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Traditionally, quantum entanglement has
played a central role in foundational discussions
of quantum mechanics. The measurement of cor-
relations between entangled particles can exhibit
results at odds with classical behavior. These dis-
crepancies increase exponentially with the num-
ber of entangled particles1. When entanglement
is extended from just two quantum bits (qubits)
to three, the incompatibilities between classical
and quantum correlation properties can change
from a violation of inequalities2 involving stat-
istical averages to sign differences in determin-
istic observations3. With the ample confirma-
tion of quantum mechanical predictions by ex-
periments4–7, entanglement has evolved from a
philosophical conundrum to a key resource for
quantum-based technologies, like quantum cryp-
tography and computation8. In particular, max-
imal entanglement of more than two qubits is
crucial to the implementation of quantum error
correction protocols. While entanglement of up
to 3, 5, and 8 qubits has been demonstrated
among spins9, photons7, and ions10, respectively,
entanglement in engineered solid-state systems
has been limited to two qubits11–15. Here, we
demonstrate three-qubit entanglement in a super-
conducting circuit, creating Greenberger-Horne-
Zeilinger (GHZ) states with fidelity of 88%, meas-
ured with quantum state tomography. Sev-
eral entanglement witnesses show violation of bi-
separable bounds by 830 ± 80%. Our entangling
sequence realizes the first step of basic quantum
error correction, namely the encoding of a logical
qubit into a manifold of GHZ-like states using a
repetition code. The integration of encoding, de-
coding and error-correcting steps in a feedback
loop will be the next milestone for quantum com-
puting with integrated circuits.

With steady improvements in qubit coherence, control,
and readout over a decade, superconducting quantum cir-
cuits16 have recently attained two milestones for solid-
state two-qubit entanglement. The first is the violation
of Bell inequalities without a detection loophole, real-
ized with phase qubits by minimizing cross-talk between
high-fidelity individual qubit readouts14. Second is the
realization of simple quantum algorithms13, achieved
through improved two-qubit gates and coherence in cir-
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Figure 1: Four-qubit cQED processor, and spectro-
scopic characterization. a, Micrograph of 6-port super-
conducting device with four transmon qubits [Q1 (inset) to
Q4] inside a meandering coplanar waveguide resonator. Local
flux-bias lines allow qubit tuning on nanosecond timescales
with room-temperature voltages Vi. Microwave pulses at
qubit transition frequencies f1, f2, and f3 realize single-qubit
x- and y-rotations in 8 ns. Q4 (operational but unused) is
biased at its maximal frequency of 12.27 GHz to minimize its
interaction with the qubits employed. Pulsed measurement
of cavity homodyne voltage VH (at the bare cavity frequency
fc = 9.070 GHz) allows joint qubit readout. A detailed schem-
atic of the measurement setup is shown in Supplementary
Fig. S2. b, Grey-scale images of cavity transmission and qubit
spectroscopy versus local tuning of Q1 show avoided crossings
with Q2 (66 MHz splitting), with Q3 (128 MHz splitting) and
with cavity (615 MHz splitting). Points I and II are two of
three operating points (Fig. 2 shows III). Single-qubit gates
and joint readout are performed at I. A C-Phase gate between
Q1 and Q2 is achieved by flux pulsing to II.
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cuit quantum electrodynamics (cQED)17,18. The ex-
tension of solid-state entanglement from two to sev-
eral qubits is a new milestone within reach of existing
technology. Tripartite interactions between two phase
qubits and a resonant cavity in cQED were recently
demonstrated19, suggesting a deterministic but unveri-
fied production of W-class tripartite entanglement20.
Here, we demonstrate the extension of conditional-
phase gates13 (C-Phase) and joint qubit readout15,21 in
cQED to the generation and detection of more stringent
GHZ-class entanglement between three superconducting
charge qubits. Independently, entanglement between
three phase qubits has been created and detected at
UCSB, and is reported in a simultaneous publication22.

