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Enabling precision rehabilitation interventions using wearable
sensors and machine learning to track motor recovery
Catherine Adans-Dester 1,2, Nicolas Hankov 1, Anne O’Brien1, Gloria Vergara-Diaz1, Randie Black-Schaffer1, Ross Zafonte1,
Jennifer Dy3, Sunghoon I. Lee4 and Paolo Bonato 1,5✉

The need to develop patient-specific interventions is apparent when one considers that clinical studies often report satisfactory
motor gains only in a portion of participants. This observation provides the foundation for “precision rehabilitation”. Tracking and
predicting outcomes defining the recovery trajectory is key in this context. Data collected using wearable sensors provide clinicians
with the opportunity to do so with little burden on clinicians and patients. The approach proposed in this paper relies on machine
learning-based algorithms to derive clinical score estimates from wearable sensor data collected during functional motor tasks.
Sensor-based score estimates showed strong agreement with those generated by clinicians. Score estimates of upper-limb
impairment severity and movement quality were marked by a coefficient of determination of 0.86 and 0.79, respectively. The
application of the proposed approach to monitoring patients’ responsiveness to rehabilitation is expected to contribute to the
development of patient-specific interventions, aiming to maximize motor gains.
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INTRODUCTION
By 2030, it is estimated that about 71 million Americans (973
million adults worldwide) will be 65 years of age or older1. The
increase in life expectancy, due in part to recent advances in
medical care, is unfortunately accompanied by an unprecedented
and rapid increase in the prevalence of disability as older adults
present with an accumulation of injuries and chronic conditions
associated with disability1,2. Neurological conditions are common
in older adults and affect as many as a billion people worldwide3.
They are often associated with severe disability4 and cause
significant societal burden5. Acquired brain injury (ABI), such as
stroke and traumatic brain injury (TBI), has a high prevalence.
About 2.4% of the US population experience lifelong disability due
to stroke, and ~1.1% experience lifelong disability due to TBI2,6,7.
Residual upper-limb motor deficits in these individuals contribute
to loss of independence and poor quality of life.
Numerous studies have shown that rehabilitation interventions

are beneficial across a number of neurological conditions as they
result in a decrease in the severity of disability8,9. However,
choosing the most effective intervention among the myriad of
available rehabilitation approaches is challenging10–12. High
variability in response to interventions aimed to restore upper-
limb function is observed across patients13–15, hence pointing to
the need for designing “precision rehabilitation” interventions that
account for the unique characteristics of each individual. The need
for developing patient-specific interventions is paramount in the
broad field of medicine16–18 and is gradually emerging as a topic
of great interest in the field of rehabilitation as investigators
explore approaches relying on patients’ genotype19–21 and motor
phenotype22–24 to develop subject-specific interventions.
In this context, it is important that rehabilitation specialists be

provided with tools to monitor the motor recovery process, to
assess if the ongoing intervention is leading to the anticipated

clinical results, and to adjust the intervention if needed.
Monitoring the motor recovery process includes assessing
improvements in patients’ independence and participation in
activities of daily living (ADL’s), which are important objectives of
rehabilitation interventions as they are key factors to improve
quality of life. Interventions are typically structured according to
the International Classification of Functioning, Disability, and
Health, which is referred to as the ICF model25. Rehabilitation
specialists use this framework to evaluate interventions and rely
on clinical outcome measures to capture different ICF domains
(i.e., body function & structures, activity, and participation).
Clinical outcome measures are often based on the observation

of subjects’ motor behaviors (e.g., to capture motor impairments
and functional limitations). Unfortunately, these assessments are
time-consuming and impractical to administer on a regular basis
throughout the period of intervention. Outcome measures are too
often collected only at baseline and at discharge. This is a problem
because the lack of longitudinal data prevents rehabilitation
specialists from examining the potential need for adjusting the
intervention hence maximizing motor gains. To address this
problem, researchers and clinicians have started to explore the
use of wearable-sensing technology to collect the longitudinal
data and derive estimates of clinical outcome measures (i.e.,
clinical scores).
Over the past decade, wearable technology has matured to the

