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Recent breakthroughs demonstrate that neural networks are remarkably adept at sensory 8

processing1 and sequence2, 3 and reinforcement learning4. However, cognitive scientists and 9

neuroscientists have argued that neural networks are limited in their ability to define vari- 10

ables and data structures5–9, store data over long time scales without interference10, 11, and 11

manipulate it to solve tasks. Conventional computers, on the other hand, can easily be pro- 12

grammed to store and process large data structures in memory, but cannot learn to recognise 13

complex patterns. This work aims to combine the advantages of neural and computational 14

processing by providing a neural network with read-write access to an external memory. We 15

refer to the resulting architecture as a Differentiable Neural Computer (DNC). Memory access 16

is sparse, minimising interference among memoranda and enabling long-term storage12, 13, 17

and the entire system can be trained with gradient descent, allowing the network to learn how 18

to operate and organise the memory in a goal-directed manner. We demonstrate DNC’s abil- 19

ity to manipulate large data structures by applying it to a set of synthetic question-answering 20

tasks involving graphs, such as finding shortest paths and inferring missing links. We then 21

show that DNC can learn, based solely on behavioral reinforcement14, 15, to carry out com- 22

plex symbolic instructions in a game environment16. Taken together, these results suggest 23
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that DNC is a promising model for tasks requiring a combination of pattern recognition and 24

symbol manipulation, such as question-answering and memory-based reinforcement learn- 25

ing. 26

Modern computers separate computation and memory. Computation is performed by a pro- 27

cessor, which can use an addressable memory to bring operands in and out of play. This confers on 28

the computer two important properties: it provides extensible storage to write new information as 29

it arrives and the ability to treat the contents of memory locations as variables. Variables are criti- 30

cal to algorithm generality: to perform the same procedure on one datum or another, an algorithm 31

merely has to change the address it looks up or the content of the address. By contrast to com- 32

puters, the computational and memory resources of artificial neural networks are mixed together 33

in the network weights and neuron activity. This is a major liability: as the memory demands of a 34

task increase, these networks cannot allocate new storage dynamically, nor easily learn algorithms 35

that act independently of the values realised by the task variables. 36

The Differentiable Neural Computer (DNC) is a neural network coupled to an external mem- 37

ory matrix (Figure 1). The behaviour of the controller network is independent of the memory size 38

as long as the memory is not filled to capacity, which is why we view the memory as “external”. 39

If the memory can be thought of as DNC’s RAM, then the network, referred to as the controller, 40

is a CPU whose operations are learned. DNCs differ from recent neural memory frameworks17, 18
41

in that the memory can be selectively written to as well as read, allowing iterative modification of 42

memory content. An earlier form of DNC, the Neural Turing Machine19, had a similar structure 43
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but less flexible memory access methods (Methods). 44

While conventional computers use unique addresses to access memory contents, DNC uses 45

differentiable attention mechanisms2, 19–22 to define distributions over the rows, or locations, in the 46

memory matrix. These distributions, which we call weightings, represent the degree to which each 47

location is involved in a read or write operation, and are typically very sparse in a trained system. 48

For example, the read vector r returned by weighting w over memory M is simply a weighted 49

sum over the N memory locations: r =
∑N

i=1 M[i, .]w[i]. The functional units that determine 50

and apply the weightings are called read and write heads. Crucially, the heads are differentiable, 51

allowing the complete system to learn by gradient descent. 52

The heads employ three distinct forms of attention. The first is content lookup19, 20, 23–25 in 53

which a key emitted by the controller is compared to the content of each location in memory accord- 54

ing to a similarity measure (here: cosine similarity). The similarity scores determine a weighting 55

that can be used by the read heads for associative recall26 or by the write head to modify an ex- 56

isting vector in memory. Importantly, a key that only partially matches the content of a memory 57

location can still be used to attend strongly to that location. This enables key-value retrieval where 58

the value recovered by reading the memory location includes additional information not present in 59

the key. Key-value retrieval provides a rich mechanism for navigating associative data structures 60

in the external memory, as the content of one address can effectively encode references to other 61

addresses. In our experiments, this proved essential to processing graph data. 62

A second attention mechanism records transitions between consecutively written locations 63
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Figure 1: DNC Architecture. a: A recurrent controller network receives input from an external

data source and produces output. b & c: The controller also outputs vectors that parameterise one

write head (green) and multiple read heads (two in this case: blue and pink). The heads define

weightings that selectively focus on the rows, or locations, in the memory matrix (stronger colour

for higher weight). The read vectors returned by the read heads are passed to the controller at the

next time step. d: A temporal link matrix records the order locations were written in; here, we

represent the order locations were written to using directed arrows. The grey arrows indicates a

write event that was split between two locations.
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in an N × N temporal link matrix L (Figure 1d). L[i, j] is close to one if i was the next location 64

written after j, and is close to zero otherwise. For any weighting w, the operation Lw smoothly 65

shifts the focus forward to the locations written after those emphasised in w, while L>w shifts the 66

focus backward. This gives DNC the native ability to recover sequences in the order in which they 67

were presented. 68

The third form of attention allocates memory for writing. The usage of each location is 69

represented as a number between zero and one. Based on the usages, a weighting over unused 70

locations is delivered to the write head. As well as automatically increasing with each write to a 71

location, usage can be decreased after each read using the free gates. This allows the controller 72

to reallocate memory that is no longer required (Supplementary Figure 3). As a consequence 73

of its allocation mechanism, DNC can be trained to solve a task using one size of memory and 74

later be upgraded to a larger memory without retraining and without any impact on performance 75

(Supplementary Figure 1). This property would also make it possible to use an unbounded external 76

memory by automatically increasing the number of locations every time the usage of all locations 77

passes a certain threshold. 78

Although the design of DNC was motivated largely by computational considerations, we 79

cannot resist drawing some connection between the attention mechanisms and the mammalian 80

hippocampus’ functional capabilities. DNC memory modification is fast and can be one-shot, re- 81

sembling the associative long-term potentiation of hippocampal CA3 and CA1 synapses27. The 82

hippocampal dentate gyrus, a region known to support neurogenesis28, has been proposed to in- 83
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crease representational sparsity, thereby enhancing memory capacity29: usage-based memory al- 84

location and sparse weightings may provide similar facilities in our model. Human “free recall” 85

experiments demonstrate the increased probability of item recall in the same order as first pre- 86

sented, a hippocampus-dependent phenomenon accounted for by the temporal context model30, 87

bearing some similarity to the formation of temporal links (Methods). 88

Our first experiments investigated DNC’s capacity to perform question answering, a paradig- 89

matic example of symbolic reasoning. To compare DNC to other neural network architectures, we 90

considered the bAbI dataset31, which includes 20 types of synthetically generated questions de- 91

signed as a benchmark test for textual reasoning. The dataset consists of short “story” snippets 92

followed by questions with answers that can be inferred from the stories: for example, the story 93

“John is in the playground. John picked up the football. Where is the football? [playground]” 94

requires a system to combine two supporting facts, while “Sheep are afraid of wolves. Gertrude 95

is a sheep. Mice are afraid of cats. What is Gertrude afraid of? [wolves]” tests its facility with 96

basic deduction (and resilience to distractors). We found that a single DNC network, jointly trained 97

on all 20 question types with 10,000 instances each, was able to achieve a mean test error rate of 98

3.8% with task failure (defined as > 5% error) on 2 types of questions, compared to 7.5% mean 99

error and 6 failed tasks for the best previous jointly trained result25. We also found that DNC 100

performed much better than either Long Short-Term Memory32 (LSTM; at present the benchmark 101

neural network for sequence processing) or the Neural Turing Machine19 (see Supplement for de- 102

tails). In contrast to previous results on this data set, the inputs to our models were single word 103

tokens without any preprocessing or handcrafted features (Methods). 104
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Although bAbI is presented in natural language, each declarative sentence involves a lim- 105

ited vocabulary and is generated from a simple tuple containing an actor, an action, and a set of 106

arguments. Such sentences could easily be rendered in graphical form: for example “John is in 107

the playground” can be diagrammed as two named nodes, “Playground” and “John”, connected by 108

a named edge “Contains”. In this sense, the propositional knowledge in many of the bAbI tasks 109

is equivalent to a set of constraints on an underlying graph structure. The state-of-the-art perfor- 110

mance of DNC on bAbI indicates that it inferred the underlying structure and was able to reason 111

about it, but to further investigate DNC’s capacity to reason about complex structures, we designed 112

a set of reasoning problems on larger scale graphs. 113

Unlike bAbI, the edges in our graphs were presented explicitly, with each input vector spec- 114

ifying a triple consisting of two node labels and an edge label. Other than the input representation, 115

the setup was identical to the bAbI tasks, with a sequence of inputs followed by a query and a 116

required sequence of outputs. The labelling and connectivity of the graphs was random, as was 117

the order in which the triples were presented; this ensured that the networks could not overfit on 118

particular graphical structures or memorise specific labellings. 119

The three types of query we considered are illustrated in Figure 2. For path traversal (Fig- 120

ure 2b), the network was instructed to report the nodes that follow from a start node along a 121

sequence of edge labels generated by a random walk. Because the edge labels were unique per 122

node but not across the graph, the network had to remember which node it was on and what each 123

edge connected to next. 124
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For shortest path (Figure 2b), a random start and end node were given as the query, and the 125

network was asked to return a sequence of triples corresponding to a minimum length path between 126

them. Since we considered paths of up to length 5, this can be seen as a harder version of the path 127

finding task in the bAbI dataset, which had a maximum length of 2. 128

For inferred relations, we predefined a set of sequences of up to five connected edge labels, 129

which we defined as implicit relations connecting two nodes. A query consisted of a single triple 130

specifying a start node and a relation label, and the required output was the final node in the 131

relation sequence. For example, the relation labelled “paternal grandmother” would be specified 132

by the edge sequence “father, mother”, and when queried with “paternal grandmother of X” the 133

net would have to follow the “father” link from “X” to some “Y”, then follow the “mother” link 134

from “Y” and return the result. Each relation was given a unique label that was never presented as 135

part of the graph description; the edge sequence they corresponded to therefore had to be inferred 136

by the network. Inferring missing edges is important in domains such as question answering and 137

recommender systems, giving this synthetic task much real-world relevance. 138

After training, the networks were tested on two specific graphs: a symbolic map of the 139