Our superconducting chip (Fig. 1a) consists of four
transmon qubits23,24 (labeled Q1 to Q4 counter-clockwise
from top right) inside a transmission-line cavity that
couples them25, isolates them from the electromagnetic
environment26, and allows their joint readout15,21,27.
As in the two-qubit predecessor13,15, qubit control is
achieved with a combination of resonant microwave
drives realizing single-qubit x- and y-rotations, and
flux pulses individually tuning the qubit transition fre-
quencies on nanosecond timescales. Flux pulses indu-
cing small frequency excursions (. 100 MHz) realize z-
rotations. Stronger pulses (∼ 650 MHz excursions) drive
specific computational levels into resonance with non-
computational ones (involving second-excited states of
Q2 and Q3) to realize C-Phase gates between nearest
neighbors in frequency28. The readout exploits qubit-
state-dependent cavity transmission to gain direct ac-
cess to multi-qubit correlations, facilitating full tomo-
graphy of the qubit register and entanglement witness-
ing. We emphasize that doubling the number of coupled
qubits has been achieved without significantly increasing
the complexity of circuit design, sample fabrication, or
experimental calibration, demonstrating the power of a
quantum bus architecture.

The spectrum of single excitations of the three em-
ployed qubits (Q1 to Q3) and the cavity reveals key
features of the generalized Tavis-Cummings Hamilto-
nian and allows extraction of its parameters (see Meth-
ods). Spectroscopy as a function of local flux tuning
of Q1 (Fig. 1b) shows exactly three avoided crossings:
J-crossings25 with Q2 and with Q3, and the vacuum-
Rabi splitting17 with the cavity near its bare frequency
fc = 9.070 GHz. To the resolution of all spectroscopy
performed, the spectrum is free of spurious avoided cross-
ings. This is a critical requirement for pulsed excur-
sions of qubit transition frequencies. We choose point I
[(f1, f2, f3) = (6.000, 7.000, 8.000) GHz ± 2 MHz] for
all single-qubit rotations and for readout. Here, the
qubits are sufficiently detuned from their nearest neigh-
bors in frequency to make their interaction small, yet
close enough to the cavity to reach the strong-dispersive
regime of cQED29,30.

Two-qubit C-Phase gates are the workhorses that gen-
erate entanglement in the qubit register. We realize C-
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Figure 2: Frequency- and time-domain character-
ization of two-qubit-gate primitive. Main, Two-
tone spectroscopy24 of computational level |011〉 and non-
computational level |002〉 through their avoided crossing
(86 MHz splitting) at point III. This crossing (and its |111〉↔
|102〉 analog in the three-excitation manifold) is the primitive
for a C-Phase gate between Q2 and Q3 (see Ref. 28). The
gate is realized with a sudden flux pulse into III. While the
pulse is on, the quantum amplitude initially in |011〉 is coher-
ently exchanged with |002〉. The pulse is turned off after one
full period, at which time all quantum amplitude returns to
|011〉, but with an additional phase of π. Inset, Time-domain
characterization of the avoided crossing using the sequence
outlined by arrows in main panel. Starting from |000〉, simul-
taneous π pulses on Q2 and Q3 populate |011〉. A V2 pulse of
duration τ is next applied. Simultaneous π-pulses then trans-
fer the final quantum amplitude in |011〉 to |000〉 to maximize
readout contrast. This characterization gives a calibration of
the optimal flux-pulse duration, in this case 12 ns.

Phase gates by direct extension of the protocol proposed
for phase qubits in Ref. 28, wherein a full coherent os-
cillation between computational and non-computational
states yields a two-qubit phase of π. The primitive inter-
action for C-Phase betweenQ2 andQ3 is shown with two-
tone spectroscopy and time-domain data in Fig. 2. (See
Supplementary Fig. S1 for a similar characterization of
the primitive for C-Phase between Q1 and Q2). At point
III, the computational level |011〉 becomes resonant with
the non-computational level |002〉 (|abc〉 denotes excita-
tion level a on Q1, b on Q2 and c on Q3). The cavity-
mediated interaction between these levels produces an
avoided crossing of 86 MHz. An analogous avoided cross-
ing takes places simultaneously in the three-excitation
manifold, between |111〉 and |102〉. A coherent oscillation
between the computational and the non-computational
levels is started by pulsing non-adiabatically into point
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Figure 3: Building three-qubit entanglement with two-qubit gates. a,b,c, Gate sequences producing states with
increasing number of entangled qubits: (a) the ground state (no entanglement), (b) a Bell triplet (Q2 and Q3 entangled),
and (c) the Greenberger-Horne-Zeilinger (GHZ) state (three-qubit entanglement). Vertical lines terminating in solid circles
represent C-Phase gates. The coloured two-bit number next to each indicates the computational basis states that acquire the
π phase. The state tomography sequence shown in a is also applied in b and c. d,e,f, Reconstructed density matrices of the

sequence outputs, visualized with a bar chart of the Pauli set P. Colors denote the seven subsets of P [Bloch vectors (
→
P1,

