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Protected Health Information filter (Philter): accurately and
securely de-identifying free-text clinical notes
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Atul J. Butte 1,4✉

There is a great and growing need to ascertain what exactly is the state of a patient, in terms of disease progression, actual care
practices, pathology, adverse events, and much more, beyond the paucity of data available in structured medical record data.
Ascertaining these harder-to-reach data elements is now critical for the accurate phenotyping of complex traits, detection of
adverse outcomes, efficacy of off-label drug use, and longitudinal patient surveillance. Clinical notes often contain the most
detailed and relevant digital information about individual patients, the nuances of their diseases, the treatment strategies selected
by physicians, and the resulting outcomes. However, notes remain largely unused for research because they contain Protected
Health Information (PHI), which is synonymous with individually identifying data. Previous clinical note de-identification approaches
have been rigid and still too inaccurate to see any substantial real-world use, primarily because they have been trained with too
small medical text corpora. To build a new de-identification tool, we created the largest manually annotated clinical note corpus for
PHI and develop a customizable open-source de-identification software called Philter (“Protected Health Information filter”). Here
we describe the design and evaluation of Philter, and show how it offers substantial real-world improvements over prior methods.
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INTRODUCTION
Structured electronic health records (EHRs) fields, primarily
comprises elements such as high-level demographics and billing
codes (ICD), are currently the most utilized in determining the
state of a patient, in terms of clinical care details or disease state.
Many of these fields are often used in clinical research, and are
now starting to be used to determine human phenotypes1 for
genome-wide association studies, and can be used to facilitate
automated improvements of healthcare decision-making2. How-
ever, in many cases this information is not detailed enough to
provide appropriate insights. For example, Breast Imaging
Reporting and Data System (BI-RADS) scores, which provide a
radiologist-assigned assessment of breast cancer status-based
mammogram can only be found in radiology reports at UCSF.
Similarly, physician documentation of patient symptoms can only
be found in the clinical notes at our hospital. Additionally,
procedural, diagnostic, and medication billing coding are often
incomplete, inconsistent, subjective, and inaccurate (often due to
the needs of billing prioritizing over the needs of science), and this
could even lead to false insights3,4. Clinical notes often contain the
richest and most relevant information available about disease
phenotypes, treatments, and outcomes, as well as the clinical
decision-making process. This written medical narrative frequently
captures patient experience and event ordering timelines. To date,
there have been many studies that have successfully used data
from clinical notes for discoveries, including detection of drug
adverse outcomes5, identification of off-label drug use6, surveil-
lance of disease states7, and identification of clinical concept
relatedness8.
With nearly the entire United States healthcare system now

adopting EHRs, but with most of the actual clinical details

captured in these free-text notes, transforming information
contained within clinician notes into a computable resource is
essential for medical research and improving patient care.
However, clinical notes contain legally Protected Health Informa-
tion (PHI), which prevent their use in most research applications.
Removal of PHI from clinical notes is a challenging task because

the potential number of words that could be PHI are limitless.
There are many different methods for recording and formatting
patient note data across the health system landscape, and each
health system serves a distinct patient population, resulting in
differences in the distribution of types of PHI across health
systems9 and the probability that a given word is PHI or a medical
term (e.g.: “MA”).
The current state-of-the-art in de-identification systems still

have real-world weaknesses because there are only a small
number of corpora openly available for algorithm development
and testing10–14. Priorities around de-identification software
performance in recent years have been driven largely by de-
identification competitions, most notably the Integrating Biology
and the Bedside (i2b2) competitions in 2006 and 2014, which have
emphasized a balanced approach of information retention and
patient privacy, instead of national guidelines (https://www.hhs.
gov/hipaa/for-professionals/privacy/special-topics/de-identification/
index.html), which focus exclusively on privacy. It is clear that real-
world performance is generally still below the threshold of
compliance regulations for removing PHI, resulting in a lack of
broader use of these tools to de-identify notes for research9,15,16.
Every piece of PHI not identified and removed represents a
potential violation of patient privacy and also a potentially
expensive lawsuit. Even at 95% recall (i.e., percent of PHI
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removed), the amount PHI still remaining across millions of clinical
notes would be staggering.
With an incredibly diverse patient population being treated at

the University of California, San Francisco (UCSF), yielding over 70
million clinical notes collected within our Electronic Health
Records (EHRs), we required an efficient, accurate, and secure
method for removing PHI from notes in order to make these data
usable by researchers while minimizing the risk of PHI exposure.
We developed a privacy-centric approach to removing PHI from
free-text clinical notes using both rule-based and statistical natural
language processing (NLP) approaches. The algorithm utilizes an
overlapping pipeline of methods that are state-of-the-art in each
application including: pattern matching, statistical modeling,
blacklists, and whitelists. We built this software tool as a self-
contained system that could be deployed on any major
computing platform and can operate without an internet
connection, allowing it to be run in secure environments.
We have called this algorithm Philter (Protected Health

Information filter). In this work, we describe the engineering of
Philter and its evaluation against other systems. As we have
discovered most existing tools in this field do not have actual
open-source availability, we have released Philter as open source

code, and envision tens of thousands of health systems finding it
useful.