London Underground and a family tree, as shown in Figure 2. This was done both to ensure that 140

they generalised beyond the random graphs used for training, and to give intuition into how the 141

tasks relate to real-world data. 142

As a benchmark we again compared DNC with LSTM. In this case the best LSTM network 143

we found in an extensive hyper-parameter search failed to complete the first level of its training 144
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Figure 2: Graph Tasks. a. An example of a random graph used for training. b. Zone 1 of the

London Underground map, used as a generalisation test for the path traversal and shortest path

tasks. Random seven-step traversals, an example of which is shown in green, were tested yielding

an average accuracy of 98.8%. All possible four-step shortest paths were tested giving an average

accuracy of 55.3% for networks that had completed the training curriculum; an example is shown

in purple. For brevity, only interchange stations were represented in the graph. c. The family

tree that was used as a generalisation test for inferred relations; four-step relations such as the one

shown in blue (from Freya to Fergus, her maternal great uncle) were tested, giving an average

accuracy of 81.8%. Beneath the graphs the symbol sequences processed by the network during

the test examples are shown. The input is an unordered list of (FromNode, ToNode, edge) triple

vectors that describes the graph. For each task, the question is a sequence of triples with missing

elements (denoted ‘ ’) and the answer is a sequence of completed triples.
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curriculum of even the easiest task (traversal), reaching an average of only 37% accuracy after al- 145

most 2 million training examples, compared to DNC which reached an average of 98.8% accuracy 146

on the final lesson of the same curriculum after around 1 million training examples. 147

DNC trained on path traversal was analysed for its memory usage (Figure 3). It made clear 148

use of content lookup to navigate the London Underground (Figure 3d) and recorded the traversal 149

query using the temporal links (Figure 3a&b). Visualisation of DNC trained on shortest path shows 150

that each edge in the graph was written to a different location in memory. To answer the query, 151

DNC appears to have found a heuristic by which it progressively explored the links radiating out 152

from the start and end node until a connecting path was found (Supplementary Video 1). 153

The graph experiments demonstrate that DNC excels at structured data manipulation. These 154

tasks were learned with an explicit teaching signal indicating the right answer to provide at every 155

time step (supervised learning). In the next task, we tested the ability of DNC to learn from a less 156

direct form of instruction, which only provides reward for successful sequences of output actions. 157

We therefore investigated a form of reinforcement learning in which a sequence of instructions 158

describing a goal is coupled to a reward function that evaluates whether the goal is satisfied. This 159

resembles an animal training protocol with a complex task cue33. 160

We built a puzzle game environment inspired by Winograd’s SHRDLU16, a classic AI demon- 161

stration of an environment with moveable objects and a hard-coded intelligent agent that inter- 162

preted user instructions. Here, we simplified the environment but taught the agent to interpret 163

instructions purely from rewarded interactions. The Mini-SHRDLU environment contained a set 164
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Figure 3: Path Traversal on the London Underground. a. During the graph definition phase

each triple in the map is written to a separate memory location, as shown by the write weightings

(green). During the query phase, the start station (Victoria) and lines to be traversed are recorded.

The triple stored in each location can be recovered by a logistic regression decoder, as shown on

the vertical axis. b. The read mode distribution during the answer phase reveals that read head 1

(pink) follows forward temporal links to retrieve the instructions in order, while read head 2 (blue)

uses content lookup to find the stations along the path. c. The region of the map illustrated in the

diagram. d. The final content key used by read head 2 is decoded as a triple with no destination.

e. The memory location returned by the key contains the complete triple, allowing the network to

infer the destination (Tottenham Court Rd.).
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Figure 4: Mini-SHRDLU Analysis. a. In a short example episode, the network wrote goal-related

information to sequences of memory locations. The chosen goal is “T”, and the read heads focused

on the locations containing goal T. b. The constraints comprising goal T. c. The policy made an

optimal sequence of moves to satisfy its constraints. d. On 800 random episodes, the first five

actions the network took for the chosen goal were decoded from memory using logistic regression

at the time-step after the goal was written (box in a. with arrow to c.). Decoding accuracy for the

first action is 89%, compared to 17% using action frequencies alone, indicating that the network

had determined a plan at the time of writing, many steps before execution. Error bars represent 5-95

percentile bootstrapped confidence intervals on validation data. e. On the same data, a colourised t-

SNE dimensionality reduction of location contents indicates that the goal labels are distinguishable.
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Figure 5: Mini-SHRDLU Results. a. 20 replicated training runs with different random number

seeds for DNC and LSTM. DNC was able to progress through a learning curriculum, while the

LSTM networks plateaued. b. A single DNC was able to solve a large percentage of problems

optimally from each previous lesson (perfect), with few episodes solved in extra moves (success),

and some failures to satisfy all constraints (incomplete). c. With 10 goals, the same network’s

performance at satisfying constraints as the minimum number of moves to a goal and the number

of constraints in a goal are varied. Performance was highest when the number of constraints was

large. d. The best LSTM results.
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of numbered blocks on a grid board. A DNC, given a view of the board, could move the top block 165

from a column and deposit it on top of a stack in another column. At every episode, we generated 166

a start board configuration and several possible goals. Each goal, identified by a single-letter label, 167

was composed of several individual constraints on adjacent block pairs and was transmitted one 168

constraint per time step (goal A is “block 6 below 2; block 4 left of 1; etc”) (Figure 4b-c). After 169

all the goals were presented, a single goal label was chosen at random, and the agent was cued to 170

satisfy that goal. 171

DNC was able to use its memory to store the instructions, iteratively writing goals to loca- 172

tions (Figure 4a), and then carry out the chosen goal (Figure 4c & Supplementary Video 2). We 173

observed that, at the time a goal was written, but many steps before execution was required, the first 174

action could be predictively decoded from memory, indicating that DNC had written its decision 175

to memory before acting upon it; thus, remarkably, DNC learned to make a plan (4d). Learning 176

followed a curriculum that gradually increases the number of blocks on the board and constraints 177

in a goal as well as the number of goals, and the minimum number of actions needed to find a 178

solution (Methods). Again, DNC performed significantly better than LSTM (Figure 5). 179

Taken together, the bAbI and graph tasks demonstrate that DNC is able to process and reason 180

about symbolic data regardless of whether the underlying structure is implicit or explicit. More- 181

over, we have seen that the structure of the data source is directly reflected in the memory-access 182

procedures learned by the controller. The Mini-SHRDLU problem shows that a systematic, struc- 183

tured use of memory also emerges when DNC learns by reinforcement to act in pursuit of a set of 184
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symbolic goals. 185

The theme connecting these tasks is the need to learn to represent and reason about the 186

complex, quasi-regular structure embedded in data sequences. In each problem, domain regulari- 187

ties, such as the statistical structure of graphs and conventions for representing them, are invariant 188

across all sequences shown; for any given sequence, DNC must, on the other hand, detect and cap- 189

ture novel variability as episodic variables in memory. This mixture of large-scale structure and 190

more microscopic variability is generic to the problems that confront a cognitive agent34, 35. For 191

example, in the structure of scenes, stories, and action plans, broad regularities bind together novel 192

variation in any exemplar. Rooms statistically have chairs in them, but the location of a particular 193

chair in a particular room is a variable. 194

The rapidly writeable external memory of DNC enables the controller neural network to 195

offload variables and exceptions to memory, preserving its capacity for learning and processing 196

regular task structure. Our experiments here have focused on symbolic processing as it is easy 197

to generate tasks synthetically with sufficiently complex structure. We expect that DNCs will 198

bear further fruit as representational engines for one-shot learning36, scene understanding37, and 199

cognitive mapping38, capable of intuiting the structure of the world without neglecting its essential 200

novelty and variability. 201
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Methods 286

1 Controller Network 287

At every time-step t the controller network receives an input vector xt from the dataset or environ-

ment and emits an output vector yt (Supplementary Figure 1a) that parameterises either a predic-

tive distribution for a target vector tt (supervised learning) or an action distribution (reinforcement

learning). Additionally, the controller receives from the memory matrix M ∈ RN×W a set of R

read vectors r1
t−1, . . . , r

R
t−1 from the previous time-step and emits an interface vector zt (Supple-

mentary Figure 1b) that controls the interactions with the memory (Supplementary Figure 1c). The

network inputs are concatenated to yield a single composite vector x̂t = [xt, r
1
t−1, . . . , r

R
t−1]. Any

neural network can be used for the controller, but we have used the following variant of the deep

Long Short-Term Memory architecture1, 2

ilt = σ
(
W l

i [x̂t,h
l
t−1,h

l−1
t ] + bli

)
f lt = σ

(
W l

f [x̂t,h
l
t−1,h

l−1
t ] + blf

)
slt = f lts

l
t−1 + ilt tanh

(
W l

s[x̂t,h
l
t−1,h

l−1
t ] + bls

)
olt = σ

(
W l

o[x̂t,h
l
t−1,h

l−1
t ] + blo

)
hlt = olt tanh(slt),

where σ(x) = 1/(1 + exp(−x)) is the logistic sigmoid function, l is the layer index, hlt, i
l
t, f

l
t , s

l
t,

and olt are respectively the hidden, input gate, forget gates, state and output gate activation vectors

of layer l at time t. h0
t = 0 for all t; hl0 and sl0 are 0 for all l. The W terms denote learnable weight

matrices (e.g., W l
i is the matrix of weights going into the layer l input gates) and the b terms are
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learnable biases. The output vector yt and interface vector zt are

yt = Wy[h1
t , . . . ,h

L
t , r

1
t , . . . , r

R
t ] (1)

zt = Wz[h
1
t , . . . ,h

L
t ]. (2)