extent needed to provide an effective tool to monitor outcomes
and facilitate delivering interventions26–29. Data can be collected
in real-life conditions, thus enabling the assessment of upper-limb
motor function where it counts the most, i.e., in the home and
community setting30,31. This technology has tremendous potential
for assessing the benefits of rehabilitation interventions32. Prior
work by our research team has shown that accurate estimates of
clinical scores capturing movement quality33,34 can be derived
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from accelerometer data collected during the performance of
functional motor tasks. In addition, preliminary results suggest
that a similar approach can be taken to assess the severity of
upper-limb impairments35,36. However, obtaining accurate esti-
mates of upper-limb impairments from wearable sensor data
collected during the performance of functional tasks remains a
challenge.
The methodology and results herein presented are an

important step toward addressing the shortcomings of existing
methods and demonstrate the feasibility of the approach
schematically represented in Fig. 1. Data relevant to the
assessment of upper-limb motor function are recorded in an
unobtrusive manner during the performance of ADL’s using
wearable sensors on the arm, forearm, and fingers. The data are
then processed by relying on machine learning-based algorithms
to estimate clinical scores across ICF domains (e.g., clinical scores
capturing motor impairments, movement quality, and amount of
use of the impaired limb). Accordingly, clinical outcomes are
assessed throughout the intervention period using the data
collected in the home and community settings.

RESULTS
A novel approach to estimating clinical scores
The results herein presented show that wearable sensor data can
be used to derive accurate estimates of clinical scores utilized in
the clinic to capture the severity of motor impairments and the
quality of upper-limb movement patterns. In the study, the upper-
limb Fugl-Meyer assessment (FMA)37 scale was used to generate
clinical scores of the severity of motor impairments, and the
Functional Ability Scale (FAS)38 was used to generate clinical
scores of the quality of movement. Wearable sensor data (i.e.,
accelerometer data) were collected during the performance of
eight functional motor tasks taken from the Wolf Motor Function
Test38,39 thus providing a sample of gross arm movements and
fine motor control tasks. Machine learning-based algorithms were
developed to derive accurate estimates of the FMA and FAS
clinical scores from the sensor data.

Study participants
A total of 37 study participants (16 stroke survivors and 21 TBI
survivors) were recruited in the study. While the nature of the
injury was different, all the subjects presented with residual upper-
limb hemiparesis. The comparison between clinical characteristics

of the stroke survivors and the TBI survivors did not show a
statistically significant difference in clinical outcome measures
(Table 1). The data also showed that the response to the
intervention (i.e., baseline values vs. post-treatment values), as
assessed using FMA and FAS scores, was similar in stroke and TBI
survivors, although a large variability in motor gains was observed
across study participants (Supplementary Fig. 1). Only the age
significantly differed between the two populations, as expected
because the average age at stroke onset is ~71 years for males
and ~75 years for females7, whereas the incidence of TBI spans
across the lifetime with a higher incidence in early childhood, late
adolescence/early adulthood, and late life (i.e., among individuals
75 years of age and older)40. However, the age of the subjects is
not expected to have any impact on the algorithms to derive FMA
and FAS score estimates. Therefore, the datasets collected from
these two populations were combined.

Estimation of clinical scores using wearable sensor data
Prior work by our research team had shown that accurate FAS
score estimates can be derived via the analysis of wearable sensor
data33,34,41. In contrast, similar attempts to estimate FMA scores
had led to unsatisfactory results36. Because previously proposed
methods to derive FMA scores from wearable sensor data were
shown to be inadequate and because of the high relevance of
assessing impairments for planning and informing rehabilitation
interventions for those affected by hemiplegia37, the work carried
out in this study was primarily focused on achieving optimal
estimates of FMA scores. The accuracy of the algorithms
developed during the study was assessed by computing the
root-mean-square error (RMSE) and the coefficient of determina-
tion (r2) of the clinical score estimates. The estimates’ bias was also
derived to evaluate if the RMSE was primarily accounted for by the
bias affecting the estimates, by the variability of the estimation
error, or by a combination of the two. Inter-rater reliability data
available for these clinical scales and the average change in
clinical scores in response to the intervention were used to derive
benchmarks for the accuracy of the clinical score estimates (see
“Discussion”).