RESULTS
Study design
The Inter-Rater Reliability, for PHI vs. Safe tokens, between first and
second pass annotators in the UCSF corpus was greater than
99.99%, with the second annotator identifying an average of 39
additional PHI tokens and converting an average of 21 tokens
from PHI to Safe per 500 notes.
We compared overall recall and precision and per-PHI-category.

Recall across the three algorithms (Physionet, Scrubber, and
Philter) on two corpora; the 2000 note UCSF test corpus mentioned
above and the publicly available 514 note 2014 i2b2 test corpus.
Primary and Secondary result metrics on both corpora are

displayed in Table 1, with precision listed as a reference. On the
UCSF test corpus: Physionet had a recall of 85.10% and an F2 of
86.15%, Scrubber had a recall of 95.30% and an F2 of 91.59%, and
Philter had a recall of 99.46% and an F2 of 94.36%. On the 2014
i2b2 test corpus: Physionet had a recall of 69.84% and an F2 of
73.05%, Scrubber had a recall of 87.80% and an F2 of 85.22%, and
Philter had a recall of 99.92% and an F2 of 94.77%.
Philter also outperformed both of the other algorithms for each

category of PHI on both corpora, in addition to having the highest
overall recall (Tables 2, 3).

Sensitivity analysis. Distribution of PHI and Philter Recall by
Category.
The raw count of PHI varied noticeably between the two

corpora, but Philter’s recall consistently generalized across the
categories for each corpus (Supplementary Tables 4, 5).
Results of additional sensitivity analyses regarding the precision

errors caused by each element of the algorithm pipeline
(Supplementary Table 6) and the impact of partial PHI removal
(Supplementary Tables 7, 8) and can be found in the Supplement.

Table 1. Performance comparison of tools and corpora.

UCSF I2B2

P R F2 P R F2

PHIlter 78.28 99.46 94.36 78.58 99.92 94.77

Physionet 90.62 85.10 86.15 89.49 69.84 73.05

Scrubber 79.24 95.30 91.59 76.26 87.80 85.22

Performance comparison of tools and corpora.
P precision, R recall.

Table 2. Remaining PHI analysis by tool, UCSF test corpus.

PHI category Instances of PHI
remaining (PHIlter)

Instances of PHI
remaining (Physionet)

Instances of PHI
remaining (Scrubber)

Age ≥ 90 0 0 0

Patient_Vehicle_or_Device_Id 0 18 0

Patient_Account_Number 0 35 4

Patient_Medical_Record_Id 0 445 0

Patient_Social_Security_Number 0 0 6

Patient_Phone_Fax 0 0 1

Patient_Initials 2 120 132

Patient_Name_or_Family_Member_Name 6 211 93

Patient_Address 7 25 16

Patient_Unique_ID 20 442 34

Email 0 1 1

URL_IP 4 20 153

Date 7 257 269

Provider_Certificate_or_License 0 276 99

Provider_Name 12 546 90

Provider_Initials 12 236 217

Provider_Address_or_Location 43 1597 210

Provider_Phone_Fax 45 49 43

PHI counts for PHIlter, Physionet and Scrubber performance on the UCSF corpus. Instances of PHI represent single tokens within the span of multiple or single-
token items of PHI.
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The amount of real (wall-clock) time necessary to run 500 notes
as a single process was 323 s. The amount of real time necessary
to simultaneously process 20 batches of 500 notes, 10,000 notes
total, was 401 s.

DISCUSSION
In this study, we developed an algorithm, Philter, that utilizes an
overlapping pipeline of multiple state-of-the-art methods and
compared it to the two strongest real-world competitors on the
basis of recall. Philter demonstrated the highest overall recall on
both corpora, had the highest recall in each category of PHI on
both corpora, and generalized well between the corpora. Philter’s
recall on the 2014 i2b2 test corpus is the highest reported in the
literature. A key design decision was the use of rules to separate
PHI from Safe words while using a statistical method to improve
precision. The overall size of the UCSF corpus at 4500 manually
annotated notes is the largest in the world that we are aware of.
Likewise, the UCSF test corpus, at 2000 notes, is the largest corpus
to be tested and reported in the literature.
With more EHR systems being deployed across the world, there

is still an incredible need for text processing tools, and de-
identification is a key utility that can enable many readers and
programmers to access those notes in a safer manner. While
challenges and competitions have been run for nearly 10 years,
there is still a pragmatic need for safe, efficient, open-source de-
identification tools.
The field has been dominated by two separate approaches to

designing de-identification algorithms. The first uses a rule-based
system to detect PHI, while the second approach uses statistics to
assign probabilities of PHI to words. Rule-based systems primarily
use regular expressions and/or blacklists of words to tag PHI.
Statistical methods employ machine learning, traditionally Condi-
tional Random Fields and increasingly Recurrent Neural Networks,
to learn patterns based on words and their context. Rule-based
systems typically have better recall, while statistical methods
typically have better precision. Rule-based systems are inherently
predictable allowing their success and failures to be anticipated.
Statistical systems are much faster to build; however, they are
often difficult to interpret and performance on new data is more
unpredictable. For example, the organizers of the 2006 i2b2

