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Extracting, filtering and simulating cellular 
barcodes using CellBarcode tools

Wenjie Sun    1  , Meghan Perkins2, Mathilde Huyghe    2, Marisa M. Faraldo2, 
Silvia Fre2, Leïla Perié    1,5   & Anne-Marie Lyne    1,3,4,5 

Identifying true DNA cellular barcodes among polymerase chain reaction 
and sequencing errors is challenging. Current tools are restricted in 
the diversity of barcode types supported or the analysis strategies 
implemented. As such, there is a need for more versatile and efficient tools 
for barcode extraction, as well as for tools to investigate which factors 
impact barcode detection and which filtering strategies to best apply. 
Here we introduce the package CellBarcode and its barcode simulation kit, 
CellBarcodeSim, that allows efficient and versatile barcode extraction and 
filtering for a range of barcode types from bulk or single-cell sequencing 
data using a variety of filtering strategies. Using the barcode simulation 
kit and biological data, we explore the technical and biological factors 
influencing barcode identification and provide a decision tree on how to 
optimize barcode identification for different barcode settings. We believe 
that CellBarcode and CellBarcodeSim have the capability to enhance the 
reproducibility and interpretation of barcode results across studies.

DNA cellular barcoding is a high-throughput approach widely used 
to follow lineage1,2 in different fields such as hematopoiesis, develop-
ment3–5, cancer6–9 and infection dynamics10. It uses a unique and herit-
able DNA sequence incorporated into the genome of an ancestor cell, 
which is then detected via sequencing in its progenies.

In the earliest approaches, progenitor cells were prospectively 
transduced ex vivo with libraries of fixed-length oligonucleotides11. 
More recently, to avoid extraction and reimplantation of progenitor 
cells, in vivo recombining genetic cassettes have been incorporated 
in transgenic organisms. Many innovative approaches have produced 
these in situ genetic labels12–16, with the majority detected via short-read 
sequencing. Barcodes are now detected with single-cell RNA sequenc-
ing (scRNA-seq)14–17, coupling lineage with fine-grained phenotyping.

DNA barcodes detected via next-generation sequencing (NGS) are 
subject to various sources of error, resulting in the identification of spu-
rious barcodes. All barcode types are affected by PCR error/bias18 and 
sequencing error; in situ barcodes suffer additionally from the inability 
to control the distance between barcodes19,20. Biological factors such as 

the number of barcodes and clone size can impact barcode detection 
but have rarely been investigated21. To extract and identify true from 
spurious barcodes, many different bioinformatic filtering strategies 
have been proposed. However, little comparison of the various strate-
gies has been published and most publications use their own ‘in house’ 
processing pipelines. This is problematic in terms of interpretation 
of results across studies and reproducibility. Both guidelines on how 
filtering strategies and their parameterization impact barcode quan-
tification and broadly applicable tools are required22.

Beside tools for visualization and data exploration23–25 three tools 
have been developed to extract DNA barcodes from NGS data: genBaR-
code26, Bartender27 and CellTagR28. While each has demonstrated util-
ity, they are either restricted in the diversity of barcode types supported 
(CellTagR, genBaRcode) or the analysis strategies implemented (all of 
the above). No tools provide a framework to simulate barcode experi-
ments and investigate the technical and biological factors impacting 
barcode detection. There is a need for more versatile tools to extract, 
identify and simulate barcodes.
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produces in silico barcoding data mimicking bulk DNA-seq experimen-
tal situations by varying a number of technical and biological factors. 
CellBarcodeSim covers production of a barcode library, cell barcode 
labeling and clonal expansion, construction of full sequencing reads 
including flanking sequences and UMIs when desired, and finally PCR 
amplification and sequencing with the inclusion of error (Fig. 2a and 
‘DNA cellular barcode sequencing simulations’ in Methods). In total, 
CellBarcodeSim provides 10 configurable parameters for non-UMI 
and 13 for UMI sequencing libraries (Fig. 2a). Tens of thousands of 
clones can be simulated on a standard laptop (16 Gb random-access 
memory), covering most experimental situations. Two types of bar-
code library can be simulated with CellBarcodeSim (see ‘DNA cellular 
barcode sequencing simulations’ in Methods) while other types of 
barcode can be uploaded as a list. Comparing the known barcodes 
from simulation with the output of CellBarcode can guide users in 
their choice of filtering strategy and its parameterization. Overall, 
CellBarcodeSim simulates barcoding experiments varying multiple 
technical and biological factors.

Before exploring how different parameters impact barcode 
identification across filtering strategies, we first checked that Cell-
BarcodeSim could reproduce the expected output of a barcoding 
experiment. We simulated two experimental datasets: lentiviral fixed-
length 20-bp barcodes recovered from myeloid cells30; and a variable, 
diversity, joining (VDJ)-barcoded dataset with UMIs recovered from 
mouse embryonic fibroblast (MEF) cells20 (see ‘Acquisition, analysis 
and simulation of experimental data’ in Methods). We showed that 
CellBarcodeSim outputs the same read structure and similar propor-
tion of reads matching the regular expression as the experimental data 
(Fig. 2b,c), with high Pearson correlation between the proportion of the 
most abundant base at each sequencing cycle between the simulated 
and experimental data (Fig. 2b,c).

Next, to investigate the key factors impacting barcode identi-
fication for different filtering strategies, we first designed a default 
scenario for non-UMI barcode libraries (see ‘DNA cellular barcode 
sequencing simulations’ in Methods and Supplementary Table 2) and 
then 25 alternative scenarios varying key biological and experimental 
parameters (Supplementary Table 2). After randomly simulating each 
scenario 30 times, we applied 4 different filtering strategies (read 
count thresholding, reference library, clustering and UMI filtering). To 
evaluate the filtering performance, for each simulation we computed 
barcode recall (the proportion of true barcodes found in the output) 
and precision (the proportion of output barcodes that are true) using 
the known ground truth. We then computed the area under the preci-
sion–recall curve (PR AUC) across a range of thresholds (Supplemen-
tary Fig. 2) to indicate how well filtering methods separate true from 
spurious barcodes regardless of threshold.

We first consider read count threshold filtering. In all scenarios, 
there is an overlap between the read count distributions of error and 
true barcodes combined across simulations (Supplementary Fig. 3); 
therefore, it is impossible to choose a read threshold to perfectly sepa-
rate true from spurious barcodes. Using a read threshold involves a 
trade-off between the recall and precision of barcode detection, with 
a higher threshold removing more spurious barcodes but also more 
true barcodes (Fig. 3a,b). Surprisingly, the factor that had the larg-
est impact on PR AUC was one of the biological factors: the standard 
deviation (s.d.) of the log clone size (where log denotes the natural 
logarithm), with smaller clone size variation showing larger PR AUC 
(Fig. 3c and Supplementary Figs. 4 and 5a). When log clone size s.d. was 
1, the PR AUC reached 1 regardless of other factors, including barcode 
type or mean clone size (Fig. 3c and Supplementary Figs. 4 and 5a). 
Comparing precision and recall for different thresholds, we observed 
the expected trend of increased recall but decreased precision as the 
threshold became less stringent (Fig. 3a,b and Supplementary Figs. 5b 
and 6). When there is high variability in the number of cells labeled by 
each barcode (log clone size s.d. ≥ 2), recall needs to be compromised 

To address these issues, we developed two tools: CellBarcode, 
an R Bioconductor package for barcode extraction and filtering, and 
CellBarcodeSim, a barcode simulation kit that faithfully reproduces 
barcoding experiments. We demonstrate, using simulated and experi-
mental datasets, that CellBarcode allows users to implement various fil-
tering strategies for bulk or single-cell datasets. Using CellBarcodeSim 
to simulate barcoding experiments, we investigated potential technical 
and biological factors impacting the reliability of barcode identifica-
tion, confirmed with experimental datasets. We recapitulated our 
results into a decision tree to guide researchers on which filtering 
strategy is most appropriate for their setting. Overall, we present effi-
cient and versatile tools to extract and identify barcodes from errors, 
and provide advice on how best to analyze barcoding experiments in 
a range of biological situations.

Results
CellBarcode package
We developed the CellBarcode R package, which provides a toolkit for 
barcode pre-processing, including steps from generating the FASTQ 
quality control information to exporting the data into a read count 
matrix (Fig. 1a). Using the read quality control and filtering functions 
of CellBarcode, users can check sequencing quality, remove low-quality 
sequences and get an overview of read diversity. Barcodes can then be 
extracted from the FASTQ or BAM file by defining a regular expression 
matching the structure of the lineage barcode and its surrounding 
flanking sequence (see Supplementary Vignette 1 for examples and 
a detailed description of this process); both fixed-length and varia-
ble-length barcodes can be extracted, and mismatches in the flank-
ing regions are allowed (bulk analysis only). Once the raw barcodes 
have been extracted, filtering functions can remove spurious barcode 
sequences using commonly applied strategies. In addition, the package 
provides functions for visualizing the barcode read count distribution 
per sample and across replicates (Fig. 1b,c).