Upper-limb impairment: estimation of FMA scores
The following four estimation algorithms were implemented and
characterized. Method 1 (linear regression (dFAS)): FMA scores were
derived via linear regression of FAS estimates (i.e., dFAS) computed
from the sensor data. Method 2 (random forest): FMA scores were

Fig. 1 Schematic representation of the proposed approach. Data are collected using wearable sensors positioned on the upper limbs
during the performance of functional tasks. Sensor data are fed to machine learning-based algorithms to derive estimates of clinical scores
relevant to different ICF domains.
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derived via analysis of sensor data, collected during the
performance of eight functional motor tasks, using a random
forest (RF) regression42 and subsequently aggregating the results
obtained for all the motor tasks using a RF again. Method 3
(balanced random forest): FMA scores were estimated by modify-
ing Method 2 to balance the training set across FMA scores as part
of the process by which data features were randomly selected to
generate the decision trees of the RF. Method 4 (proposed
technique): FMA scores were estimated by modifying Method 3
to add the dFAS as input to the model.
Table 2 provides a summary of the results (i.e., RMSE and r2

values) obtained using these algorithms as well as the RMSE and r2

values of the FAS estimates derived from the wearable sensor data
using a previously developed machine learning-based
algorithm34.
To implement the first of these methods (linear regression (dFAS)),

a linear regression model was derived from the actual FAS and
FMA scores (r2= 0.75, Supplementary Fig. 2). Then the FAS scores
estimated from the sensor data were fed to the linear regression
model to derive FMA score estimates. The estimates were marked

by a RMSE of 7.79 points and a r2 of 0.47 (Supplementary Fig. 3).
Interestingly, the bias of the estimates was small (i.e., −0.10
points), thus showing that the RMSE was mostly accounted for by
the variability of the estimation error. These results provided a
benchmark for investigating methods to estimate FMA scores
directly from wearable sensor data.
The second of the above-mentioned methods (random forest)

was implemented by using the cascade of two modules. The first
module consisted of a set of algorithms to process individually the
sensor data collected during the performance of each of the eight
motor tasks utilized in the study. These algorithms derived data
features from the accelerometer time series and fed them to a RF
regression with 100 trees to generate FMA score estimates. The
RMSE of the estimates derived from different motor tasks ranged
from 6.17 to 10.77 points (Supplementary Table 1), with r2= 0.65
as the highest coefficient of determination. It is worth pointing out
that these results were obtained using the leave-one-subject-out
cross-validation technique and that the highest coefficient of
determination was obtained using data collected during a task
combining gross arm movements and fine motor control tasks. A
second module, implemented as a RF with 50 trees, was utilized to
aggregate the estimates generated using data from the above-
mentioned eight motor tasks. Using this second module led to a
significant decrease in RMSE (i.e., RMSE= 5.05 points) and an
increase in the coefficient of determination (r2= 0.77). These
results were obtained despite the fact that the distribution of
clinical scores was nonuniform, as shown in Fig. 2a. The data
shown in this figure was obtained by dividing the range spanned
by the FMA scores of the study sample in five intervals (herein
referred to as classes): FMA ≤ 30; 30 < FMA ≤ 38; 38 < FMA ≤ 47;
47 < FMA ≤ 56; and FMA > 56. Figure 2a shows both the uneven
distribution of the datapoints (i.e., n= number of subjects per
class ranging from 2 to 15) and the variability in the estimation
error across classes.
To improve the accuracy of the FMA estimates, the algorithm

was modified by balancing the classes during the training process
as data features were selected to generate the trees of the RF.
Herein, this method is referred to as balanced random forest. This
approach led to a further improvement in the accuracy of the

Table 2. Accuracy of the FAS and FMA estimation algorithms
investigated in the study.

RMSE r2

FAS (0–5 points)

Random forest 0.38 0.79

FMA (0–66 points)

Linear regression (dFAS) 7.79 0.47

Random forest 5.05 0.77

Balanced random forest 4.17 0.84

Proposed technique 3.99 0.86

Root-mean-square error (RMSE) and coefficient of determination (r2) values
are shown for the FAS score estimates derived using a random forest-
based algorithm as well as for the four methods implemented in the study
to estimate FMA scores.

Table 1. Comparison of subjects’ clinical characteristics (stroke and TBI).