Note that the read vectors rrt are passed to the output vector yrt to allow the DNC to condition its 288

decisions on memory that has just been read; it would not be possible to pass them to the interface 289

vector, and hence to the read and write heads, without creating a cycle in the computation graph. 290

The interface vector zt is divided and processed into the following segments: the R read 291

keys {k1
t , . . . ,k

R
t ∈ RW}, the R read strengths {β1

t , . . . , β
R
t ∈ [1,∞)}, the write key kwt , the 292

write strength βwt , the erase vector et ∈ [0, 1]W , the write vector vt ∈ RW , the R free gates 293

{f 1
t , . . . , f

R
t ∈ [0, 1]}, the allocation gates gat ∈ [0, 1], the write gates gwt ∈ [0, 1], and the R read 294

modes {π1
t , . . . ,π

R
t ∈ S3}, where SN is the N − 1 dimensional unit simplex 295

SN = {α ∈ RN : αi ∈ [0, 1],
N∑
i=1

αi = 1}. (3)

πt is constrained to S3 using the softmax function, the βrt are constrained to [1,∞) using the 296

function y = 1+log(1+exp(x)), and all terms in the range [0, 1] are constrained using the logistic 297

sigmoid function. The use and interpretation of these terms will be explored in the following 298

sections. 299

2 Overview of Reading and Writing 300

Selecting locations for reading and writing depends on weightings, which are vectors of non- 301

negative numbers whose elements sum to less than 1. The complete set of allowed weightings over 302
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N locations is the non-negative orthant of RN with the unit simplex as a boundary (known as the 303

“corner of the cube”): 304

∆N = {α ∈ RN : αi ∈ [0, 1],
N∑
i=1

αi ≤ 1}. (4)

For the read operation, R read weightings {w1
t , . . . ,w

R
t ∈ ∆N} are used to compute weighted 305

averages of the contents of the locations: 306

rrt = M>
t w

r
t . (5)

Each read head’s read vector is appended to the controller input at the next time step. The write 307

operation is mediated by a single write weighting wt ∈ ∆N , which is used to modify the memory 308

content. Reading and writing are further detailed in Section 3. 309

3 Memory Access 310

The system employs a combination of content-based addressing and dynamic memory allocation to 311

determine where to write in memory, and a combination of content-based addressing and temporal 312

memory linkage to determine where to read. These mechanisms, all of which are parameterised by 313

the interface vector emitted by the controller, zt, are described in detail below. 314

Content-based Addressing All content lookup operations on the memory M ∈ RN×W use the

following function

C(M,k, β)[i] =
exp

(
D(k,M[i])β

)∑
j exp

(
D(k,M[j])β

) , (6)
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where k ∈ RW is a lookup key, β ∈ [1,∞) is a key strength scalar, C(M,k, β) is a weighting over 315

the memory locations, and D is the cosine similarity. 316

D(u,v) =
u · v
|u||v|

. (7)

The weighting C(M,k, β) ∈ SN defines a normalised probability distribution over the memory 317

locations. In later sections, however, we will encounter weightings in ∆N that may sum to less 318

than one, with the missing weight implicitly assigned to a null operation that does not access any 319

of the locations. Content lookup operations are performed by both the read and write heads. 320

Dynamic Memory Allocation We approached memory management by developing a differen- 321

tiable analogue of the free list memory allocation scheme3 (Figure 1d), where a list of available 322

memory locations is maintained by adding to and removing addresses from a linked list. Denote by 323

ut ∈ [0, 1]N the memory usage vector at time t, and define u0 = 0. Before writing to memory, the 324

controller emits a set of free gates f rt , one per read head, that determine whether the most recently 325

read locations can be freed. Define ψt ∈ [0, 1]N as 326

ψt =
R∏
r=1

(1− f rtwr
t−1). (8)

ψt[i] is an intermediate variable, computed based on what locations were last attended to by the

read heads and the values of the free gates. It represents the degree to which each location in

memory is not freed. A location should be considered “used” whenever ψt[i] ≈ 1, and it was

either just written to or was already used.

ut =
(
ut−1 + wt−1 − ut−1wt−1

)
ψt

=
(
ut−1 + (1− ut−1)wt−1

)
ψt (9)
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where we assume that products between vectors of the same size are taken element-wise. Every

write to a location increases its usage, up to a maximum of 1, and usage can only be subsequently

decreased (to a minimum of 0) using the free gates. The elements of ut are bounded in the range

[0, 1]. Once ut has been determined, the free list φt ∈ ZN is defined by sorting the indices of

the memory locations in ascending order of usage: φt[1] is therefore the index of the least used

location. The allocation weighting at ∈ ∆N , which is used to provide new locations for writing, is

at[φt[j]] = (1− ut[φt[j]])

j−1∏
i=1

ut[φt[i]]. (10)

If all usages are 1, at = 0, and the controller can no longer allocate memory without first free- 327

ing used locations. The sort operation induces discontinuities at the points where the sort order 328

changes, but we observed no adverse effect due to this because the sort is piecewise differentiable. 329

Memory Writing The controller can choose to write either to newly allocated locations or to 330

locations addressed by content. First, a write content weighting cwt ∈ SN is constructed 331

cwt = C(Mt−1,k
w
t , β

w
t ). (11)

cwt is interpolated with the allocation weighting at defined in Eq. 10 to determine a write weighting

wt ∈ ∆N

wt = gwt
(
gat at +

(
1− gat

)
cwt
)
, (12)

where gat ∈ [0, 1] is the allocation gate governing interpolation, and gwt ∈ [0, 1] is the write gate. If 332

the write gate is 0, then nothing is written, regardless of the other write parameters: it can therefore 333

be used to protect the memory from unnecessary modifications. The controller emits an erase 334

26



vector et ∈ (0, 1)W and a write vector vt ∈ RW , which, along with the write weighting, update 335

the memory to 336

Mt = Mt−1 ◦ (E−wte
>
t ) + wtvt

>, (13)

where ◦ denotes pointwise multiplication and E is the N ×W matrix of ones. 337

Temporal Memory Linkage The memory allocation system defined above stores no information 338

about the order in which the memory locations are written to. However, there are many situations 339

where retaining temporal information is useful: for example, when a sequence of instructions must 340

be recorded and retrieved in order. We therefore use a temporal link matrix Lt ∈ [0, 1]N×N to keep 341

track of consecutively modified memory locations (Figure 1d). 342

Lt[i, j] represents the degree to which location i was the location written to after location

j, and each row and column of Lt defines a weighting over locations. That is, Lt[i, .] ∈ ∆N and

Lt[., j] ∈ ∆N for all i, j, t. To define Lt, we require a precedence weighting pt ∈ ∆N , where

element pt[i] represents the degree to which location i was the last one written to. pt obeys the

recurrence relation

p0 = 0, (14)

pt =
(
1−

∑
i

wt[i]
)
pt−1 + wt, (15)

where wt is the write weighting defined in Eq. 12. Every time a location is modified, the link

matrix is updated to remove old links to and from that location. New links from the last written
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location are then added. We use the following recurrence relation to implement this logic:

L0 = 0, (16)

Lt[i, i] = 0 ∀i, (17)

Lt[i, j] =
(
1−wt[i]−wt[j]

)
Lt−1[i, j] + wt[i]pt−1[j]. (18)

Note that self links are excluded (the diagonal of the link matrix is always 0). The rows and

columns of Lt represent the weights of the temporal links going into and out from particular

memory slots, respectively. Given Lt, the backward weighting brt ∈ ∆N and forward weight-

ing f rt ∈ ∆N for read head r are defined as

f rt = Ltw
r
t−1, (19)

brt = L>t w
r
t−1, (20)

where wr
t−1 is the read weighting from the previous time-step. 343

The link matrix is N × N and therefore requires O(N2) resources in both memory and 344

computation to calculate exactly. Although tolerable for the experiments in this paper, this cost 345

rapidly becomes prohibitive as the number of locations is increased. Fortunately, the link matrix 346

is typically very sparse and can be approximated with O(N logN) computation cost and O(N) 347

memory with no discernible loss in performance (Supplementary Figure 2). 348

For some fixed K, we first calculate sparse vectors ŵt and p̂t−1 by sorting wt and pt−1 and

setting all but the K highest values to 0. This step has O(N logN) computational cost to account

for the sort and O(N) memory cost. We then compute the sparse outer product ŵtŵ
>
t , requir-
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ing O(K2) memory and computation. Assuming the sparse link matrix L̂t−1 from the previous

timestep has at most NK non-zero elements, L̂t can be updated with O(NK) costs using

L̂t[i, j] =
(
1− ŵt[i]− ŵt[j]

)
L̂t−1[i, j] + ŵt[i]p̂t−1[j], (21)

then setting all elements of L̂t less than 1/K to zero. Since each row and column of L̂t sums

to at most one, this operation guarantees that L̂t has at most K non-zero elements per row and

column, and L̂t therefore has at most NK non-zero elements. Finally, the forward and backward

weightings can be calculated with O(NK) computation cost and O(N) memory cost as follows:

f rt = L̂tŵ
r
t−1, (22)

brt = L̂>t ŵ
r
t−1. (23)

Since K is a constant independent of N (in practice K = 5 appears to be sufficient, regardless of 349

memory size), the complete sparse update is O(N logN) in computation and O(N) in memory. 350

Memory Reading Each read head r computes a content weighting crt ∈ ∆N using a read key 351

krt ∈ RW from the controller 352

crt = C(Mt,k
r
t , β

r
t ). (24)

Each read head also receives a read mode vector πrt ∈ S3, which interpolates among the backward 353

weighting brt , the forward weighting f rt , and the content read weighting crt , thereby determining 354

the read weighting wr
t ∈ S3 355

wr
t = πrt [1]brt + πrt [2]crt + πrt [3]f rt . (25)