The four main filtering strategies generally applied to barcoded 
data are implemented in CellBarcode (Fig. 1d). (1) Reference filtering: 
barcodes not matching with the reference list are eliminated. The refer-
ence list is either generated by sequencing the viral barcode libraries5 or 
enumerating all possible barcodes using knowledge of barcode struc-
ture19. (2) Threshold filtering: barcodes are retained if their read num-
ber (depth) surpasses a specified threshold5. CellBarcode has a manual 
or an automatic threshold option (see ‘Barcode filtering’ in Methods). 
(3) Cluster filtering: barcodes that have an edit distance smaller than a 
specified threshold to a more abundant barcode are eliminated29. (4) 
Unique molecular identifier (UMI) filtering: if UMIs are added to DNA 
molecules during library preparation, several optional filtering steps 
can be applied, including extracting the most abundant barcode per 
UMI and threshold filters on the read count per UMI or UMI count per 
barcode. These four filtering strategies can be used individually or in 
combination, and we later advise on when to apply each strategy using 
simulated data with CellBarcodeSim. See Supplementary Vignettes 1 
and 2 for examples of all major use cases.

In summary, CellBarcode is a versatile and open-source tool that 
works on all major operating systems and is capable of analyzing a wide 
variety of DNA barcode types with commonly applied filtering strate-
gies. The key assets of CellBarcode are its speed, the ability to deal with 
UMI data and the extraction of barcodes from scRNA-seq data (Supple-
mentary Table 1). Efficient C++ code accelerates heavy tasks compared 
with other packages; barcode extraction and cluster filtering are 20 
and 70 times faster than using genBaRcode (Supplementary Fig. 1).

Comparing barcode filtering strategies using CellBarcodeSim
The CellBarcode package provides a variety of functions for barcode 
filtering, but choosing a filtering strategy and its parameterization 
in a given experimental setting is challenging. With this in mind, we 
developed a barcode simulation toolkit, called CellBarcodeSim, which 
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Fig. 1 | CellBarcode package to extract and identify lineage barcodes.  
a, Barcode experiment scheme. Cells are labeled with genetic barcodes, divide 
and differentiate, with progeny inheriting the barcode. Barcodes are read 
out by NGS in descendant cells. CellBarcode allows extraction, filtering and 
identification of barcodes from NGS data and returns a barcode count matrix 
for further analysis. sc-seq, single-cell sequencing. b, Diagram of barcode 
sequencing data processing with CellBarcode. CellBarcode reads the raw 
sequencing data (FASTQ, FASTA, BAM/SAM files or R object) and checks the 
quality control (QC and filtering functions) before extracting the barcode 
sequences (barcode extraction functions). Barcodes are then filtered to remove 
PCR and sequencing errors using different filtering strategies (barcode cleaning 
functions). After filtering, barcode data can be plotted with the visual check 
functions and exported as a barcode frequency matrix (export functions). 
c, Example of barcode processing workflow using CellBarcode. Barcodes 

(underlined) are extracted from raw sequences using a regular expression 
(sequence in bold) that depends on the barcode type. Barcodes are then filtered, 
as detailed in d, to eliminate spurious barcodes and exported. d, The four most 
commonly used barcode filtering strategies. Gray indicates true barcodes and 
red indicates spurious barcodes. (1) Reference library filtering: barcodes B1, 
B2 and B3 that match the reference list are considered true barcodes, M3 and 
M5 are removed. (2) Threshold filtering: barcodes that have a read number 
superior or equal to the threshold of 20 are kept (B1 and B2) and barcodes below 
the threshold are removed (M3, M5 and B3). (3) Cluster filtering: barcodes 
with an edit distance smaller than a threshold to a more abundant barcode are 
eliminated. Here, two barcodes have one substitution difference (mutant loci in 
white) from an abundant barcode and will be deleted. (4) UMI filtering: usually 
involves retaining the most abundant sequence per UMI followed by a UMI count 
threshold per barcode.
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to avoid calling spurious barcodes. This leads to a significant loss of 
true barcodes, predominantly affecting barcodes of small clones that 
have similar read count to error barcodes derived from much larger 
clones (Fig. 3a,b and Supplementary Figs. 5b and 6). This loss of true 
barcodes can preclude robust statistical analysis downstream (Sup-
plementary Fig. 5c).

To validate the finding about the impact of clone size s.d., we 
used an unpublished dataset in which Cas9-expressing mice intestinal 
organoids were infected with libraries of guide RNAs (gRNAs) designed 
to knock out specific genes (see ‘CRISPR gRNA dataset’ in Methods). 
While not a standard barcode, each specific knockout acts as a clonal 
label and can be extracted by CellBarcode using a regular expression 
targeting the constant primer region. Two time points were analyzed, 
24 hours and 7 days, with clone size variation increasing over time due 
to fitness effects of the gRNAs. Using CellBarcodeSim to simulate the 
experiment, we successfully reproduced the percentage of barcode-
containing reads, and observed a change in the read count distribution, 
from bimodal with true and spurious barcode counts mostly separated 
at low clone size s.d., to unimodal with more overlap in true and spuri-
ous barcode counts at higher clone size s.d. (Supplementary Fig. 7, top 

row). These same trends were observed in the experimental data (Sup-
plementary Fig. 7, bottom row). To verify the finding that the number 
of PCR cycles has limited impact on barcode recall (Supplementary 
Fig. 8), we used published data of mixes of seven MEF cell lines that 
each contain a unique known VDJ barcode20. Across the mixes, the 
total number of initiating cells was reduced and the number of PCR 
cycles correspondingly increased to produce a constant PCR product 
concentration, with the clone size ratios kept constant. Irrespective of 
the number of PCR cycles, CellBarcode identified the 7 known barcodes 
in each mix (with 1 spurious barcode at +4 PCR cycles) (Supplementary 
Fig. 8). Using CellBarcodeSim with matched parameters and varying 
the number of PCR cycles, we reproduced the separation of true and 
spurious barcode counts and the lack of change in the sequence fre-
quency distribution (Supplementary Fig. 8). Using two experimental 
datasets, we therefore demonstrated that CellBarcodeSim can simu-
late real scenarios. Our simulation results of the large impact of the 
clone size s.d. and the limited impact of PCR cycle number on barcode 
identification were supported by these experimental data. Regarding 
filtering, we showed that the read count thresholding strategy is sub-
optimal at best, except for systems in which the clones have a similar 
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Fig. 2 | Cellular barcode sequencing simulation. a, Schematic of barcoding 
experiment simulation with CellBarcodeSim and the parameters that can be 
tuned at each step, starting with simulation of a barcode library, cell labeling 
and clonal expansion, PCR amplification, and finally sequencing. The round 
shape represents undifferentiated cells, the triangle and rectangles represent 
differentiated cell types. b,c, Stacked bar plots, created using CellBarcode, 
showing the percentage of bases for the VDJ barcode dataset with UMI (b) 
and a random barcode dataset (c) across each sequencing cycle. Each column 

represents a sequencing cycle, with color and height indicating the base and 
proportion, respectively. Both simulated and real experimental data are 
presented for each dataset. The percentage of total reads matching the regular 
expression is indicated, as well as the Pearson correlation between the most 
abundant base per sequencing cycle. Fixed and/or UMI regions are annotated 
below the heatmap. The VDJ barcode dataset is the MEF line experiment data with 
12,500 cells from ref. 20; the random barcode dataset is from ref. 30. Simulation 
details for each dataset are provided in Methods.
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number of cells. Some biological systems have been shown to differ 
in their proliferation capacities31, but for most of them this informa-
tion is unknown. CellBarcodeSim is therefore a useful tool to simulate 
different scenarios, guiding researchers on the impact of thresholds 
on barcode identification and aiding in the interpretation of results.

An alternative strategy for barcode filtering is to match the 
extracted barcodes to a reference library when available. Using this 
approach for fixed-length barcodes, the distributions of true barcode 
read counts overlap less with those of spurious barcodes (Supplemen-
tary Fig. 9), and true barcode PR AUC was substantially improved, 
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Fig. 3 | Benchmarking barcode filtering strategies with simulated data.  
a,b, Percentage precision and recall of true barcodes for different threshold 
filtering using read proportion thresholds of 0.0001 (a) and 0.001 (b). Several 
scenarios with two types of barcode (random and VDJ) and three different 
clone size variations across barcodes are compared. c, PR AUC using threshold 
filtering for two types of barcode (random and VDJ) and three different clone 
size variations across barcodes. d, The same as in c after reference filtering. e, 
The same as in c after cluster filtering. f, Diagrams depicting reference library 
filtering and cluster filtering advantages and drawbacks. Reference library 
filtering removes spurious barcodes that are not in the library but keeps spurious 
barcodes that match a barcode in the reference library. Cluster filtering removes 
low abundance barcodes that are similar to abundant barcodes. This can result 
in the removal of true barcodes that have sequence similarity to another true 
barcode, for example, if the barcode library has small edit distance. g, PR AUC 