Stroke (n= 16) TBI (n= 21) Total (n= 37) Between groupsa

Age, years, average ± SD 53.87 ± 25.74 34.03 ± 16.86 42.61 ± 18.98 t(35)= 3.65‡

Gender, male, n (%) 9 (56.3) 17 (81.0) 26 (70.3) X2(1, 37)= 2.65

Ethnicity, n (%)

Caucasian 13 (81.3) 20 (91.3) 33 (89.2) X2(2, 37)= 2.86

African American 2 (12.5) 0 (0) 2 (5.4)

Other 1 (6.3) 1 (4.8) 2 (5.4)

Chronicity, months, average ± SD 13.03 ± 20.41 4.99 ± 8.17 8.46 ± 15.06 t(35)= 1.49

Hemiparesis, left, n (%) 11 (68.8) 6 (28.6) 17 (45.9) X2(1, 37)= 5.90

Rehabilitation setting, inpatient, n (%) 10 (62.5) 20 (95.2) 30 (81.1) X2(1, 37)= 6.35

Affected side, dominant, n (%) 6 (37.5) 13 (61.9) 19 (51.4) X2(1, 37)= 2.17

Baseline FMA (/66), average ± SD 36.44 ± 10.43 37.10 ± 9.70 36.81 ± 9.89 t(35)=−0.20

Post FMA (/66), average ± SD 45.69 ± 12.92 51.67 ± 11.78 49.08 ± 12.48 t(35)=−1.47

Baseline total FAS (/5), average ± SD 2.98 ± 0.73 3.17 ± 0.73 3.08 ± 0.73 t(35)=−0.78

Post total FAS (/5), average ± SD 3.51 ± 0.82 3.90 ± 0.84 3.73 ± 0.84 t(35)=−1.39

TBI traumatic brain injury, FMA-UE Fugl-Meyer upper-extremity assessment, FAS Functional Ability Scale from the Wolf Motor Function Test, SD standard
deviation, TBI traumatic brain injury.
aChi-square tests were performed for categorical variables, and independent t tests were performed for continuous variables.
Significance level: ‡P < 0.01.
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results. The RMSE decreased to 4.17 points, and the r2 increased to
0.84. The bias of the estimates remained low (i.e., −0.15 points).
Finally, FAS score estimates (derived from the wearable sensor

data, dFAS) were used as an additional input to the balanced
random forest method. Herein, this algorithm is referred to as the
proposed technique. The model performance further improved as
the RMSE decreased to 3.99 points, and the coefficient of
determination increased to 0.86. The bias remained substantially
the same (i.e., −0.17 points). Figure 2b shows the impact of the
algorithm on the error distribution across classes. The classes were
set, as per Fig. 2a, by dividing the range spanned by the FMA
scores in five intervals. Paired t tests (i.e., comparisons between
the data shown in Fig. 2a for the random forest method and the
data shown in Fig. 2b for the proposed technique) showed
statistically significant improvements for the first, second, and fifth
class. Overall, the results show a slight overestimation of the
clinical scores for the most impaired subjects (FMA < 30 points)
and a slight underestimation of the clinical scores for the least
impaired subjects (FMA > 56 points). Figure 3b shows the FMA
estimates obtained using this algorithm, which displayed a slight
dependence of the estimates’ bias on the FMA value. Nonetheless,
the sensor-based estimates matched well the actual FMA values. It
is worth emphasizing that this algorithm represents a significant
improvement over the benchmark data generated using the first
of the algorithms implemented in the study (i.e., linear regression
(dFAS) method), which led to estimates of the FMA scores marked
by a r2= 0.47. In contrast, the final implementation of the
algorithm (i.e., the proposed technique) was marked by a r2= 0.86.

Movement quality: estimation of FAS scores
FAS estimates were derived using an algorithm, developed by our
team in a previous study, that had been shown to have good
performance34. When applied to the dataset of this study, the FAS
estimation algorithm showed a RMSE of 0.38 points, a coefficient
of determination of 0.79, and a bias equal to −0.15 points.

Figure 3a shows the estimated FAS scores vs. the actual FAS scores
for all the study participants.
The results shown in Fig. 3 are important because they

demonstrate that both the quality of upper-limb movement
patterns (Fig. 3a) and the severity of upper-limb motor impair-
ments (Fig. 3b) can be accurately estimated by analyzing wearable
sensor data using machine learning-based techniques.