challenge discovered that the best performing algorithm in the
competition, which utilized a statistical approach, suffered serious
failures when de-identifying notes that came from the same
hospital but were not drawn from the competition corpus17.
The sparsity of available notes for de-identification system

development and testing has provided a tremendous challenge to
developing robust de-identification approaches because the nature
of PHI contained within a note may differ significantly depending on
the hospital or department they were generated from. Ferrandez
et al.9 demonstrated this by showing different proportions of
categories of PHI distribution between the VHA, i2b2, and the
Swedish Stockholm corpora. For example, Provider Names com-
prised only 9% of the overall PHI in the VA corpus, but were 19% of
the PHI in i2b2, while there were no occurrences of Provider Names
in the Stockholm corpus. Conversely, Patient Names make up only 4
and 5% of the VA and i2b2 PHI, respectively, but over 20% of the
Stockholm corpus. ID Numbers were barely present in the VA
corpus, totaling less than half of 1% of the PHI, but were responsible
for >24% of the PHI in the i2b2 corpus.
Between the systems selected as comparators for this study, the

Physionet tool is the oldest and most “proven”; it has great precision
but does not effectively remove PHI. Scrubber is a newer software
and the designers traded precision to get much improved recall.
Unfortunately, neither of these approaches can be easily modified.
Since PHI varies widely from corpus to corpus and the needs of
those performing de-identification are diverse, the lack of customiz-
ability of these tools presents real-world usability challenges.
The NLM Scrubber software assumes that words appearing

frequently in public documents are unlikely to be PHI, and
although this assumption appears reasonable, it is not justifiable
given our own findings. As mentioned above, we found over
16,000 names in the census and Social Security data that were
either common English words or medical terms. This may explain
the 20x difference between Scrubber and Philter in the number of
patient name tokens that remained after filtering.
In addition to outperforming the comparators selected for this

study, Philter sets new state-of-the-art recall results on the 2014
i2b2 corpus. The challenge winner, the Nottingham system, had a
recall of 96.29 (micro-averaged, token-wise, Health Insurance
Portability and Accountability Act (HIPAA) category)12. Philter also
demonstrates higher recall than the results reported for the more
modern deep-learning based de-identification systems (Dernon-
court et al.18 i2b2 recall 97.38; Lui et al.19 recall 93.8). Interestingly,
the only publically available de-identification system used in the
aforementioned competition, MITRE’s MIST tool20, faired quite
poorly (HIPAA token recall of 80.05) even when supplemented
with the well regarded Stanford NER tagger and pre-trained on an
additional private corpus from Kaiser.
It is fair to note that the i2b2 Challenge systems and the deep-

learning systems mentioned in this manuscript attempted to
maximize F1 rather than recall. While we believe that this is a
flawed approach within the de-identification community (consider-
ing recall is the primary concern from a patient privacy standpoint),
we acknowledge that tuning these systems to maximize PHI
removal could potentially improve their recall performance.
As mentioned above, the part of speech (POS) tagger portion of

the pipeline was the most problematic element from a precision
perspective. Despite having lower recall and being subject to several
statistical system challenges, such as lack of transparency and great
risk of poor generalization to new corpora, we are excited by the very
high precision of the deep-learning approaches previously refer-
enced18,19. We can imagine replacing the current NLTK POS tagger in
the Philter pipeline with a deep-learning version of the same.
Despite Philter’s strong performance, with recall values equal to

or greater than 99.5%, recall still was not perfect. The portions of
PHI that were not identified were edge cases around existing
patterns. For example, there were six total tokens that were
missed for patient names in the UCSF test corpus. These tokens

Table 3. Remaining PHI analysis by tool, I2B2 corpus.

PHI category Instances of PHI
remaining
(PHIlter)

Instances of PHI
remaining
(Physionet)

Instances of PHI
remaining
(Scrubber)

Age 0 1 0

Device 0 6 0

Medical record 0 524 18

Patient 2 154 92

Date 0 4590 1587

Fax 0 2 0

Phone 0 31 67

Zip 0 3 1

Username 1 92 92

Street 2 27 21

Location-other 2 9 12

Idnum 2 297 206

City 2 14 52

Doctor 5 197 186

PHI counts for PHIlter, Physionet and Scrubber performance on the I2B2
corpus.
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actually came from one single patient, whose name was six tokens
long. The six token name appeared twice in one note, and each
time Philter successfully removed three of the names, likely making
the actual patient’s name difficult or impossible to re-identify. The
solution to this and similar problems are almost trivially easy to fix
but they underscore the need to test de-identification systems on
very large and diverse corpora to continually discover and refine
edge cases.
The statistical portion of the pipeline was the most problematic