If πrt [2] dominates the read mode, the weighting reverts to content lookup using krt . If πrt [3] 356

dominates, the read head iterates through memory locations in the order they were written, ignoring 357
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the read key. If πrt [1] dominates, the read head iterates in the reverse order. Finally, the read vector 358

rrt is determined by application of the read weighting to memory, yielding equation 5. The read 359

vectors themselves are concatenated and added to the inputs of the controller network. 360

A page with all equations is provided at the end of the supplement. 361

4 Comparison with Neural Turing Machine 362

The Neural Turing Machine4 (NTM) was the predecessor to the DNC described in this work, 363

differing principally in the access mechanism used to interface with the memory. In the NTM, 364

content-based addressing was combined with location-based addressing to allow the network to 365

iterate through memory locations in order of their indices (e.g. location n followed by n + 1 366

etc.). This allowed the network to store and retrieve temporal sequences in contiguous blocks 367

of memory. However, there were several drawbacks. Firstly, NTM has no mechanism to ensure 368

that blocks of allocated memory do not overlap and interfere — a basic problem of computer 369

memory management. Interference is not an issue for the dynamic memory allocation used by 370

DNC, which provides single free locations at a time, irrespective of index, and therefore does not 371

require contiguous blocks. Secondly, NTM has no way of freeing locations that have already been 372

written to, and hence no way of reusing memory when processing long sequences. This problem 373

is addressed in DNC with the free gates used for deallocation. Thirdly, sequential information is 374

only preserved as long as NTM continues to iterate through consecutive locations; as soon as the 375

write head jumps to a different part of the memory (using content-based addressing) the order of 376

writes before and after the jump cannot be recovered by the read head. The temporal link matrix 377
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in DNC, on the other hand, simply tracks the order in which writes were made. 378

5 bAbI Task Descriptions 379

The bAbI dataset5 comprises a set of 20 synthetic question answering (QA) tasks designed to test 380

different aspects of logical reasoning. As the bAbI data is programmatically generated, and the 381

code is publicly available, multiple versions of the data can be used. To test our models, we used 382

the en-10k subset of the data available for download from http://www.thespermwhale. 383

com/jaseweston/babi/tasks_1-20_v1-2.tar.gz. For each of the 20 tasks, the data 384

comes partitioned into a training set with 10,000 questions and a test set with 1000 questions6. The 385

bAbI tasks are designed around stories that may contain more than one question. We treated each 386

story as a separate sequence and presented it to the network in the form of word vectors, one word 387

at a time. After removing all numbers, splitting the remaining text into words, and converting all 388

words to lower case, there were 156 unique words in the lexicon and three punctuation symbols: 389

“.”, “?”, and “-”, the last of which we added to indicate points in the input sequence where outputs 390

were required. Each word was therefore represented as a size 159 one-hot vector, and the network 391

outputs were size 159 softmax distributions. The sentences were separated by full stop characters, 392

and all questions were delimited by a question mark followed by as many dash characters as there 393

were words in the answer to that question. For example, a story from the Counting and Lists/Sets 394

task containing five questions was presented as the following input sequence of 108 word tokens: 395

mary journeyed to the kitchen . mary moved to the bedroom . john went back to the 396

hallway . john picked up the milk there . what is john carrying ? - john travelled to the 397
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garden . john journeyed to the bedroom . what is john carrying ? - mary travelled to 398

the bathroom . john took the apple there . what is john carrying ? - - sandra travelled 399

to the kitchen . john went to the hallway . what is john carrying ? - - john journeyed 400

to the garden . mary went back to the garden . what is john carrying ? - - 401

The corresponding answers required at the “-” symbols are as follows: 402

milk, milk, milk apple, milk apple, milk apple 403

The network was trained to minimise the cross-entropy of the softmax outputs with respect to the 404

target words; the outputs during time-steps when no target was present were ignored. For each 405

step where a target was present the most probable word in the network’s output distribution was 406

selected as its answer. The network was only considered to have correctly replied to a question if 407

it got all the target words correct (for example it had to answer “milk” then “apple” to get the final 408

question in the above story right). Following previous work, we evaluated our networks using the 409

per-task question error rate (fraction of incorrectly answered questions). 410

For each task, we removed approximately 10% of the stories and added them to a validation 411

set. All of the remaining stories were gathered together into a single training set from which a 412

random story was drawn for each training sample. No distinction was drawn between the different 413

tasks during training, and no explicit information was provided to the network to indicate which 414

task the current story was drawn from. We performed a grid search over hyper-parameters for all 415

three architectures, and kept the two settings that returned (1) the lowest average question error 416

32



rate over the validation set and (2) the single network with lowest validation question error rate. 417

We also used the validation error rate as the early stopping criterion during training (although in 418

practice we did not observe a significant increase in validation error due to overfitting for any of 419

the networks). 420

Note that using word tokens led to much longer sequences (sometimes more than 500 time- 421

steps longer) than previous work on bAbI, where sentence embeddings were used as input5, 6. The 422

distinction is significant both in that it places greater stress on the long-range memory capacity of 423

the models, and in that the word level approach is easier to generalise to natural language, which 424

has far greater variability in sentence length and structure than the bAbI data. 425

For complete results and hyper-parameters on all the bAbI tasks for DNC, NTM and LSTM, 426

see Supplementary Tables 1–3. 427

6 Graph Task Descriptions 428

The graph tasks were supervised learning problems, with each training example consisting of an 429

input vector sexquence and corresponding target vector sequence. Each vector encoded a triple 430

consisting of a source label, edge label, and destination label. All labels were represented as 431

numbers between 0 and 999, with each digit represented as a 10-way one-hot encoding. There 432

was also a special blank label represented by an all-zero encoding for the three digits, which was 433

used to indicate an unspecified label. Each label required 30 elements, and each triple required 434

90. The sequences were divided into multiple phases: first a graph description phase, then a series 435

of query and answer phases; in some cases the query and answer were separated by an additional 436
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planning phase with no input, where the network was given time to compute the answer. During 437

the graph description phase the triples defining the input graph were presented in random order. 438

Target vectors were only present during the answer phases. The input vectors had additional binary 439

channels alongside the triples to indicate when transitions between the different phases occurred, 440

and when a prediction was required of the network (this channel remained active throughout the 441

answer phase). In total the input vectors were size 92 and the target vectors were size 90. The 442

graph networks had 90 output units, corresponding to nine separate softmax distributions over the 443

nine digits. The log-probability of correctly predicting an entire target triple was therefore the 444

sum of the log-probabilities of correctly classifying each of the nine digits. Given input sequence 445

x, network output sequence y, and target sequence t, all of length T , this yields the following 446

cross-entropy loss function: 447

L(x, t) = −
T∑
t=1

A(t)
9∑
d=1

log Pr(tdt |ydt ), (26)

where tdt is the target at time t for digit d, ydt is the softmax distribution over digit d returned by 448

the network at time t, and A(t) is an indicator function whose value was one during answer phases 449

(i.e., when predictions were required of the network) and zero otherwise. 450

The network’s predictions were determined by taking the mode of the output distribution, 451

and the network indicated it had completed an answer by outputting a specially reserved termina- 452

tion pattern. For all tasks apart from shortest path, performance was evaluated as the fraction of 453

sequences where all target vectors were correctly predicted. The metric used for shortest path is 454

described below. 455
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7 Random Graph Generation 456

For all graph tasks, the graphs used to train the networks were generated by uniformly sampling 457

a set of two-dimensional points from a unit square, where each point corresponded to a node in 458

the graph. For each node, the K nearest neighbours in the square were used as the K outbound 459

connections, where K was independently sampled from a uniform range for each node. The nu- 460

merical labels for the nodes were chosen uniformly from the range [0, 999]. For the path problems, 461

the edge labels were unique per outbound node but non-unique across the graph. For a graph with 462

N nodes, N unique numbers in the range [0, 999] were initially drawn. Then the outbound edge 463

labels for each node were chosen at random from those N numbers. The edge labeling procedure 464

for the relation problems is described below. 465

Path Traversal A path on the graph was defined based on a random walk from a random start 466

node. At the query phase, the first input to the network was a partially specified triple (source 467

label, edge label, blank) with the destination unspecified. The input triples for the rest of the query 468

contained edge labels only, with source and destination unspecified. During the answer phase, no 469

inputs were presented and the target output was the sequence of complete triples along the path. 470

To succeed, the network had to infer the destination of each triple, and remember it as the implicit 471

source for the next triple. 472

Shortest Path In the query phase, a single triple was presented (source, blank, destination), defin- 473

ing the start and end nodes. Each query was followed by a 10 time-step planning phase, allowing 474

the network to perform computations and attempt to determine a shortest path. During the answer 475
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phase, the network predicted a sequence of triples corresponding to a path. Unlike the traversal 476

task, it also received input triples during the answer phase, indicating the actions chosen on the 477

previous time step. This makes the problem a “structured prediction” problem, which we explain 478

further in the next section. As described in Section 8, the input triples were sometimes the net- 479

work’s own predictions from the previous time-step, and during training were sometimes provided 480

by an optimal planner recalculating a shortest path to the end node. To ensure that the network 481

always moved to a valid node, the output distribution was renormalised over the set of possible 482

triples outgoing from the current node. The network was scored on the fraction of sequences for 483

which the shortest possible path was as long as the path it predicted. 484

Inferred Relations We define a relation to be a concatenation of two or more edge labels that 485

is given a distinct label itself. For this task, numbers from 0 to 9 indicated single edge labels, 486

while numbers from 10 to 410 indicated relation labels. The relations were generated as unique 487

sequences of single edges of length 2–5, with 100 distinct sequences for each length. The rela- 488

tion sequences were held constant throughout training, and the same relations were used for all 489

networks trained on the task. During the query phase a partial triple was presented, consisting of 490

a start node and relation label. This was followed by a ten time-step planning phase. The single 491

target vector during the answer phase was the completed triple from the query: (start node, rela- 492

tion label, end node). To solve the problem the network had to recall the relation from its label 493

and perform an implicit traversal during the planning phase to reach the destination. The relations 494

were never passed as input the network, so it had to infer them from error signals alone. 495
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8 Structured Prediction 496