→
P2,

→
P3), two-qubit correlations (

⇒
P12,

⇒
P13,

⇒
P23) and three-qubit correlations (

V
P123)]. The Pauli set Pt of the target state |ψt〉

is superposed (open bars). The Pt have seven non-zero and full-magnitude bars because they represent stabilizer states8. For
the GHZ state, they appear exclusively in the correlations, a hallmark of maximal three-qubit entanglement. The experimental
P closely match Pt in the three cases, with fidelities F = 〈ψt| ρ |ψt〉 = P · Pt/8 of 0.99, 0.94, and 0.88. By exceeding 50%,
the fidelity to the GHZ state witnesses genuine three-qubit entanglement (3QE). By exceeding 75%, it witnesses the stringent
GHZ-class of 3QE20. More traditional cityscape visualizations of the density matrices are shown in Supplementary Fig. S4.

III. A full oscillation is completed in 12 ns (Fig. 2 in-
set), returning all the quantum amplitude to the com-
putational level but with an additional phase of π. The
two-qubit gate time is nearly half that of our previous
implementation, which used the avoided crossing adia-
batically13. To complete the C-Phase gate, the single-
qubit dynamical phase acquired by Q2 during the flux
pulse (and also by Q1 and Q3 through residual flux cross-
talk) is canceled using a z-rotation (see Supplementary
Fig. S3).

To detect the entanglement produced with C-Phase
gates, we employ a high-fidelity three-qubit joint readout
presented in a parallel publication27. This readout allows
an approximately ten-fold increase in single-shot fidelity
over the previous two-qubit joint readout13,15,21 without
requiring any additional hardware or design modification.
Readout was previously performed by a pulsed measure-
ment of VH in linear response (∼ 1 photon in cavity).
Here, we drive the cavity at fc with 50,000 times lar-

ger incident power, well past the onset (∼ 10 photons)
of the non-linearity that the cavity inherits via dispers-
ive coupling to the qubits. Turning on this strong drive
can make the cavity excite, conditioned on the three-
qubit state, into a high-transmission state where it re-
gains linearity. We adjust the incident power so that
the cavity excites for all register states except |000〉.
If this selectivity were perfect, the measurement would
be projective on |000〉, making the ensemble average
〈VH〉 ∝

∑
A,B,C∈{I,Z}〈A(1)B(2)C(3)〉. Here, the A(i) rep-

resent Pauli operators8 acting on Qi (henceforth, the
order of operators is respected and superscripts are re-
moved for notational simplicity). False positives and neg-
atives introduce weighting coefficients βABC . The cal-
ibrated values (listed in Methods) demonstrate a high
sensitivity of the single measurement channel to two- and
three-qubit correlations.

We use this sensitivity to qubit correlations to per-
form state tomography of the register. To reconstruct
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the three-qubit density matrix ρ, we find the coefficients
of its expansion in the Pauli operator basis:

ρ =
1

8

∑

A,B,C∈{I,X,Y,Z}
〈ABC〉ABC, (1)

where 〈III〉 = 1. This is achieved by pre-pending sets of
single-qubit rotations to the readout pulse. The rotations

consist of all combinations of I, R
π
x , R

π/2
x , and R

π/2
y on

the three qubits (except for R
π
x⊗Rπx⊗Rπx). Respectively,

these rotations on Qi transform the 〈VH〉 expression ac-
cording to Z(i) → Z(i), −Z(i), Y (i), and −X(i). An
ensemble of 105 state preparations and single-shot meas-
urements are made for each set, mitigating uncertainty
due to projection noise to less than 1%. The non-trivial
correlation coefficients in Eq. (1) are then obtained from
the 63 distinct 〈VH〉 by matrix inversion.

With fast C-Phase gates and high fidelity readout in
place, we now demonstrate generation and detection of
multi-qubit entanglement. Gate sequences generating
two- and three-qubit entanglement are shown in Fig. 3.
A simple sequence13 using one C-Phase transforms the
ground state |000〉 (an unentangled, or separable state)

into a Bell triplet |0〉⊗ (|00〉+ |11〉) /
√

2 with Q2 and Q3

maximally entangled (Fig. 3b). Mirroring this sequence
so that Q1 undergoes the same operations as Q3 (Fig. 3c)