from a precision perspective. The POS tagger frequently confused
capitalized words, either at the beginning of sentences or all-
capital words within sentences, as proper nouns. We found a very
high overlap between common English words and medical terms
(See, Whitelist) with names taken from the Census and Social
Security. Precisely 16,095 names were found to be either medical
terms or common English words. Therefore, an incorrect POS tag
of NNP frequently resulted in a false positive.
The decision not to include institution-specific information, such

as a map between patient names and note identification numbers,
could be considered a limitation. At the time of development, we
chose not to include such information for numerous reasons. First,
our lists of patient names are messy (it was not uncommon for drug
names to appear as patient names in our databases). Second, even
after rigorous initial cleaning, our patient name lists only detected
80% of name PHI within the corpus. This is in part due to the fact
that patient family member names frequently appear within notes
and in part due to misspellings of names. Third, relying on the use of
inside data would not produce an algorithm that was generalizable
out of the box. We believe that patient name-to-note maps could
make a small but valuable addition to the pipeline and we envision
placing it prior to the Names Blacklist steps. However, at the time of
this writing, despite extensive development, we still are not ready to
incorporate them. If we find that doing so improves performance in
the future, we will provide the steps necessary to reproduce our
process at other institutions on our github README.
In summary, Philter providers state-of-the-art de-identification

performance while retaining the majority of relevant medical
information. We envision that PHI removal can be further optimized
using a crowd-sourcing approach with lots of exposure to many
hospitals and notes. For this reason, we have made Philter open-
source and highly customizable. We believe the system is capable of
100% recall with enough exposure and community involvement. The
simple to use software will accept any text file as input, is fully
modular to allow the community to improve the algorithm or adapt it
to each users’ specific needs, easy to evaluate, and executable in a
secure environment. The software comes pre-configured, as the
pipeline described in this manuscript, to produce the de-identification
results that most closely follow HIPAA Safe Harbor guidelines.
To our knowledge there is no current standard for quantify the

cost of information lost to false positives during de-identification.
We believe that this is in large part due to the fact that the
relevance of each non-PHI word is tightly coupled to specific
clinical or research questions. Cost of information loss due to de-
identification could be addressed by a research project that
considered multiple common and important tasks for de-
identified clinical notes. Those tasks could be performed using
two different sets of data as input; (a) the raw notes and (b) the
de-identified notes output by Philter. Performance results could
then be compared to quantify “de-identification cost” for each
task. Additionally, we will monitor Philter’s github repository to
incorporate improvements from additional users.

METHODS
Study design
The UCSF Committee on Human Research approved our study protocol
[study # 16-20784]. The IRB waived the requirement for individual Research
HIPAA Authorization for all subjects. The UCSF IRB determined the use or

disclosure of the requested information did not adversely affect the rights
and welfare of the individuals and involves no more than a minimal risk to
their privacy. The UCSF IRB determined the requested waiver of informed
consent was acceptable.
To create the UCSF corpus of clinical notes, 4500 notes were randomly

selected from over 70 million notes from all departments at UCSF by
assigning a hash identity to each note ID, randomly permuting the order of
the hashed ID, then randomly selecting 4500 hashed note IDs. Words were
then manually annotated for PHI-categories by one of our three trained
annotators. The annotators used Multi-document Annotation Environment
(MAE)21. The MAE tool was configured with PHI elements following the
HIPAA Safe Harbor guidelines with a couple of additional categories to
identify provider information (Supplementary Table S1). 4500 notes were
annotated twice, with a second annotator reviewing and correcting the
mark-up of the first annotator and Inter-Rater Reliability, which provides
the percent agreement between annotators, was calculated. When in
doubt, annotators chose the more conservative option, for example
marking an unclear name as belonging to a patient vs. a physician. We
generated a distribution of the randomly sampled notes and found >100
note categories, note types, departments of origin, and provider
specialties. We randomly assigned 2500 notes to use for the development
of a new de-identification algorithm (see Supplementary Table 2 for a
distribution of the departments represented) and 2000 notes to test
algorithm performance (Supplementary Table 3).
The i2b2 2014 de-identification challenge test corpus consists of 514 notes

and was downloaded on 18 July, 201710,11. However, annotations of words as
either safe or PHI within this corpus do not exactly follow the HIPAA guidelines
for Safe Harbor, specifically in regards to locations and dates22. We, therefore,
changed the annotations for words from the following categories: years in
isolation, seasons (e.g., winter, spring), days of the week, single letters with no
adjacent content, country names and ages under 90 from PHI to safe. The i2b2
2014 corpus replaced real PHI with surrogates. In a few instances, the
surrogate values are for patient identification numbers were unrealistic, being
four digits or less. These were removed.
The categories of PHI, the values of PHI, and the context surrounding PHI

within a note can change drastically between types of notes, between
departments within a health system, and between different health
systems. In contrast to this, we believe that words that are not PHI have
considerably less variability. Therefore, we started with an approach of
identifying words that are not likely to be PHI. Approaches to identify
words that are likely to be PHI were then incorporated into the algorithm
for additional security and precision.
To optimize ease of use and modularity, while ensuring that the