The shortest path task can be considered a structured prediction problem7, 8, as the output decisions 497

of the network determine the sequence of nodes traversed on the graph, and hence influence the 498

network’s future decisions and prediction costs. To bring nomenclature in line with the literature 499

on this topic, we will here refer to the output distribution of the network as a policy π(a|s) over 500

the actions a available to the network in state s. The state incorporates both the node currently 501

occupied by the network and the latent state of the network itself. The actions are the outgoing 502

edges from the current node (recall that the output distribution is renormalised over the allowed 503

triples after each move). Following policy π, the induced distribution over states at time-step t 504

is denoted ρπt (s). We denote the optimal policy as π∗(a|s) with corresponding state distribution 505

ρ∗t (s). The conventional supervised loss function is 506

J sup(π) =
T∑
t=1

Est∼ρ∗t (s)l[π
∗(·|st), π(·|st)], (27)

where l[π∗(·|st), π(·|st)] = −
∑

a π
∗(a|st) log π(a|st) is the cross-entropy loss. π∗(a|st) is a delta- 507

function on the action corresponding to the first step along one possible shortest path from the 508

current node to the destination (there may be more than one). If the state distributions ρ∗t (s) and 509

ρπt (s) are dissimilar, minimising the supervised loss function does not necessarily transfer to the 510

true task objective 511

J task(π) =
T∑
t=1

Est∼ρt(s)l[π
∗(·|st), π(·|st)], (28)

where the actions are sampled from the network policy and the states therefore from distribution 512

ρt(s). To counteract this problem, we follow a similar approach to the DAGGER algorithm7, which 513

constructs a mixture policy πβ(a|s) = βπ∗(a|s) + (1 − β)π(a|s) with parameter β and induced 514
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state distribution ρβt (s). To simplify the implementation, we used a batch size of 1 and trained by 515

taking a stochastic gradient of 516

Jβ(π) =
T∑
t=1

Est∼ρβt (s)l[π
∗(·|st), π(·|st)], (29)

where the actions are sampled from the network with probability (1 − β) and from the optimal 517

policy with probability β. To make transitions driven by the network output, all possible edges 518

connected to a source node are assigned a probability, and the most likely edge is chosen. 519

9 Reinforcement Learning 520

Most reinforcement learning (RL) problems are sequential decision problems: the environment 521

is in state s, and each action a issued by the agent causes a transition of the environment state 522

based on the environment dynamics. We consider episodic problems where the agent acts in the 523

environment for T steps before the environment is reset and a new episode begins. The agent thus 524

acts to create a time series s1, a1, s2, a2, s3, a3 . . . , sT , aT . A reward function defining the goal of 525

the problem is given as a function of a state and action: r(st, at). The goal of the agent is to 526

maximise the total expected reward over an episode. The RL agent architecture presented here 527

contains two DNC networks: a policy network that selects an action and a value network that 528

estimates the expected future reward given the policy network and current state. 529

The policy specifies a parametric mapping from state observations to a probability distri- 530

bution over actions: a ∼ π(a|s, θ), where θ denotes the policy parameters. The policy’s total 531

expected reward over an episode is J(π) = E[
∑T

t=1 r(st, at)|π]. In the context of mini-SHRDLU, 532

the policy DNC observes the environment states by receiving an observation sequence one step 533
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at a time o1, o2, . . . , ot and conditions its action on the sequence seen so far: π(at|o1, . . . , ot, θ). 534

The value network DNC tries to predict the sum of future rewards for this policy given the current 535

history of observations V π(o1, . . . , ot, φ), where φ comprises its parameters. 536

The learning algorithm for the value network is conceptually simpler than the policy’s. The 537

value network learns by supervised regression to predict the sum of future rewards. After a mini- 538

batch of L episodes, the value network updates its parameters φ by gradient descent on the loss 539

function C(φ) = 1
2L

∑L
l=1

∑T
t=1

∣∣∣∣∣∣∑T
τ=t r(s

l
τ , a

l
τ )− V π(o1, . . . , oτ , φ)

∣∣∣∣∣∣2. 540

The policy network’s action distribution π(at|o1, . . . , ot, θ) is a multinomial softmax over a

discrete set of actions. We use a policy gradient method to optimise the policy parameters9, 10.

After each mini-batch of L episodes, the policy parameter gradient direction to ascend J(π) is:

∇θJ(π) ≈ 1

L

L∑
l=1

T∑
t=1

∇θ log π(alt|ol1, . . . , olt, θ)
(
E[

T∑
τ≥t

r(slτ , a
l
τ )|slt, alt]− E[

T∑
τ≥t

r(slτ , a
l
τ )|slt]

)
(30)

The quantity E[
∑T

τ≥t r(s
l
τ , a

l
τ )|slt, alt]−E[

∑T
τ≥t r(s

l
τ , a

l
τ )|slt], known as the advantage, represents 541

how much the value changes from taking action alt in state slt. Using the value network, we can 542

approximate the advantage using the temporal difference error 543

δlt = r(slt, a
l
t) + V π(ol1, . . . , o

l
t+1, φ)− V π(ol1, . . . , o

l
t, φ). (31)

We use a slight modification of this expression for the advantage11, 12, which we derive more com-

pletely in Supplement, to reduce the bias in the value networks. The advantage is estimated using

a geometric series of temporal difference errors
∑

τ≥t λ
τ−tδlτ , where λ is a parameter that controls

a bias-variance tradeoff, explained further in Supplement. Finally, the policy gradient estimate is
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given by

∇θJ(π) ≈ 1

L

L∑
l=1

T∑
t=1

∇θ log π(alt|ol1, . . . , olt, θ)
T∑
τ=t

λτ−tδlτ . (32)

10 Mini-SHRDLU 544

The Mini-SHRDLU board consists of an S × S grid of squares, each square empty or filled with a 545

numbered block. Blocks in a column are stacked from the bottom upwards. We report experiments 546

with S = 3 and a maximum of 6 blocks on the board, numbered 1 through 6 uniquely. To generate 547

a problem instance, we first randomly place the blocks on the board so that a block always rests on 548

top of the highest block previously placed in its column. A sequence of G goals is generated, each 549

goal composed of a number of constraints. An example of a single goal is “Goal A: Block 1 is 550

below block 4; block 2 is to the right of block 5; block 3 is above block 4; etc.” Each goal represents 551

a label for a set of constraints on the adjacency relations of the blocks. A goal can be ambiguous 552

in that it doesn’t describe a unique board configuration. For example, “Goal B: Block 1 is left of 553

block 2” allows any configuration of the unstated blocks. Each goal is chosen by constructing a 554

tree search of all configurations of the board that are at minimum D moves away from the starting 555

board, randomly selecting one of these configuration, then sampling a set of constraints on chosen 556

board configuration. Redundant conditions “Block 1 is left of block 2; block 2 is right of block 1” 557

are pruned as are constraints that are already fulfilled by the initial state of the board. 558

The goals are presented sequentially to the policy network during which time the policy 559

cannot make any moves on the board. Each constraint in the goal is presented in one time- 560

step using a place-coded vector: “(first block; adjacency relation; second block)”. For example, 561
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(100000; 1000; 010000) represents the constraint “Block 1 is above block 2”. In addition, each 562

constraint is labeled with the goal of which it is a part: “(goal name; first block; adjacency relation; 563

second block)”, where we have chosen to let the goals be 1 of 26 possible letters designated by 564

one-hot encodings, i.e., A = (1, 0, . . . , 0), Z = (0, 0, . . . , 1), etc. The board is represented as a set 565

of place-coded representations, one for each grid cell. Thus, (000000; 100000; . . . ) designates that 566

the bottom left-hand cell is empty, block 1 is in the bottom center cell, and so on. The network also 567

sees a binary flag that represents a go cue. While the go cue is active, a goal is selected from the 568

list of goals that have been shown to the network, and its label is also retransmitted to the network 569

for one time-step, and the network can begin to move the blocks on the board. All told, the pol- 570

icy observes at each time step a vector with features “(goal name; first block; adjacency relation; 571

second block; go cue; board state)”. Up to 10 goals with 6 constraints can be sent to the network 572

before action begins. 573

Once the go cue arrives, it is possible for the policy network to move a block from one 574

column to another or to pass at each turn. We parameterise these actions using another one-hot 575

encoding so that for a 3 × 3 board, a move can be made from any column to any other; with the 576

pass move, there are therefore 7 moves. The policy’s outputs define the probability of selecting 577

each one of these actions, and a move is sampled at each time-step, which changes the board 578

configuration correspondingly. The policy has a fixed number of moves to make progress on the 579

board until the episode ends. In this setting, we know the minimum number of moves to solve the 580

problem, L. We found that the early stages of learning benefited from giving the policy a number 581

of extra steps to satisfy the instructions, in total allowing L+ ∆L moves with ∆L fixed at 6 in the 582
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reported experiments. This parameter did not need to be fine-tuned. 583

