Results

	CellBarcode package

	Comparing barcode filtering strategies using CellBarcodeSim

	Reference and cluster filtering of lentiviral barcodes

	Read threshold filtering of in situ barcodes

	Using CellBarcode to analyze scRNA-seq data

	Discussion

	Methods

	Ethics statement

	DNA cellular barcode sequencing simulations

	Lineage barcode simulation
	Barcode labeling simulation
	Clonal expansion simulation
	PCR expansion simulation
	Sequencing simulation

	Simulating VDJ-barcoded data with high clone size variation and UMIs

	DNA cellular barcode pre-processing strategy evaluation

	Evaluation of filtering strategies precision, recall and AUC

	Barcode filtering

	Benchmarking CellBarcode and genBaRcode

	Acquisition, analysis and simulation of experimental data

	Lentiviral barcode dataset

	Experimental data
	Barcode analysis
	Simulation

	CRISPR gRNA dataset

	Experimental data
	Barcode analysis
	Simulation

	VDJ barcode MEF cell line dataset

	Experimental data
	Barcode analysis
	Simulation

	In vivo VDJ barcode mammary gland dataset

	Experimental data
	Barcode analysis
	Simulation

	CellTag barcode scRNA-seq dataset

	Experimental data
	Barcode analysis

	VDJ barcode scRNA-seq dataset

	Barcode analysis

	Statistics and reproducibility

	Reporting summary

	Acknowledgements

	Fig. 1 CellBarcode package to extract and identify lineage barcodes.
	Fig. 2 Cellular barcode sequencing simulation.
	Fig. 3 Benchmarking barcode filtering strategies with simulated data.
	Fig. 4 Lentiviral barcode sequencing analysis.
	Fig. 5 In vitro VDJ barcode analysis.
	Fig. 6 scRNA-seq cellular DNA barcode analysis.