complete algorithm performs as expected, the pipeline is controlled by a
simple text configuration file in the JavaScript Object Notation (JSON)
format. We store the position of each character in memory so that tokens
identified as PHI may be replaced with an obfuscated token of exactly the
same length (e.g.,: “John Smith” becomes “**** *****”). Therefore, the
original structure of the note is perfectly preserved, with the exception that
asterisks in the original note are replaced with spaces. The priority with
which a token is marked as PHI or safe is dictated by the order of processes
in the configuration file and is entirely customizable. We built an
evaluation script that automatically compares de-identified notes to
annotated gold-standards at the character level to quantify global and
PHI category-specific performance.
At the beginning of the pipeline, a custom script tokenizes individual

words within each note by separating them on whitespace and symbols
(i.e., -, /, #, &, periods, etc). Next, short phrases that have a high probability
of not being PHI are identified using pattern matching with a custom
library of 133 “safe” regular expressions. Then, a custom library of 171
regular expressions is used to identify predictable PHI entities such as
salutations, emails, phone numbers, dates of birth, social security numbers,
and postal codes. In both cases, the regular expressions search for specific
words, phrases, and/or numbers and utilize the immediate context
surrounding each word to identify matches. For example, if a number
appears adjacent to the word “age” or “years old”, that number is
interpreted as an age and is PHI if it is greater than or equal to ninety, as
per HIPAA guidelines for Safe Harbor methods. On the other hand, a
number referring to dosage (e.g., 50 mg) is not interpreted as PHI.
At this stage, the Python NLTK module is used to tag each word with a

POS to address the challenge of dealing with words that could be either
safe or PHI, using statistical modeling to determine the structure of each
sentence and document. For example, the word “White” in the context of
“White fluid found at…” is an adjective and therefore safe, while “Patient
John White presents with…” is a proper noun and is PHI.
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We assembled a blacklist of names using last names occurring 100 or
more times in the 2010 U.S. census, and first names occurring five or more
times for each year of birth between 1879–2017 from the U.S. Social
Security website. To minimize occurrences of names that are also common
words (i.e., new, walks, knee, home, child, etc.) in the blacklist, we removed
a total of 855 words from the blacklist that were the greatest contributors
to precision errors during training (complete documentation of blacklist
creation is available on the public github repository). All names added to
the final blacklist were tokenized on whitespace and symbols, and
converted to lowercase. The blacklist was separated into a first names
blacklist and a last names blacklist, and the two lists were incorporated into
the full pipeline in succession. During the blacklist stage of PHI-searching, if
a token is in at least one of the blacklists and is labeled as a proper noun by
NLTK (e.g., POS tag= NNP), it is marked as PHI, tokens not in the lists are
left unmarked.
Next, an additional name removal step is implemented using a

combination of regular expression and blacklist matching. We created a
custom library of four regular expressions that search for common last
name patterns in clinical notes (e.g., Jane Doe or Doe, Jane), and potential
names are marked as PHI if an adjacent token was previously marked as
PHI by a blacklist.

At this point, the pipeline employs a safety mechanism to catch PHI that
occurs in unexpected formats, such as previously unseen names, words
with incorrect POS tags, or misspellings. This is accomplished by
identifying previously unlabeled (label= PHI/Safe) tokens that are most
likely not PHI. This is accomplished using a custom whitelist of ~195,000
tokens comprises medical terms and codes extracted from common
medical word banks and ontologies (e.g., UMLS, SNOMED, MeSH, etc.),
common medical abbreviations, the 20,000 most common English words
and an additional list of common English verbs with varied tenses. All
Social Security and 2010 Census names were removed from the whitelist,
and some common English and medical words were then added back to
the whitelist to maintain acceptable precision measurements (Complete
whitelist documentation can be found on the github repository). All tokens
that have not already been categorized as PHI or Safe by an earlier portion
of the pipeline, with the exception of tokens with numeric POS tags, are
passed through the whitelist.
A final active filtering process is used to identify patient and provider

initials. We created a single regular expression that searches for initials
patterns in clinical notes (e.g., Doe, J. or Jane S. Doe), and these regex
matches are marked as PHI if one or more adjacent tokens were previously
marked as PHI by a blacklist.

Mr. John Wayne consulted Drs. Susan A. Wallice nd Nick White for his 
headache on 04/23/16, complaining of 10/10 pain.

Mr. John Wayne consulted Drs. Susan A. Wallice nd Nick White for his 
headache on **/**/**, complaining of 10/10 pain.

Mr. **** ***** consulted Drs. Susan A. Wallice nd Nick White for his 
headache on **/**/**, complaining of 10/10 pain.

Mr. **** ***** consulted Drs. ***** A. ******* nd **** White for his headache 
on **/**/***, complaining of 10/10 pain.

Whitelist to keep 
medical terms and 
common English 

words

Mr. **** ***** consulted Drs. ***** A. ******* nd **** **** for his headache 
on **/**/**, complaining of 10/10 pain.