The reward function for the policy equalled the number of constraints in the chosen goal that 584

are currently satisfied minus a small cost for making invalid moves such as picking a block up from 585

a column without any blocks. There was also a penalty for achieving the goal configuration but 586

undoing it. In addition, the policy received a direct error (not a part of the reward function) that 587

promoted higher entropy output distributions. 588

11 Curriculum Learning 589

The problems we solve could not be learned in any reasonable amount of time without curricu- 590

lum training. For each task, we defined a set of task parameters that govern the complexity of the 591

problem. For example, for path traversal, these parameters were the number of nodes in the graph, 592

number of outgoing edges from each node, and the number of steps in the traversal. We built a 593

linear sequence of lessons in which the complexity of the task increases along at least one task 594

parameter with each new lesson. Consistent with the observations of Zaremba and Sutskever13, 595

we have found in some tasks that performance on earlier lessons degraded if all training exemplars 596

were drawn only from the current lesson’s maximum difficulty. We followed their strategy to rem- 597

edy this effect and drew 10% of exemplars uniformly from earlier lessons on the path traversal, 598

inferred relations, and Mini-SHRDLU problems. (Shortest path lessons effectively include earlier 599

lessons as proper subsets of the final lessons, so this is unnecessary.) After a predefined number of 600

gradient updates, we ran a batch evaluation of the success of the network on the current problem 601

distribution. During evaluation in each episode, on the graph problems, we deterministically sam- 602
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pled the most probable outputs of the network (modal sampling). For the graph problems besides 603

shortest path, if 90% of the episodes were solved optimally, the lesson was completed. (Shortest 604

path lesson completion required 80% of network paths to be no more than one step longer than 605

the shortest path.) In the mini-SHRDLU problem, the lesson was marked complete if 85% of the 606

relevant goal constraints were satisfied on average over the batch. The curricula for the tasks are 607

presented in Supplementary Tables 6-2. 608

12 Network Analysis 609

In Figure 3a, the y-axis labels are the input triples provided at each time-step, written beside the 610

location with strongest write magnitude. The locations were re-ordered spatially based on the 611

writing order. Figures 3d and 3e are produced based on the output of a trainer classifier, called the 612

“decoder”. A logistic regression classifier was built from a data set of 40K data points in which 613

write vectors were treated as classifier inputs with the input triples from the same time step taken 614

to be the classifier targets, treating source, destination, and edges as independent outputs. The 615

digits of each element were decoded independently, so that there were 9 1-of-10 classifiers used 616

to decode each triple in total. The classifier was trained with an L2 regularisation of the classifier 617

weights with coefficient 0.1. Output classes that were irrelevant to the episode were excluded from 618

the diagram. 3d is produced by applying the classifier to the content lookup key, and 3e is produced 619

by applying the classifier to the contents of the memory location with maximal read weighting. 620

In Figure 4d, classifiers are built from a data set of 800 Mini-SHRDLU episodes. On each 621

episode, the locations that the read heads assign more than a threshold of 0.01 weighting to at the 622
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time of the query are considered relevant to the selected goal. These locations are noted, and their 623

contents at the time when they were last written (determined by the same numerical threshold) 624

are uniformly averaged into a single vector. These vectors therefore encapsulate an average of 625

the locations containing the goal right after the goal has been written to memory but potentially 626

many (up to about 60) time-steps before the first action occurs. The vectors are used as inputs 627

to train the classifier to predict the first 5 actions that occur following the query; i.e., action 1 628

occurs at tquery + 0, action 2 occurs at tquery + 1, etc. The classifiers use logistic regression with 629

an L2 regularisation coefficient of 1. The action frequencies baseline predicts each of the action 630

choices based on its frequency at that time-step after the query. Classifier accuracy is determined 631

by constructing 100 80%/20% random splits of the episodes into training and test data. The error 632

bars represent 5-95 percentile accuracy on the test data partitions. In Figure 4e, two-dimensional 633

t-SNE14 dimensionality reduction is performed on those same averaged vectors. Each data point 634

(only half of which are shown to reduce crowding) is marked with the relevant goal label. 635

13 Optimisation 636

For all experiments, results are reported based on statistics gathered from 20 randomly initialised 637

networks sharing the same set of hyper-parameters. These hyper-parameters were derived from 638

prior grid searches. Hyper-parameter settings for each problem are described in Supplementary 639

Tables 5-4. In both the supervised and reinforcement settings we train a model using a single 640

machine version of Downpour SGD15. Each CPU in the machine runs a worker process with 641

its own copy of the model parameters. The workers generate episodes and compute gradients of 642
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the loss function with respect to the network weights using backpropagation through time16. The 643

gradients are combined with a single central instance of the RMSProp17 optimisation algorithm. 644

Once a worker computes gradients for an episode, it acquires a mutual exclusion (mutex) lock 645

guaranteeing that no other process is accessing the optimiser. The gradients are used to perform 646

one optimisation step, modifying the central master copy of the parameters, and the new parameter 647

values are copied back to the worker. The optimiser updates a single global copy of its state, which 648

for RMSProp includes a moving average of gradient magnitudes. Finally the mutex is released, 649

allowing a different worker to perform a gradient update. In the backpropagation-through-time 650

backward pass, the gradient with respect to the LSTM controller activations were clipped element- 651

wise to the range [−10, 10]. 652
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Supplementary Information for 688

Symbolic Reasoning with Differentiable Neural Computers 689

1 Reinforcement Learning 690

We utilise a variant of a policy gradient algorithm to learn to solve Mini-SHRDLU. The traditional

formal framework for reinforcement learning is the Markov Decision Process (MDP), which is

defined by a set of states s ∈ S, a set of actions a ∈ A, a reward function r(s, a), and state

transition probabilities Pr(s′|s, a), defining how an action influences movement between states.1

The policy is a parametric distribution of actions conditioned on the state with parameters θ. We

also define the time-indexed future state distribution of a policy ρt(s|s0, θ). The expected value of

a policy given an initial time t and state st is given as

V θ
t (st) =

T∑
τ=t

Esτ∼ρτ (s|st,θ)Eaτ∼π(a|sτ ,θ)[r(sτ , aτ )].

The performance difference between two policies can be given exactly as1

V θ′

t (st)− V θ
t (st) =

T∑
τ=t

Esτ∼ρτ (s|st,θ′)Eaτ∼π(a|sτ ,θ′)[r(sτ , aτ )]− V θ
t (st)

=
T∑
τ=t

Esτ∼ρτ (s|st,θ′)Eaτ∼π(a|sτ ,θ′)[r(sτ , aτ ) + V θ
τ (sτ )− V θ

τ (sτ )]− V θ
t (st)

=
T∑
τ=t

Esτ∼ρτ (s|st,θ′)Eaτ∼π(a|sτ ,θ′)[r(sτ , aτ ) + V θ
τ+1(sτ+1)− V θ

τ (sτ )].

1We use no discount factor since our tasks are finite length episodes.
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We denote the advantage function Aθτ (sτ , aτ ) ≡ Esτ+1∼Pr(s|sτ ,aτ )[r(sτ , aτ )+V θ
τ+1(sτ+1)−V θ

τ (sτ )],

yielding

V θ′

t (st)− V θ
t (st) =

T∑
τ=t

Esτ∼ρτ (s|st,θ′)Eaτ∼π(a|sτ ,θ′)A
θ
τ (sτ , aτ ).

It is the case that Eaτ∼π(a|sτ ,θ)A
θ
τ (sτ , aτ ) = 0 (a policy has no advantage relative to itself). There-

fore, if we consider the performance difference locally around θ, we have

V θ+∆θ
t (st)− V θ

t (st) = ∆θ ·
T∑
τ=t

{
∇θ

[
Esτ∼ρτ (s|st,θ)

]
Eaτ∼π(a|sτ ,θ′)A

θ
τ (sτ , aτ )

+ Esτ∼ρτ (s|st,θ)∇θ

[
Eaτ∼π(a|sτ ,θ)

]
Aθτ (sτ , aτ )

}
+ o(|∆θ|2)

= ∆θ ·
T∑
τ=t

Esτ∼ρτ (s|st,θ′)∇θ

[
Eaτ∼π(a|sτ ,θ)

]
Aθτ (sτ , aτ ) + o(|∆θ|2),

where the first term disappears because the expected advantage is 0. The second line is commonly

transformed using the identity∇xf(x) = f(x)∇x log f(x) to

∇θV
θ
t (st) =

T∑
τ=t

Esτ∼ρτ (s|st,θ′)Eaτ∼π(a|sτ ,θ)∇θ log π(aτ |sτ , θ)Aθτ (sτ , aτ ).

Now, shifting time to an origin at t = 1 and taking an expectation over initial states, we can write

down the complete policy gradient.

∇θJ(π) = Es1∼ρ1(s)∇θV
θ

1 (s1)

= Es1∼ρ1(s)

T∑
t=1

Est∼ρt(s|s1,θ′)Eat∼π(a|st,θ)∇θ log π(at|st, θ)Aθt (st, at). (33)

Since Equation 33 is an expectation, it can be approximated with Monte Carlo samples:

∇θJ(π) ≈ 1

L

L∑
l=1

T∑
t=1

∇θ log π(alt|slt, θ)Aθt (slt, alt).
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This equation does not specify how to estimate the advantage function. We first denote the tem-

poral difference error as δt ≡ r(st, at) + V θ
t+1(st+1) − V θ

t (st). By the definition, we then have

Aθt (st, at) = Eat∼π(a|st,θ)δt. The temporal difference error is an unbiased estimator of the ad-

vantage in the case that the value function V θ is known exactly. In practice, this is not usu-

ally the case. It can be shown2, 3 that the parametric family of advantage estimators Aθt (st, at) ≈∑T
τ=tEsτ∼ρτ (s|st,at,θ)λ

τ−tδτ with λ ∈ [0, 1] has the property that, even in the case that V θ is ap-

proximated, the bias of the estimator vanishes as λ → 1, while the variance of the estimator can

increase. If V θ is exact, all values of λ yield an unbiased estimator of the advantage. As the bias

of our approximator is not directly known, we make a choice for λ based on experimentation.

Approximating the advantage function gives the estimator

∇θJ(π) ≈ 1

L

L∑
l=1

T∑
t=1

∇θ log π(alt|slt, θ)
T∑
τ=t

λτ−tδlτ .

In Mini-SHRDLU, we have partially observed state because the instructions are presented one-by-

one and must be memorised, and the number of steps until episode termination is not observable.