DISCUSSION
The results of this study show that accurate estimates of the FAS
and FMA scores can be derived by analyzing wearable sensor data,
collected during the performance of functional motor tasks, using
machine learning-based algorithms. FAS scores were estimated
using a RF-based algorithm that we had previously developed and
shown to be suitable to generate accurate estimates of FAS
scores34. Analysis of the data collected in this study using this
algorithm confirmed its suitability to generate accurate estimates
of FAS scores (RMSE= 0.38 points, coefficient of determination
r2= 0.79). Prior work focused on estimating FMA scores, using an
approach similar to the one used to derive FAS score estimates,
had led to unsatisfactory results36. The algorithm resembled the
first module of the above-described random forest method (i.e.,
Method 2), and it only provided acceptable results when the
tenfold cross-validation technique was used. As it is known that
this cross-validation technique is prone to overfitting, the leave-
one-subject-out cross-validation technique was utilized in this
study instead. This technique is known to be suitable to assess the
generalizability of the proposed algorithms. As a case in point, the
first module of the random forest method was implemented using
the tenfold cross-validation technique as well as the leave-one-
subject-out cross-validation technique. Supplementary Table 1
shows a comparison of the results obtained using these two cross-
validation techniques, hence highlighting the need for developing
a new approach. To address this problem, a new design of the

Fig. 2 Estimation error distribution for two of the methods implemented in the study. a Random forest and b proposed technique. M
median value, Q1 25th percentile, Q3 75th percentile, n number of subjects per class. See text for details.
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machine learning-based algorithm to estimate FMA scores was
proposed in this study. Estimates of the FMA scores generated
using this algorithm were marked by a high coefficient of
determination r2= 0.86 and a RMSE= 3.99 points.
It is worth noticing that the proposed algorithm to estimate

FMA scores performed well despite the relatively small sample size
and the nonuniform distribution of the available clinical scores
(i.e., an uneven number of datapoints across classes). This is
because RF-based algorithms are robust to overfitting42 and
hence particularly suitable when a small dataset is available.
Furthermore, we chose to rebalance the training set as part of the
process by which datapoints were randomly selected to build
the decision trees of the RF. This technique led to a decrease in
the level of association between the variability in the estimation
error and the actual FMA score. With a larger dataset, one would
expect to achieve a “near-uniform” distribution of the estimation
error. That would further reduce the estimation bias. Then highly
accurate estimates of the FMA scores could be generated by
averaging estimates derived from repeated measures of motor
task performance. This approach would allow clinicians to reduce
the variance of the FMA estimates. The same approach could be
taken to generate highly accurate FAS score estimates. Using this
technique, FMA and FAS score estimates obtained via analysis of
the sensor data could match the high reliability of the FMA and
FAS clinical scales. Both the FMA and the FAS clinical scales have
been shown to be marked by high intraclass correlation
coefficients (ICC) (= 0.96 for the FMA43,44 and = 0.88 for the
FAS39). These ICC values could be related to the number of
repeated measures needed to reduce the FMA and FAS estimation
errors when deriving the clinical scores from sensor data. Similarly,
one could derive the number of repeated measures needed to
make the estimation errors negligible compared to the changes in
clinical scores observed in response to the clinical intervention of
interest.
The feasibility of the above-described approach would rely on

deriving clinical score estimates using wearable sensor data, which

could be collected with virtually no patients’ and clinicians’
burden. Besides, we designed the proposed technique to be
suitable to derive clinical score estimates from data collected
during the performance of functional motor tasks. As functional
motor tasks are part of the performance of ADL’s, FAS and FMA
score estimates could then be derived via the analysis of data
collected in the home and community setting. Future work should
fully enable this approach by further improving the unobtrusive-
ness and ease of use of wearable sensors and by developing fully
automated data analysis procedures, for instance, for the
segmentation of the sensor data based on detecting data
characteristics associated with the performance of motor tasks
suitable to derive reliable estimates of clinical scores.
These methods would allow clinicians to track the motor