Mr. **** ***** consulted Drs. ***** *. ******* ** **** **** for his headache on
**/**/**, complaining of 10/10 pain.

Mr. John Wayne consulted Drs. Susan A. Wallice nd Nick White for his 
headache on 04/23/16, complaining of 10/10 pain.

Regex to keep 
medical results found 

in a verifiably safe 
context

Regex for removing 
words following 

patient  salutations

Regex for removing 
common date 

patterns

Blacklists to remove 
names that are 

proper nouns (NNP)

Safety net: remove 
any unmarked word 

tokens

Regex to catch 
initials adjacent to 
words marked by 

Blacklist

Regex
me

Regex to catch 
names adjacent to 
words marked by 

Blacklist

Mr. **** ***** consulted Drs. ***** A. ******* nd **** ***** for his headache on 
**/**/**, complaining of 10/10 pain.

Mr. **** ***** consulted Drs. ***** *. ******* nd **** **** for his headache 
on **/**/**, complaining of 10/10 pain.

Fig. 1 Algorithm Pipeline. A conceptual overview of the philter pipeline and process.
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At the conclusion of the pipeline a token can have one of three possible
labels: marked for exclusion, marked for inclusion, or unmarked. To
maximize patient privacy, only words marked for inclusion are retained
(Fig. 1).

Two-thousand five-hundred notes in the UCSF development corpus
were used to develop the optimal Philter algorithm. Each portion of the
pipeline, as well as the overall ordering of the pipeline, was modified to
obtain the greatest overall performance metrics. Examples include changes

Fig. 2 Ecosystem. The compute environment and system used for the development and validation of Philter.
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to regular expression patterns, the tokens present in the White and Black
lists, and the POS tags used to match against the lists. Optimization was
done iteratively, developing against 500 notes at a time from the
development set, testing against the next 500 notes in the development
set, then repeating, growing the size of the development set by the
previous 500 notes each time.
Ferrandez et al.9, performed a head-to-head comparison of multiple de-

identification systems on multiple corpora, which revealed that the
PhysioNet de-identification tool11, had the best out-of-the-box perfor-
mance. To identify PHI, the PhysioNet algorithm uses a combination of
regular expressions and three types of lookup dictionaries (known names
of patients and hospital staff, generic names of people and locations, and
common words along with UMLS terms considered by their team unlikely
to be PHI).
We selected the PhysioNet de-identification tool as the strongest

comparator that met our criteria of open-source software that could be
deployed entirely behind a firewall and downloaded the source code from
PhysioNet’s14 website (https://www.PhysioNet.org/physiotools/deid/) on
12 February, 2017.
The National Library of Medicine’s Scrubber tool, first published in

201323 takes the approach of maximizing recall and valuing real-world
generalization over public challenge competition results. It has been
continually revised and improved since its initial creation and investigators
have even launched a trial with updates as recent as 2018. The tool makes
use of other public tools, including Apache’s cTAKES24 and UIMA
projects25, to compare the likelihood of words being PHI based on their
relative frequency of appearance in public documents such as medical
journals and LOINC codes to private physician notes under the reasonable
assumption that words that appear in public documents are unlikely to be
PHI. We selected the NLM Scrubber tool as our second comparator and
downloaded the most recent version (v.18.0928) from the NLM website
(https://scrubber.nlm.nih.gov/files/). Unfortunately, NLM Scrubber software
does not maintain the original character alignment of scrubbed notes and
comes with no method to automatically evaluate its performance against
annotated notes. We had to design an evaluation script for this software
and have made the script available to the community on our GitHub
repository.
If PHI is allowed through a de-identification system, that yields a recall

error, in that the PHI was not found. If safe words are obfuscated, that
yields a precision error, in that extra text was unnecessarily removed. Since
preventing exposure of PHI is our highest priority, we wanted to devise a
system that minimized recall errors, even at the expense of greater
precision errors.
Each PHI word that evades detection increases the risk of patient re-

identification. Therefore, we evaluate performance at the word-level. In this
analysis, we count as True Positives (TP) those PHI words that were
correctly labeled as PHI while the False Positives (FP) are non-PHI words
that were incorrectly labeled as PHI. Likewise, True Negatives (TN) are non-
PHI words correctly labeled as non-PHI while False Negatives (FN) are PHI
words incorrectly labeled as non-PHI.
Since we chose to optimize our method to maximally maintain patient

privacy, we chose recall as our primary measure of performance (Eq. 1),
which represents the portion of PHI words that were identified correctly:

Recall ¼ TP=TPþ FN (1)

However, de-identified clinical notes only have value if they retain as
much non-PHI information as possible. Thus, we also measure precision
(Eq. 2), which represents the portion of filtered words that were non-PHI:

Precision ¼ TP=TPþ FP (2)

To account for precision, we selected the F2 score (Eq. 3) as our
secondary performance measure, which is a weighted average of recall
and precision that values recall twice as much as precision:

F2 ¼ 5 � Precision � Recall= 4 � Precisionð Þ þ Recall (3)