Thus, we parameterise our policies using recurrent networks (DNC and LSTM) that take in the

observations: π(at|o1, . . . , ot, θ) = π(at|hπt , θ), where hπt = hπ(ot, h
π
t−1, θ) with h0 part of the

parameters to be learned. We represent the value functions as recurrent networks with parameters

φ that are independent of the policy: V θ
t (hvt , φ) and hvt = hv(ot, h

v
t−1, φ). Once we make these

replacements, our final policy gradient estimator is

∇θJ(π) ≈ 1

L

L∑
l=1

T∑
t=1

∇θ log π(alt|h
π,l
t , θ)

T∑
τ=t

λτ−tδlτ . (34)

50



We estimate the value function using regression based on the cost function 691

C(φ) =
1

2L

L∑
l=1

T∑
t=1

||
T∑
τ=t

r(slτ , a
l
τ )− V θ

t (hv,lt , φ)||2. (35)

2 bAbI Results 692

To compare with previous results we report the single best network (measured on the validation 693

set) over 20 runs with identical hyper-parameters (Table 1). However, we also report the mean and 694

standard deviation over all runs (Table 2). For all models (LSTM, NTM, DNC) we kept the hyper- 695

parameter settings that (1) gave the lowest average validation error rate or (2) gave the single best 696

validation error rate for a single model. For LSTM and NTM the same setting was best for both 697

criteria, but for DNC two different settings were found (DNC1 for criterion 1, DNC2 for criterion 698

2). 699
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Task
LSTM

(Joint)

NTM

(Joint)

DNC1

(Joint)

DNC2

(Joint)

MemN2N

(Joint)4

MemN2N

(Single Task)4

DMN

(Single Task)5

1: 1 supporting fact 24.5 31.5 0.00.00.0 0.00.00.0 0.00.00.0 0.00.00.0 0.00.00.0

2: 2 supporting facts 53.2 54.5 1.3 0.4 1.0 0.30.30.3 1.8
3: 3 supporting facts 48.3 43.9 2.4 1.81.81.8 6.8 2.1 4.8
4: 2 argument relations 0.4 0.00.00.0 0.00.00.0 0.00.00.0 0.00.00.0 0.00.00.0 0.00.00.0

5: 3 argument relations 3.5 0.8 0.50.50.5 0.8 6.1 0.8 0.7
6: yes/no questions 11.5 17.1 0.00.00.0 0.00.00.0 0.1 0.1 0.00.00.0

7: counting 15.0 17.8 0.20.20.2 0.6 6.6 2.0 3.1
8: lists/sets 16.5 13.8 0.10.10.1 0.3 2.7 0.9 3.5
9: simple negation 10.5 16.4 0.00.00.0 0.2 0.00.00.0 0.3 0.00.00.0

10: indefinite knowledge 22.9 16.6 0.2 0.2 0.5 0.00.00.0 0.00.00.0

11: basic coreference 6.1 15.2 0.00.00.0 0.00.00.0 0.00.00.0 0.1 0.1
12: conjunction 3.8 8.9 0.1 0.00.00.0 0.1 0.00.00.0 0.00.00.0

13: compound coreference 0.5 7.4 0.00.00.0 0.1 0.00.00.0 0.00.00.0 0.2
14: time reasoning 55.3 24.2 0.3 0.4 0.00.00.0 0.1 0.00.00.0

15: basic deduction 44.7 47.0 0.00.00.0 0.00.00.0 0.2 0.00.00.0 0.00.00.0

16: basic induction 52.6 53.6 52.4 55.1 0.20.20.2 51.8 0.6
17: positional reasoning 39.2 25.5 24.1 12.012.012.0 41.8 18.6 40.4
18: size reasoning 4.8 2.2 4.0 0.80.80.8 8.0 5.3 4.7
19: path finding 89.5 4.3 0.10.10.1 3.9 75.7 2.3 65.5
20: agents motivations 1.3 1.5 0.00.00.0 0.00.00.0 0.00.00.0 0.00.00.0 0.00.00.0

Mean Error (%) 25.2 20.1 4.3 3.83.83.8 7.5 4.2 6.4
Failed Tasks (err. > 5%) 15 16 222 222 6 3 222

Table 1: bAbI Best Results. Lowest error rate for each task shown in bold.
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Task LSTM NTM DNC1 DNC2

1: 1 supporting fact 28.4±1.5 40.6±6.7 9.0± 12.69.0± 12.69.0± 12.6 16.2±13.7
2: 2 supporting facts 56.0±1.5 56.3±1.5 39.2± 20.539.2± 20.539.2± 20.5 47.5±17.3
3: 3 supporting facts 51.3±1.4 47.8±1.7 39.6± 16.439.6± 16.439.6± 16.4 44.3±14.5
4: 2 argument relations 0.8±0.5 0.9±0.7 0.4± 0.70.4± 0.70.4± 0.7 0.4± 0.30.4± 0.30.4± 0.3

5: 3 argument relations 3.2±0.5 1.9±0.8 1.5± 1.01.5± 1.01.5± 1.0 1.9±0.6
6: yes/no questions 15.2±1.5 18.4±1.6 6.9± 7.56.9± 7.56.9± 7.5 11.1±7.1
7: counting 16.4±1.4 19.9±2.5 9.8± 7.09.8± 7.09.8± 7.0 15.4±7.1
8: lists/sets 17.7±1.2 18.5±4.9 5.5± 5.95.5± 5.95.5± 5.9 10.0±6.6
9: simple negation 15.4±1.5 17.9±2.0 7.7± 8.37.7± 8.37.7± 8.3 11.7±7.4
10: indefinite knowledge 28.7±1.7 25.7±7.3 9.6± 11.49.6± 11.49.6± 11.4 14.7±10.8
11: basic coreference 12.2±3.5 24.4±7.0 3.3± 5.73.3± 5.73.3± 5.7 7.2±8.1
12: conjunction 5.4±0.6 21.9±6.6 5.0± 6.35.0± 6.35.0± 6.3 10.1±8.1
13: compound coreference 7.2±2.3 8.2±0.8 3.1± 3.63.1± 3.63.1± 3.6 5.5±3.4
14: time reasoning 55.9±1.2 44.9±13.0 11.0± 7.511.0± 7.511.0± 7.5 15.0±7.4
15: basic deduction 47.0±1.7 46.5±1.6 27.2± 20.127.2± 20.127.2± 20.1 40.2±11.1
16: basic induction 53.3± 1.353.3± 1.353.3± 1.3 53.8±1.4 53.6±1.9 54.7±1.3
17: positional reasoning 34.8±4.1 29.9± 5.229.9± 5.229.9± 5.2 32.4±8.0 30.9±10.1
18: size reasoning 5.0±1.4 4.5±1.3 4.2± 1.84.2± 1.84.2± 1.8 4.3±2.1
19: path finding 90.9±1.1 86.5±19.4 64.6± 37.464.6± 37.464.6± 37.4 75.8±30.4
20: agents motivations 1.3±0.4 1.4±0.6 0.0± 0.10.0± 0.10.0± 0.1 0.0± 0.00.0± 0.00.0± 0.0

Mean Error (%) 27.3±0.8 28.5±2.9 16.7± 7.616.7± 7.616.7± 7.6 20.8±7.1
Failed Tasks (err. > 5%) 17.1±1.0 17.3±0.7 11.2± 5.411.2± 5.411.2± 5.4 14.0±5.0

Table 2: bAbI Mean Results. All means over 20 runs ± std. deviation. Lowest mean error rate

for each task shown in bold.
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LSTM NTM DNC1 DNC2

LSTM Size 512 256 256 256

Batch Size 1 1 1 1

Learning Rate 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Memory Dimensions N/A 256× 64 256× 64 256× 32

Read Heads N/A 4 4 8

Async. Workers 16 16 16 16

Table 3: Hyper-parameter settings for bAbI

Path

Finding

Path

Traversal

Inference

Tasks

LSTM Size 2× 256 3× 256 3× 256

Batch Size 1 2 32

Learning Rate 3× 10−6 1× 10−5 1× 10−5

Memory Dimensions 128× 50 256× 50 128× 50

Read Heads 5 5 5

DAGGER β 0.8 N/A N/A

Table 4: Hyper-parameter settings for graph tasks
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Figure 1: Altering the Memory Size of a Trained Network. A DNC trained on the path traversal

task with 256 memory locations was tested while varying the number of memory locations and

graph triples. The heatmap shows the fraction of length 1–10 traversals performed perfectly by

the network, out of a batch of 100. There is a clear correspondence between the number of triples

in the graph and the number of memory locations required to solve the task, reflecting our earlier

analysis (Figure 3a) that DNC writes each triple to a separate location in memory. The network

appears to exploit all available memory, regardless of how much memory it was trained with. This

supports our claim that memory is independent of processing in a DCN, and points to large scale

applications such as knowledge graph processing.
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Figure 2: Impact of Link Matrix Sparsity on Performance. We trained DNC on a copy prob-

lem, where a length 1–100 sequence of size 6 random binary vectors was given as input, and an

identical sequence was then required as output. A feedforward controller was used to ensure that

the sequences could not be stored in the controller state. The faint lines show error curves for 20

randomly initialised runs with identical hyper-parameters with link matrix sparsity switched off

(pink), sparsity used with K = 5 (green), and the link matrix disabled altogether (blue). The bold

lines show the mean curve for each setting. The error rate is the fraction of sequences copied with

no mistakes out of a batch of 100. There does not appear to be any systematic difference between

no sparsity and K = 5. We observed similar behaviour for K from 2 and 20 (plots omitted for

clarity). The task cannot easily be solved without the link matrix as the input sequence has to be

recovered in the correct order. Note the abrupt drops in error for the networks with link matrices:

these are the points when the system learns a copy algorithm that generalises to longer sequences.
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Figure 3: Dynamic Memory Allocation. We trained DNC on a copy problem, where a series

of 10 random sequences was presented as input. After each input sequence was presented, it was

recreated as output. Once the output was generated, that input sequence was not needed again and

could be erased from memory. We used a DNC with a feedforward controller and a memory of

10 locations — insufficient to store all 50 input vectors with no overwriting. The goal was to test

whether the memory allocation system would be used to free and re-use locations as needed. As

shown by the read and write weightings, the same locations are repeatedly used. The free gate is

active during the read phases, meaning that locations are deallocated immediately after they are

read from. The allocation gate is active during the write phases, allowing the deallocated locations

to be re-used.