after UMI filtering for variable-length VDJ barcodes for two higher clone size 
variations (log clone size s.d. of 2 and 3). An initial filtering based on UMI count 
greater than ten reads was performed before computing PR AUC. h, Barcode 
filtering decision tree. Except where otherwise specified, each simulated 
scenario has the reference parameters from Supplementary Table 2: 30 
simulations, 300 induced barcodes with log clone size mean 1.2, PCR cycle 30, 
PCR efficiency 0.705, PCR error 1 × 10−6, reads per cell 50 and sequencing profile 
HiSeq 2000. Specifically for h, the number of PCR cycles before and after UMI 
tagging are 10 and 20, respectively, with 8-bp UMI and tagging efficiency 0.02. 
The median and IQR (the difference between the 75th and 25th percentiles of 
the data) are shown in the boxplot over 30 simulations, and the outliers (beyond 
the whiskers of Q3 + 1.5 × IQR or Q2 − 1.5 × IQR) plotted as dots. The two-sided 
Wilcoxon test is applied to compare the precision, recall or AUC of different 
simulation conditions.
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with most scenarios having a PR AUC of 1 (Supplementary Fig. 10), as 
suggested before5. We applied read count thresholding here after refer-
ence filtering to compute the PR AUC, enabling scenario comparison, 
although its use is optional. We note that read count threshold filtering 
is used to call true barcodes in the generation of the reference library 
itself, and even though these plasmid libraries have more homogenous 
barcode abundances than most biological experiments, the reference 
library suffers from the threshold-related problems described above 
and by others21. For variable-length barcodes such as VDJ barcodes, 
a reference library can be generated by simulating all possible com-
binations. Using this list had limited improvement in PR AUC (Fig. 3d 
and Supplementary Fig. 10) due to the small edit distance between 
some barcodes (many with edit distance <3; Supplementary Fig. 11a). 
Spurious sequences created by PCR or sequencing error can have the 
same sequence as a barcode in the reference library (Fig. 3f) and are 
not filtered out, impacting the precision (Supplementary Fig. 12). 
Overall, these results show that a reference library is a useful approach 
for fixed-length barcodes designed to have edit distances larger than 
3, but is not useful for variable-length barcodes such as VDJ barcodes 
where the edit distance cannot be controlled.

Several studies have advocated cluster filtering to identify true 
barcodes21,26,27. With clustering, true barcodes are identified by com-
paring barcode sequences, usually with the assumptions that barcodes 
separated by very short edit distances are the result of PCR/sequenc-
ing errors and that the most abundant barcode in the cluster is the 
true barcode21,26,27. We used CellBarcodeSim to evaluate how cluster 
filtering performs compared with other filtering strategies. Cluster 
filtering improved the PR AUC of random barcodes compared with 
threshold filtering alone (Fig. 3e) and performed as well as reference 
library filtering (Fig. 3d,e), implying that it is the method of choice 
for the generation of a reference library, as previously suggested18,21. 

For variable-length barcodes such as VDJ barcodes, clustering per-
formed worse or similar to threshold or reference library filtering 
(Fig. 3e and Supplementary Fig. 13) due to low recall (Supplementary  
Fig. 14), although the true barcode read counts overlap less with those 
of the spurious ones (Supplementary Fig. 14). This is linked to the short 
edit distance of some in situ barcodes, which are not PCR/sequenc-
ing errors as assumed by cluster filtering (Fig. 3f and Supplementary  
Fig. 11a). We previously developed a sequencing library preparation 
protocol for VDJ barcodes with UMIs20. We hypothesized that the 
addition of UMIs will improve the identification of true barcodes using 
cluster filtering. To test this hypothesis, we simulated VDJ barcode 
sequencing with UMIs for high clone size variation samples, which we 
identified as the most difficult scenario in which to apply this filter-
ing (Supplementary Table 3). We observed that incorporating UMI 
information significantly improved the PR AUC for samples with large 
clone size variation (Fig. 3g), supporting the hypothesis that the addi-
tion of UMIs helps true barcode identification by cluster filtering for 
barcodes with low edit distance, such as VDJ barcodes. Overall, these 
results show that cluster filtering is an efficient method to identify 
barcodes in systems with large edit distance such as viral barcodes18,32. 
It is the method of choice if one had no reference library or to make a 
reference library for such barcodes18,21.

We summarized the findings of our comprehensive comparison 
in a decision tree to guide researchers on which strategy to apply to 
their data (Fig. 3h). In summary, our advice is: use reference library 
or cluster filtering if the barcoding system has a large edit distance 
(approximately ≥3); otherwise, if the barcode clone size variation is 
small, a read threshold would work. If the barcode clone size variation 
is large and the barcode system has a small edit distance, either UMIs 
need to be used or a stringent read count threshold implemented 
sacrificing true barcodes with low read count.
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made with CellBarcode. Each row is a sample, each column corresponds to a 
sequencing cycle and the color represents the median base Phred quality score. 
b, Base percentage plotted against the sequencing cycle number made with 
CellBarcode. The sequence shows a 20-bp barcode with fixed flanking regions 
either side. The color represents a base pair. c, Barcode normalized read count + 1 
(by total 105 reads) as filtered in the original paper30 versus using CellBarcode. 
Each dot is a barcode. The Spearman correlation and P value (two-sided) are 

shown in the top left corner. d, Barcode cell counts between the two technical 
replicates for the data without filtering. The read counts were normalized to cell 
counts. Each dot is a barcode with black indicating presence in the reference 
library provided in ref. 30. e, The same as in d but after cluster filtering. The 
filtering process involves removing barcodes that have a Hamming distance of 
less than 2 from a more abundant barcode. In c–e, the red line represents y = x and 
the black line indicates a threshold of one cell.
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Reference and cluster filtering of lentiviral barcodes
To compare cluster and reference library filtering on biological data, 
we used CellBarcode to analyze paired technical replicates of 13,564 
myeloid cells labeled with a random fixed-length barcode library30. 
Consistent with simulated random barcodes (Supplementary  
Fig. 11b), it showed a high edit distance (Supplementary Fig. 11c). First, 
we used CellBarcode to check the quality of the FASTQ file, plotting 
the base percentage and quality in each sequencing cycle (Fig. 4a,b). 

We successfully extracted and quantified the barcodes using CellBar-
code as shown by the correlation with those in the original paper (Fig. 
4c). Our results are also consistent with genBaRcode (Supplementary  
Fig. 15a) and Bartender analysis (Supplementary Fig. 15b), although 
we observe considerably more noise in the Bartender data, because it 
has fewer filtering steps implemented.

According to our decision tree, the methods to use for high-edit-
distance barcodes are reference library or cluster filtering. We therefore 
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Fig. 5 | In vitro VDJ barcode analysis. a, Sequencing library design and 
sequencing scheme. A sample was divided into two technical replicates. After a 
first PCR amplification, each technical replicate was further divided into two for 
sequencing library preparation with and without UMIs. b, Stacked bar plot made 
with CellBarcode showing the base percentage for each sequencing cycle. Each 
column corresponds to a sequencing cycle; the color and height indicate the base 
and proportion, respectively. Both rows depict the same biological sample, with 
or without UMI for sequencing. The position of the regular expression (constant 
region) and the UMI are annotated. c, Barcode read counts between technical 
replicates for the non-UMI library without filtering. Automatic thresholds 
(marked by red lines) were applied to remove the errors in each technical 
replicate separately. The numbers show the barcode count in each of the four 
categories as divided by the threshold lines. Each dot represents a barcode. Plot 
made with CellBarcode; the dots are semi-transparent to show overlap.  

d, Barcode UMI count between technical replicates with UMI library. The data 
were first filtered, retaining UMI with at least ten reads. The red lines indicate a 
UMI count threshold of 1. The number of barcodes in each of the four categories 
as divided by the threshold lines is annotated. Each dot represents a barcode.  
Plot made with CellBarcode; the dots are semi-transparent to show overlap.  
e, Comparing the number of barcodes identified in the non-UMI library and the 
UMI library in one technical replicate. For the non-UMI library, the automatic 
threshold was applied as shown in c. For the UMI library, the same filtering steps 
were applied as in d with the addition of a UMI count threshold of 1. f, Barcode 
read count after filtering between the non-UMI library and the UMI library for 
one of the technical replicates. The read counts were renormalized to 1. A linear 
regression was fitted, and the fitted line (and shaded area of 95% confidence 
interval) and its parameters are written on the plot. Each dot represents a 
barcode.
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extracted barcodes using either no filtering, reference library or clus-
ter filtering and compared barcode cell count detected in technical 
repeats after normalizing read counts by total cell number (Fig. 4d). 
In biological data, as the identity of the true barcodes is unknown, we 
used the reference library provided in ref. 30. Without filtering, many 
barcodes not present in the reference library overlapped in read count 
distribution with those in the reference library, agreeing with our 
simulation results that read threshold filtering decreases the recall 
to ensure precision (Fig. 4d). Cluster filtering removed most of the 
barcodes absent from the reference library, leaving only one spurious 
sequence present in one cell, while keeping all the true barcodes with 
more than one cell (Fig. 4e). This confirms our simulation finding that 
cluster filtering can have the same efficacy as reference library filtering 
using barcodes with high edit distances.