recovery trajectory of stroke and TBI survivors as schematically
represented in Fig. 4. The figure shows a hypothetical case in
which a subject undergoes a 36-week intervention. During this
period of time, wearable sensors are used to monitor the subject.
After 18 weeks, clinical score estimates, derived from the sensor
data, are available and define the motor recovery trajectory
observed in response to the intervention until that point in time
(orange circles in Fig. 4). The data can be used by rehabilitation
specialists to assess if the patient is responding adequately to the
ongoing intervention or if an adjustment to the intervention
strategy is needed. Importantly, the clinical score time series can
be used to predict the patient’s response to the intervention for
the remaining 18 weeks, namely from week 19th to week 36th of
the intervention period (green circles in Fig. 4). This can be
achieved by using, for instance, Gaussian Process Regression
models45. Such models could account for the patient’s clinical
phenotype and hence generate predictions based on both the
clinical score time series and the anticipated response to the
intervention based on the patient’s clinical characteristics.
Many models have been proposed to predict clinical scores at

discharge using clinical data collected at baseline46–48. For
instance, corticospinal tract integrity observed via imaging

Fig. 3 Estimation of movement quality (FAS) and motor impairment (FMA) clinical scores. a Results obtained using a technique previously
developed by our research team. b Results obtained using the proposed technique (i.e., balanced RF with FAS estimates as an additional
input). Blue and red circles represent data collected from TBI and stroke survivors. The green line is the linear regression of the estimates; the
magenta dashed lines are the confidence intervals around the estimation. FAS Functional Ability Scale, FMA Fugl-Meyer assessment, RF
random forest, TBI traumatic brain injury.
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techniques shortly after a stroke has been associated with an
expected 70% proportional restitution of motor impairments at
3 months49–51. This value could be utilized as an “intervention
target” and the above-described algorithms, to generate predic-
tions of the motor recovery trajectory, could be utilized to assess
whether a given patient is “on track” to achieve the expected level
of recovery. In contrast, when the corticospinal tract is compro-
mised, rehabilitation specialists would expect that patients would
typically display a modest level of recovery. However, researchers
are exploring pharmacotherapies and regenerative medicine
approaches that have the potential for achieving a significant
impact on the recovery trajectory and, importantly, the amount of
restitution. In this context, the above-described algorithms could
be relied upon to assess and predict the effectiveness of a given
therapeutic intervention.
The approach described in this hypothetical clinical scenario

captures the essence of precision rehabilitation in which clinicians
design patient-specific interventions, set clinical objectives, track
patient’s response using wearable sensors, and periodically
evaluate the effectiveness of the ongoing intervention based on
the recovery trajectory defined by the time series of clinical score
estimates derived from wearable sensor data. The ability of
tracking and predicting clinical scores is key in this context and,
we argue, will enable patient-specific interventions marked by
unprecedented motor gains.

METHODS
Study participants
Subjects were prospectively recruited for a longitudinal study. Inclusion
criteria were: (1) unilateral stroke (hemorrhagic or embolic) or focal
traumatic brain injury; (2) age ranging from 18 to 80 years at enrollment;
(3) currently undergoing upper-limb rehabilitation (inpatient or out-
patient); and (4) severe-to-moderate upper-limb impairment as deter-
mined by a score between 15 and 55 points out of 66 on the upper-limb
FMA scale. Patients with a Mini-Mental State Examination test52 score
below 24 and not able to follow a three-step command were excluded

from the study. Study procedures were reviewed and approved by the
Spaulding Rehabilitation Hospital Institutional Review Board (IRB). Written
informed consent was obtained from each study participant or a legally
authorized representative. All study procedures were carried out in
accordance with relevant guidelines and regulations.