57



Fig 4 a

DNC

Fig 4 a

LSTM

Figure 5

DNC

LSTM Size 2× 250 2× 250 2× 250

Batch Size 32 32 32

Learning Rate 3× 10−5 3× 10−5 3× 10−5

Memory Dimensions 32× 100 N/A 32× 100

Read Heads 3 N/A 2

λ 0.75 0.5 0.5

Entropy Cost Coeff. 0.5 0.5 0.5

Table 5: Hyper-parameter settings for Mini-SHRDLU
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Lesson Nodes Out-degree Path Length Test Final
1 (3, 10) (2, 4) (1, 1) 0.0±0.0 10.7±0.6
2 (3, 10) (2, 4) (1, 2) 0.0±0.0 19.7±1.3
3 (5, 10) (2, 4) (1, 3) 0.0±0.0 27.3±1.0
4 (5, 10) (2, 4) (1, 4) 0.0±0.0 38.2±2.2
5 (10, 15) (2, 4) (1, 4) 0.0±0.0 39.7±1.5
6 (10, 15) (2, 4) (1, 5) 0.0±0.0 47.5±2.2
7 (10, 20) (2, 4) (1, 5) 0.1±0.2 48.1±1.8
8 (10, 20) (2, 4) (1, 6) 13.6±20.8 59.4±5.2
9 (10, 30) (2, 4) (1, 6) 15.0±20.3 59.0±4.8

10 (10, 30) (2, 4) (1, 7) 72.8±9.3 72.3±3.5
11 (10, 30) (2, 4) (1, 8) 88.6±5.7 81.6±4.0
12 (10, 30) (2, 4) (1, 9) 91.8±3.9 90.7±3.2
13 (10, 40) (2, 6) (1, 10) 96.0±3.7 96.8±1.6
14 (10, 40) (2, 6) (1, 20) 98.8±1.6 99.0±1.1

Table 6: Curriculum Results for Graph Traversal. Parentheses represent ranges: (lower bound,

upper bound). ‘Test’ is the accuracy (mean ± std. dev.) on the test set . Evaluation of lesson

completion occurs after every group of 100 batches has been processed on the main worker thread.

The completion threshold is met if 90% of modal samples (most likely output of network) are

correct.
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Lesson Nodes Out-degree Relation Length Queries Test Final
1 (3, 3) (2, 2) (2, 2) 3 0.0±0.0 2.3±2.3
2 (3, 5) (2, 2) (2, 2) 3 0.0±0.0 8.9±4.9
3 (4, 6) (2, 4) (2, 2) 3 0.0±0.0 14.3±5.7
4 (4, 6) (2, 4) (2, 2) 3 0.0±0.0 15.5±6.2
5 (6, 12) (2, 4) (2, 2) 3 0.0±0.0 22.7±3.6
6 (12, 18) (2, 4) (2, 2) 3 0.0±0.0 25.8±1.6
7 (4, 6) (2, 4) (2, 3) 3 0.1±0.2 31.2±4.0
8 (6, 12) (2, 4) (2, 3) 3 0.1±0.2 47.6±5.5
9 (12, 18) (2, 4) (2, 3) 3 0.0±0.0 55.1±2.5

10 (4, 6) (2, 4) (2, 4) 3 14.5±14.2 49.4±5.0
11 (4, 6) (2, 4) (2, 4) 3 11.1±13.1 50.2±5.8
12 (6, 12) (2, 4) (2, 4) 3 20.4±13.5 66.3±4.0
13 (12, 18) (2, 4) (2, 4) 3 43.6±19.5 78.9±2.9
14 (4, 6) (2, 4) (2, 5) 3 18.6±13.8 68.6±5.0
15 (6, 12) (2, 4) (2, 5) 3 26.4±19.1 78.4±3.8
16 (12, 18) (2, 4) (2, 5) 3 61.9±20.5 91.1±2.3
17 (20, 25) (2, 4) (2, 5) 3 81.8±13.5 95.5±2.2

Table 7: Curriculum Results for Inferred Relations. Parentheses represent ranges: (lower

bound, upper bound). Evaluation of lesson completion occurs after every group of 100 batches

has been processed on the main worker thread. The completion threshold is met if 90% of modal

samples (most likely output of network) are correct.
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Lesson Nodes Out-degree Path Length Test Final
1 (5, 10) (1, 2) (2, 2) 8.2±6.1 11.2±4.5
2 (5, 20) (1, 2) (2, 2) 4.0±2.6 12.7±4.8
3 (10, 20) (1, 2) (2, 2) 4.0±3.7 13.2±5.1
4 (10, 20) (1, 2) (2, 3) 9.5±5.7 13.7±3.6
5 (10, 20) (1, 3) (2, 3) 14.4±5.7 22.8±7.1
6 (10, 20) (2, 3) (2, 3) 14.2±6.8 27.6±9.2
7 (10, 20) (2, 3) (2, 4) 28.3±9.0 34.0±6.7
8 (10, 20) (2, 4) (2, 4) 29.2±9.0 39.7±7.4
9 (10, 25) (2, 4) (2, 4) 34.4±11.4 41.1±9.4

10 (10, 25) (2, 4) (2, 5) 32.3±10.3 40.0±8.4
11 (10, 25) (2, 4) (2, 5) 33.8±9.7 44.0±11.4
12 (15, 25) (2, 4) (2, 5) 34.9±7.0 47.2±8.0
13 (15, 25) (2, 5) (2, 5) 40.9±6.6 54.3±5.6
14 (20, 25) (2, 5) (2, 5) 50.7±2.7 54.0±9.6
15 (20, 25) (2, 6) (2, 5) 55.3±6.4 64.0±3.5

Table 8: Curriculum Results for Shortest Path Task. Parentheses represent ranges: (lower

bound, upper bound). Evaluation of lesson completion occurs after every group of 2000 batches

(size 1) has been processed on main worker thread. A path is defined as “correct” if it is a shortest

path. The completion threshold is met if 80% of modal samples (most likely output of network)

are correct on a new group of 50 episodes.
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Lesson Number of goals Number of blocks Number of constraints Search depth
1 (2, 2) (3, 3) (1, 1) (1, 1)
2 (2, 3) (3, 4) (1, 2) (1, 1)
3 (3, 3) (4, 4) (1, 2) (1, 2)
4 (3, 4) (4, 5) (2, 2) (1, 2)
5 (4, 4) (5, 5) (2, 2) (2, 2)
6 (4, 5) (5, 6) (2, 3) (2, 2)
7 (5, 5) (6, 6) (2, 3) (2, 3)
8 (5, 6) (6, 6) (3, 3) (2, 3)
9 (6, 6) (6, 6) (3, 3) (3, 3)

10 (6, 7) (6, 6) (3, 4) (3, 3)
11 (7, 7) (6, 6) (3, 4) (3, 4)
12 (7, 8) (6, 6) (4, 4) (3, 4)
13 (8, 8) (6, 6) (4, 4) (4, 4)
14 (8, 9) (6, 6) (4, 5) (4, 4)
15 (9, 9) (6, 6) (4, 5) (4, 5)
16 (9, 10) (6, 6) (5, 5) (4, 5)
17 (10, 10) (6, 6) (5, 5) (5, 5)
18 (10, 10) (6, 6) (5, 6) (5, 5)
19 (10, 10) (6, 6) (5, 6) (5, 6)
20 (10, 10) (6, 6) (6, 6) (5, 6)
21 (10, 10) (6, 6) (6, 6) (6, 6)
22 (10, 10) (6, 6) (6, 6) (6, 6)
23 (10, 10) (6, 6) (6, 6) (6, 7)
24 (10, 10) (6, 6) (6, 6) (6, 7)
25 (10, 10) (6, 6) (6, 6) (7, 7)
26 (10, 10) (6, 6) (1, 6) (1, 7)

Table 9: Curriculum for Mini-SHRDLU. Parentheses represent ranges: (lower bound, upper

bound).Evaluation of lesson completion occurs after every group of 400 batches has been processed

on the main worker thread. The completion threshold is met if 85% of constraints are satisfied at

episode termination on average over 160 episodes (The last lesson has no termination).
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3 Complete DNC Equations 700

Initial Conditions:

u0 = 0,p0 = 0,L0 = 0,Lt[i, i] = 0 ∀i

Definitions:

C(M,k, β)[i] =
exp

(
D(k,M[i])β

)∑
j exp

(
D(k,M[j])β

)
D(u,v) = u · v

|u||v|

Update Equations:

ψt =

R∏
r=1

(1− frt wr
t−1)

ut =
(
ut−1 + (1− ut−1)wt−1

)
ψt

at[φt[j]] = (1− ut[φt[j]])

j−1∏
i=1

ut[φt[i]]

cwt = C(Mt−1,k
w
t , β

w
t )

wt = gwt
(
gat at +

(
1− gat

)
cwt
)

Mt = Mt−1 ◦ (E−wte
>
t ) +wtvt

>

pt =
(
1−

∑
i

wt[i]
)
pt−1 +wt

Lt[i, j] =
(
1−wt[i]−wt[j]

)
Lt−1[i, j] +wt[i]pt−1[j]

frt = Ltw
r
t−1

br
t = L>t w

r
t−1

crt = C(Mt,k
r
t , β

r
t )

wr
t = πr

t [1]b
r
t + π

r
t [2]c

r
t + π

r
t [3]f

r
t
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r
t
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