Read threshold filtering of in situ barcodes
Variable-length barcodes such as VDJ barcodes are the most challeng-
ing to identify in noisy data due to the short-edit-distance barcodes 
generated. To explore whether our CellBarcode simulation results 
would hold in experimental variable-length barcode data, we made 
use of our unpublished in vivo VDJ barcode data from mouse mam-
mary glands, for which we have both UMI and non-UMI data from the 
same sample (Fig. 5a,b). Using the known read structures of the two 
sequencing libraries (Fig. 5b), we extracted the barcodes and applied 

automatic read threshold filtering and UMI filtering to the non-UMI 
and UMI samples, respectively (Fig. 5c,d), illustrating the versatility of 
CellBarcode to extract barcodes from a variety of structures (see ‘VDJ 
barcode mammary gland dataset’ in Methods). For different UMI read 
count thresholds, we observed that the number of barcodes reached 
a plateau (Supplementary Fig. 16a). At this plateau, in one duplicate 
sample, we identified 80 barcodes in the non-UMI library, and 82 bar-
codes in the UMI library with 76 barcodes overlapping (87%; Fig. 5e).

In these data, the biggest clones had about 100 times higher 
read/UMI count compared with the smallest clones, corresponding 
to a log clone size s.d. of 1, the lowest considered in our simulations  
(Fig. 5c,d). The clone sizes in the UMI and non-UMI libraries after thresh-
old filtering (normalized reads or UMI count) correlated very well 
(Fig. 5f), with most of the inconsistent barcodes being small clones. 
This result supports our simulation conclusion that automatic read 
thresholding performs well in experimental settings with small clone 
size variation. We observed more spurious barcodes in both UMI and 
non-UMI results from Bartender (Supplementary Fig. 16b,c), indicat-
ing the importance of read or UMI read count thresholds that are not 
implemented in Bartender.

Using CellBarcode to analyze scRNA-seq data
Finally, we designed CellBarcode to extract and identify lineage bar-
codes from single-cell omics data. To this end, CellBarcode is equipped 
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barcodes based on the dominant barcode per UMI using the VDJ scRNA-seq 
data from ref. 35. The y axis is the barcode number in a cell, each dot represents 
a cell and the distribution is shown by the violin plot. d, The number of lineage 

barcodes per cell (corresponding to the left y axis, black) and the cell number 
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UMI. The data were first processed with the dominant barcode per UMI filter. 
Each black dot represents a cell and the violin plot shows the distribution 
of the barcode number per cell. e, The number of lineage barcodes per cell 
(corresponding to the left y axis, black) and the number of cells with a unique 
barcode (corresponding to the right y axis, red) for different thresholds of UMI 
count per barcode. The data were first processed with the dominant barcode 
per UMI filter and the UMI read threshold ≥2. Each dot represents a cell and the 
distribution is shown by the violin plot. The red line plot represents the number 
of retained, unique barcoded cells after applying different UMI count filters 
described in the x axis.

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 4 | February 2024 | 128–143 136

Resource https://doi.org/10.1038/s43588-024-00595-7

with functions to process barcodes from the most popular technologies 
such as 10x Genomics or Smart-seq (Fig. 6a). In this section, we use 
the term ‘cell barcode’ to refer to the unique barcode labeling each 
cell from the single-cell sequencing protocol, and ‘lineage barcode’ 
to refer to the barcode added during a lineage tracing experiment. 
Input to CellBarcode is flexible, allowing FASTQ and BAM/SAM files, 
either one file for all cells (as for 10x Genomics scRNA-seq) or one file 
per cell (as for Smart-seq2), and BAM/SAM files pre-tagged with cell 
barcodes and UMIs, such as those output by the 10x Genomics software 
CellRanger. We illustrate the use of CellBarcode on scRNA-seq data but 
it applies to many types of lineage-barcoded single-cell omics data, 
such as single cell ATAC-sequencing33,34. The potential (but optional) 
filters include (1) extract dominant barcode per UMI, (2) filter UMIs 
using a read count threshold and (3) filter lineage barcodes using a UMI 
count threshold (Fig. 6b). The user must choose various thresholds, 
and here we distinguish two experimental scenarios from published 
data: (1) a unique lineage barcode per cell, such as low-concentration 
lentivirus infection17 or heterozygous inducible VDJ barcode35, and (2) 
multi-barcodes per cell, for example, high-concentration lentiviral 
infection such as the CellTag barcode system36.

To compare the performance of CellBarcode to that of CellTagR, 
a dedicated package for analysis of barcoded scRNA-seq data, we 
replicated the CellTagR demo analysis pipeline (https://github.com/
morris-lab/CellTagR) with CellBarcode on the multi-barcode per cell 
data from ref. 36. Applying the same steps and parameters (see ‘CellTag 
barcode scRNA-seq dataset’ in Methods), CellBarcode obtained similar 
results to CellTagR (Supplementary Fig. 17a,b) with 20% less runtime 
(Supplementary Fig. 17c,d). CellTagR supports only the extraction of 
CellTag barcodes, whereas, to illustrate the versatility of CellBarcode, 
we extracted variable-length VDJ barcodes from scRNA-seq data from 
ref. 35 and obtained similar barcodes and quantification to the original 
paper (Supplementary Fig. 18).

To illustrate how CellBarcode can help users select the differ-
ent filtering thresholds, we counted the number of lineage barcodes 
retrieved per cell for various types of filtering in VDJ barcoding data 
from ref. 35. Due to the introduction of one VDJ cassette in one allele 
of the mouse genome, each cell in this dataset has only one lineage 
barcode. We observed a trade-off between the accuracy of lineage 
barcode retrieval (that is, the proportion of cells with one unique line-
age barcode) and the total number of lineage-barcoded cells retained 
for analysis. We first filtered to take the dominant lineage barcode 
per UMI, as the combination of high-diversity cell and UMI barcodes 
for each read can be assumed unique, which dramatically reduced the 
number of barcodes per cell compared with the raw data (Fig. 6c). Using 
different minimum read-count-per-UMI thresholds, we found that 
the number of barcodes per cell was easily restricted to a maximum 
of 2 with a threshold of 2 (Fig. 6d). Increasing the read-count-per-UMI 
threshold further resulted in the loss of many cells for analysis (Fig. 6d). 
Complementing the read-count-per-UMI filtering with a UMI-count-
per-barcode filter of 2, we obtained 1 identifiable lineage barcode per 
cell (Fig. 6e). These thresholds will depend on each specific dataset, 
for example, with low sequencing depth, even without read-count-per-
UMI or UMI-count-per-cell filtering, most cells have one unique lineage 
barcode as observed in the ref. 17 dataset (Supplementary Fig. 19).

To conclude, in addition to an improvement in runtime, CellBar-
code can extract and identify lineage barcodes in scRNA-seq data 
from many different barcode designs due to its flexible use of regu-
lar expressions. Moreover, CellBarcode implements several filtering 
strategies to identify true from spurious lineage barcodes in single-cell 
data, and produces figures helping the user choose a strategy and its 
parameterization.

Discussion
In this paper, we presented CellBarcode, a versatile R package for anal-
ysis of barcoding data, and CellBarcodeSim, a pipeline to simulate 

barcoding experiments. While we designed the simulation tool to test 
and parameterize filtering approaches for barcode identification, it can 
be employed in a similar vein for experimental design; for example, 
users can investigate the impact of different barcode lengths, UMI or 
non-UMI libraries and sequencing depths in their biological scenario. 
We highlight, however, that this is complicated by the combination of 
unknown biological factors and final filtering approach.

A previous study21 suggested not to use cluster filtering as it can 
result in the removal of true barcodes. However, both our simulations 
and tests on real data show that cluster filtering performs well when the 
barcode edit distance is large enough (≥3 in our simulations) compared 
with realistic low levels of PCR/sequencing error. We would therefore 
refine the statement from ref. 21 to add that cluster filtering can be 
successfully used when the edit distance is sufficiently high, even in 
the case of high clone size variation.

We modeled clone size using a log-normal distribution based on 
our analysis of T-cell receptor clones (Supplementary Fig. 20), and 
while users of CellBarcodeSim can also opt for a power-law distribu-
tion, we hope to add more detailed models in future versions of the 
tool (such as one based on ref. 37). Indeed, in most systems, the clone 
size distribution is unknown; in this case CellBarcodeSim can be used 
to investigate the impact of filtering strategies on barcode identifica-
tion under different assumptions and can aid users in their biological 
interpretation. Further simulation work is also required to test the 
impact of filtering on barcode quantification.

CellBarcodeSim makes many other assumptions about the pro-
cesses involved to simulate barcoding data. Barcode library production 
is modeled with simple distributions rather than separately modeling 
the stages of transfection, growth and sampling. The fixed-length Ham-
ming38 barcodes simulated using the DNABarcodes package are filtered 
to remove many sources of error problematic for PCR, such as barcodes 
containing triplets or with GC bias. The PCR simulation assumes that the 
amount of starting material is large enough to ignore contamination and 
does not model factors such as non-specific hybridizations. Indeed, we 
do not expect our simulation to quantitatively model all possible effects 
of the complex PCR process. Researchers interested in specific sources 
of error, such as those introduced during barcode library preparation, 
or using a non-standard protocol where the PCR primer does not target 
the constant flanking region, would need to adapt the simulation.

CellBarcodeSim calls external tools such as the ART NGS read 
simulator39, the DNABarcodes R package to simulate fixed-length bar-
codes40 and IGoR (Inference and Generation of Repertoires) to simulate 
VDJ barcodes41, which could be a concern in terms of longevity. ART is 
a mature and heavily used tool with no updates required and contain-
ing pre-built error profiles for all the major sequencers. The packages 
simulating barcodes are less mature and barcode-type specific, but 
CellBarcodeSim can be easily updated allowing other tools to feed in.