Experimental procedures
Enrolled subjects participated in two identically structured visits (described
below), the first at baseline and the second at discharge. During the study
visits, a research therapist administered a battery of standardized clinical
tests, including the upper-limb portion of the FMA and the FAS.
The upper-limb FMA is a clinical test designed to evaluate motor

impairments that has been tested extensively in the stroke population37. A
total of 33 items assessing voluntary movement, reflexes, grasp, and
coordination are tested; each item is rated on a three-point ordinal scale. A
score of 0 is assigned when the subject cannot perform the item; a score of
1 is assigned when the subject can only partially perform the item; and a
score of 2 is assigned when the subject performs the item flawlessly. The
total score is the sum of the scores for each item of the scale. The
maximum achievable score is 66 points. The scale has excellent inter-rater
and intra-rater reliability as well as excellent construct validity53.
The FAS is used to assess the quality of movement via observation of the

performance of the items of the Wolf Motor Function Test (WMFT). The
WMFT is commonly used to quantify upper-limb motor function with
timed functional tasks38. It consists of 17 items progressing from proximal
to distal and from least to most complex upper-limb movements. Each
item is used to assess speed and movement quality. Two items are meant
to assess the strength and are scored separately from the rest of the scale.
The FAS relies on a six-point ordinal scale, where a score of 0 is assigned
when the task is not attempted, and a score of 5 is assigned to movements
that appear to be “normal”. Scores from 1 to 4 are associated with the
presence and severity of compensatory movements, the use of the
unaffected upper-limb to support the affected upper-limb, the speed and
smoothness of movement during the performance of the task relative to
normative. Higher FAS scores indicate better quality of movement. The
clinimetric properties of the clinical scale are excellent39. The test was
performed in a standardized manner, according to guidelines developed
by Taub et al.54.

Fig. 4 Monitoring the motor recovery trajectory using wearable sensors. The time series represent the recovery trajectory of a hypothetical
subject undergoing rehabilitation. Clinical scores estimated via the analysis of wearable sensor data (orange circles) provide measures of arm
ability across domains of the ICF. Predicted scores (green circles) derived using a model based on the time series of estimated clinical scores
(orange circles) and subject’s clinical phenotype provide estimates of the anticipated response to the intervention. A fitting function (e.g., a
polynomial equation) represents the recovery trajectory. Confidence intervals are provided for the estimated and predicted scores.
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After the clinical tests, a total of six wearable sensors (Shimmer2 by
Shimmer Sensing, Dublin, Ireland) were placed on the chest (sternum
height), arm (mid-biceps, frontal), and wrist (above radius and cubitus
styloid, dorsal) bilaterally, and on the index and thumb (dorsal part of the
distal phalange) of the affected upper limb using self-adherent wrap
(Coban, 3 M) (Fig. 5b). All the units were equipped with three-axis
accelerometers, except for the units positioned on the thumb and index
finger that were equipped with two-axis accelerometers. All the units were
synchronized and programmed using a dedicated software platform.
Subjects were then instructed to perform selected motor tasks from the

WMFT. Eight WMFT motor tasks were selected and performed by study
participants (Fig. 5a). The tasks selected for the study were previously
reported to be suitable to estimate FAS scores34 and provided encouraging
results when utilized to estimate FMA scores36. Each task was timed, and
its performance quality evaluated using FAS-based criteria. Four tasks
evaluated arm-reaching capacity: a forearm to table-side (WMFT-1), extend
elbow-side (WMFT-3), hand to the table (WMFT-5), and reach and retrieve
(WMFT-8). The remaining four tasks assessed manipulation ability: lift a can
of soda (WMFT-9), lift a pencil (WMFT-10), flip cards (WMFT-13), and turn
key in a lock (WMFT-15). In order to account for possible within-subject
variability, each task was performed up to three times, and each
occurrence was scored separately. Both sessions were video-recorded for
off-line review by research therapists.

Data analysis
Potential differences between stroke and TBI study participants’ clinical
characteristics were assessed using Chi-Square tests for categorical
variables and independent t tests for continuous variables. Statistical tests
were performed using SPSS (Statistical Packages for Social Sciences,
version 23.0; SPSS Inc., Chicago, IL, USA). Data were checked for normality
of distribution, significance was set at α= 0.05, and P values were adjusted
for multiple comparisons using a Holm correction55.
Average FAS scores were derived from the scores assigned to each trial

for a given item of the scale. Average scores for the eight tasks utilized in
the study were used in the equation below to derive the FAS total score34.
The resultant FAS score ranged between 0 and 5 points.