In addition to Recall and F2 performance, we were interested in we were
interested in the distribution of PHI across each category of PHI along with
the number of TPs and FPs resulting from the best de-identification tool.
Figure 2 outlines the environment we designed to build and run Philter

on clinical notes while ensuring security of the original notes and providing
a framework for reporting PHI that was not filtered by the algorithm.
To ensure security, clinical notes were kept on a server with an

encrypted drive protected behind an institutional firewall and through
access-controlled VPN at all times from initial software development
through institutional release. Access to the server was only permitted via

password-protected Secure Shell (SSH) protocol from points inside the
VPN, and only from devices which themselves had encrypted stores or
hard drives. The raw clinical notes were loaded onto the server through a
Clarity-level text document extraction from UCSF’s Epic EHR system.
We calculated the run time of our pipeline using batches of 500 notes on

a 32 core Linux machine with 16 GB of RAM using the native Linux Time
function, “time”, to estimate the feasibility of running Philter at a large
scale. We conducted two experiments. First, a single batch of 500 notes,
with a total size of 2.2 Mb, was run as single process and timed. Second, 20
batches of the 500 notes were run simultaneously as multiple processes
and timed.
The Philter package is written in machine-portable Python. The package

can be installed via PIP, the Python package installer, and the source code
along with detailed design descriptions, as well as installation and use
instructions can be obtained through the public repository open-sourced,
under an MIT License (https://github.com/BCHSI/philter-ucsf).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

CODE AVAILABILITY
The Philter package is written in machine-portable Python. The package can be
installed via PIP, the Python package installer, and the source code along with
detailed design descriptions, as well as installation and use instructions can be
obtained through the public repository open-sourced, under an MIT License (https://
github.com/BCHSI/philter-ucsf).

DATA AVAILABILITY
The i2b2 data that support the findings of this study are available from i2b2 but
restrictions apply to the availability of these data, which require signed safe usage
and research-only. Data from UCSF are not available at this time as they have not
been legally certified as being De-Identified, however, this process is underway and
the data may be available by the time of publication by contacting the authors.
Requesters identity as researchers will need to be confirmed, safe usage guarantees
will need to be signed, and other restrictions may apply.

Received: 17 May 2019; Accepted: 2 March 2020;

REFERENCES
1. Kirby, J. C. et al. PheKB: a catalog and workflow for creating electronic phenotype

algorithms for transportability. J. Am. Med. Inf. Assoc. 23, 1046–1052 (2016).
2. Norgeot, B., Glicksberg, B. S. & Butte, A. J. A call for deep-learning healthcare. Nat.

Med. 25, 14–15 (2019).
3. Makary, M. A. & Daniel, M. Medical error-the third leading cause of death in the

US. BMJ 353, i2139 (2016).
4. O’Malley, K. J. et al. Measuring diagnoses: ICD code accuracy. Health Serv. Res. 40,

1620–1639 (2005).
5. Iqbal, E. et al. ADEPt, a semantically-enriched pipeline for extracting adverse drug

events from free-text electronic health records. PLoS ONE 12, e0187121 (2017).
6. Jung, K. et al. Automated detection of off-label drug use. PLoS ONE 9, e89324

(2014).
7. Afzal, N. et al. Surveillance of peripheral arterial disease cases using natural

language processing of clinical notes. AMIA Jt Summits Transl. Sci. Proc. 2017,
28–36 (2017).

8. Finlayson, S. G., LePendu, P. & Shah, N. H. Building the graph of medicine from
millions of clinical narratives. Sci. Data 1, 140032 (2014).

9. Ferrandez, O. et al. Evaluating current automatic de-identification methods with
Veteran’s health administration clinical documents. BMC Med. Res. Methodol. 12,
109 (2012).

10. Goldberger, A. L. et al. PhysioBank, PhysioToolkit, and PhysioNet: components of
a new research resource for complex physiologic signals. Circulation 101,
E215–E220 (2000).

11. Neamatullah, I. et al. Automated de-identification of free-text medical records.
BMC Med. Inf. Decis. Mak. 8, 32 (2008).

12. Stubbs, A., Kotfila, C. & Uzuner, O. Automated systems for the de-identification of
longitudinal clinical narratives: Overview of 2014 i2b2/UTHealth shared task Track
1. J. Biomed. Inf. 58(Suppl), S11–S19 (2015).

B. Norgeot et al.

7

Scripps Research Translational Institute npj Digital Medicine (2020)    57 

https://www.PhysioNet.org/physiotools/deid/
https://scrubber.nlm.nih.gov/files/
https://github.com/beaunorgeot/philter-ucsf-beta
https://github.com/beaunorgeot/philter-ucsf-beta
https://github.com/beaunorgeot/philter-ucsf-beta


13. Stubbs, A. & Uzuner, O. Annotating longitudinal clinical narratives for de-identi-
fication: the 2014 i2b2/UTHealth corpus. J. Biomed. Inf. 58(Suppl), S20–S29 (2015).

14. Uzuner, O., Luo, Y. & Szolovits, P. Evaluating the state-of-the-art in automatic de-
identification. J. Am. Med. Inf. Assoc. 14, 550–563 (2007).