Methods
Ethics statement
All studies and procedures involving animals were in accordance 
with the recommendations of the European Community (2010/63/
UE) for the Protection of Vertebrate Animals used for Experimen-
tal and other Scientific Purposes. Approval was provided by the eth-
ics committee of the French Ministry of Research (reference APAFIS 
34364-202112151422480). We comply with internationally established 
principles of replacement, reduction and refinement in accordance 
with the Guide for the Care and Use of Laboratory Animals (NRC 2011). 
Husbandry, supply of animals, as well as maintenance and care in the 
Animal Facility of Institut Curie (facility license C75–05–18) before 
and during experiments fully satisfied the animal’s needs and welfare. 
Mouse breeding was in a specific pathogen-free animal facility and 
animals were co-housed with housing conditions using a 12 h light/12 h 
dark cycle, temperature between 20 °C and 24 °C, and average humidity 
between 40% and 70%.
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DNA cellular barcode sequencing simulations
We simulated the DNA cellular barcode sequencing data using Cell-
BarcodeSim (version 1.0) with 5 steps: (1) lineage barcode simulation, 
(2) barcode labeling, (3) clonal expansion, (4) PCR amplification, and 
(5) sequencing.

Lineage barcode simulation. Two types of barcode library can be 
simulated with CellBarcodeSim (‘random barcodes’ with uniform 
probability and fixed length, and ‘Hamming barcodes’ with uniform 
probability, fixed-length and a minimum Hamming distance between 
sequences) while other types of barcode can be uploaded as a list. In 
addition, three libraries were simulated and uploaded in the package: 
14-bp random barcodes, 14-bp Hamming barcodes with minimum 
distance 3 simulated using DNABarcodes40, and variable-length VDJ 
barcodes20 simulated using an external package IGoR.

For the simulation study, a list of possible barcodes was simulated 
for three types of barcode and barcodes were randomly sampled from 
this list to label cells. The fixed-length uniform-probability ‘random 
barcodes’ were generated with stri_rand_strings from stringi package. 
To generate ‘Hamming barcodes’ with a minimum Hamming distance 
of 3, we used the create.dnabarcodes function from the DNABarcodes 
package40. The barcode length can be defined by the user. In this simula-
tion study, we tested 14 or 10 base pairs. Lastly, for the variable-length 
‘VDJ barcodes’20, a list of 1 × 107 VDJ barcodes to sample from was gen-
erated using IGoR41. To ensure the simulated VDJ barcodes resemble 
those produced in vivo, the parameters of the Bayesian network model 
used to generate the barcode space were inferred using IGoR from the 
VDJ barcode sequencing data in mammary gland tissue (Supplemen-
tary Data 1 and 2). Among the simulated sequences, there are 1.4 × 105 
unique barcode sequences with different frequencies. To simulate the 
noise during library preparation for random or Hamming barcodes, 
CellBarcodeSim can simulate normal, log-normal or exponential dis-
tributions, or the user can simulate according to their own uploaded 
empirical distribution.

Barcode labeling simulation. We randomly sampled the barcode lists 
simulated in the previous step for the corresponding barcode type. 
We simulated different samples with different total barcode numbers. 
Each barcode labels one initial cell in the simulation, and those barcode 
sequences were used as the true barcodes in later precision and recall 
analysis. We tested scenarios with 300–30,000 initiating cells, but as we 
found the sequence count distributions to be very similar, as well as the 
impact of various factors on the precision and recall, we chose values 
of 150, 300, 600 and 1,200 for the repeat simulations, corresponding 
to the number of barcodes in most published work.

Clonal expansion simulation. We used a log-normal distribution to 
simulate the final clone sizes of the initially labeled cells. The param-
eters of the reference distribution are log-mean 1.2 and log s.d. 2, 
which were chosen based on the experimentally derived mouse naive 
CD8 T-cell receptor beta-chain sequence clone size distribution 
described in ref. 42 (Supplementary Fig. 20). Observing a log clone 
size s.d. of ~1 in our VDJ-barcoded mammary gland data, ~2.5 in ref. 
30 and ~2.5–3 in ref. 43, we define alternative scenarios of log clone 
size s.d. 1 and 3. We used the rlnorm function in R 4.2.1 (ref. 44) to 
generate random numbers and the clone size of each barcode clone 
was defined by rounding up the nearest integer of the corresponding 
random number. The CellBarcodeSim tool also offers the power-law 
clone size distribution.

We note that when the clone size follows a log-normal distribu-
tion, the ratio of the 99th quantile, Q(0.99), divided by the 1st quantile, 
Q(0.01), depends on only the log s.d. and not on the log-mean (Sup-
plementary Fig. 21), which is explained by the following equations:

Q (q) = eμ+σ×Φ−1(q) (1)

where Φ−1 (q) is the qth quantile of the standard normal distribution 
with mean, μ, and standard deviation, σ.

The ratio of the 99th quantile to the 1st quantile:

Q (0.99) /Q (0.01) = eμ+σ×Φ−1(0.99)/eμ+σ×Φ−1(0.01) = e{σ×(Φ−1(0.99)−Φ−1(0.01)))

(2)

Therefore, we can use the range of empirical clone sizes as a quick 
estimation of log s.d.

PCR expansion simulation. The PCR simulation was written in C++ 
and assumes exponential amplification with an efficiency of 0.703 
(ref. 45) and an error rate of 1 × 10−5 for Taq enzyme, 1 × 10−6 for Phusion 
enzyme and 1 × 10−7 for Q5 enzyme. As PCR mutations are rare events, it 
is unlikely to have more than one mutation per sequence molecule per 
PCR cycle, and substitution errors are the dominant PCR error type46. 
We therefore allow only a maximum of one base substitution per PCR 
cycle. In the simulation, we replicated the barcode DNA sequence in 
silico with the probability of the amplification efficiency, rounding 
to the nearest natural number, and randomly mutated the base of 
the newly synthesized sequence with the PCR error rate. To reduce 
the memory usage, as most of the barcodes have the same sequence 
due to the low PCR error, we stored barcode sequences in a frequency 
table of barcode sequences and frequencies. For the new PCR prod-
ucts, the mutant molecular abundance was estimated by multiplying 
each sequence frequency by the error ratio, considering the sequence 
length. The value was rounded to the nearest integer. Then uniform 
random numbers were generated to decide the mutation position 
and substitution base pair. The sequence frequency table was updated 
by integrating the mutant sequence. If using UMIs, investigators can 
select the number of pre-UMI PCR cycles (in which the UMI sequence 
will not accumulate PCR errors) and the number of post-UMI PCR 
cycles (when the UMI sequence will accumulate PCR errors). As the 
PCR primer region is unlikely to have a PCR mutation and this generally 
corresponds to the barcode flanking regions, by default, the flanking 
sequence is added after the PCR simulation, matching the sequence 
to the experimental case when applicable. However, investigators 
have the option to include the flanking region in the PCR simulation by 
appending the fixed flanking regions to the barcodes when simulating 
the barcode library (see Supplementary Vignette 1 for more detail).

Sequencing simulation. Sequencing simulation was conducted using 
the ART (version 2016-06-05) command line tool (an NGS reads simula-
tor), which supports base substitution, insertions and deletions39. The 
ART-integrated MiSeq V1 and HiSeq 2000 read error profiles (learnt 
empirically from relevant training data39) were used to generate single-
end sequencing with 100 base pairs, with other parameters as default. 
We describe the sequencing profiles used in Supplementary Fig. 22a,b, 
together with PCR error in Supplementary Fig. 22c. When comparing the 
barcode clone size distributions between different simulated datasets, we 
sample 105 sequencing reads to make the distributions easier to compare.

Simulating VDJ-barcoded data with high clone size variation 
and UMIs
We simulated VDJ barcode sequencing with UMIs for high clone size 
variation samples (details of the parameters in Supplementary Table 
3). With an expected sequencing depth of 50 reads per UMI, we filtered 
out UMIs that have read <10 (based on sensitivity analysis to identify 
when the number of barcodes detected plateaus) and then varied the 
UMI count threshold to compute the PR AUC.

DNA cellular barcode pre-processing strategy evaluation
Evaluation of filtering strategies precision, recall and AUC. In the 
simulation study, we evaluated filtering strategies using precision and 
recall. The precision and recall are defined as:
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Precision = ntrue/noutput (3)

Recall = ntrue/ninput (4)

where ninput is the number of barcodes used for labeling, noutput is the 
total number of barcodes in the pre-processing output, and ntrue is the 
number of barcodes shared between the pre-processing output and 
the barcodes used for labeling.

The precision and recall depend on the threshold used for barcode 
filtering. PR curves were drawn using a range of read count thresholds 
(or UMI count in the UMI cleaning case), and the AUC was calculated to 
evaluate the overall goodness of a filtering strategy. The AUC is a way 
to evaluate the goodness of a method regardless of threshold and was 
computed using the ROCR R package47.

All boxplots depict 25th, 50th and 75th percentiles in the box, 25th 
or 75th percentile minus or plus 1.5 × interquartile range (IQR), respec-
tively, for the whiskers, and points show outliers beyond the whiskers.