FASTotal ¼
P

FASi ´ 1:78ð Þ þ 2:97
15

Sensor data processing
The raw accelerometer data was imported in the MATLAB programming
environment (The MathWorks Inc, Natick, MA, USA), and custom scripts
were used to implement the processing steps described below.
First, the accelerometer data recorded during the performance of the

WMFT tasks were segmented in order to select the time intervals during
which each motor task was performed. The segmentation was accom-
plished using a digital marker recorded during the data collection to
identify when subjects started and completed the performance of each
motor task.

Then, data features were extracted and selected. To that aim,
accelerometer time series were low-pass filtered with a cut-off frequency
of 8 Hz (sixth-order Butterworth filter) to remove high-frequency noise and
then high-pass filtered with a cut-off frequency of 0.25 Hz (sixth-order
Butterworth filter) to isolate the acceleration components of movements and
minimize the effects of postural adjustments. The magnitude time series for
displacement, velocity, acceleration, and jerk were derived by combining the
data for the three axes (or two axes when the unit was equipped with two
axes) of each sensor unit. Based on prior work that had shown their suitability
to derive FAS scores33,34,36, the following data features were extracted from
the sensor time series: (1) minimum, maximum, and mean values, (2) root-
mean-square value, (3) ratio of the magnitude of the dominant frequency
and total signal energy, (4) jerk, (5) skewness, (6) signal entropy, (7) kurtosis,
(8) correlation coefficients derived from the time series computed for
different axes, and (9) duration of the data segments associated with the
performance of each movement component. Correlation coefficients derived
from the magnitude time series of the accelerometer data were computed
for all the sensors (i.e., sensors positioned on the fingers, wrist, arm, and
sternum). These correlation coefficients were meant to capture the
characteristics of relative movements of different body segments, including
compensatory movements such as leaning forward during the performance
of an arm-reaching movement. The selection of data features was achieved
using a correlation-based algorithm56.
To estimate the FAS clinical score from the sensor data, a RF regression42

was used to estimate the FAS scores for each repetition of the motor tasks
based on data features that were computed and selected, as explained
above. The number of RF trees was set to 100. A RF-based approach was
chosen because of its robustness when processing datasets of small size.
The RF-based algorithm was implemented using the leave-one-subject-out
cross-validation method to avoid overfitting.
For each subject, the estimated FAS scores for all the repetitions of a

given motor task were averaged. Then, the average FAS scores per task
were added across tasks. The resultant score was used as input to a linear
equation to estimate the total FAS score. The equation utilized to
aggregate FAS estimates, computed using data for individual tasks, was
derived in earlier work34. Figure 6a shows a schematic representation of
the full data analysis pipeline to estimate the FAS scores from the wearable
sensor (i.e., accelerometer) data.
To estimate the FMA clinical score from the sensor data, the following

four different methods were implemented to generate FMA score
estimates.

Method 1 (linear regression (dFAS)). FAS estimates (i.e., dFAS) were first
computed using an algorithm previously developed by our research group
to derive FAS estimates from sensor data34. Then, FMA scores were derived
via a linear regression model of the FAS estimates (i.e., dFAS). The linear
regression model was derived using the actual FMA and FAS scores (i.e.,
those generated by rehabilitation specialists).

Method 2 (random forest). A RF regression with 100 trees was used to
generate FMA score estimates for each of the eight functional motor tasks
utilized in the study. Data features were derived and selected based on the
algorithms described above. Then, the FMA score estimates for each motor

Fig. 5 Experimental procedures. Functional tasks performed during the data collections a and position of the wearable sensors b.
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task were combined using a RF with 50 trees. The output of this RF
provided an estimate of the FMA total score.

Method 3 (balanced random forest). This method was derived by
modifying Method 2. Specifically, the RFs utilized to generate the FMA
score estimates for each motor task were trained using balanced datasets
as part of the process by which data features are randomly selected to
generate the decision trees of the RF. The balancing of the training set was
obtained by using five classes: (1) FMA ≤ 30; (2) 30<FMA ≤ 38; (3)
38<FMA ≤ 47; (4) 47<FMA ≤ 56; and (5) FMA > 56.

Method 4 (proposed technique). This method was derived by modifying
Method 3. Specifically, an input was added to each RF. The additional input
was used to feed the algorithm with estimates of the FAS scores (i.e., dFAS).
Figure 6b shows a schematic representation of the final data analysis
pipeline to estimate the FMA scores using wearable sensor data.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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