produces the GHZ state, |GHZ〉 = (|000〉+ |111〉) /
√

2, a
maximally-entangled state of three qubits. We have im-
plemented these sequences (see Supplementary Fig. S3
for the actual microwave and flux pulses realizing the
GHZ sequence) and performed tomography of their out-
puts. We visualize the reconstructed ρ in each case us-
ing the Pauli set P, consisting of the expectation val-
ues of the non-trivial Pauli operators. In Figs. 3d-f, we
subdivide P into seven subsets distinguished by color:

three single-qubit Bloch vectors
→
P1 (red),

→
P2 (green),

and
→
P3 (blue); two-qubit correlations

⇒
P12 (orange),

⇒
P13

(purple), and
⇒
P23 (cyan); and three-qubit correlations

V
P123 (grey). The experimental P in Figs. 3d-f closely
match the delineated Pauli set Pt of the targeted ground
state, the Bell triplet and the GHZ state, respectively.
We quantify this similarity using fidelity to the target
state |ψt〉, F = 〈ψt| ρ |ψt〉 = P ·Pt/8, finding F = 99, 94
and 88%, respectively.

To make definitive statements about the presence of
genuine three-qubit entanglement (3QE) in Fig. 3f, we
make use of fidelity to GHZ states as an entanglement
witness20. The maximal fidelity of any bi-separable state
to a GHZ state is 50%. Any greater fidelity thus wit-
nesses 3QE. Fidelity can even witness the more restrict-
ive GHZ-class within 3QE, since W-class states satisfy
F ≤ 75%. The 88% fidelity to |GHZ〉 of the Pauli set
in Fig. 3f constitutes the first demonstration of GHZ-
type entanglement between three engineered solid-state
qubits.

The production of multi-qubit entanglement is a neces-

sary first step toward quantum error correction. In fact,
the simple sequence using two C-Phase gates (Fig. 3c)
performed the encoding step of the simplest error correc-
tion protocol, the bit-flip code8. Generally, this encod-
ing maps a logical qubit state α |0〉+ β |1〉 onto the state
α |000〉 + β |111〉 of three physical qubits. In Fig. 3c,
the encoding was performed specifically for the state
(|0〉+ |1〉) /

√
2 in Q2. We have applied this repetition

code to other maximal superpositions of Q2 by vary-
ing the azimuthal angle φ of its initial π/2 rotation
(Fig. 4a). At each φ, the code targets a GHZ state

|GHZφ〉 =
(
|000〉+ ei(φ−π/2) |111〉

)
/
√

2. The fidelity to
|GHZφ〉 is 87 ± 1% throughout (Fig. 4b). A master
equation simulation suggests that this uniform fidelity
is largely limited by qubit relaxation during the 81 ns
pulse sequence. The measured fidelity witnesses GHZ-
class 3QE at every φ.

It is possible to detect three-qubit entanglement with
linear witnesses which can be computed using fewer ele-
ments of the Pauli set than the fidelity to a GHZ state.
For example, the Mermin sums1 MS1 = 〈XXX〉 −
〈XY Y 〉 − 〈Y XY 〉 − 〈XY Y 〉 and MS2 = −〈Y Y Y 〉 +
〈Y XX〉 + 〈XYX〉 + 〈Y XX〉 satisfy |MS1,2| ≤ 1 and
|MS1,2| ≤ 2 for all separable31 and bi-separable32 states,
respectively. Figure 4c shows that at least one of these
sums detects 3QE at each φ. Note that |MS1,2| ≤ 2 is
also a local-hidden-variable (LHV) bound1. While the
maximal absolute value measured, 3.4± 0.1, exceeds this
bound by 14 standard deviations, the presence of local-
ity and detection loopholes in our system precludes the
refutation of local realism.

One drawback of the Mermin sums as witnessses of
3QE is that the bi-separable (and LHV) range over-
laps significantly with the quantum range for three
qubits, |MS1,2| ≤ 4. Non-linear entanglement wit-
nesses can compress the bi-separable bounds relative to
the quantum bounds, effectively magnifying non-trivial
three-qubit correlations. We have investigated the Mer-
min products MP1 = 〈XXX〉〈XY Y 〉〈Y XY 〉〈XY Y 〉
andMP2 = 〈Y Y Y 〉〈Y XX〉〈XYX〉〈Y XX〉, finding vari-
ous bounds numerically. Separable and bi-separable
states satisfy 0 ≤ MP1,2 ≤ 1/64 and −1/16 ≤ MP1,2 ≤
1/64, respectively. Their range is only a small fraction of
the quantum range for three qubits, −1 ≤MP1,2 ≤ 1/16,
as advertised. The LHV range for Mermin products is
−1/16 ≤ MP1,2 ≤ 1. Note that while the LHV range
for Mermin sums is fully inside the range allowed by
quantum mechanics, the two ranges largely separate for
products, leaving only a narrow region of compatibil-
ity |MP1,2| ≤ 1/16. The measured Mermin products
(Fig. 4d) reach a minimum value −0.52±0.05, exceeding
the negative bi-separable (also LHV) bound by 830±80%.
The experimentalMP1,2 fall largely outside the compat-
ibility region, and fully within the quantum bounds.