Barcode filtering
We enabled four barcode filtering strategies in the CellBarcode package 
with bc_cure_umi, bc_cure_clustering, bc_cure_depth and bc_auto_
cutoff functions. They are (1) read count thresholding filtering with 
bc_cure_depth function, (2) reference library filtering, (3) cluster filter-
ing and (4) UMI filtering.

Read count threshold filtering excludes the barcodes with read 
counts under the threshold. The automatic threshold function deter-
mines the threshold by applying one-dimensional weighted k-means 
clustering to the barcode read count distribution. It involves the follow-
ing steps. (1) Remove barcodes with count below the median (as there 
are generally many more spurious than true barcodes). (2) Transform 
counts by log2(x + 1). (3) Apply one-dimensional k-means clustering48 
to the transformed read counts with cluster number fixed at 2 and with 
weights of the transformed count. (4) Use the boundary between the 
two clusters as the read count threshold.

In reference library filtering, only barcodes appearing in the bar-
code reference list are retained in the final output, and all others are 
filtered out. In the simulations, the barcode reference library was the 
barcode list generated in ‘Lineage barcode simulation’.

For cluster filtering, we assumed that with a low-error-rate, spuri-
ous error barcodes should have a much lower read number compared 
with their true ‘mother’ sequences. We clustered barcodes with similar 
sequences to identify potential ‘mother’ and ‘daughter’ sequence pairs. 
Then we removed the ‘daughter’ sequences, thus making it easier to 
identify true barcodes with small clone size. We used the following 
clustering process for each sample. (1) Identify the most abundant 
barcode based on read counts. (2) Compute the distance (Hamming 
distance or Levenshtein distance) between the most abundant barcode 
and the other barcodes, starting from the least abundant barcode. (3) 
If the distance between two barcodes is below a set threshold, and the 
reads count fold change between them is above a set threshold, the less 
abundant barcode is removed. (4) Iterate for each of the other barcodes 
in order of abundance. The process is described by the pseudo code in 
Supplementary Algorithm 1.

UMI filtering takes advantage of the UMI sequence. The default 
in CellBarcode is to assume that UMIs are not unique in line with the 
findings of ref. 49 (although the reader has the option to assume the 
converse if they wish). We first counted the number of reads for each 
UMI–barcode combination and then applied a read count threshold. 
The remaining barcode abundances were quantified by summing 
the UMI count. We assume that the probability of an error in both the 
UMI and its associated barcode sequence is very low, and so we do 
not cluster similar UMIs. This may result in a slight overestimation of 
clone size if a UMI sequence results from an error, but should not affect 
barcode identification.

Benchmarking CellBarcode and genBaRcode
To compare the output and runtime of CellBarcode (version 1.7.1) and 
genBaRcode (with version 1.2.6), we simulated a random barcode 
dataset using the method described above with parameters (1) 300 
cells induced, (2) log-normal clone size distribution with log clone 
size s.d. of 2 and log clone size mean 1.2, (3) 30 PCR cycles, 1 × 10−6 
PCR mutation rate, PCR efficiency 0.705, and (4) HiSeq 2000 100-bp 
sequencing error profile.

For barcode extraction, the regular expression AAAAAAAAAA 
GGGGG([ATCG]{14})ATCGATCGTTTTTTT was used in CellBarcode to 
extract the 14-bp random barcode, and the pattern AAAAAAAAAA-
GGGGGNNNNNNNNNNNNNNATCGATCGTTTTTTT was used in gen-
BaRcode. Then at the barcode filtering step, the clustering strategy was 
used, which removed the minority barcodes with a Hamming distance 
of 1 to the majority ones. We note that CellBarcode discards error reads, 
whereas genBaRcode adds them to the majority one. We chose this 
strategy as we found that the resulting underestimation of clone size 
due to discarding clustered reads was very slight (see comparison of 
genBaRcode and CellBarcode, Supplementary Figs. 1 and 16), whereas if 
a clustered barcode is actually a real barcode, for example, when library 
edit distance is small, the result could be a substantial overestimation 
of some clone sizes. For further information on how this clustering 
process was carried out, please refer to the ‘Barcode filtering’ section. 
The runtime of above analysis was evaluated by Sys.time function in 
R 4.2.1 (ref. 44). We used CellBarcode version 1.7.1 and genBaRcode 
version 1.2.6 here and throughout.

Acquisition, analysis and simulation of experimental data
Several datasets are analyzed in this paper; below, for each, we describe 
first the experimental dataset, then the barcode analysis and finally the 
simulation parameters (for bulk data).

Lentiviral barcode dataset
Experimental data. We used a lentiviral barcode dataset from our pre-
vious publication30. Briefly, it consists of 13,564 myeloid cells recovered 
from mice 4 weeks after transplantation of barcoded erythropoietin 
(EPO)-treated haematopoietic stem and progenitor cells (HSPCs). The 
HSPCs were labeled by the LG2.2 barcode library, which has a 20-bp 
fixed-length barcode region, a diversity of >10,000 barcodes and has a 
reference library. The myeloid cell DNA was divided into two technical 
replicates before PCR amplification and sequencing.

Barcode analysis. The output FASTQ file from ref. 30 was analyzed 
with the CellBarcode package using the regular expression ACGGAAT-
GCTAGAACACTCGAGATCAG(.{20})ATGTGGTATGATGTATC to extract 
the 20-bp barcode sequence between constant regions. In the regular 
expression, the first bases ACGGAATG are the plate index used to 
demultiplex samples with the same P7 index. The extracted barcodes 
were cleaned by reference library or cluster filtering separately. For 
the cluster filtering, we remove the minority barcodes with Hamming 
distance 1 to the majority ones as the barcode library has a minimum 
edit distance of 5 (Supplementary Fig. 11c). Then we normalized the 
read number (nreads

i ) by the total cell count (ncell
total) to estimate the clone 

size (ncell
i ) for each barcode clone (i) with following formula:

ncell
i = nreads

i /∑
i
nreads
i × ncell

total (5)

For comparing CellBarcode and genBarcode on the fixed-length 
barcode dataset from ref. 30, both methods use the same criteria to 
extract and filter barcodes, which involves defining a barcode as a 
20-bp random sequence between fixed sequences ACGGAATGCTA-
GAACACTCGAGATCAG and ATGTGGTATGATGTATC. In addition, cluster 
filtering is performed to remove minority barcodes with a Hamming 
distance of 1 and the runtime was measured by the ‘Sys.time()’ func-
tion in R. The Spearman correlation was performed using all barcodes.
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Bartender can define only a fixed region of 5 bp. Therefore, the 
barcode definition is set as a 20-bp random sequence between ATCAG 
and ATGTG. The default Bartender clustering filtering has been applied. 
The runtime was measured by the ‘time’ function in the shell. The Bar-
tender version used here (and following references) is https://github.
com/LaoZZZZZ/bartender-1.1/commit/9683af760cc33f3118514095
7d503af7f3e230be.

Simulation. To simulate the barcodes, we used a lentiviral barcode 
reference library to label 15 cells. The labeled cells were then subjected 
to clonal expansion, following a log-normal distribution with a mean 
log clone size of 1.2 and s.d. of 3. After performing 30 PCR cycles with 
an error rate of 1 × 10−6, we concatenated the constant regions: 5′ ACG-
GAATGCTAGAACACTCGAGATCAG and 3′ ATGTGGTATGATGTATCA. 
Finally, we simulated the sequencing using the HiSeq 2000 profile, 
aiming for 50 reads per cell.

CRISPR gRNA dataset
Experimental data. Tumor organoids were derived from Apc1638N 
mice50 and transduced with lentiviral particles expressing the Cas9 
enzyme along with blasticidin resistance (Addgene plasmid 52962) as 
described previously51. Selection of infected organoids was achieved by 
adding 10 g ml−1 blasticidin (A1113903 Thermo Fisher) to the medium.

Cas9-expressing tumor organoids were then transduced with 
lentiviral particles each containing a single guide RNA sequence 
derived from a bank of 1,796 single guide RNAs that target Notch1-
related genes, as found in ref. 52. Transduced organoids were collected 
either at 48 hours or at 7 days post infection. At 7 days, organoids were 
dissociated and Tomato-expressing live cells (based on DAPI exclu-
sion) were fluorescence-activated cell sorted (FACS) (Supplementary  
Fig. 24). DNA was extracted using a standard phenol:chloroform:isoamyl 
alcohol protocol. Briefly, cells were resuspended in 500 µl PBS and 1 ml 
phenol:chloroform:isoamyl alcohol (25:24:1) solution (Sigma P2069) 
was added. After centrifugation at 16,000g for 5 min, the aqueous phase 
was collected and one volume of chloroform (Sigma 32211) was added. 
Following a vortex homogenization step, the samples were centrifuged 
at 16,000g for 5 min and the aqueous phase was recovered. Precipitation 
of the DNA was then performed by adding 1 µl glycogen at 20 µg µl−1 
(Thermo Fisher 10814010), 0.5 volume of the sample of 5.5 M sodium 
acetate and 2.5 volumes of the sample of cold 100% ethanol. After over-
night at −20 °C and 30 min of centrifugation at 16,000g at 4 °C, the 
precipitated DNA pellet was recovered in 30 µl water and quantified by 
nanodrop. Ten microlitres of DNA were then amplified by PCR in tripli-
cates for each sample to add P5-staggers and P7-index oligos to perform 
NGS DNA sequencing. The PCR was performed with Taq polymerase 
(Promega M7406) for 22 cycles (30 s at 95 °C, 30 s at 53 °C, 30 s at 72 °C).