15. Deleger, L. et al. Large-scale evaluation of automated clinical note de-
identification and its impact on information extraction. J. Am. Med. Inf. Assoc.
20, 84–94 (2013).

16. Meystre, S. M., Friedlin, F. J., South, B. R., Shen, S. & Samore, M. H. Automatic de-
identification of textual documents in the electronic health record: a review of
recent research. BMC Med. Res. Methodol. 10, 70 (2010).

17. Sibanda, T. & Uzuner, O. In Proceedings of the Human Language Technology Con-
ference of the NAACL, Main Conference. Association for Computational Linguistics.
http://www.lrec-conf.org/proceedings/lrec2016/workshops/LREC2016Workshop-
ISA12proceedings.pdf.

18. Dernoncourt, F., Lee, J. Y., Uzuner, O. & Szolovits, P. De-identification of patient
notes with recurrent neural networks. J. Am. Med Inf. Assoc. 24, 596–606 (2017).

19. Liu, Z., Tang, B., Wang, X. & Chen, Q. De-identification of clinical notes via
recurrent neural network and conditional random field. J. Biomed. Inf. 75S,
S34–S42 (2017).

20. Aberdeen, J. et al. The MITRE Identification Scrubber Toolkit: design, training, and
assessment. Int J. Med Inf. 79, 849–859 (2010).

21. Rim, K. Mae2: Portable annotation tool for general natural language use. In Proc
12th Joint ACL-ISO Workshop on Interoperable Semantic Annotation. 75–80 (2016).

22. Deleger, L. et al. Preparing an annotated gold standard corpus to share with
extramural investigators for de-identification research. J. Biomed. Inf. 50, 173–183
(2014).

23. McMurry, A. J., Fitch, B., Savova, G., Kohane, I. S. & Reis, B. Y. Improved de-
identification of physician notes through integrative modeling of both public and
private medical text. BMC Med. Inf. Decis. Mak. 13, 112 (2013)..

24. Savova, G. K. et al. Mayo clinical Text Analysis and Knowledge Extraction System
(cTAKES): architecture, component evaluation and applications. J. Am. Med. Inf.
Assoc. 17, 507–513 (2010).

25. Ferrucci, D., Lally, A. UIMA: an architectural approach to unstructured information
processing in the corporate research environment. Nat. Lang. Eng. 10, 327–348
(2004).

ACKNOWLEDGEMENTS
We wish to thank Ozlem Uzuner and Amber Stubbs of the University of Albany for
detailed information on the i2b2 dataset and early manuscript revisions. Research
reported in this publication was supported by funding from the UCSF Bakar
Computational Health Sciences Institute and the National Center for Advancing
Translational Sciences of the National Institutes of Health under award number UL1
TR001872. Additional support was provided by the Amazon Cloud Research
Fellowship (B.N.), The Silicon Valley Community Foundation (B.N.), the Russell/
Engleman Medical Research Center for Arthritis (J.Y., G.S.), AHRQ R01 HS024412 (J.Y.,
G.S.), and the NIH grants P30 AR070155 (M.S. & J.Y.), NLM K01 LM012381 (M.S.), K23
AR063770 (G.S.), U24 CA195858 (T.G. and A.B.), and R01 GM079719 (A.B.). The content

is solely the responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health.

AUTHOR CONTRIBUTIONS
A.J.B. had full access to all the data in the study and takes responsibility for the
integrity of the data and the accuracy of the data analysis. Concept and design: B.N.,
A.J.B. Acquisition, analysis, or interpretation of data: all authors. Drafting of the
manuscript: B.N., B.S.G., T.A.P., K.M., A.J.B., Critical revision of the manuscript for
important intellectual content: B.N., B.S.G., A.J.B. Statistical analysis: B.N., K.M., G.S., X.F.
Obtained funding: B.N., A.J.B. Administrative, technical, or material support: B.O., D.L.,
T.G., A.J.B., Supervision: G.S., J.Y., A.J.B.

COMPETING INTERESTS
A.J.B., B.N., and E.R. are inventors on a filed disclosure on the Philter technology at the
University of California. A.J.B., B.N., and E.R. are inventors on a filed patent some of the
components of which are described in this paper.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41746-020-0258-y.

Correspondence and requests for materials should be addressed to A.J.B.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

B. Norgeot et al.

8

npj Digital Medicine (2020)    57 Scripps Research Translational Institute

http://www.lrec-conf.org/proceedings/lrec2016/workshops/LREC2016Workshop-ISA12proceedings.pdf
http://www.lrec-conf.org/proceedings/lrec2016/workshops/LREC2016Workshop-ISA12proceedings.pdf
https://doi.org/10.1038/s41746-020-0258-y
https://doi.org/10.1038/s41746-020-0258-y
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Protected Health Information filter (Philter): accurately and securely de-identifying free-text clinical notes
	Introduction
	Results
	Study design
	Sensitivity analysis


	Discussion
	Methods
	Study design
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