We have applied conditional-phase gates and joint
readout in cQED to produce and detect GHZ-class entan-
glement between three superconducting qubits. Extend-
ing solid-state entanglement beyond two qubits has not
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Figure 4: Witnessing of three-qubit entanglement us-
ing fidelity and Mermin inequalities. a, Gate se-

quence mapping superpositions
(
|0〉+ ei(φ−π/2) |1〉

)
/
√

2 of

Q2 into GHZ states |GHZφ〉 =
(
|000〉+ ei(φ−π/2) |111〉

)
/
√

2

using a repetition code. b, Fidelity F = 〈GHZφ| ρ |GHZφ〉
as a function of azimuthal angle φ of initial π/2-rotation
on Q2, averaging 87%. Bi-separable (F ≤ 50%) and W-
class 3QE (F ≤ 75%) bounds are amply exceeded, witness-
ing stringent GHZ-class 3QE. c, Evolution of Mermin sums
MS1 = 〈XXX〉 − 〈Y Y X〉 − 〈Y XY 〉 − 〈XY Y 〉 and MS2 =
−〈Y Y Y 〉+〈XXY 〉+〈XYX〉+〈Y XX〉. Separable (|MS1,2| ≤
1) and bi-separable (|MS1,2| ≤ 2) bounds are broken by
at least one sum at each φ, detecting 3QE. |MS1,2| ≤ 2
(gray shading) is also the LHV bound. The extremal meas-
ured value 3.4 ± 0.1 largely exceeds it. The oscillations are
fully within the range allowed by quantum mechanics assum-
ing three qubits |MS1,2| ≤ 4 (blue shading). d, Evolution
of Mermin products MP1 = 〈XXX〉〈Y Y X〉〈Y XY 〉〈XY Y 〉
and MP2 = 〈Y Y Y 〉〈XXY 〉〈XYX〉〈Y XX〉. The negative bi-
separable (also LHV) bound is MP1,2 ≥ −1/16. The min-
imum value measured of −0.52 ± 0.05 detects 3QE with a
violation of 830 ± 80%. Solid curves in the three panels cor-
respond to a master equation simulation that includes qubit
relaxation during the pulse sequence.

required significantly more complex circuit design, fabric-
ation or calibration, and worked the first time. We have
generated GHZ states with fidelity approaching 90% and
detected their entanglement using quantum state tomo-
graphy as well as various linear and nonlinear entangle-
ment witnesses requiring fewer measurements. Finally,
we have realized the first step of basic quantum error
correction, namely the encoding of one logical qubit in
an entangled state of three physical qubits using a repe-
tition code. Future research will focus on the realization
of an error-syndrome detecting circuit to allow closing
the feedback loop needed for error correction.
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I. METHODS

Hamiltonian parameters The Tavis-Cummings
Hamiltonian generalized to transmons is

H = ~ωca
†a+

~
4∑

q=1

( N∑

j=0

ω
(q)
0j |j〉q〈j|q + (a+ a†)

N∑

j,k=0

g
(q)
jk |j〉q〈k|q

)
.

Here, ~ is the reduced Planck constant, ωc is the bare cav-

ity frequency, ω
(q)
0j is the transition frequency for qubit

q from ground to excited state j, and g
(q)
jk = gqnjk,

with gq a bare qubit-cavity coupling and njk a level-

dependent coupling matrix element. Both ω
(q)
0j and

njk are functions23 of qubit charging energy ECq and
Josephson energy EJq. The flux control enters through
EJq = Emax

Jq |cos(πΦq/Φ0)|, with Φq the flux through the
transmon SQUID loop, and a linear flux-voltage relation
Φq =