The sequences of the primers are the following:
P5 staggers:
�5′AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA
CGCTCTTCCGATCT[s]TTGTGGAAAGGACGAAACACCG)
P7 index:
�(5′CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTG-
GAGTTCAGACGTGTGCTCTTCCGATCTTCTACTATTCTTTCCC-
CTGCACTGT)
Bead purification of the PCR product using a ratio of 1.2 was per-

formed following the manufacturer’s protocol (Beckman Coulter 
B23318). Quality and concentration of the samples were assessed on 
a Tapestation. Then it was sequenced by MiSeq SE110 with 10% PhiX.

Barcode analysis. The gRNA sequencing results are processed by Cell-
Barcode with regular expression ‘AAGGACGAAACACCG(.{20})’. After 
reference library-based filtering, the log clone size s.d. was calculated.

Simulation. We simulated the gRNA sequencing data using a barcode 
library consisting of 1,796 gRNA sequences. The simulated cells were 

labeled with a clone size log-mean of 1, but varying log clone size s.d. 
values ranging from 0.5 to 2.5. To mimic the error rate of Taq polymer-
ase, we performed 20 PCR cycles with a PCR error rate of 10−4. Finally, 
the sequencing was simulated using the built-in ART MiSeq profile. We 
analyzed the simulated results in the same manner as the experimental 
dataset.

VDJ barcode MEF cell line dataset
Experimental data. The VDJ barcodes are produced by an inducible 
mouse in situ barcode system based on VDJ recombination20. In this 
system, the V, D and J sequences are separated by the signal cassettes, 
which are recognized and cut out by the Rag1 (recombination activat-
ing gene-1) and Rag2 (recombination activating gene-2) enzymes and 
repaired by non-homologous end joining repair, which is error prone, 
creating the diversity of the final barcode sequences. A cassette with 
reversed Rag1, Rag2 and TdT (terminal deoxynucleotidyl transferase) 
genes are surrounded by LoxP sequences, which can be activated by 
Cre floxing. The TdT adds de novo nucleotides to the end joins, which 
increases the diversity of the final barcode sequence.

In ref. 20, MEF cell lines were created from individual cells of a 
VDJ barcode-induced mouse with known unique barcode sequences. 
There are a total of 7 MEF cell lines with barcode sequences: CTC-
GAGGTCATCGAAGTATCAAGTCCAGTTCTACTATCGTAGCTACTA, 
CTCGAGGTCATCGAAGTATCAAGTCCAGTACTATCGTACTA, CTCGAG-
GTCATCGAAGTATCAAGTCCAGTCTACTATCGTTACGACAGCTACTA, 
CTCGAGGTCATCGAAGTATCAAGTCCAGTTCTACTATCGTTACGAGC-
TACTA, CTCGAGGTCATCGAAGTATCAAGTCCATCGTAGCTACTA, 
CTCGAGGTCATCGAAGTATCAAGTCCAGTACTGTAGCTACTA and 
CTCGAGGTCATCGAAGTATCAAGTCCAGTATCGTTACGCTACTA.

These cell lines were mixed in specific ratios, in ascending order 
of powers of 2 from 1 to 7. Sequencing data were then generated with 
different numbers of initiating cells20.

Barcode analysis. We re-analyzed one of the technical replicates 
of +0, +2, +4 and +6 PCR cycles with CellBarcode using the regular 
expression ([ACGT]{12})CTCGAGGTCATCGAAGTATC([ACGT]+)CCG-
TAGCAAGCTCGAGAGTAGACCTACT to capture the variable-length 
barcode between the fixed regions of CTCGAGGTCATCGAAGTATC and 
CCGTAGCAAGCTCGAGAGTAGACCTACT, after a 12-bp random UMI.

Simulation. For Fig. 2b, to simulate a MEF cell line experiment, we 
simulated 6,250 cells (half of the 12,500 cells to mimic the technical 
replicates) with barcode sequences and clone sizes that match the 
experimental set-up. After two cycles of preamplification, a 12-bp 
random UMI is added with a tagging efficiency of 2%. This is followed 
by 30 cycles of PCR amplification, with a PCR efficiency of 0.705 and a 
PCR error rate of 1 × 10−5.

For Supplementary Fig. 7, we simulated the full dataset to mimic 
the experiment described above with different numbers of PCR cycles. 
We used the same barcode sequences, cell number and type of sequenc-
ing while incorporating variable total PCR cycles of +0, +2, +4 and +6. 
The same fixed 3′ sequence as the experimental dataset was added 
(CCGTAGCAAGCTCGAGAGTAGACCTACTGGAATCAGACCGCCACCATG-
GTGAGCA), and the simulated data were analyzed in the same manner 
as the experimental dataset.

In vivo VDJ barcode mammary gland dataset
Experimental data. The VDJ barcode mouse was crossed with a 
Notch1CreERT2 mouse53. Lactating mothers were injected with tamox-
ifen (0.1 mg per g of mouse body mice, MP Biomedicals, 156738) as 
described54 to induce Cre recombination in the progeny at stage P0. 
Mammary tissue of a DRAG+/− Notch1CreERT2+/− female was then collected 
at 6 weeks of age and mammary single-cell dissociation was performed 
as previously described55. Briefly, mammary fat pads were mechanically 
minced with scissors and scalpel and digested for 90 min at 37 °C in 
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CO2-independent medium (Invitrogen, 18045-054) supplemented with 
5% fetal bovine serum, 3 mg ml−1 collagenase A (Roche, 0103586001) 
and 100 U ml−1 hyaluronidase (Sigma, H3884). The resulting suspension 
was sequentially resuspended in 0.25% trypsin–EDTA for 1 min, and 
then 5 min in 5 mg ml−1 dispase (Roche, 04942078001) with 0.1 mg ml−1 
DNase I (Sigma, D4527) followed by filtration through a 40 μm mesh. 
Red blood cells were lysed in NH4Cl. The obtained single-cell suspen-
sion was then stained with the following Biolegend antibodies, at a 
1/100 dilution: APC anti-mouse CD31 (102510), APC anti-mouse Ter119 
(116212), APC anti-mouse CD45 (103112), APC/Cy7 anti-mouse CD49f 
(313628) and PE anti-mouse EpCAM (118206). Dead cells (DAPI+) and 
CD45+/CD31+/Ter119+ (Lin+) non-epithelial cells were excluded before 
analysis using a FACS ARIA flow cytometer (Becton Dickinson) (Sup-
plementary Fig. 25). In total, 20,589 barcoded GFP+, Lin−, EpCAMhigh and 
CD49flow luminal cells were sorted into the lysis buffer (Viagen, 301-C).

For these data, we have access to both UMI and non-UMI sequenc-
ing libraries as each technical replicate was split in two and processed 
in parallel with UMI and non-UMI protocols.

For the UMI barcode sequencing library, we follow the protocol 
described in ref. 20. In brief, the lysed cells were sheared by sonica-
tion then divided into two technical replicates, and the target region 
captured by beads. The DNA in beads was used as a template to do the 
preamp PCR to amplify the target region with 11 cycles. Next, the UMI 
was introduced by a second PCR, then the third PCR to add the M1 
sequences, and finally the fourth PCR to add the adapter sequence to 
get the sequencing library. The library was sequenced by MiSeq SE110 
with 10% PhiX.

For the non-UMI barcode sequencing library, the preamp PCR 
product from the UMI barcode library was used to generate a non-UMI 
sequencing library. We took 100 μl preamp PCR product, cleaned it with 
1.8× SPRI beads and eluted in 30 μl DNAse-free water. The first PCR used 
28 μl of the eluted DNA as template with 50 μl PCR reaction (10 μl 5× 
Q5 buffer, 0.5 μl 2 U μl−1 Q5 DNA polymerase, 1 μl 10 mM dNTP, 0.25 μl 
100 μM preamp Fwd primer and preamp Rev primer, 10 μl DNAse-free 
water) for 19 cycles (98 °C 2 min; 19 cycles of 98 °C 10 s, 67 °C 30 s, 72 °C 
30 s; then 72 °C 5 min). Then the products were cleaned by 1.8× SPRI 
beads and eluted into 30 μl DNAse-free water. The second PCR used 
15 μl of the eluted DNA from last step as the template with 50 μl reaction 
(10 μl 5× Q5 buffer, 1 μl 2 U μl−1 Q5 DNA polymerase, 1 μl 10 mM dNTP, 
0.25 μl 100 μM preamp Fwd primer and M1 Rev primer, and 22.5 μl 
DNAse-free water) for 5 PCR cycles (98 °C 2 min; 5 cycles of 98 °C 10 s, 
67 °C 30 s, 72 °C 30 s; then 72 °C 5 min). After that, the PCR products 
were cleaned by 1.8× SPRI beads and eluted into 30 μl DNAse-free water. 
The third PCR used 10 μl DNA from last step as template to add the NGS 
adapters by 20 μl PCR reaction (4 μl 5× Q5 buffer, 0.4 μl 2 U μl−1 Q5 DNA 
polymerase, 0.4 μl 10 mM dNTP, 0.1 μl 100 μM P5 tagging primer, 4 μl 
2.5 μM P7 tagging primer with index and 1.1 μl DNAse-free water) by 5 
PCR cycles (98 °C 2 min; 5 cycles of 98 °C 10 s, 67 °C 30 s, 72 °C 30 s; then 
72 °C 5 min). The final DNA was cleaned by 1× SPRI beads, and eluted 
into 30 μl DNAse-free water. The library with 10% PhiX was sequenced 
by MiSeq in SE110 mode with a 25M sequencing chip aimed for 20M 
reads output. This library was sequenced together with other samples 
but independent to the UMI barcode library.