∑4
i=1 αqiVi + Φq,0 that includes cross-talk and off-

sets (Φ0 is the flux quantum). Cross-talk (up to ∼ 40%)
resulting from return currents on the ground plane is cor-
rected by orthogonalization. The above parameters are
constrained by the spectroscopy and transmission data
shown (Figs. 1b, 2, and S2) and similar data (not shown)
obtained as a function of local flux bias on Q2 to Q4.
Fitting spectra obtained by numerical diagonalization of
the Hamiltonian (truncated to N = 4 qubit levels and 4
cavity photons) to these data gives ωc/2π = 9.070 GHz,
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Emax
Jq /h = {42, 29, 47, 57} GHz (from Q1 to Q4), g/2π ≈

220 MHz, and ECq/h ≈ 330 MHz .

Coherence times Relaxation (T1) and dephasing (T ∗2 )
times of Q1 to Q3 were measured using standard sliding
π-pulse and Ramsey experiments, respectively. At point
I, T1 = (1.2, 1.0, 0.6) µs (Q1 to Q3) are consistent with
relaxation due to the Purcell effect26 and non-radiative
loss with quality factor ∼ 55, 000. T ∗2 = (0.3, 0.6, 0.5) µs

are consistent with 1/f flux noise of ∼ 10−5 Φ0/
√

Hz at
1 Hz. The cavity linewidth is κ/2π = 2.4 MHz.

Joint readout The weighting coefficients β in the
measurement operator are calibrated in every tomo-

graphy run by applying joint readout to the eight
computational basis states, prepared using combin-
ations of π pulses. For example, the ensemble-
averaged joint readout of |101〉 gives 〈VH〉 = βIII −
βZII + βIZI − βIIZ − βZZI + βZIZ − βIZZ + βZZZ .
The calibration measurements provide eight linearly-
independent combinations of the coefficients, and the
coefficients are obtained by matrix inversion. The typ-
ical values {βZII , βIZI , βIIZ , βZZI , βZIZ , βIZZ , βZZZ} =
{2.2, 3.1, 3.2, 1.9, 2.0, 2.9, 1.7} mV reveal a high sensitiv-
ity to two- and three-qubit correlations.
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Figure S1: Frequency- and time-domain characterization of the |110〉 ↔ |020〉 avoided crossing. a, Two-tone
spectroscopy of computational level |110〉 and non-computational level |020〉 as a function of local bias on Q1. The two levels
become resonant at point II. Their cavity-mediated interaction produces a 73 MHz splitting. This crossing is the primitive for
Q1-Q2 C-Phase gates. b, Schematic of a pulse sequence, similar to that described in Fig. 2 of the main text, for calibrating
the amplitude and duration τ of the required V1 pulse. c, A full coherent oscillation on resonance takes τ = 14 ns, consistent
with the inverse of the minimum splitting in a, and setting the two-qubit gate time.
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Figure S2: Block diagram of room-temperature electronics and fridge wiring. Our setup is an expanded version of the
one presented in Ref. 1, allowing full control of three qubits and biasing of a fourth. Microwave drives: wideband I-Q modulated
vector generators drive x- and y-rotations on qubits 1, 2, and 3, and arbitrary waveform generators (AWG, models 5014 and
520, running at 1 GSample/s with 14 and 10-bit vertical resolution) provide the 6 modulation envelopes. A scalar generator
is pulse modulated with an AWG marker to produce the measurement drive. Flux control: AWGs produce voltage pulses V1

to V3 for fast flux biasing of Q1 to Q3. Yokogawa dc sources coupled via bias tees provide the quiescent bias (rather than the
AWGs), improving the frequency stability of the qubits when operated away from the flux sweet-spot (for example at point I)
and permitting heavier filtering (attenuation) of the ac-coupled AWG flux drives. Inside the refrigerator, the combination of a
reactive low-pass filter and a lossy strip-line2 prevents spurious resonant qubit driving while keeping a nearly 50 Ω impedance
at qubit transition frequencies (looking from the qubit side). Output amplification chain: The output line has ∼ 70 dB gain
and ∼ 10 K noise temperature in the 4–8 GHz range. An I-Q mixer and a two-channel averager (2 ns, 8-bit sampling) are used
for homodyne detection of the cavity quadratures. We have eliminated the local oscillator used in Ref. 1 by splitting the cavity
drive. The AWGs, microwave synthesizers and acquisition card are clocked with a Rubidium frequency standard (SRS FS725,
not shown).
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Figure S4: Cityscape plots of reconstructed density matrices. The traditional visualization (also known as Manhattan
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corresponding Pauli set using Eq. (1) in the main text. Note that maximum-likelihood estimation is not used to constrain ρ to
be positive semi-definite.