preamp Fwd primer:
ACTCACTATAGGGAGACGCGTGTTACC
preamp Rev primer:
GACACGCTGAACTTGTGGCCGTTTA
M1 Rev primer:
AGTTCAGACGTGTGCTCTTCCGATCCAGCTCGACCAGGATGGG
P5 tagging primer:
�AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC-
GACGCTCTTCCGATCTACTCACTATAGGGAGACGCGTGTT
P7 tagging primer:
�CAAGCAGAAGACGGCATACGAGATTGACTGAGTGACTGGAGTTCA-
GACGTGTGCTCTTCCGATC

Barcode analysis. For the VDJ barcode UMI library analysis using 
CellBarcode, we extract the barcode and UMI using regular expression 
‘(.{16})CCTCGAGGTCATCGAAGTATCAAG(.*)CCGTAGCAAGCTCGA-
GAGTAGACCTACT’, which defines the 16-bp UMI sequence before the 
constant region and the variable-length VDJ barcode sequence followed 
by another constant region. Then we removed the UMI barcode tags 
with fewer than 100 reads and counted the UMIs per barcode in the 
remaining tags, which is a robust threshold as the final barcode is very 
stable when we increase the threshold (Supplementary Fig. 18a), and 
used the remaining barcodes. Investigators can use a similar approach 
to determine a read count threshold, in conjunction with knowledge 
about their targeted sequencing depth per cell.

For the non-UMI barcode library sequencing, we used the regu-
lar expression ‘CCTCGAGGTCATCGAAGTATCAAG(.*)CCGTAGCAA-
GCTCGAGAGTAGACCTACT’ to match the variable-length VDJ barcode 
between the constant regions. The automatic read count threshold was 
used to identify true barcodes.

We compared CellBarcode and Bartender using both UMI and 
non-UMI sequencing described above. We extracted the barcodes with 
CellBarcode as described above, with the UMI tag requiring a minimum 
of 100 reads to be counted. In non-UMI libraries, an automatic thresh-
old is applied in CellBarcode. For Bartender, it only allows a maximum 
of a 5-bp match in the fixed region. Therefore, the barcode is defined 
between the fixed regions TCAAG and CCGTA. The UMI is defined by 
the first 16-bp random sequence in both cases. Then the clustering 
with one mismatch is used for both UMI and non-UMI sequencing. 
The runtime of Bartender is measured by shell command ‘time’, and 
for CellBarcode by the ‘Sys.time()’ function in R. The shared barcodes 
were counted and visualized using a Venn plot. Linear regression was 
performed on the shared barcodes.

Simulation. We used CellBarcodeSim to simulate the above VDJ 
sequencing data. The simulation included a VDJ barcode library with 
100 cells, which were expanded using a log-normal distribution (log 
clone size mean 1.2, s.d. 1). We used a random UMI of length 16 bp, and 
sequenced 100 reads per UMI using the ART built-in MiSeq profile, 
resulting in sequences of length 111 bp. In addition, we added fixed 
regions at the 5′ end (CCTCGAGGTCATCGAAGTATCAAG) and the 3′ 
end (CCGTAGCAAGCTCGAGAGTAGACCTACTGGAATCAGACCGCCAC-
CATGGTGAGCACACGTCTGAACTCCAGTCACTCAGTCAATCTCGTATGC-
CGTCTTCTGCTTG). Other parameters were kept default.

CellTag barcode scRNA-seq dataset
Experimental data. The scRNA-seq CellTag BAM file36 was downloaded 
from the Sequence Read Archive with accession number SRR7347033. 
This file corresponds to the MEF cell line that was infected with CellTag 
barcodes, underwent fate reprogramming through overexpression 
of transcription factors FOXA1 and HNF4α, and was sequenced after 
15 days.

Barcode analysis. For the CellTagR analysis, we followed its demo 
described here https://github.com/morris-lab/CellTagR. First, we 
filtered the BAM file in bash by (1) filtering unmapped reads and (2) 
filtering transgene reads. The filtered BAM file was used as input to both 
the CellTagR and CellBarcode pipelines. After first creating a CellTag 
object, the V1 barcode was extracted from the BAM file, by matching 
5′ constant GGT and 3′ constant GAATTC. After that, barcode filter-
ing was applied including: (1) filter cells (a list of cells passing quality 
control was downloaded from the Gene Expression Omnibus (GEO) 
with dataset ID GSE99915), (2) barcode sequence error correction with 
clustering using Starcode, (3) keep UMIs with at least 2 reads and (4) 
barcode reference library filtering (whitelist filtering). The barcode 
reference library (whitelist) can be found with the demo datasets of 
the CellTagR package. Barcode clustering error correction was done 
by starcode-1.4 (ref. 56).
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We applied the CellTagR pipeline described above as closely as 
possible using CellBarcode. Using CellBarcode, we extracted the V1 
barcode using the regular expression ‘GT([ATCG]{8})GAATTC’, which 
matches the 8-bp DNA sequence surrounded by two fixed constant 
regions. Then, we carried out the four filtering steps using the CellBar-
code package, which are (1) filter cells using the quality control passed 
list described above, (2) barcode sequencing correction by removing 
minority barcodes with a Hamming distance of 1 to the majority one, (3) 
keep UMI with at least 2 reads and (4) barcode reference library filtering.

VDJ barcode scRNA-seq dataset
Barcode analysis. In this section, we describe VDJ barcode extraction 
with CellBarcode, the barcode filtering was described in ‘Results’.

In single-cell sequencing data analysis, each cell is stored as an 
individual sample in the BarcodeObj, and this object has the same data 
structure as that of bulk analysis.

The FASTQ file was acquired from the authors. Their read 1 and 
read 2 were concatenated. In the sequence, we defined the cellular 
10x barcode as the first 16 bases, and the UMI as 12 bases followed, 
according to the 10 × 3′ scRNA-seq reads structure. The lineage bar-
code sequence was extracted using the 3′ and 5′ constant sequences: 
‘CGAAGTATCAAG’ and ‘CCGTAGCAAG’.

The result in original paper was accessed from GitHub: https://
github.com/TeamPerie/Cosgrove-et-al-2022/blob/main/Figure1/
RNA_BC_PREPROCESSING/input_output_m534/agrep_10xbc_and_
vbc_m534_both.txt.gz. A brief description of the barcode filtering of 
the original is as follows: UMIs were filtered to keep only those with 3 
or more reads and one dominant VDJ barcode (defined as ≥0.45 reads). 
The dominant barcode for each UMI was extracted, and finally they 
assigned one VDJ barcode to a 10x cell if there is good agreement across 
UMIs, defined as ≥0.75 agreement across all remaining UMIs. If there is 
only one UMI retained, they further ensured that the VDJ barcode for 
this UMI was the dominant barcode across all the reads for that cell 
and has ≥0.45 of reads.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data 
were excluded from the analyses. The experiments were not rand-
omized. The investigators were not blinded to allocation during experi-
ments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The lentiviral barcodes dataset from ref. 30 was obtained from ref. 57; 
the corresponding pre-analysed data are available on GitHub (https://
github.com/TeamPerie/Eisele-et-al.). The CellTag barcode sequenc-
ing data from ref. 36 are on GEO with dataset ID GSE99915. The ref. 17 
barcoded scRNA-seq dataset is on GEO with dataset ID GSE164716. The 
mammary gland VDJ barcode dataset and gRNA sequencing data are 
available on Zenodo (https://doi.org/10.5281/zenodo.8124948)58. The 
MEF cell line mixes VDJ barcode dataset is available on Zenodo (https://
doi.org/10.5281/zenodo.10027001)59. The VDJ-barcoded scRNA-seq 
data from ref. 35 belongs to the authors of that paper and was given 
to us for the purposes of this paper; to obtain this data, please contact 
L.P. Source data are provided with this paper.

Code availability
Code for all analysis in this study is available on GitHub (https://github.
com/TeamPerie/CellBarcode_paper_Sun_et_al) and on Zenodo (https://
doi.org/10.5281/zenodo.10492761)60. The CellBarcode package is avail-
able on Bioconductor (https://bioconductor.org/packages/release/
bioc/html/CellBarcode.html and https://doi.org/10.18129/B9.bioc.

CellBarcode)61. The Barcode sequencing simulation kit is available 
on GitHub (https://github.com/TeamPerie/CellBarcodeSim) and on 
Zenodo (https://doi.org/10.5281/zenodo.10492831)62.
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